CS 395/495-26: Spring 2002

IBMR: Week 10B

Epipolar Geometry

and Conclusions

Chapter 8
Jack Tumblin
jet@cs.northwestern.edu
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reminders

CTEC Online - please add your comments.

- Homework 1 return
- Proj3 Due Thurs May 23

HW2 posted on website. \qquad

- HW2 Due Thurs May 30

Proj4 posted on website.

- Proj4 Due Tues June 11 \qquad
\qquad

Epipolar Geometry: Chapter 8

Summary:

- Connect cameras C, C' with a baseline, which
hits image planes at epipoles e, e^{\prime}
- Chose any world pt X, then $\rightarrow \rightarrow$ everything is coplanar! epipolar plane π includes image points x, x^{\prime}, and these connect to epipoles e,e' by epipolar lines L, L'

Epipolar Geometry

Useful properties:

- Epipole e' $=2^{\text {nd }}$ camera's (image of $1^{\text {st }}$ camera C)
- All epipolar lines L' pass through epipole e'
- Epipolar Line L' is (image of $C \rightarrow X$ ray...)
- Epipolar Line L' links (image of C) to (image of X)
- Every image point x maps to an epipolar line L’

Fundamental Matrix: Fx = L'

One Matrix Summarizes ALL of epipolar geometry

- Maps image point x to epipolar line L': F x = L'
- How? use full 3×4 camera matrices P, P^{\prime} and

Fundamental Matrix: $\mathrm{Fx}=\mathrm{L}$ ’

- Recall Pseudo-Inverse: $\mathrm{P}^{+}=\mathrm{P}^{\mathrm{T}}\left(\mathrm{P} \mathrm{P}^{\mathrm{T}}\right)^{-1}$ and $\mathrm{P} \mathrm{P}^{+}=\mathrm{I}$
- Write world-space ray $C \rightarrow X$ as: $X(\lambda)=P^{+} x+\lambda C$
- Other camera's image of the ray is its epipolar line L': $L^{\prime}(\lambda)=P^{\prime} X(\lambda)=P^{\prime} P^{+} x+\lambda P^{\prime} C$
- But $P^{\prime} C=e^{\prime}$; it is the epipole of the other camera, so $L^{\prime}(\lambda)=P^{\prime} P^{+} x+\lambda e^{\prime}$

Fundamental Matrix: $\mathrm{Fx}=\mathrm{L}$ '

- But P'C = e'; it is the epipole of the other camera, so $L^{\prime}(\lambda)=P^{\prime} P^{+} x+\lambda e^{\prime}$
- Rewrite epipolar line L' using points $P^{\prime} \mathrm{P}^{+} x$ and e^{\prime}
- (Recall: find line between two P^{2} points with cross product: $L=x_{1} \times x_{2}$)
- To get
$L^{\prime}=e^{\prime} \times P^{\prime} P^{+} x$ or $L^{\prime}=F x$
THUS $F=\left[e^{\prime}\right]_{\times} P^{\prime} P^{+}$ \qquad

Fundamental Matrix: $\mathrm{Fx}=\mathrm{L}$ '

- Cross Product written as matrix multiply

\qquad
- Note: $\mathrm{a} \times \mathrm{b}=-\mathrm{b} \times \mathrm{a}=[\mathrm{a}]_{\times} \cdot \mathrm{b}=\left(\mathrm{a}^{\top} \cdot[\mathrm{b}]_{\times}\right)^{\top} \quad \begin{aligned} & \text { 'skew symmetric' } \\ & \text { matrix }\end{aligned}$ \qquad

Fundamental Matrix: $\mathrm{Fx}=\mathrm{L}$ '

- Matrix F is unique for a point pair (up to scaling)
- Cool! works even for different cameras!
- F tied DIRECTLY to corresp. point pairs (x, x '):
- F finds epipolar line L^{\prime} from point x : $F x=L$
- (Recall that if (any) point x^{\prime} is on line a L^{\prime}, then $x^{\prime \top} L^{\prime}=0$)
- Substitute $F x$ for $L^{\prime}: x^{\prime \top} F x=0$

Fundamental Matrix Properties

- F is 3×3 matrix, maps $\mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$, rank 2, 7-DOF
- If world space pt $X \rightarrow$ image space pts. x and x^{\prime} then $x^{\prime \top} F x=0$
- Every image pt has epipolar line in the other image: $F x=L^{\prime} \quad F^{\top} x^{\prime}=L$
- Baseline pierces image planes at epipoles e, e' $\mathrm{Fe}=0 \quad \mathrm{~F}^{\top} \mathrm{e}^{\prime}=0$
- Given camera matrices P, P^{\prime}, find F matrix by: $F=\left[e^{\prime}\right]_{x} P^{\prime} P^{+}$
(recall: e^{\prime} is image of C : $e^{\prime}=P^{\prime} C$)
- F is unaffected by any world-space proj. transform (PH, P'H) has same F matrix as (P, P') for any full-rank H (in other words, choose any world-space axes you like)

Fundamental Matrix Uses

Special case: camera translate only (no rotations)

- Camera matrices are $\mathrm{P}=\mathrm{K}[\mathrm{I} \mid \mathbf{0}], \mathrm{P}^{\prime}=\mathrm{K}[\mathrm{I} \mid \mathrm{t}]$
- where K is internal calib., \mathbf{t} is 3 D translation vector $\left[\mathrm{t}_{\mathrm{x}}\right.$ $\left[\begin{array}{l}t_{x} \\ t_{y} \\ t_{z}\end{array}\right]$
- F matrix simplifies to $F=\left[e^{\prime}\right]_{x}$
\qquad
- Epipolar lines are all parallel to direction \mathbf{t}
- $\mathrm{x}, \mathrm{x}^{\prime}$ displacement depends only on t \& 3D depth z :

$$
x^{\prime}=x+(K t)(1 / z)
$$

\qquad
\qquad

Fundamental Matrix Uses

General movement?

- Recall: rotations don't change image content (camera rotate \rightarrow projective image warp H)
- ANY cameras, ANY movements can then be warped to remove rotations, THUS \qquad
- Can ALWAYS get parallel epipolar lines!
- Easier to find correspondences
- Easier to find depth values z
- 'Parallel Epipolar Lines'=='Rectified Image Pair'

Fundamental Matrix Properties

Why bother with F?

- Can find it from image pt. correspondences only
- Works even for mismatched cameras
(example: 100-year time-lapse of Eiffel tower)
\qquad
- Choose your own world-space coordinate system.
- SVD lets us recover P, P' camera matrices from F
- (4-way ambiguity; what is frdnt/back of C and C'?) pg 240
- BUT WE DON'T NEED TO!
- Complete 2-camera mapping from world $\leftarrow \rightarrow$ image
-2 images + corresponding point pairs $\left(x_{i}, x_{i}^{\prime}\right) \rightarrow F$ \qquad
- Let camera coords $==3 D$ world coords, then $\left(x_{i}, x_{i}^{\prime}\right) \rightarrow X_{i}$

Conclusions

- $\mathrm{P}^{2}, \mathrm{P}^{3}$ matrix forms give elegant, principled notation for ALL image geometry \qquad
- Cameras, lights, points, lines, planes, conics, quadrics, twisted cubics,
- Matrix form makes everything reversible: 3D from (2D)*!
- Shape recovery from point correspondence: DONE.
- Light/Surface interactions are linear too:
- (illumination)*(reflectance) $=$ light from surface
- Challenge: recover shape AND reflectance from images
- Difficulty: reflectance changes with angle; so does illum.
- Challenge: automatic point correspondence despite 5
- Challenge: motion in scene, streaming images, \qquad
- Challenge: full 8-dim. light field recovery with shape.

Conclusions

IBMR Course $1^{\text {st }}$ Attempt:

- Too much CV, not enough CG \& apps
\qquad
- Covered strong, best, but toughest part of IBMR
- Now you can understand, reproduce most current IBMR papers
- Example: Marc Pollifey's SIGG'99 Course "3D photography"
- Skipped ugly, tedious, unreliable parts of CV:
- Given an image, measure the best 2D points, lines, conics..
- Correspondence finding; resolution, resampling \& bandwidth
- This course was too hard! I'll fix that

Thank you for patience \& hard work; you helped develop a substantial new course.

END

