
IEEE AFRICON 2004

Creating a Python GUI for a

1203

C++ Image Processing Library
S h a m N Wuth Raymond Coetzee Stephen P Levin

School of Electrical and Information Engineering
University of the Witwatersrand

Johannesburg, South Africa

Abslrac-The objective of this work was to create a extensible
graphical user hterhce (CUI) using Python and Tkinter for an
image processing library, IPL98, which is written in UC++. The
decision was taken to use Python in order to gain the advantages
of rapid development associated with using a scripting language.
Unfortunately, the productivity galns that were made by using
simple Python scripting for generating the CUI (rather than P

more complex C++ framework) were offset by the difficulties
encountered when trying to generate Python bindings for the
IPL98 library. The solution adopted was to wrap individual C+t
innctans packaging chunks of IPL98 functionality for importing
into Python. This solution is sub-optid in that there is too much
of a division between the user interface and the application logic
with the result that the CUI is unable to access image data that
k in memory. To resolve this problem, future work will focus
on wrapping the IPL98 claws direcIly concerned with image
storage.

I. INTRODUCTION

Image Processing Library 98 (IPL98) [l] is an open-source
image processing library. It supports functions from simple
image scaling and rotating, to fourier transforms and feature
extraction. IPL98 is coded in ANSIllSO standard Ccc and C
and is generally compilable on platforms that have compilers
which conform to the standard. The library consists of a kernel
which is written in C and provides fundamental routines, and
C++ classes which wrap and expand the kernel functionality.
There are two broad categories of classes - containers and
algorithms. Containers are used for storing images and algo-
rithms are used for manipulating images. The contributors and
designers of IPL98 have deliberately avoided making CUIs
part of the library in order to remain platform independent.

Several unofficial add-on GUIs do exist but they are based
on proprietary frameworwtookits which are restricted to the
Windows platform [2]. The objective of this work was to
rapidly develop an extensible cross-platform GUI for IPL98.
The intention was also that the CUI could be easily modifiable
without requiring the programmer to understand and master a
complex toolkit.

The system that was developed is called GNU-Vu. The next
section motivates the decision to use a scripting language for
the GUI. Section III describes how the interface between the
Python GUI and C t+ library was constructed. This is followed
by a discussion on the design of the GUI itself and the issues

encountered (section N). Conclusions and recommendations
regarding GNU-Vu complete the paper.

11. USING A SCRIPTING LANGUAGE FOR THE GUI

Scripting languages allow for rapid development and proto-

. They can be used interactively and do not need to be
compiled. . The run-time environment assumes the responsibility of
memory management (i.e garbage collection) rather than
having programmer take on this responsibility. . They are dynamically typed as opposed to system lan-
guages like C++ which require the type of each variable
to be explicitly stated, This allows the programmer to
be less concerned with types when coding but does
require more extensive unit testing in order to detect type
mismatches occurring at nu-time.

All in all, it is arguable that scripting languages are far
easier to leam and use than traditional system languages
[3]. Additionally, scripting languages are particularly useful
as “glue” languages, in this case, gluing a user interface to
application logic. Scripting languages are also interpreted, not
compiled, and since the plain text source files can be directly
parsable on a variety of platforms. it provides an ideal way
for implementing a cross-platform application.

Note that various cross-platform CH GUI toolkits exist (41
and the GUI could have been coded directly in C w however,
the advantages pertaining to rapid development would be
negated.

The scripting language that was chosen was Python [5] ,
due to the fact that it is well respected portable, thoroughly
documented, and has a clearly defined syntax and usage
style. Furthermore, Python has bindings to various libraries
including Tkintcr [6]. which provides an interface to the Tk
GUI toolkit [7]. and adds CUI design functionality to the
language. Tkinter is in fact Python’s “de-facto standard GUI
package” [6] . It offers an extensive widget set, so the most
common and familiar elements of a GUI are available for all
platforms.

typing due to the following:

0-7083-8605-1 / $17.00 2004 IEEE

1204 IEEE AFRICON 2004

Fig, 1. Wrapping Ihe Entire IPL98 Lihary Fig. 2. Wrapping C++ module

111. INTERFACING C++ AND PYTHON USING SWIG

The task of interfacing or binding Python with C++ libraries
can be accomplished by using a tool called SWIG (Simplified
Wrapper and Interface Generator) [SI. SWIG is capable of
connecting C++ programmes with a variety of high-level
programming languages, including Python [91.

SWIG wraps C++ code by processing a manually con-
structed interface file which contains function declarations,
type definitions and other type information. When SWIG
wraps, for example, a C++ function, two additional files are
generated: first an interface to the source language (C++). and
second, an interface to the destination language (Python). The
generated C++ file has to be compiled, with the original C++
function, to produce a dynamically linked library file. This
library file, together with the SWIG generated Python file, are
the necessary components for importing the functionality into
the destination language. SWIG is also capable of wrapping
C++ classes by producing proxy Python classes.

A. Wrapping the entire IPL98 Library

The initial plan was to generate Python bindings for the en-
tire IPL98 library. Once the library was wrapped and imported,
it could be used natively from within the “easier” Python
environment This would also allow the CUI, which was being
created using Python, to directly access IPL98’s containers
and algorithms. Figure 1 illustrates this wrapping approach
- the entire IPL98 library is-wrapped and used natively
within Python modules. These modules package chunks of
functionality which can then be accessed via the CUI. A chunk
of functionality could be, for example, “cropping an image”.
In other words, each module is used to implement a use case
(barring the CUI component). Within the “cropping an image’’
module code exists for instantiating an image object for the
source image. The source image is loaded into memory and its
dimensions determined. If the cropping boundaries are feasible
then a destination image object for containing the cropped
image is constructed and the appropriate pixels are copied
from the source image to the destination image.

The binding process soon became cumbersome and unvi-
able. The C++ code in the IPL98 library is fairly complex as
it wraps an underlying C kernel and makes extensive use of
templates, pointers and various data structures. All of these
factors increase the complexity of the SWIG interface files
which the programmer has to manually generate.

SWIG is capable of producing a proxy class in Python for
each C++ class. However, a direct mapping cannot exist from
C++ to Python because of the languages dissimilar object
models, data structures, native types and so on. This will force
the Python version of the library to be different (in some
cases subtly) to the C+t version. This is undesirable as it is
confusing to users and will require additional documentation
describing the Python version. It is also worth noting that
memory management becomes more complicated when instan-
tiating objects and using pointers across the two languages.

All of the above reasons led to the decision to abandon the
idea of wrapping the entire Library.

R. Wrapping C++ Functions Performing Specific Tmh
The manner in which the above problems were resolved was

to shift the implementation from Python to C++. Individual
C+t functions were written making use of IPL98 library and
offering chunks of functionality useful to an end user, such as
the image cropping (refer to section III-A for more detail on
this example).

These C++ functions use IPL98 natively, receiving and
returning arguments to the CUI ria the SWIG generated wrap
per. Each function’s parameters are constrained to primitive or
enumerated types. In this way, the complexity of the IPL98
library (namespaces, template classes, class hierarchies, etc)
can be hidden from SWIG (and the CUI).

C. Modular Development

The wrapping functions were made modular by virtue of
the fact that only one function could be put into ewh module
(more than one could be put in, if it was overloaded). This
restriction was due to the strict naming and directory conven-
tion that is necessary to maintain the extensible stmsture of the
project (section IV-B). Each module is imported separately and
is completely self contained . it may be used in a C++ main
function and executed in C++ @re-wrapping). or be called
from a simple Python programme, without the other modules
or the CUI present. This is depicted in Figure 2.

The advantages of this approach are: . The SWIG interface file for a single function is a great
deal simpler than that for a large class. This means that
the overall wrapping process is simplified. . Memory problems cease to exist as the objects and
variables constructed within each module function are

0-7083-8605-1 /$17.00 2004 IEEE

IEEE AFRICON 2004 1205

destructed when the function has finished executing and
they go out of scope. . Modules are independent of one another. This allows
modules to be modified without affecting any other
modules.

Wrapping the functions as described above is not ideal, and

. The process of adding functional modules has to start in
C++. If a programmer wants to add a new functionality,
the module has to be written in CH and then wrapped, as
opposed to making a module from pre-wrapped classes
and functions.
There is no direct access to the image objects of lPL98
from within the CUI code. IPL98 image objects exist only
for the duration of the wrapper functions' execution. If a
user opens an image and proceeds to apply multiple algo-
rithms to it and these algorithms happen to be distributed B. An Extensible Intefj+iie
among different modules, then the image will need to be is loaded, it scans a wrappers directory for
loaded from disk at the 'Iart Of each module and saved modules. Each module forms a sub-directory and must contain
to disk at the module's termination which is, of course. the Python imporr file generated by
inefficient. the module description Ne, and the compiled library file. The . Another consequence of the fact that there is no direct file should have the Same name as the sub.

is directory . this is how the bows which file to import.
that any functionality involving user interactions with an The module description file the description of the
image, such as Pixel Selection using a mouse* is made wrapped function and each of its pame ten , This is used by
much more difficult to implement. the CUI to describe the function to the user and to allow the . Although the IPL98 library functionality is limited, the user to specify arguments for the
number of combinations of IPL98 functions that could be If the directory StNCtwe described is adhered to and all

all the combinations of functions that could be executed Python package. The .'Module List.. dialogue 3) allows
A few Of the more common Ones been wrapped, but the user to choose which modules to import. On completion
the onus is on the user of IPL98 to write new functions of the dialogue the functionality is immediately

available. Note, that GNU-Vu does provide the structure modules are added to the directory making GNU.Vu
to do this easily (section IV-B). easily extensible. It is worth noting that the functionality that

can be added to GNU-Vu is not limited to that within the
IPL98 library, Any C++ function can be wrapped and accessed
via the CUI, as long as it conforms to the module approach
that has been adopted

Another automated process in that of menu creation. Every
menu shown in GNU-Vu is listed in a file. When GNU-Vu
is run. this file is parsed, and the menus are created from
the listed items. This means that the menu Structure can be
automatically updated every time a new module is added to
the System.

C. Working Directory

there are a few drawbacks which need to highlighted:

Fig. 3. The Module List Dialogue
,

When the

access to the image objects from within the

made and wrapped is infinite. It is impossible to anticipate the relevant files then each directory is treated as a

and wrap them if the functionality that is desired is not available. This dialogue is automatically updated when new

IV. THE PYTHON GUI

A. Requirements Specification
The primary requirement of GNU-Vu was that it was to be a

CUI for lPL98, and not a graphics package similar to Adobe
Photoshop [lo], or the like. As a result it was decided that
the target user of GNU-Vu would be one who knows how to
use IpL98 already, and is simply looking for a simpler way
to access its functionality. It would not be aimed at a novice
image manipulation user, and thus a user of GNU-Vu would
have to know the intricacies of IPL98, and when and how to
use a chosen function.

It was decided that the CUI should be able to open, save,
and display an image, as well as perform one or more of the
IPL98 functions and algorithms on it. An additional, important
requirement was that the CUI should also be extensible in
that new functionality should be able to be included without
redesigning the CUI. This is due to the fact that the lPL98 li-
braries are subject to ongoing development and are continually
being revised and updated with new algorithms.

A final mention of the working directory must be made.
This directory is used to store temporary files generated by
the lPL98 algorithms. When an algorithm is run it produces a
temporary file which stores the image output. The content of
the output file is displayed to the user via the CUI (Figure
4). This output file is deleted when the user closes the
image, unless the user decides to save the image. This is a
consequence of fact that images cannot be stored in-memory

0-7083-8605-1 / $17.00 2004 IEEE

1206 IEEE AFRl CON 2004

Fig. 4. Ori&l !stage and Scaled and Raated Image

as the CUI does not have access to the IPL98 container classes.

D. Image Display
Displaying images using the GUI is an important require-

ment for GNU-Vu. This turned out to be more problematic
than expected IPL98 does not contain any functions for image
display (see section r) so this meant that a display function in
Python had to be wed. Python itself also has no feature for
this; and the Tkinter library does not support IPL98’s primary
format (BMP files). So, another library - the Python Imaging
Library [I l l - had to be used in conjunction with Tkinter. The
bitmap first had to be converted to an intermediate format, and
then displayed. Fortunately this did not degrade the source or
destination images in any way.

v . CONCLUSIONS AND RECOMMENDATIONS
GNU-Vu is a cross-platform image processing application

built from a mixture of programming languages: Tk, a script-
ing language for generating the GUI; C+t, a system language
which implements the image processing routines: and Python,
a scripting language used to glue the CUI and the image pro-
cessing library together. The motivation for using a scripting
language for the CUI was to allow for rapid development and
to obviate the need to leam a more complicated C U toolkit
or framework. Python was sensible choice as a glue language
as it already possesses bindings for Tk in the form of Tkinter,
and SWIG can be used to generate bindings for C++ code.

The use of Tkinter, did indeed, greatly ease the development
of the GUI and will allow future programmers to understand
and adapt the GUI without much of a learning curve. Unfor-
tunately, the gains that were made in the arena of GUI were
offset by the difficulties encountered in trying to wrap the
IPL98 library. The final solution adopted was to create C t t
functions packaging IPL98 functionality. These functions are
simply wrapped and imported into Python.

This solution is non-optimal in that the presentation layer
(GUI) is too decoupled from the application logic (IPL98)
and there is currently no way in which images can exist in-
memory beyond the lifetime of a module’s execution. This
means that IPL98 image objects are not directly accessible
via the GUI which results in serious inefficiencies in certain
usage scenarios (section m-C).

A resolution to these problems would be to wrap IPL98’s
image container class hierarchy - not the entire library. An
investigation into the feasibility of doing this needs to be
undertaken. If it can achieved then using the corresponding
Python proxy container classes in conjunction with the wrap-
ping strategy currently employed will allow the CUI to pass
and receive image objects from wrapped C+t functions.

GNU-Vu demonstrates that Python and C++ are able to
successfully intemperate but that it is not all “plain sailing”.
The difficulties encountered will presumably vary depending
on the nature of the C++ libraries that are being wrapped
and on the particular application being developed. It is worth
noting that when wrapping a large library careful consideration
needs to be given as to exactly which are the essential parts
that need to be wrapped in order to allow the library to be
used effectively.

REFERENCES
[l] R D. W e n . (2003) !stage Processing Library 98. [Onlinel. Available:

[Z] -. (2003) Unofficial IPL98 exchange. [Online]. Available: hnp:

[31 I. K Ousterhouf “Scripting: Higher-level programming for L e Zlst

[41 L P o k . (2093) CUI Iocdldll fa L e X window syswa [Online].

[5] (aW4) Fyhon. Pythan SomVan Foundation. [OSne]. Available:

[61 (aW3) Python Mnta resouras. Python Software Foundation [Online].

PI (ZMJ4) Tcl developrr site. [Online]. Available: hnp:llwww.tcl.l.(ld
[S] (2004) Slmplifred W-r and Interface Genmmr. [Online]. Available:

h n p : l I w d p . s d u . W @ 9 W

Ilwwwdp.sdu.dkliiW W u n ~ f s d a V u n ~ ~ i p l 9 8 ~ c h ~ ~ . h t m

,X~W:* r m cOwuer. v o ~ 31. ,D. 3, pp. 21-30. 199s. [online].
Available: btrpJl~~sca.nj.nee.mmloustcrhou197saip

Available: h~JK~shmearnetlartIclerlvinvl9281

hnp:Ilww.~m.og.orgl

Available: htrpJlwww.python.orghopiesNdnterl

hnp:llwwv.iwig.agl
(aW3) SWIG and Python. [Online]. Available: http:l/uww.swig.og.orgl
DoclJmythonhtml
(2094) Adobe Photoshq. Ado& Systems Incapaatd [Onlincl.
Available: h n p J l ~ w . a d a b e . c o ~ p h o t o s h o p l m a i n
(2003) Python Imaging Li- (pa). [Online]. Available: bnp:
l lwww,~onw~.comlprcd“c ldpu

0-7083-8605-1 / $17.00 2004 IEEE

http:l/uww.swig.og.orgl

