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Abstract

This paper shows how shift, add, scale and multiply operations
on a few small matrices can compute the integral of any 2-D
polynomial f (x,y) within any specified quadrilateral bound-
aries, including non-convex chevrons, bow-ties and triangles.
For applications such as antialiased rendering, compositing,
anisotropic texture filtering, and high-contrast imagery, such
quad-bounded integrals are usually approximated by sampling
or dicing into small fragments, but the method presented here
is exact. It may be suitable for hardware implementation, but
is practical only for low-degree polynomials (e.g. N,M < 5)
due to machine-precision limits and high costO(N3M3). Sam-
ple C++ source code is provided online. Extending the same
method to tensors may be useful for higher-dimensional poly-
nomials within a limited class of curved boundaries as well.

1 Introduction

Computing the integral of a function over an arbitrary bounded
area or volume is often messy and cumbersome. The integra-
tion limits usually include variables, and conventional eval-
uations apply symbolic manipulations that are tough to im-
plement in procedural languages such as C, C++ and Java.
Yet these are exactly the sorts of integrals we need to eval-
uate for image warping and re-sampling, accurate composit-
ing, anisotropic texture mapping, global illumination, and anti-
aliased rendering of richly shaded objects with motion blur.
These integration problems are usually solved by a wide range
of approximation methods that include MIP-maps, jittered su-
persampling, trapezoidal area calculations, Monte-Carlo inte-
gration, EWA filters, and lookup tables.

No single best answer exists, but there is another choice that
may prove useful in applications where accuracy is more im-
portant than speed. This paper presents a simple sequence of
matrix operations that can directly compute the integral of any
2-D polynomial within any quadrilateral bounded area, includ-
ing chevrons, bow-ties and triangles. Like Mirtich’s related
method using Green’s Theorem [4], the result is not an approx-
imation; it is the traditional symbolic solution rearranged into
matrix expressions, and machine precision sets its accuracy.
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Figure 1:To integrate any 2-D polynomial f (x,y) over this
convex quadrilateral, first make a bilinear map from the
x,y corner points p0, p1, p2, p3 to the unit square in u,v

space, then integratef (x(u,v),y(u,v)) for 0≤ u,v < 1 us-
ing matrix convolution.

The method is straightforward to write as a computer pro-
gram, because it requires only an orderly series of shift, add,
scale, and multiply operations. The central ideas are: (a) A
2D polynomial can be expressed in matrix form, (b) integra-
tion within the unit square with corners at(0,0),(1,0),(1,1)
and(0,1) is easy to evaluate, and (c) we can warp any quadri-
lateral to the unit square to perform this evaluation.

2 Polynomial Forms

The most familiar expressions for 2D polynomials can be writ-
ten as matrix multiplies, and helped along by introducing a few
more notations. A 2-D polynomialf (x,y) is usually written
as the sum-of-products (Equation 1), but the polynomial form
YTFX shown in Equation 2 organizesf (x,y) into a coefficient
matrixF and column vectorsX andY that each hold sequential
integer powers of the variablesx,y respectively:

f (x,y) =

f00 + f01x + f02x2 + . . .

f10y + f11xy + f12x2y + . . .

f20y2 + f21xy2 + f22x2y2 + . . .

f30y3 + . . . + . . . + . . .

= ∑
i, j

fi j x jyi (1)
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=
[

1 y y2 . . .
]

︸ ︷︷ ︸
YT




f00 f01 f02 . . .

f10 f11 f12

f20 f21 f22 . . .
...

...




︸ ︷︷ ︸
F




1
x

x2

...




︸ ︷︷ ︸
X

= YTFX
(2)

The degree off (x,y) sets the minimum matrix size: anN×M-
degree polynomialf (x,y) has a coefficient matrixF of at least
(M +1)× (N+1) elements, even if many are zero. For exam-
ple, the4th×3rd degree polynomialf (x,y) = x4y3 needs anF
of at least4×5, but only elementf34 is non-zero. The coeffi-
cient matrix may also use ‘zero-padding’ as needed: augment-
ing theF matrix by rows of zeros on the bottom or columns of
zeros on the right side does not change its meaning, and makes
it easier to combine polynomial forms of different sizes.

Several useful operators on polynomials such as add, multi-
ply, exponentiate, and integrate are simple matrix procedures
on the polynomial forms shown in Equations 2 :
Add: To add two 2-D polynomialsf (x,y) andg(x,y), we add
pairs of coefficients: thusf (x,y)+ g(x,y) = h(x,y) is imple-
mented asF + G = H. If the F and G matrix sizes do not
match, ’zero-padding’ the smaller matrix can enlarge it with-
out changing its meaning.
Multiply: In the conventional notation of Equation 1, the
polynomial productf(x,y)g(x,y) = h(x,y) is a mess, but in
matrix form it becomes a discrete 2-D convolution of coeffi-
cients, writtenF∗ G = H. Convolution is a fundamental tool
of digital signal processing (see [5]) found in many software
libraries such as MATLAB [3], but it is not commonly asso-
ciated with polynomial multiplication (although a textbook on
Fourier transforms [1] has a nice 1-D example). To under-
stand it, first define ashift(P,a,b) matrix function that offsets
the contents of a matrixP downwards and rightwards by aug-
mentingP on top with a rows of zeros and on the left side
with b columns of zeros. The producth(x,y) = f(x,y)g(x,y) is
given by the(MF +MG−1)×(NF +NG−1) coefficient matrix
H made by adding shifted copies of theG matrix that are each
scaled by anF matrix element. The convolution of matrices F
and G is given by:

H = F∗G ≡
N−1

∑
i=0

M−1

∑
j=0

shift( fi j G, i, j) (3)

or equivalently,

hi j =
M−1

∑
m=0

N−1

∑
n=0

fi j g(m−i),(n− j) (4)

Equation 4 computes each elementhi j separately, but relies on
zero values for elements with negative or out-of-range indices
of F andG. Though possibly less familiar to some readers,
Equation 3 is simpler and more efficient to implement.

Convolution works as an orderly, automatic way to expand
and collect terms in a polynomial multiplication. Each element
fi j is the coefficient forx jyi , and to shift the matrixG by i, j

and scale it byfi j is equivalent to computing the product of
g(x,y) and thei, j term of f (x,y). Adding together the results
of this operation for every term inf (x,y) will then compute
the productf (x,y)g(x,y).
Exponents:Repeatedly convolvingF with itself will compute
the integer powers off (x,y), so we describef k(x,y) by writing
the coefficient matrixF with an exponent of∗k:

f k(x,y) = YT F∗k X where: (5)

F∗0 =




1 0 0 . . .

0 0 0
0 0 0 . . .
...

...




;

F∗1 = F ;
F∗2 = F ∗F ;
F∗3 = F ∗F ∗F ;
F∗4 = F ∗F ∗F ∗F ;
. . .

(6)

Integrals: Indefinite integrals off (x,y) are computed withS,
a matrix that is zero-valued except for inverse counting on its
first upper diagonal. (Zero-pad matrixF to add one row and
one column of zeros to keepX andY large enough):




0 1 0 0 0 . . .

0 0 1
2 0 0

0 0 0 1
3 0

0 0 0 0 1
4 . . .

...
...




︸ ︷︷ ︸
S




1
x

x2

x3

...




︸ ︷︷ ︸
X

=




x
1
2x2

1
3x3

1
4x4

...




;

︸ ︷︷ ︸
=

∫
X dx;

(7)

∫
f (x,y)dx = YTF(SX);

∫
f (x,y)dy = (SY)TFX;

∫ ∫
f (x,y)dxdy = (SY)TF(SX); (8)

Notice how easily we can evaluate these integrals off (x,y)
when the limits are{0,1}. Wheny= 0 or x= 0, every element
is zero in theYT or X vectors, and wheny = 1 or x = 1 every
element is one in these vectors. If we defineQ as a column
vector of1-valued elements, then we can integratef over the
unit square (opposite corners at0,0 and1,1) and evaluate it
almost by inspection. First in thex direction:

∫ 1

0
f (x,y)dx= YTFSX

∣∣∣
1

0
= YTF(SQ) (9)

and then in they direction:
∫ 1

0

∫ 1

0
f (x,y)dxdy= (SQ)TF(SQ) (10)

where (SQ)T ≡
[

1 1
2

1
3

1
4 . . .

]
. (11)
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Equation 11 holds a key observation in matrix form: we can
evaluate the integral of any polynomialf (x,y) within unit-
square limits by computing a constant-weighted sum of its co-
efficients. The next three sections extend this idea to arbitrary
quadrilateral limits. Section 3 shows how to bilinearly warp
x,y space so that the given quadrilateral maps to a unit square
in u,v space, Section 4 then shows how to properly integrate
f̂ (u,v) = f (x(u,v),y(u,v)) to get the desiredx,y space result,
and Section 6 explains why this result is true even for non-
convex quadrilaterals.

3 Bilinear Map

A properly chosen bilinear map can convert a convex quadri-
lateral in thex,y plane to a unit square in the(u,v) plane. As
shown in Figure 1, we have named the(x,y) corner points
in counter-clockwise order asp0 = (x0,y0), p1 = (x1,y1),
p2 = (x2,y2) andp3 = (x3,y3). If we also define these points as
the corners of the unit square inu,v coordinates, then a bilinear
mapping can link each point in theu,v space to a unique point
in x,y space. Letp0 be the origin ofu,v, and then trace around
theu,v square in counter-clockwise order to define pointp1 as
(u,v) = (1,0), p2 as(u,v) = (1,1), and p3 as(u,v) = (0,1).
To describe the bilinear mapping fromu,v to x,y space by a
matrix of scalar constantsa,b,c, ... ,h:

[
x(u,v)
y(u,v)

]
=

[
a b c d

e f g h

]



1
u

v

uv


 (12)

Values fora,b,c, ... ,h come from known points in(x,y) and
(u,v). Replace the left-hand side of Equation 12 with a2×4
matrix of corner positions in(x,y). On the right-hand side,
replace the4× 1 vector with a4× 4 matrix whose columns
hold values for the corner positions inu,v (values of0 or 1).
Post-multiply both sides by the inverse of this matrix to get:

[
x0 x1 x2 x3

y0 y1 y2 y3

]



1 −1 −1 1
0 1 0 −1
0 0 0 1
0 0 1 −1


 =

[
a b c d

e f g h

]

(13)
To convert f (x,y) to u,v terms, use Equation 12 to write both
x andy as2×2 polynomial forms:

x(u,v) =
[

1 v
][

a b

c d

][
1
u

]
≡VTBxU (14)

y(u,v) =
[

1 v
][

e f

g h

][
1
u

]
≡VTByU (15)

In the next section, this bilinear mapping helps convert inte-
gration of f (x,y) over quadrilateral limits into integration of
f̂ (u,v) = f (x(u,v),y(u,v)) over unit-square limits.

4 Change of Variables

To properly evaluate the integral of̂f (u,v), we use a change
of variables that follows the previous section’s bilinear map
(Equation 12). Standard calculus texts (e.g. [2]) explain why
this change-of-variables requires only a change in integration
limits, multiplication by the determinant of the Jacobian, and
a re-writing of f (x,y) in u,v terms:

∫ y1

y0

∫ x1

x0

f (x,y)dxdy=

∫ y(u,v)<y1

y(u,v)≥y0

∫ x(u,v)<x1

x(u,v)≥x0

f (x(u,v),y(u,v))

∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣
dudv (16)

The bilinear map of Equation 12 converts the integration limits
to (0,1), and its Jacobian determinant is:

∂x
∂u = b+vd; ∂x

∂v = c+ud; ∂y
∂u = f +vh; ∂y

∂v = g+uh;

∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣
=

[
1 v

]

︸ ︷︷ ︸
VT




gb− f c hb− f d

gd−hc 0




︸ ︷︷ ︸
J




1

u




︸︷︷︸
U

= VTJU;

(17)
To write the Jacobian determinant in matrix formVTJU, the
column vectorsU and V should adjust to hold any needed
higher integer powers ofu,v respectively (e.g. 1,u,u2,u3, ...),
just as we did earlier forX andY in Equations 7 and 8,

Next, we need to re-write the polynomialf (x,y) in u,v

terms by replacing eachx andy with x(u,v) andy(u,v). Equa-
tions 5 and 6 show us how to find thei-th and j-th power of
x(u,v) andy(u,v) from theBx andBy matrices defined in Equa-
tions 14 and 15:

x jyi = VT (
B∗ j

x ∗B∗iy

)
U ; (18)

We can then find a matrix form forf (x(u,v),y(u,v)) by
weighting eachxiy j term by thei, j-th coefficient of f (x,y),
or equivalently, by the elementfi j of matrix F . This weighted
sum of matrices yields the coefficient matrixF̂ for f̂ (u,v):

f (x(u,v),y(u,v)) = f̂ (u,v) = VT F̂U (19)

whereF̂ is:
F̂ ≡∑

i, j
fi j

(
B∗ j

x ∗B∗iy

)
.
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Assemble Equations 11, 16 and 19 for the final result:

∫

p0,p1,p2,p3

∫
f (x,y)dxdy =

∫ 1

0

∫ 1

0
f̂ (u,v)VTJUdudv

=
∫ 1

0

∫ 1

0
(VT F̂U)(VTJU)dudv

= (SQ)T (
F̂∗J

)
SQ (20)

5 Implementation

Using Equation 20 we can compute the definite integral of an
N×M degree 2-D polynomialf (x,y) within convex quadri-
lateral bounds. You may find the C++ source code submitted
with this article helpful, or follow these steps to write your
own:

• Apply Equation 13 to finda,b,c, ...,h values, and con-
struct theBx, By andJ matrices from Equations 14, 15
and 17. The cost is only 6 scalar multiplies and 8 scalar
adds.

• Compute two tables of matricesTx[ j] = B∗ j
x andTy[i] =

B∗iy to describe the powers ofx andy in u,v terms. Recall
that an(M + 1)× (N + 1) matrix F describes thef (x,y)
polynomial whose highest-degree term isfi j · x j · yi =
fM,N ·xN ·yM. TableTx[ j] describes the powers ofx j , and
holds(N+1) matrices indexed by0≤ j ≤ N. Similarly,
the Ty[i] table holds(M + 1) matrices indexed by0 ≤
i ≤ M to describeyi in u,v terms. Initialize the first two
entries in both tables with known values:Tx[0] = Ty[0],
where both are a1×1 matrix with value1; theTx[1] table
entry is matrixBx, and theTy[1] entry isBy from Equa-
tions 14 and 15. We fill the rest of the table with higher
powers ofx j andyi by repeated convolution:Tx[ j +1] =
Tx[ j] ∗Bx = B∗( j+1)

x , andTy[i + 1] = Ty[i] ∗By = B∗(i+1)
y .

Note that the size of theTx[ j] matrix is ( j + 1)× ( j + 1)
(Equations 3 and 6 describe convolution). Though the
cost of each table is orderN4 multiply-accumulate opera-
tions,N is rarely larger than 3 (bicubic) for most practical
graphics applications.

• Next, compute theF̂ matrix as shown in Equation 19
from a weighted sum of table entries. For each(0≤ i ≤
M, 0≤ j ≤ N) find theF matrix elementfi j . Convolve
the j-th andi-th entries in theTx[ j] andTy[i] matrix tables,
and multiply each element in the result byfi j (Equiva-
lently, you may multiply the smaller matrix table entry’s
elements byfi j before convolution for better efficiency).
Add together the matrix results for eachfi j to construct
theF̂ matrix. Computing cost isO(N3M3).
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Figure 2: All kinds of arbitrary quadrilaterals; Equa-
tion 20 can evaluate each of them correctly.

• ConvolveF̂ andJ matrices, then pre- and post-multiply
by the constant vector(SQ) as shown in Equations 11
and 20. The cost isO(N2M2) multiply-accumulate oper-
ations.

6 Chevrons, Bow-Ties and Triangles

As Figure 2 shows, many different kinds of quadrilaterals are
possible. Arbitrary values forp0...p3 describe either a convex
shape, a chevron, a bow-tie, a triangle, a triangle-with-a-hair,
or a line. You may think we solved only the convex case, but
Equation 16 is correct forany differentiable change of vari-
ables, and our method does indeed work for all quadrilaterals,
and as our demonstration program confirms (see Section 8 for
source code).

To improve your intuition, consider the chevron case at the
bottom of Figure 2. Even though the gridded(u,v) unit square
maps to areas inx,y well outside the chevron’s boundaries, we
integrate f () over these areas twice, but with opposite sign.
Viewed another way, theu,v surface that stretches between
quadrilaterals boundaries turns upside-down here, it doubles
back on itself. Equivalently, the edge-orderingx,y is both
counter-clockwise and clockwise in the overlapped regions
outside the chevron boundaries. Examining the edge-ordering
for each lobe of the ’bow-tie’ shape reveals they also use op-
posite signs in integration; the integral off (x,y) over one lobe
is subtracted from the other in our result.

Figure 2 also shows how to identify quadrilateral shapes.
Simply group together opposing points(p0, p2) and (p1, p3)
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as “point pairs”, construct linesL02 and L13 between them,
and test point pairs against opposing lines. The demonstration
program source code includes a shape identifier routine to help
with testing.

7 Discussion

Convolutions to create thêF matrix of Equation 19 account for
the bulk of the computational cost in this method. For larger
polynomials, theO(M3N3) cost due to the repeated convolu-
tions might also be improved by thoughtful use of the Fast
Fourier Transform, because repeated matrix convolutions be-
come repeated element-by-element multiplications in the fre-
quency domain.

Finally, higher-order mappings fromu,v to x,y such as bi-
quadratics or bi-cubics are possible, and could evaluate in-
tegrals within quadrilaterals with polynomially curved sides.
Similarly, just as a 2-D polynomialf (x,y) fits neatly into a 2-D
grid of numbers stored as a matrix, a 3-D polynomialf (x,y,z)
can be described by a 3-D grid of numbers and stored as a
tensor. Combining tensors and similar arrangements to con-
volve, add, and multiply them might evaluate definite integrals
of polynomials of any dimension over curved, hyper-cube-like
boundaries.

8 Web Information

Sample C++ source code and demonstration programs are
available online at:
http://www.acm.org/jgt/papers/Tumblin06.
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