The matplotlib Artist API tutorial

There are three layers to the matplotlib API. The FigureCanvas is the area onto which the figure is
drawn, the Renderer is the object which knows how to draw on the FigureCanvas, and the Artist is the
object that knows how to use a renderer to paint onto the canvas. The FigureCanvas and Renderer
handle all the details of talking to user interface toolkits like wxpython or drawing languages like
postscript, and the Artist handles all the high level constructs like representing and laying out the
figure, text, and lines. The typical user will spend 95% of his time working with the Artists.

There are two types Artists: primitives and containers. The primitives represent the standard
graphical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc, and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
pyplot.figure, which is a convenience method for instantiating Figure instances and connecting them
with your user interface or drawing toolkit FigureCanvas. As we will discuss below, this is not necessary,
and you can work directly with postscript, pdf gtk, or wxpython FigureCanvas es, instantiate your
Figures directly and connect them yourselves, but since we are focusing here on the Artist API we’ll let
pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be
working with most of the time. This is because the Axes is the plotting area into which most of the
objects go, and the Axes has many special helper methods (ax.plot, ax.text, ax.hist, ax.imshow) to
create the most common graphics primitives (Line2D, Text, Rectangle, Image, respectively). These
helper methods will take your data (eg numpy arrays and strings) create primitive Artist instances as
needed (eg Line2D), add them to the relevant containers, and draw them when requested. Most of you
are probably familiar with the Subplot, which is just a special case of an Axes that lives on a regular
rows by columns grid of Subplot instances. If you want to create an Axes at an arbitrary location,
simply use the add_axes method which takes a list of [left, bottom, width, height] values in 0-1 relative
figure coordinates:

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
Continuing with our example:

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2*np.pixt)

line, = axl.plot(t, s, color=’blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it the the
Axes.lines list. In the interactive ipython session below, you can see that Axes.lines list is length one
and contains the same line that was returned by the “line, ax.plot(x, y, ’0’)” call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102] : <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of
these will work:

del ax.lines[O0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the xaxis and yaxis tick, ticklabels and
axis labels:

xtext = ax.set_xlabel(’my xdata’) # returns a Text instance
ytext = ax.set_ylabel(’my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the X Axis. Each Axes

instance contains an xaxis and a yaxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Here are the most important matplotlib modules that contain the classes referenced above

Artist Module
Artist matplotlib.artist
Rectangle matplotlib.patches
Line2D matplotlib.lines
Axes matplotlib.axes
XAxis and YAxis matplotlib.axis
Figure matplotlib.figure
Text matplotlib.text

Try creating the figure below

1.0 IEI sine WEIV'EI

0.5}

0.0

volts

0.8 1.0
?0 T 1 T 1 T

50
a0}

20
10}

4 3 2 1 0 1 2 3 4

Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of
properties to configure its appearance. The figure itself contains a Rectangle exactly the size of the
figure, which you can use to set the background color and transparency of the figures. Likewise, each
Axes bounding box (the standard white box with black edges in the typical matplotlib plot, has a
Rectangle instance that determines the color, transparency, and other properties of the Axes. These
instances are stored as member variables Figure.figurePatch and Axes.axesPatch (“Patch” is a name
inherited from Matlab, and is a 2D “patch” of color on the figure, eg rectangles, circles and polygons).

Every matplotlib Artist has the following properties

Property Description

alpha The transparency - a scalar from 0-1

animated A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the aritst lives in, possibly None
label A text label (eg for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates
pythonistas and we plan to support direct access via properties or traits but it hasn’t been done yet).
For example, to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5%a)

If you want to set a number of properties at once, you can also use the “set” method with keyword
arguments. For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the artist properties is
to use the matplotlib.artist.getp method, which lists the properties and their values (simply “getp”) in
pylab. This works for classes derived from Artist as well, eg Figure and Rectangle. Here are the Figure
rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.figurePatch)

alpha = 1.0

animated = False

antialiased or aa = True

axes = None

clip_box = None

clip_on = False

clip_path = None

contains = None

edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)

fill = 1
hatch = None
height =1
label =

linewidth or 1lw = 1.0

picker = None

transform = <Affine object at O0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))
visible = True

width = 1

window_extent = <Bbox object at Ox134acbcc>
x=0

y=0

zorder = 1

The docstrings for all of the classes also contain the artist properties, so you can consult the inter-
active “help”, the online html docs at http://matplotlib.sourceforge.net/classdocs.html or PDF docu-
mentation at http://matplotlib.sourceforge.net/api.pdf for a listing of properties for a give object.

Getting at the objects to customize them

Now that we know how to inspect set the properties of a given object we want to configure, we need
to now how to get at that object. As mentioned in the introduction, there are two kinds of objects:
primitives and containers. The primitives are usually the things you want to configure (the font of a
Text instance, the width of a Line2D) although the containers also have some properties as well -- for
example the Axes Artist is a container that contains many of the primitives in your plot, but it also
has properties like the xscale to control whether the xaxis is ’linear’ or ’log’. In this section we’ll review
where the various container objects store the Artists that you want to get at.

The Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the figure.
The background of the figure is a Rectangle which is stored in fig.figurePatch (where fig is your Figure
instance). As you add subplots (fig.add_subplot) and axes (ax.add_axes)to the figure these will be
appended to the fig.axes list. These are also returned by the methods that create them:

In [156]: fig

plt.figure()

In [157]: ax1

fig.add_subplot(211)

In [158]: ax2

fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out [159] : <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list,

http://matplotlib.sourceforge.net/classdocs.html
http://matplotlib.sourceforge.net/api.pdf

but rather use the Figure.add_axes and Figure.add_subplot method to insert, and the Figure.delaxes
methods to delete. You are free however, to iterate over the list of axes or index into it to get access to
Axes instances you want to customize. Here is an example which turns all the axes grids on:

for ax in fig.axes:
ax.grid(True)

The figure also has its own text, lines, patches and images, which you can use to add primitives
directly. The default coordinate system for the Figure will simply be in pixels (which is not usually
what you want) but you can control this by setting the transform property of the Artist you are adding
to the figure. More useful is “figure coordinates” where 0,0 is the bottom, left of the figure and 1,1 is
the top, right of the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: 11 = matplotlib.lines.Line2D([0, 1], [0, 1], trans-
form=fig.transFigure, figure=fig)

In [193]: 12 = matplotlib.lines.Line2D([0, 1], [1, 0], trans-
form=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([11, 12])

In [195]: fig.canvas.draw()

Here is a summary of the Artists the figure contains

Figure attribute Description

axes A list of Axes instances (includes Subplot)

figurePatch The Rectangle background

images A list of Figurelmages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)

texts A list Figure Text instances

The Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe -- it contains the vast majority of all
the Artists used in a figure with many helper methods to create and these Artists to itself, as well as
helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
ax.axesPatch which is Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.axesPatch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, eg the canonical “ax.plot” and pass in arrays or list of values, the
method will a matplotlib.lines.Line2D instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, ’-’, color=’blue’, linewidth=2)

ax.plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking
the first element of the length one list into the line variable. The line has been added to the ax.lines
list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like ax.bar creates a list of rectangles, will add the patches
to the ax.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, face-
color="yellow’)

In [234]: rectangles
Out [234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

You should not add objects directly to the ax.lines or ax.patches unless you know exactly what
you are doing, because the Axes needs to do a few things when it creates and adds an object. It
sets the figure and axes property of the Artist, as well as the default Axes transformation (unless a
transformation is set). It also inspects the data contained in the Artist to update the data structures
controlling auto-scaling, so that the view limits can be adjusted to contain the plotted data. You
can, nonetheless, create objects yourself and add them directly to the Axes using helper methods like
ax.add_line and ax.add_patch. Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure()
In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance

In [267]: print rect.get_axes()

Subplot (49,81.25)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009cad>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009cad>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.datalim.get_bounds()
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_xlim()
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their
respective containers. The table below summarizes a small sampling of them, the kinds of Artist they
create, and where they store them

Helper method Artist Container
ax.annotate - text annotations Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches

ax.errorbar - error bar plots

Line2D and Rectangle

ax.lines and ax.patches

ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data Axeslmage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis
and yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains
many helper methods which forward calls on to the Axis instances so you often do not need to work
with them directly unless you want to. For example, you can set the fontsize of the XAxis ticklabels
using the Axes helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute Description

artists A list of Artist instances
axesPatch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage

legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances

texts A list of Text instances

xaxis matplotlib.axis. X Axis instance
yaxis matplotlib.axis. YAxis instance

The Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y axis, and the upper
and lower ticks separately for the x axis. The axis also stores the data and view intervals used in
auto-scaling, panning and zooming, as well as the locator and formatter instances which control where
the ticks are placed and how they are represented as strings.

Each axis object contains a label attribute (this is what the pylab calls to xlabel and ylabel set) as
well as a list of major and minor ticks. The ticks are XTick and YTick instances, which contain the
actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynamically
created as needed (eg when panning and zooming), you should access the lists of major and minor ticks
through their accessor methods axis.get_major_ticks() and axis.get_minor_ticks(). Although the ticks

contain all the primitives and will be covered below, the Axis methods contain accessor methods to
return the tick lines, tick labels, tick locations etc....:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by

default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized

In [288]: axis.get_ticklines()

Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of O Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding
setters where useful, such as set_major_formatter)

Accessor method

Description

get_scale

The scale of the axis, eg ’log’ or ’linear’

get_view_interval

The interval instance of the axis view limits

get_data_interval

The interval instance of the axis data limits

get_gridlines

A list of grid lines for the Axis

get_label

The axis label - a Text instance

get_ticklabels

A list of Text instances - keyword minor=True|False

get_ticklines

A list of Line2D instances - keyword minor=True|False

get_ticklocs

A list of Tick locations - keyword minor=True|False

get_major_locator

The matplotlib.ticker.Locator instance for major ticks

get_major_formatter

The matplotlib.ticker.Formatter instance for major ticks

get_minor_locator

The matplotlib.ticker.Locator instance for minor ticks

get_minor_formatter

The matplotlib.ticker.Formatter instance for minor ticks

get_major_ticks

A list of Tick instances for major ticks

get_minor_ticks

A list of Tick instances for minor ticks

grid

Turn the grid on or off for the major or minor ticks

Try creating the figure below

The Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to the
Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition,
there are boolean variables that determine whether the upper labels and ticks are on for the xaxis and
whether the right labels and ticks are on for the yaxis.

Tick attribute Description

ticklline Line2D instance

tick2line Line2D instance

gridline Line2D instance

labell Text instance

label2 Text instance

gridOn boolean which determines whether to draw the tickline
tick1On boolean which determines whether to draw the 1st tickline
tick20n boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label20n boolean which determines whether to draw tick label

Here is an example which sets the formatter for the upper ticks with dollar signs and colors them
green on the right side of the yaxis:

10

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot (100*np.random.rand(20))

formatter = ticker.FormatStrFormatter(’$%1.2f’)
ax.yaxis.set_major_formatter(formatter)

for tick in ax.yaxis.get_major_ticks(Q):
tick.labellOn = False

tick.label20n = True
tick.label2.set_color(’green’)

plt.show()

$100.00

1$80.00

1$60.00

1$40.00

1$20.00

11

15

2

0.00
&

	The matplotlib Artist API tutorial
	Customizing your objects
	Getting at the objects to customize them
	The Figure container
	The Axes container
	The Axis containers
	The Tick containers

