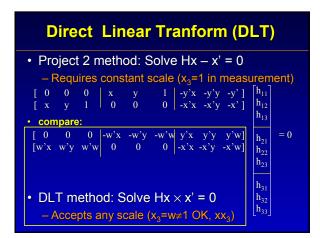
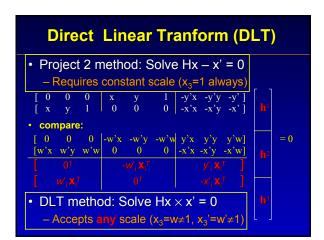
CS 395/495-26: Spring 2002 **IBMR: Week 5 B Chapter 3: Estimation & Accuracy** Jack Tumblin jet@cs.northwestern.edu **Homework 1** • Paper-and-pencil exercises • Shouldn't be very hard—mostly practice and reminders of important properties Not comprehensive (skips good stuff) • Due in 2 weeks: May 16 • (Turn it in! only got 2 Proj 1's...) **Overview** Perfect Math .vs. Imperfect measurements Many ways to recover H: Points, lines, planes, ||, ⊥, conics, quadrics, cross-ratios, vanishing points, twisted cubics... - Vectorize ('flatten, stack, null space') to solve most / all - Robustness, Accuracy .vs. # of measurements (data-rich images: quantity easier than quality more is easier than better) ?What links measurement errors ← → H errors? ?How can more measurements reduce error?

Recall: Project 2 Hints 4 point correspondence: - Book shows: $x'(h_{31}x + h_{32}y + h_{33}) = (h_{11}x + h_{12}y + h_{13})$ $y'(h_{31}x + h_{32}y + h_{33}) = (h_{11}x + h_{12}y + h_{13})$ - Rearrange: known vector (dot) unknown vector $\begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -x^2x & -x^2y & -x^2 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \end{bmatrix} = 0$ - stack, solve for null space... But this assumes $x_1 = x$, $x_2 = y$, $x_3 = 1$, Book has a better way (DLT)...





Direct Linear Tranform (DLT)

- DLT method: Solve $H \times x = 0$
 - Accepts any scale, any point $(x_3=w\neq 1 \text{ is OK})$
 - 'Pure', Compatible -- P² terms only
 - Much better suited to error measurements.
- Subtlety:
 - Won't divide-by-zero if w=0 or h₃₃=0 (tt happens!)
 - has a 3rd row; it is not degenerate if w'=0
 - OK to use it... (Solve 8x12)

$$\begin{bmatrix} 0^{T} & -w_{1}\mathbf{X}_{1}^{T} & y_{1}\mathbf{X}_{1}^{T} \\ w_{1}\mathbf{X}_{1}^{T} & 0^{T} & -x_{1}^{T}\mathbf{X}_{1}^{T} \\ -y_{1}^{T}\mathbf{X}_{1}^{T} & -x_{1}^{T}\mathbf{X}_{1}^{T} & 0^{T} \end{bmatrix} \begin{bmatrix} \mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3} \end{bmatrix} = \mathbf{0}$$

Deceptive 'Robustness'

- Suppose we have 4 pt-correspondences:
 - Use DLT to write 8x9 (or 12x9) matrix A: Ah=0
 - Solve for h null space. ALWAYS gives H matrix
- But what if points are bad / fictional?
 - − 3 collinear input pts, crooked out: IMPOSSIBLE!
 - Yet we get an **H** solution! Why?
- A matrix rank is 7 or 6→ rank 1 H result(s)
 - 'Null Space' of **A** may contain >1 **H** solution!
 - 'Degenerate' H solution of form $aH_1 + bH_2$...
- Answer: SVD ranks A; reject bad point sets.

Actual 'Robustness'

 Vectorizing ('Flatten, Stack, Null Space' method) works for almost ANY input!

(Points, lines, planes, ||, \bot , conics, quadrics, cross-ratios, vanishing points, twisted cubics...

• Use DLT formulation: $(Hx \times x') = 0$

- Rearrange as dot product: (known)·(unknown) = 0
- Be careful to have ENOUGH constraints tricky when you mix types: points, lines,... (99 76)

Adding More Measurements

How can we use >4 point correspondences?

- Easy:
 - Add more rows to our 8x9 matrix A: A·h = 0
 - Use SVD to find Null space (Always gives an answert
 - Result: 'Least squares' solution
 - minimizes $||\mathbf{A}\mathbf{h}||^2 = \sum_i \mathbf{\varepsilon}_i$

where \mathcal{E}_i is error for i-th pt. correspondence:

- $\mathcal{E}_i = || Hx_i \times x_i' ||^2 = || (2 \text{ rows of A})^*h ||^2 = 'algebraic distance'$
- 'Algebraic Distance' ? No geometric meaning!

Adding More Measurements

- 2D'Algebraic Distance' ? No geometric meaning!
- 2D 'Geometric Distance' d(a,b)² is Better: measurable length in input or output space

if $a = (a_1 a_2 a_3)$ and $b = (b_1 b_2 b_3)$, then define

$$\mathbf{d}(a,b)^2 = \left(\frac{a_1}{a_3} - \frac{b_1}{b_3}\right)^2 + \left(\frac{a_2}{a_3} - \frac{b_2}{b_3}\right)^2$$

Turns out that:

$$\mathbf{d}(a,b)^2 = \underbrace{\mathbf{d}_{\text{algebraic}}(a,b)}_{\mathbf{a_1} \cdot \mathbf{b_1}}$$

(Not very surprising)

Adding More Measurements

Overall Strategy:

- Overconstrain the answer H
 - Collect extra measurements (>4 point pairs, etc. ...)
 - expect errors; call them 'estimates' x
- Compute a 1st solution (probably by SVD)
- Compute error $d(H\hat{x}, \hat{x}')^2$, and use this to...
- 'Tweak' answer H and estimates x̂
- · Compute new answer
- Stop when error < useful threshold

Using Estimates

- Simplest: 'one image' transfer method:
 - Assume inputs are a perfect test pattern:
 only output pts are in error
 - Adjust output estimates \hat{x}' until d(Hx, \hat{x}')² →0 (note we re-compute H as x' changes)
- · Better: 'Symmetric' transfer method:
 - Assume BOTH inputs and outputs have error.
 - Adjust BOTH input and output ests \hat{x} \hat{x}' (note we re-compute H as x, x' change)
 - Stop when $d(H\hat{x},\hat{x}')^2 + d(H^{-1}\hat{x}',\hat{x})^2 \rightarrow 0$

END