CS 395/495-26: Spring 2002

IBMR: Week 9A

The Camera Matrix and World Geometry Chapters 5, 6, 7 (partial)

Jack Tumblin jet@cs.northwestern.edu

Reminders

- CTEC Online please add your comments...
- Proj3 Due Thurs May 23

HW2 posted on website.

• HW2 due Thurs May 30

Proj4 posted on website. HW 3 Assign Thu May 30

- Proj4 Due Tues June 11
- HW3 Due Tues June 11

Camera Matrix P links P³→P² K matrix: "internal camera calib. matrix" R matrix: "external camera calib. matrix" T matrix: Translate world to cam. origin R matrix: 3D rotate world to fit cam. axes 11 DOF total Input: X 3D World Space Combine: write (P₀ (R·T) · X = x as P·X = x

Columns of P matrix: Points in image-space:

- P¹,P²,P³ == image of x,y,z axis vanishing points
 - Proof: let $D = [1 \ 0 \ 0 \ 0]^T$ = point on x axis, at inifinity
 - PD = 1st column of P. Repeat for y and z axes
- P⁴ == image of the world-space origin pt. - Proof: let $\mathbf{D} = [0 \ 0 \ 0 \ 1]T$ = world origin

Skipped:

- P = [K|0]·R·T How can we separate K, R, T?
 Answer: K is triangular; use QR decomposition
- Cameras at Infinity:
 - Orthographic or 'Parallel Projection' Cameras
 - Transition to Orthographic:
 - Weak Perspective projection cameras
 - the 'zoom' lens (variable f)
 - Moving line-scan or 'pushbroom' cameras
 - Translation Scan: aerial/sattelite cameras
 - Cylindrical Scan: panoramic cameras
 - UNC 'HiBall Tracker': 6 tiny self-locating line-scan cameras

Chapter 6 In Just One Slide:

Given point correspondence sets $(x_i \leftarrow \rightarrow X_i)$, How do you find camera matrix P? (full 11 DOF)

Surprise! You already know how !

• DLT method:

-rewrite H x = x' as Hx \times x' = 0

- -rewrite P X = x as $PX \times x = 0$
- -vectorize, stack, solve Ah = 0 for h vector
 -vectorize, stack, solve Ap = 0 for p vector
 -Normalizing step removes origin dependence
- More data → better results (at least 28 point pairs)
- Algebraic & Geometric Error, Sampson Error...

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps **P**³_{world} to **P**² _{image} ? What does it do to basic 3D world shapes? Forward Projection:

Line / Ray in world → Line/Ray in image:

Ray in P³ is

– Camera changes to P²:

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps **P**³_{world} to **P**²_{image}? What does it do to basic 3D world shapes? Back Projection:

• Line L in image \rightarrow Plane π_{L} in world:

- Recall: Line L in P² (a 3-vector): L = $[x_1 \ x_2 \ x_3]^T$ - Plane π_L in P³ (a 4-vector):

(SKIP Plücker Matrix lines...)

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps **P**³_{world} to **P**²_{image}? What does it do to basic 3D world shapes?

• Conic C in image → Cone Quadric Q_{co} in world

$$Q_{co} = P^T \cdot C \cdot F$$

Tip of cone is camera center C

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps P^{3}_{world} to P^{2}_{image} ? What does it do to basic 3D world shapes?

 Dual Quadric Q* in world → Dual Conic C* silhouette in image

 $C^* = P^T \cdot Q^* \cdot P$

 Works for ANY quadric! sphere, cylinder, ellipsoid, paraboloid, hyperboloid, line, disk ...

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps **P**³_{world} to **P**²_{image} ? What does it do to basic 3D world shapes?

 World –space cone from camera center V to quadric Q is the degenerate quadric Q_{co}:

Chapter 7: More One-Camera Fun

Full 3x4 camera matrix **P** maps **P**³_{word} to **P**²_{image} ? What does it do to basic 3D world shapes? 'Pure' Rotation:

- Given internal camera calibration K-
- 3D rotate camera P about its center C using 3D rotation matrix R (3x3)
- Get new points x' from old image points x

 $K \cdot R \cdot K^{-1} x = x'$

aka 'conjugate rotation'
use this to construct planar panoramas

