CS 395/495-26: Spring 2002

IBMR: Week 9B

The Camera Matrix and World Geometry
Chapter 7 (finish)

Jack Tumblin
jet@cs.northwestern.edu

Reminders

CTEC Online - please add your comments...

- Homework 1 return
- Proj3 Due Thurs May 23

HW2 posted on website.

- HW2 due Thurs May 30

Proj4 posted on website.
EN 3 CANCELLED

- Proj4 Due Tues June 11
- HW3 Due Tues June 11

The Simplest Camera

$\mathbf{P} \cdot \mathbf{X}=\mathbf{x} \quad$ World space $\mathbf{X} \rightarrow$ image space \mathbf{x}
The full planar camera has 11 DOF:
\qquad
\qquad
e.g. $\left(x_{w}, y_{w}, z_{w}, 0\right)=\left(x_{c}, y_{c}, z_{c}, 0\right)$,

- Camera position at $\mathrm{C}=(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ yields
$\boldsymbol{P}_{\min }=\left[\begin{array}{llll}\mathrm{a} & 0 & 0 & -d \\ 0 & b & 0 & -d \\ 0 & 0 & c & -d\end{array}\right]$

\qquad
\qquad
\qquad

The Simplest Camera

$\mathbf{P} \cdot \mathbf{X}=\mathbf{X} \quad$ World space $\mathbf{X} \rightarrow$ image space \mathbf{X}

The full nlanar camera hac 11 DOF.

Rotations don't change image content
Same Center Point? Same image!
(just a planar reprojection in P^{2})
The camera center C must move to change the image.

- 3-D image data requires camera movement.
no zooming, warping, rotation can change this!
Camera position $C=(a, b, c, d)$, and.
$\boldsymbol{P}_{\text {min }}=\left[\begin{array}{llll}\mathrm{a} & 0 & 0 & -\mathrm{d} \\ 0 & \mathrm{~b} & 0 & -\mathrm{d} \\ 0 & 0 & c & -d\end{array}\right]$

Movement Detection?

- Can we do it from images only?
- 2D projective transforms often LOOK like 3-D
- External cam. calib. affects all elements of P
- YES. Camera moved if-\&-only-if Camera-ray points ($\mathrm{C} \rightarrow \mathrm{x} \rightarrow \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$) will map to LINE (not a point) in the other image
- 'Epipolar Line' == I' = image of L
- 'Parallax' $==x_{1}{ }^{\prime} \rightarrow x_{2}$ ' vector

Cameras as Protractors

- Define world-space direction d:
- From a P^{3} infinity point $X_{d}=\left[\begin{array}{llll}x_{d} & y_{d} & z_{d} & 0\end{array}\right]^{\top}$ define $d==\left[\begin{array}{lll}x_{d} & y_{d} & z_{d}\end{array}\right]$
- Set camera at world origin, axes aligned
- (e.g. $\left.\mathrm{C}=(0,0,0,1),\left(\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}\right)=\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}\right)\right)$
- Link direction d to image pt. $\mathrm{x}=\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}\right)$: $P X_{d}=[K \mid I] X_{d}=K d=x$
- Ray thru image pt. x has direction $\mathrm{d}=\mathrm{K}^{-1} \mathrm{X}$

Cameras as Protractors

- Angle between C and 2 image points $\mathrm{x}_{1}, \mathrm{x}_{2}$

$$
\cos \theta=\frac{\mathrm{x}_{1}^{\top}\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right) \mathrm{x}_{2}}{\sqrt{\left(\mathrm{X}_{1}^{\top}\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right) \mathrm{X}_{1}\right)\left(\mathrm{x}_{2}^{\top}\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right) \mathrm{x}_{2}\right)}}
$$

- Image line L defines a plane π_{L}
- (Carefull! P3 world = P^{2} camera axes here!)
- Plane normal direction:

$$
n=K^{\top} L
$$

\qquad
\qquad

Cameras as Protractors

- Angle between C and 2 image points $\mathrm{x}_{1}, \mathrm{x}_{2}$

$$
\cos \theta=\frac{x_{1}^{\top}\left(K^{\top} K^{-1}\right) x_{2}}{\left.\sqrt{\left(x_{1}^{\top}\left(K^{-\top} K^{-1}\right)\right.} x_{1}\right)\left(x_{2}^{\top}\left(K^{\top} K^{-1}\right) x_{2}\right)}
$$

\qquad
\qquad

- Imag
- (Care
Something Special
- Plai
here? Yes! $n=K^{\top}$ L
ne
\qquad
\qquad
\qquad

Cameras as Protractors

What is $\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right)$?

- Recall P3 Conic Weirdness:
\qquad
- Plane at infinity π_{∞} holds all 'horizon points' d
- Absolute Conic Ω_{∞} is imaginary outermost circle of π_{∞}
- for ANY camera,

Translation won't change 'Horizon point' images:

$$
P X_{d}=x=K R d
$$

- Absolute conic is inside π_{∞}; it's all 'horizon points'
- for ANY camera,
$\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-T} \mathrm{~K}^{-1}\right)==' I_{\text {mage of }} \mathrm{A}_{\text {bsolute }} \mathrm{C}_{\text {onic }}$,
\qquad
\qquad
\qquad
\qquad
\qquad

Why do we care?
 $\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right)==' I_{\text {mage of }} A_{\text {bsolute }} \mathrm{C}_{\text {onic }}$

- IAC is a 'magic tool' for camera calibration K
- Recall Ω_{∞} let us find H from perp. lines.
- Much better than 'vanishing pt.' methods
- With IAC, find P matrix from an image of just 3 (non-coplanar) squares..

