CS 395/495-26: Spring 2002

IBMR: Week 9B

The Camera Matrix and World Geometry Chapter 7 (finish)

Jack Tumblin jet@cs.northwestern.edu

Reminders

- CTEC Online please add your comments...
- Homework 1 return
- Proj3 Due Thurs May 23

HW2 posted on website.

- HW2 due Thurs May 30
 Proj4 posted on website.
 HW 3 CANCELLED
- Proj4 Due Tues June 11
- HW3 Due Tues June 11

The Simplest Camera

 $P \cdot X = x$ World space $X \rightarrow$ image space x

The full planar camera has 11 DOF:

 $\mathbf{P} = ([\mathbf{K}|\mathbf{0}] \cdot \mathbf{R} \cdot \mathbf{T}) =$

· Simplify:

- Aim camera to match image and world axis directions;
 e.g. (x_w,y_w,z_w,0) = (x_c,y_c,z_c,0),
- Focal length f=1,no skew α =1, image center = (1,1,1)
- Camera position at C = (a,b,c,d) yields

$$\mathbf{P}_{\min} = \begin{bmatrix} a & 0 & 0 & -d \\ 0 & b & 0 & -d \\ 0 & 0 & c & -d \end{bmatrix}$$

Movement Detection?

- Can we do it from images only?
 2D projective transforms often LOOK like 3-D;
 External cam. calib. affects all elements of P
- YES. Camera moved if-&-only-if Camera-ray points (C→x→X₁,X₂,...) will map to LINE (not a point) in the other image
- 'Epipolar Line' == I' = image of L
- 'Parallax' == $x_1' \rightarrow x_2'$ vector

Cameras as Protractors

- Define world-space direction d: - From a P³ infinity point $X_d = [x_d \ y_d \ z_d \ 0]^T$ define $d == [x_d \ y_d \ z_d]$
- · Set camera at world origin, axes aligned
 - $-(e.g. C=(0,0,0,1), (x_w,y_w,z_w) = (x_c,y_c,z_c))$
 - (Danger! now mixing P2, P3)
 - Link direction d to image pt. $x=(x_c,y_c,z_c)$: PX_d = [K|I]X_d = Kd = x
- Ray thru image pt. x has direction $d = K^{-1}x$

Cameras as Protractors

What is (K^{-T}K⁻¹)?

- Recall P³ Conic Weirdness:
 - Plane at infinity $\pi_{\!\scriptscriptstyle \infty}$ holds all 'horizon points' d (universe wrapper'
- Absolute Conic $\Omega_{\!\!\infty}$ is imaginary outermost circle of $\pi_{\!\!\infty}$ for ANY camera,
- Translation won't change 'Horizon point' images: $P X_d = x = KRd$ (pg200)
- Absolute conic is inside π_{m} ; it's all 'horizon points'
- · for ANY camera,

 $P \Omega_m = (K^{-T}K^{-1}) = = 'I_{mage of} A_{bsolute} C_{onic'}$

Why do we care?

 $P \ \Omega_{\infty} = (K^{-T}K^{-1}) = = `I_{mage of} A_{bsolute} C_{onic}'$

- IAC is a 'magic tool' for camera calibration K
- Recall $\underline{\Omega}_{\!\scriptscriptstyle \infty}$ let us find H from perp. lines.
- Much better than 'vanishing pt.' methods
- With IAC, find P matrix from an image of just 3 (non-coplanar) squares...

END