## CS 395/495-26: Spring 2002

## IBMR: Week 10A

The Camera Matrix and World Geometry<br>Chapter 7 (finish)

Jack Tumblin $\qquad$
jet@cs.northwestern.edu $\qquad$

## Reminders

CTEC Online - please add your comments.

- Homework 1 return
- Proj3 Due Thurs May 23

HW2 posted on website. $\qquad$
HW2 Due Thurs May 30
Proj4 posted on website.

- Proj4 Due Tues June 11 $\qquad$
$\qquad$


## Cameras as Protractors

$\mathrm{d}=\left[\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}, 0\right]^{\top}$

- Image Direction from a point $\mathbf{x}: \mathrm{d}=\mathrm{K}^{-1} \mathrm{x}$
- Angle $\theta$ between $C$ and 2 image points $x_{1}, x_{2}$ : $\qquad$
$\cos \theta=\mathrm{x}_{1}^{\top}\left(\mathrm{K}^{\top} \mathrm{K}^{-1}\right) \mathrm{x}_{2}$
$\sqrt{\sqrt{\left(\mathrm{X}_{1}^{\top}\left(\mathrm{K}^{-\top} K^{-1}\right) \mathrm{X}_{1}\right)\left(\mathrm{X}_{2}^{\top}\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right) \mathrm{X}_{2}\right)}}$
- Simplify with absolute conic $\Omega_{\infty}$ :
$\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right)=\omega={ }^{\prime} I_{\text {mage of }} \mathrm{A}_{\text {bsolute }} \mathrm{C}_{\text {onic }}{ }^{\mathrm{d}}{ }^{\prime}$



## Cameras as Protractors

## P $\Omega_{\infty}=\left(K^{-T} K^{-1}\right)$. OK. Now what was $\Omega_{\infty}$ again?

Recall P ${ }^{3}$ Conic Weirdness:
$\qquad$

- Plane at infinity $\pi_{\infty}$ holds all 'horizon points' d $\qquad$
- Absolute Conic $\Omega_{\infty}$ imaginary points in outermost circle of $\pi_{\infty}$
- Satisfies BOTH $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ AND $x_{4}^{2}=0$
- Can rewrite equations to look like a quadric (but isn't- no $x_{4}$ )

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
\hline
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
0
\end{array}\right]=d^{\top} \cdot \Omega_{\infty} \cdot \mathbf{d}
$$

- AHA! 'points' on it are (complex conjugate) directions d ! $\qquad$
Finds right angles-- if $d_{1} \perp d_{2}$, then: $d_{1}{ }^{\top} \cdot \Omega_{\infty} \cdot d_{2}=0$


## Cameras as Protractors

$\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right)$. OK. Now what was $\Omega_{\infty}$ again?

- Dual of Absolute Conic $\Omega_{\infty}$ is Dual Quadric $\mathrm{Q}_{\infty}^{*}$ (?!?!)
- More compact notation: for imaginary planes $\pi$

$$
\left[\begin{array}{llll}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\pi_{1} \\
\pi_{2} \\
\pi_{3} \\
\pi_{4}
\end{array}\right]=\pi^{\top} \cdot Q_{\infty}^{*} \cdot \pi
$$

- Same matrix, but different use:
--find a plane $\pi$ for every possible direction d
$--\pi$ is $\perp$ to $\pi_{\infty}$, and tangent to the quadric $Q^{*}$
$-\Omega_{\infty}$ is circle in $\pi_{\infty}$ where tangent planes $\pi$ are $\perp$ to $\pi_{\infty}$ $\qquad$
Finds right angles-- if $\pi_{1} \perp \pi_{2}$, then: $\pi_{1}{ }^{\top} \cdot Q_{\infty}^{*} \cdot \pi_{2}=0$


## Cameras as Protractors

$$
\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-\mathrm{T}} \mathrm{~K}^{-1}\right)=\omega=\mathrm{I}_{\text {mage of }} \mathrm{A}_{\text {bsolute }} \mathrm{C}_{\text {onic }} \text { ' }
$$

- Just $\Omega_{\infty}$ as has a dual $\mathbf{Q}_{\infty}^{*}, \omega$ has dual $\omega^{*}$ : $\omega^{*}=\omega^{-1}=\mathrm{KK}^{\top}$
- The dual conic $\omega^{*}$ is the image of $\mathbf{Q}^{*}{ }_{\infty}$, so
$\omega^{*}=P \mathbf{Q}_{\infty}^{*}=\mathrm{P}\left[\begin{array}{lllll}1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=1^{\text {tt }} 3$ columns of P ?
$\omega^{*}=P \mathbf{Q}_{\infty}^{*}=P\left[\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=1^{\text {st }} 3$ columns of $P$ ?
$\omega^{*}=P Q_{\infty}^{*}=P\left[\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=1^{\text {st }} 3$ columns of $P$ ?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Cameras as Protractors

$$
\mathrm{P} \Omega_{\infty}=\left(\mathrm{K}^{-\mathrm{T}} \mathrm{~K}^{-1}\right)=\omega={ }^{\prime} I_{\text {mage of }} \mathrm{A}_{\text {bsolute }} \text { Conic }^{\prime}
$$

- Just $\Omega_{\infty}$ as has a dual $\mathbf{Q}_{\infty}^{*}, \omega$ has dual $\omega^{*}$ :

$$
\omega^{*}=\omega^{-1}=\mathrm{K}^{\infty}{ }^{\top}
$$

- The dual conic $\omega^{*}$ is the image of $\mathbf{Q}^{*}{ }_{\infty}$, so $\omega^{*}=P \mathbf{Q}_{\infty}^{*}=P\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=1^{\text {st }} 3$ columns of P ?
- Vanishing points $\mathrm{v}_{1}, \mathrm{~V}_{2}$ of $2 \perp$ world-space lines:

$$
\mathrm{v}_{1}^{\top} \omega \mathrm{v}_{2}=0
$$

- Vanishing lines $L_{1}, L_{2}$ of $2 \perp$ world-space planes: $L_{1}{ }^{\top} \omega^{*} L_{2}=0$


## Cameras as Protractors

Clever vanishing point trick:

- Perpendicular lines in image?
- Find their vanishing pts. by construction:
- Use $\mathrm{v}_{1}^{\mathrm{T}} \omega \mathrm{v}_{2}=0$, stack, solve for $\omega=\left(\mathrm{K}^{-\top} \mathrm{K}^{-1}\right)$ $\qquad$



## Epipolar Geometry: Chapter 8

## Basic idea:

- 2 cameras centered at C, C' in world space
- Draw 'baseline' through camera centers
- Baseline hits image planes at 'epipoles'

$\qquad$
$\qquad$
$\qquad$


## Epipolar Geometry: Chapter 8

Basic idea:

- 2 cameras centered at C, C' in world space
- Draw 'baseline' through camera centers
- Baseline hits image planes at 'epipoles'
- Family of planes thru baseline all are 'epipolar planes'
- Image of planes = lines = 'epipolar lines'
- Lines intersect at epipolar point.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

