CS 395/495-26: Spring 2002

IBMR: Week 7A

New Direction: Applying Projections

Jack Tumblin jet@cs.northwestern.edu

Reminders

No midterm, no final, but ... Alternating homework / project

Project 2 Due today (C*, part optional)

- Homework 1 due Thurs May 16
- Project 3 Due Thurs May 24
- Revised Syllabus...

Recutting the Course Content

 4 weeks left: More Fun, More Imaging, Less math
 More Project / CG work, Less Book Deciphering...
 Revised Topics:

- 2D Warps of all kinds
 - non-planar projections
 - panorama building, camera error correction (spherical)
 - Light Probes
- 3D/2D:Camera Matrix (Ch 5)
- 3D: Epipolar Geom. (Ch 8)

'Image' : Angle→Position Map

· So far:

- planar perspective projection
- P², P³ projective transformations
- how to find these transformations from images.
- But Planar Perspective Projection is just ONE KIND of image, and
- P² and P³ linear projective transformation H is just ONE KIND of image warping H = H_sH_AH_P

'Image' : Angle→Position Map

- All Cameras make mistakes
 (geometry,shading/vignetting)
 book corrects them; we'll ignore them.
- Many kinds of camera projections
- 'Funhouse Mirrors'
 <u>Non-planar perspective projections:</u>
 Spherical, Conical, cylindrical, hyperbolic
- Applications: Panoramas, 'Light Probes' ...

Image Warping: General Idea

2D→2D continuous coordinate map, a 'rubber sheet' - Notation: input(x,y)→output(u,v)

Demo: <u>http://www.angelfire.com/biz/beamersandblasters/PicWarp.h</u>

Image Warping: General Idea

- 2D→2D continuous coordinate map, a 'rubber sheet'
- **PROBLEM:** How would you undo such a warp?
- Answer: 'inverse mapping'; interate in (u,v)

Image Warping: General Idea

 $2D \rightarrow 2D$ continuous coordinate map, a 'rubber sheet'

• PROBLEM: How would you undo such a warp?

• **Answer**: 'inverse mapping'; interate in (u,v)

Image Warping: General Idea

 $2D \rightarrow 2D$ continuous coordinate map: 'rubber sheet' PROBLEM: inverse required sometimes (mess) PROBLEM: pixels aren't continuous; sampling errors

- aliasing (output pixels skip some input pixels)

holes (input pixels skip some output pixels)

Image Warping: IBMR Form

 $2D \rightarrow 2D$ continuous coordinate map: 'rubber sheet' PROBLEM: inverse required sometimes (mess) **IBMR Answer: H matrix is invertible** PROBLEM: pixels aren't continuous; sampling errors **IBMR Answer:** Use vertices, not pixels: let OpenGL texture mapping keep the image "continuous"

Image Warping: IBMR Form

- Projective transformation H in P2 is a 'warp'
- But many more kinds of warps possible!

Panoramas: Planar 'Bow-Tie'

- For limited-size mosaics only (angle limits)
- Find all **H** from correspondence in overlapped regions
- Choose a (central) reference image (book pg. 198)
- Reproject, cross-dissolve in reference image plane

Panoramas: Sphere / Cylinder

- Assemble from P² Correspondences:
 Find H to link each image only to its neighbors
- Spherical/Cylindrical? Do this last
 - CAN'T convert planar-spherical & then easily align in 2D because...
 - Spherical images behave poorly near poles
 - e.g. 'Can't comb the hairs on a tennis ball'
 - (no uniform 2D rectangular sampling grid exists)

Panorama Making

Planar:

- Start with overlapped planar proj. images
- Do 4-point corresp. (or better) for alignment
- Merge images by cross-dissolve

Image Warping: IBMR Form

- Especially useful: 3D-like warps in P2:
- Plane is just ONE of many shapes formed by varying $x_2 \dots$
- Spherical, Cylindrical, Parabolic, Hyperbolic...

Light Probes: What?

- Photograph a mirrored sphere
- warp image to find irradiance .vs, direction

Probe. SIGGRAPH 2001 Techr

1 picture== half-sphere

High contrast? Full sphere? More Pictures!

High Dy

tic Range Light

