CS 395/495-26: Spring 2002

IBMR: Week 10A

The Camera Matrix and World Geometry Chapter 7 (finish)

Jack Tumblin jet@cs.northwestern.edu

Reminders

CTEC Online – please add your comments...

- Homework 1 return
- Proj3 Due Thurs May 23

HW2 posted on website.

HW2 Due Thurs May 30

Proj4 posted on website.

• Proj4 Due Tues June 11

Cameras as Protractors

- Image Direction: d = [x_c, y_c, z_c, 0]^T
 Image Direction from a point x: d = K⁻¹x
- Angle θ between C and 2 image points x_1, x_2 : $\cos \theta = x_1^{T} (K^{-T} K^{-1}) x_2^{(00, 190)}$

```
\sqrt{(X_1^T (K^{-T} K^{-1}) X_1)(X_2^T (K^{-T} K^{-1}) X_2)}
```

 $P \Omega_m = (K^{-T}K^{-1}) = \omega = I_{mage of} Absolute Conic$

Cameras as Protractors

$P \Omega_{\infty} = (K^{-T}K^{-1})$. OK. Now what was Ω_{∞} again?

Recall P³ Conic Weirdness: (pg. 63-67)

- Plane at infinity $\pi_{\!\scriptscriptstyle \infty}$ holds all 'horizon points' d (universe wrappe
- Absolute Conic Ω_∞ imaginary points in outermost circle of π_∞
 Satisfies BOTH x₁² + x₂² + x₃² = 0 AND x₄² = 0
 - Can rewrite equations to look like a quadric (but isn't— no x₄)

$$\begin{bmatrix} x_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ 0 \end{bmatrix} = \mathbf{d}^{\mathsf{T}} \cdot \mathbf{\Omega}_{\mathbf{\omega}}^{\mathsf{T}}$$

• AHA! 'points' on it are (complex conjugate) directions d !

- Finds right angles-- if $d_1 \perp d_2$, then: $d_1^T \cdot \Omega_{\infty} \cdot d_2 = 0$

Cameras as Protractors

$$P \Omega_{\infty} = (K^{-T}K^{-1}) = \omega = 'I_{mage of} A_{bsolute} C_{onic'}$$

- Just Ω_{ω} as has a dual Q^*_{ω} , ω has dual ω^* : $\omega^* = \omega^{-1} = K K^T$
- The dual conic ω^* is the image of \mathbf{Q}^*_{∞} , so $\omega^* = P \mathbf{Q}^*_{\infty} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 1^{st} 3 \text{ columns of } P?$

Cameras as Protractors

 $P \Omega_{\infty} = (K^{-T}K^{-1}) = \omega = 'I_{mage of} A_{bsolute} C_{onic'}$

- Just Ω_{∞} as has a dual Q^{*}_{∞} , ω has dual ω^{*} : $\omega^{*} = \omega^{-1} = K K^{T}$
- The dual conic ω^* is the image of \mathbf{Q}^*_{∞} , so $\omega^* = P \mathbf{Q}^*_{\infty} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{1}^* \mathbf{3}$ columns of P?
- Vanishing points v_1, v_2 of 2 \perp world-space lines: $v_1^{\top} \omega v_2 = 0$
- + Vanishing lines $L_1,\,L_2$ of 2 \perp world-space planes: $L_1^{-T}\omega^*\,L_2^{-}=0$

Cameras as Protractors

Clever vanishing point trick:

- Perpendicular lines in image?
- Find their vanishing pts. by construction:
- Use $v_1^T \omega v_2 = 0$, stack, solve for $\omega = (K^{-T}K^{-1})$

Epipolar Geometry: Chapter 8

Basic idea:

- 2 cameras centered at C, C' in world space
- Draw 'baseline' through camera centers
- · Baseline hits image planes at 'epipoles'

Epipolar Geometry: Chapter 8

Basic idea:

• 2 cameras centered at C, C' in world space

baseline

- Draw 'baseline' through camera centers
- Baseline hits image planes at 'epipoles'
- Family of planes thru baseline all are 'epipolar planes'
- Image of planes = lines = 'epipolar lines'
- Lines intersect at epipolar point.

END