CS 395/495-26: Spring 2002

IBMR: Week 7B

Applying P², P³ Projections: Spherical Light Probes

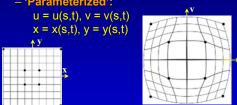
> Jack Tumblin jet@cs.northwestern.edu

Reminders

- Project 2 overdue today (C*, part optional)
- HW1 due Today, May 16
- Proj3 Due Thurs May 23

```
HW2 assign on Tues (I promise)
```

• HW2 due Thurs May 30


Proj4 Assign Thurs May 23 HW 3 Assign Tues May 28

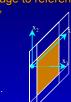
- Proj4 Due Tues June 11
- HW3 Due Tues June 11

Image Warping: General Idea

2D→2D continuous coordinate map, a 'rubber sheet' - Notation: input(x,y)→output(u,v)

- 'Forward Mapping' u = u(x,y), v = v(x,y) (x.y steps)
- 'Inverse Mapping': x = x(u,v), y = y(u,v) (uv steps)
 'Parameterized':

Panoramas: Planar 'Bow-Tie'

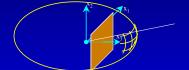

- For limited-size mosaics only (angle limits)
- Find all ${\bf H}$ from correspondence in overlapped regions
- Choose a (central) reference image (book pg. 196
- Reproject, cross-dissolve in reference image plane

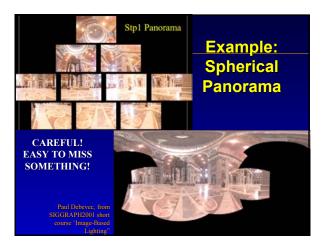
Recall: Planar Panoramas

- Choose a 'reference' image plane, extend it
- Add images: for each one,
 - find **H** from overlap correspondences (in P^2)
 - transform new image to reference plane

 re-sample, 'blend' (weighted sum) to one image

Non-Planar Panoramas


Can't use planar method beyond 180° FOV;


- Sphere or cylinder can 'wrap around' origin
- How? Spherical coords
 - write 3D sphere eqn in P² coords:
 - $x_1 = sin(\theta)cos(\phi)$ $x_3 = sin(\theta)cos(\phi)$
 - $x_2 = \sin(\phi)$
- 'Inverse Map' warp:
 - Output pixel m,n: $\theta = 2\pi n/nmax$, $\phi = \pi(n/nmax \frac{1}{2})$
 - Find x' = H⁻¹·[x₁, x₂, x₃] for each image
 - Blend color(s) found at x' for each image

Side Note: Camera Distortions

Correct many camera/lens errors in P²

- Place raw camera input at (x,y,1) plane
- Write equations for 3D 'projection surface'
 Example: scaleable, offset sphere for spherical distortion
 x₁ = a+ b*sin(θ)cos(φ); x₃ = c+ d*cos(θ)cos(φ); x₂ = e+f*sin(φ)
- Scan projection surface to find output pixels
 Example: take equal-sized steps in (θ,φ); sample input image

Practical Panoramas: 'Box Cross'

- · Spherical maps oversample near poles;
- Cylindrical maps can't see floor, ceiling spot
- Nice solution: 'Box Cross'
 - 'unwrap' a cube around origin
 - 6 square planar images
 - Easy!
 - for each image,
 - for each box side,
 - find reprojection H
 find pixels on box
 - find pixels on box
 rewarp as needed (cyl,sphere, etc.)

Panoramic Cameras

Panoramics without 'stitching':

- 'Fisheye' Lenses, conics,...
- Slit-scan: (WideLux, Noblex, PanoScan...)
 cyl. or spherical image
 slow! no action shots
- Multiple Planar Cams

 Fast, flexible, expensive
 can do panor. movies
- History: 1843...http://www.r

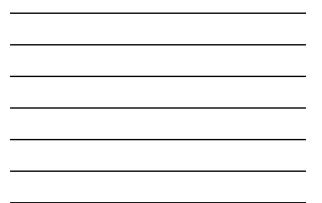
Light Probes: What?

- Photograph a mirrored sphere
- warp image to find irradiance .vs, direction

be SIGGRAPH 2001 Tech

1 picture== half-sphere

High contrast? Full sphere? More Pictures!


Light Probes

• Example images (see Debevec's site)

Paul Debevec, SIGGRAPH2001 course "Image Based Lighting"

(Try it yourself—I'd like to...)

Paul Debevec, SIGGRAPH2001 short course "Image Based Lighting"

Sources of Mirrored Balls

2-inch chrome balls < \$20 ea. King Bearing, Inc. Applied Industrial Technologies (many locations nationally, check www.bigbook.com)

6-12 inch large gazing balls (blown glass) Baker's Lawn Ornaments 570 BERLIN PLANK ROAD SOMERSET, PA 15501-2413 814-445-7028

Mirror Ball→Panorama Conversion Makes an offset 'virtual' half-sphere camera located at mirror ball center: ? How can we write this in P² and/or P³? Camera Virror Ball Virror ball Lamera

Light Probes: Daydreams

 Debevec: 'Light Stage 2.0'

- Go further!
 - Sphere of projectors set incoming light field
 - CAVE / Light Stage corrupted by interreflections
 - Probe(s) measure ACTUAL incoming light
 - Math: Remove interreflected amounts from computed display

Light Probes

- · 'Two-shot' panoramic camera
- Clever, fast, simple, cheap, flexible
- Probe position != Camera position; telephotos...
 allows small probes in tight, risky spaces
 - Little/no image alignment / mosaicing
- Drawbacks:
 - Highly non-uniform sampling
 - Camera ALWAYS in the image
- Daydreams: a better probe?
 - Huge: mirrored weather balloon?
 - Tiny, stochastic: bubbles in a liquid?
 - Dynamic shapes: whirling mirror on arm?
 - Other shapes: Nayyar, Carlbom, ?He(MSRchina) etc.

END