CS 395/495-26: Spring 2002

IBMR: Week 7A

New Direction: Applying Projections

Jack Tumblin
jet@cs.northwestern.edu

Reminders

No midterm, no final, but
Alternating homework / project

Project 2 Due today (C* ${ }_{\infty}$ part optional) \qquad

- Homework 1 due Thurs May 16
- Project 3 Due Thurs May 24
- Revised Syllabus... \qquad
\qquad

Recutting the Course Content

More Imaging, Less math
\qquad

- More Project / CG work,

Less Book Deciphering.
\qquad

- Revised Topics:
- 2D Warps of all kinds \qquad
- non-planar projections
- panorama building, camera error correction (spherical)
- Light Probes
- 3D/2D:Camera Matrix (Ch 5)
- 3D: Epipolar Geom. (Ch 8)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

'Image' : Angle \rightarrow Position Map

\qquad

- So far:
- planar perspective projection
$-\mathrm{P}^{2}, \mathrm{P}^{3}$ projective transformations
- how to find these transformations from images.
- But Planar Perspective Projection is just ONE KIND of image, and
- P^{2} and P^{3} linear projective transformation H is just ONE KIND of image warping $H=H_{S} H_{A} H_{P}$

'Image' : Angle \rightarrow Position Map

- All Cameras make mistakes (geometry,shading/vignetting) book corrects them; we'll ignore them.
- Many kinds of camera projections
- 'Funhouse Mirrors'
- Non-planar perspective projections:
- Spherical, Conical, cylindrical, hyperbolic
- Applications: Panoramas, 'Light Probes'
\qquad
\qquad

Image Warping: General Idea

2D \rightarrow 2D continuous coordinate map, a 'rubber sheet' - Notation: input(x,y) \rightarrow output(u,v) \qquad

- Demo: hte://lwww.ancedirire.com/biz/beamersandblasters/PiciWaro.himl.
- Usually done patch-by-patch, with polynomials $u=u(x, y)=[1$ $v=v(x, y)=$

\qquad
\qquad
\qquad
\qquad Mapping
\qquad

Image Warping: General Idea

\qquad
2D \rightarrow 2D continuous coordinate map, a 'rubber sheet' - PROBLEM: How would you undo such a warp?
\qquad

- Answer: 'inverse mapping'; interate in (u,v)
- $x=x(u, v)=\left[\begin{array}{lll}1 & v & v\end{array}\right]\left[\begin{array}{ll}l & \cdot \\ y & =y(u, v)=\ldots\end{array}\right]\left[\begin{array}{l}1 \\ u \\ u^{2}\end{array}\right]$
$\cdot\left[\begin{array}{l}1 \\ u \\ u^{2}\end{array}\right]$
\qquad
\qquad

\qquad
\qquad
\qquad

Image Warping: General Idea

2D \rightarrow 2D continuous coordinate map, a 'rubber sheet' - PROBLEM: How would you undo such a warp?
\qquad

- $2^{\text {nd }}$ Answer: 'parameter mapping'; interate in (s, t)
- $\mathrm{x}=\mathrm{x}(\mathrm{s}, \mathrm{t})=\left[\begin{array}{ll}\left.1 \mathrm{t} \mathrm{t}^{2}\right]\left[\text { • . } \cdot\left[{ }^{1}\right]\right.\end{array}\right.$
$y=y(s, t)=$
$\mathrm{u}=\mathrm{u}(\mathrm{s}, \mathrm{t})$
$\cdot\left[\begin{array}{l}1 \\ s \\ s^{2}\end{array}\right]$
$v=v(s, t)$

$\rightarrow \mathrm{y}$

\qquad
\qquad
\qquad
\qquad
\qquad

Image Warping: General Idea

2D \rightarrow 2D continuous coordinate map, a 'rubber sheet'

- PROBLEM: How would you undo such a warp?
- Answer: 'inverse mapping'; interate in (u,v)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Image Warping: General Idea

2D \rightarrow 2D continuous coordinate map: 'rubber sheet' PROBLEM: inverse required sometimes (mess)
PROBLEM: pixels aren't continuous; sampling errors

- aliasing (output pixels skip some input pixels)
\qquad
- holes (input pixels skip some output pixels)

\qquad
\qquad
\qquad

Image Warping: IBMR Form

2D \rightarrow 2D continuous coordinate map: 'rubber sheet' PROBLEM: inverse required sometimes (mess) \qquad
IBMR Answer: H matrix is invertible PROBLEM: pixels aren't continuous; sampling errors
IBMR Answer: Use vertices, not pixels:
let OpenGL texture mapping keep the image "continuous"
\qquad

\qquad
\qquad
\qquad

Image Warping: IBMR Form

- Projective transformation H in P2 is a 'warp'
- But many more kinds of warps possible!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Panoramas: Planar 'Bow-Tie’

- For limited-size mosaics only (angle limits)
- Find all H from correspondence in overlapped regions \qquad
- Choose a (central) reference image (book pg. 196)
- Reproject, cross-dissolve in reference image plane \qquad

Panoramas: Sphere / Cylinder

- Assemble from P^{2} Correspondences:
- Find H to link each image only to its neighbors
- Spherical/Cylindrical? Do this last
- CAN'T convert planar-spherical \& then easily align in 2D because.
- Spherical images behave poorly near poles \qquad
- e.g. 'Can't comb the hairs on a tennis ball'
(no uniform 2D rectangular sampling grid exists)

Panorama Making

Planar:

- Start with overlapped planar proj. images
- Do 4-point corresp. (or better) for alignment \qquad
- Merge images by cross-dissolve

Early IBR: QuickTime VR (Chen, williams '93

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Image Warping: IBMR Form

- Especially useful: 3D-like warps in P2:
- Plane is just ONE of many shapes formed by varying x_{2}..
- Spherical, Cylindrical, Parabolic, Hyperbolic.
\qquad
\qquad
\qquad
\qquad
\qquad

Early IBR: QuickTime VR (Chen, winiams '93)
2) Windowing, Horizontal-only Reprojection:

IN:

OUT:

Light Probes: What?

- Photograph a mirrored sphere
- warp image to find irradiance .vs. direction

1 picture==
half-sphere
High contrast?
Full sphere?
More Pictures!

END

