CS 395/495-26: Spring 2002

IBMR: Week 9A

The Camera Matrix and World Geometry
Chapters 5, 6, 7 (partial)

Jack Tumblin \qquad
jet@cs.northwestern.edu

Reminders

CTEC Online - please add your comments.

- Proj3 Due Thurs May 23

HW2 posted on website.

- HW2 due Thurs May 30

Proj4 posted on website.
HW 3 Assign Thu May 30

- Proj4 Due Tues June 11
- HW3 Due Tues June 11
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Camera Matrix P links $P^{3} \rightarrow P^{2}$

- K matrix: "internal camera calib. matrix"
- R•T matrix: "external camera calib. matrix"
\qquad
- T matrix: Translate world to cam. origin
- R matrix: 3D rotate world to fit cam. axes
- 11 DOF total

Output: x 2D Camera Image

Uses for Camera Matrix P

$\boldsymbol{P} \cdot \mathbf{X}=\mathbf{X}$, or $\left[\begin{array}{cccc}\bullet & \bullet & \bullet & \cdot \\ \bullet & \cdot & \cdot & \cdot \\ \bullet & \bullet & \cdot & \cdot\end{array}\right]\left[\begin{array}{l}x_{w} \\ y_{w} \\ z_{w} \\ t_{w}\end{array}\right]=\left[\begin{array}{l}x_{c} \\ y_{c} \\ z_{c}\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{ccc|c}\bullet & \bullet & \bullet & \dot{P}_{4} \\ \bullet & 0 & 0 & \mathbf{P}_{4} \\ \bullet & \bullet & \bullet & \bullet\end{array}\right]$

- P's Null Space: camera center C in world space

$$
\mathrm{P} \cdot \mathrm{C}=0 \text { (solve for } \mathrm{C} \text {, get) } \quad \mathrm{C}=\left[\frac{-\mathbf{M}^{-i} \cdot \mathbf{p}_{4}}{1}\right]
$$

- P's Columns: p_{1}, p_{2}, p_{3}, (and p_{4}) world's $\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}$ axis vanishing pts.
(and origin) in image space
- P's Rows: $\mathrm{p}^{1 T}, \mathrm{p}^{2 T}, \mathrm{p}^{3 T}$ camera planes in world-space..

Uses for Camera Matrix P

Columns of P matrix: Points in image-space:

- $P^{1}, P^{2}, P^{3}==$ image of x, y, z axis vanishing points
- Proof: let $\mathrm{D}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{\top}=$ point on x axis, at inifinity
$-\mathrm{PD}=1^{\text {st }}$ column of P . Repeat for y and z axes
- $\mathrm{P}^{4}==$ image of the world-space origin pt.
- Proof: let $\mathbf{D}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right] T$ = world origin
- $\mathbf{P D}=4^{\text {th }}$ column of $\mathbf{P}=$ image of origin pt .

Uses for Camera Matrix P

Rows of P matrix: planes in world space

- row $1=p^{1}=$ image x-axis plane
- row $2=p^{2}=$ image y-axis plane
- Careful! Shifting image origin
shifts the x, y axis planes!

Uses for Camera Matrix P

$$
\mathbf{P} \cdot \mathbf{X}=\mathbf{X} \text {, or }\left[\begin{array}{llll}
\bullet & \cdot & \cdot & \cdot \\
\bullet & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w} \\
t_{w}
\end{array}\right]=\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{lll}
\mathbf{p}^{1 T} & \cdot & \cdot \\
\hline \mathbf{p}^{2 \top} & \cdot & \cdot \\
\hline \mathbf{p}^{3 \top} & \cdot & \cdot
\end{array}\right]
$$

Rows of P matrix: planes in world space

- row $1=p^{1}=$ image x-axis plane

Principal

- row $2=p^{2}=$ image y-axis plane
- row $3=p^{3}=$ camera's principal plane
- princip. plane $p^{3}=\left[p_{31} p_{32} p_{33} p_{34}\right]^{\top}$
- its normal vector: $\left[p_{31} p_{32} p_{33} 0\right]^{\top}$
- Why is it normal? It's the world-space endpoint of z_{c} axis (at infinity)

Uses for Camera Matrix P

$P \cdot X=x$, or $\left[\begin{array}{ll}\bullet & \cdot P \cdot \\ \bullet & \cdot\end{array}\right.$

- Principal Axis Vector in world space:
- Normal of principal plane: $=m^{3}=\left[p_{31} p_{32} p_{33} 0\right]^{\top}$
- Scaling \rightarrow Ambiguous direction!! $+/-\mathrm{m}^{3}$?
- Solution: use $\operatorname{det}(M) \cdot m^{3}$ as front of camera
- Principal Point p in image space:
- image of (infinity point on z_{c} axis $=m^{3}$) $\mathbf{M} \cdot \mathrm{m}^{3}=\mathrm{p}=\mathbf{x}_{\mathbf{0}}$

Uses for Camera Matrix P

Given image point \mathbf{x}_{0} and camera matrix \mathbf{P},
Find ray $X(\mu)$ in world space through both:
Slow, Obvious way: 'Pseudo-invert' P:

- Define pseudo-inverse P^{+}as $=\mathrm{P}^{\top}\left(\mathrm{PP}^{\top}\right)^{-1}$ (note $\left.\mathrm{P}^{-P^{+}}=\mathrm{I}\right)$
- Find a world-space point on ray: $\mathrm{X}_{0}=\mathrm{P}^{+} \mathrm{x}_{0}$
- LIRP with camera: $\mathrm{X}(\mu)=\mathrm{C}+\left(\mathrm{X}_{0}-\mathrm{C}\right) \mu$

Better way:

- Find where ray from x hits infinity in world space:
$X(\mu)=\mu M^{-1} x-C=\left[M^{-1}\left(\mu x-p^{4}\right)\right]$

\qquad
\qquad
\qquad

Uses for Camera Matrix P

$$
\mathbf{P} \cdot \mathbf{X}=\mathbf{X}, \text { or }\left[\begin{array}{cccc}
\bullet & \cdot & \cdot & \cdot \\
\bullet & \cdot & \cdot & \cdot \\
\bullet & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w} \\
t_{w}
\end{array}\right]=\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{cc:c}
\cdot & \mathbf{M}_{0}^{\bullet} & \mathbf{P}^{4} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

Given world-space point X_{0}, camera matrix P , Find camera depth z_{0} :
$-X_{0}=\left[x_{w}, y_{w}, z_{w}, t_{w}\right]^{\top}$ seen thru camera is $\mathbf{X}_{0} \cdot \mathbf{P}=\mathbf{x}_{0}=\left[\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, 1\right]^{\top} \cdot \mathrm{w}_{\mathrm{c}}$

- Then signed depth Z_{0} is:

$$
\mathrm{z}_{0}=\mathrm{w}_{\mathrm{c}} \operatorname{sign}(\text { det } \mathbf{M})
$$

$$
t_{w}\left\|m^{3}\right\|
$$

Skipped:

- $P=[K \mid 0] \cdot R \cdot T$ How can we separate $K, R, T ?$
- Answer: K is triangular; use QR decomposition
\qquad
- Cameras at Infinity:
- Orthographic or 'Parallel Projection' Cameras
\qquad
- Transition to Orthographic:
- Weak Perspective projection cameras \qquad
- the 'zoom' lens (variable f)
- Moving line-scan or 'pushbroom' cameras \qquad
- Translation Scan: aerial/sattelite cameras
- Cylindrical Scan: panoramic cameras
- UNC 'HiBall Tracker': 6 tiny self-locating line-scan cameras

Chapter 6 In Just One Slide:

Given point correspondence sets $\left(x_{i} \leftarrow \rightarrow X_{i}\right)$, How do you find camera matrix P ? (full 11 DOF) \qquad
Surprise! You already know how !

- DLT method: \qquad
-rewrite $H x=x^{\prime}$ as $H x \times x^{\prime}=0$
-rewrite $P \mathrm{X}=\mathrm{x}$ as $\mathrm{PX} \times \mathrm{x}=0$
-vectorize, stack, solve $\mathrm{Ah}=0$ for h vector -vectorize, stack, solve $A p=0$ for p vector
-Normalizing step removes origin dependence
\qquad
\qquad
- More data \rightarrow better results (at least 28 point pairs) \qquad
- Algebraic \& Geometric Error, Sampson Error.

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} word to P^{2} image ? What does it do to basic 3D world shapes?

- Plane
- Given any point \mathbf{X}_{π} on a plane in P^{3}
- Change world's coord. system: let plane be $\mathrm{z}=0$:
- Matrix \mathbf{P} reduces to 3×3 matrix \mathbf{H} in P^{2} :

- THUS
$\left[\begin{array}{lllll}\mathrm{p}_{31} & \mathrm{p}_{32} & p_{35} & \mathrm{p}_{34}\end{array}\right] \mathrm{t}_{\pi}$
$\left.\begin{array}{lll}\mathrm{h}_{31} & \mathrm{~h}_{32} & \mathrm{~h}_{33}\end{array}\right] \mathrm{L}_{\mathrm{t}} \pi$
P^{2} can do all 3D plane transforms

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} word to $\mathrm{P}^{2}{ }_{\text {image }}$? What does it do to basic 3D world shapes?
Forward Projection:

- Line / Ray in world \rightarrow Line/Ray in image:
- Ray in P ${ }^{3}$ is
$X(\mu)=A+\mu B$
- Camera changes to P2:
$x(\mu)=P A+\mu P B$

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} word to $\mathrm{P}^{2}{ }_{\text {image }}$? What does it do to basic 3D world shapes?
Back Projection:

- Line L in image \rightarrow Plane π_{L} in world:
- Recall: Line L in P2 (a 3-vector): $\mathrm{L}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\top}$
- Plane π_{L} in P^{3} (a 4 -vector)
$\pi_{\mathrm{L}}=\mathrm{P}^{\top} \cdot \mathrm{L}=\left[\begin{array}{lll}\mathrm{p}_{11} & \mathrm{p}_{21} & \mathrm{p}_{31} \\ \mathrm{p}_{12} & \mathrm{p}_{22} & \mathrm{p}_{32} \\ \mathrm{p}_{13} & \mathrm{p}_{23} \\ \mathrm{p}_{14} & \mathrm{p}_{24} & \mathrm{p}_{34}\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right]$

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} word to $\mathrm{P}^{2}{ }_{\text {image }}$
? What does it do to basic 3D world shapes?

- Conic C in image \rightarrow Cone Quadric Q_{co} in world

$$
Q_{c o}=P^{T} \cdot C \cdot P
$$

- Tip of cone is camera center C

Chapter 7: More One-Camera Fun

\qquad
Full 3×4 camera matrix P maps P^{3} wond to $\mathrm{P}^{2}{ }_{\text {imgege }}$? What does it do to basic 3D world shapes?
\qquad
\qquad

- Dual Quadric Q* in world \rightarrow

Dual Conic C* silhouette in image

$$
C^{*}=P^{T} \cdot Q^{*} \cdot P
$$

- Works for ANY quadric! sphere, cylinder, ellipsoid, paraboloid, hyperboloid, line, disk

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} wond to $\mathrm{P}^{2}{ }_{\text {image }}$
? What does it do to basic 3D world shapes?

- World -space cone from camera center V to quadric Q is the degenerate quadric $Q_{c o}$:

$$
Q_{c o}=\left(V^{\top} Q V\right) Q-(Q V)(Q V)^{\top}
$$

Chapter 7: More One-Camera Fun

Full 3×4 camera matrix P maps P^{3} word to $\mathrm{P}^{2}{ }_{\text {image }}$? What does it do to basic 3D world shapes?
'Pure' Rotation:

- Given internal camera calibration $\mathbf{K} \longrightarrow\left[\begin{array}{cccc}\alpha_{1} & \alpha_{f} f & p_{y} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
- 3D rotate camera P about its center C using 3D rotation matrix $R(3 \times 3)$
- Get new points \mathbf{x}^{\prime} from old image points \mathbf{x}
\qquad
\qquad
\qquad $K \cdot R \cdot K^{-1} x=x^{\prime}$
aka 'conjugate rotation'
use this to construct planar panoramas

