Exact 2-D Integration inside Quadrilateral Boundaries

Jack Tumblin, Computer Science Department, Northwestern University,
Evanston IL 60201 jet@cs.northwestern.edu

Abstract

This paper shows how shift, add, scale and multiply operations
on a few small matrices can compute the integral of any 2-D
polynomial f(x,y) within any specified quadrilateral bound-

aries, including non-convex chevrons, bow-ties and triangles.
For applications such as antialiased rendering, compositing,
anisotropic texture filtering, and high-contrast imagery, such

quad-bounded integrals are usually approximated by samplifigure 1:To integrate any 2-D polynomial f (x,y) over this
or dicing into small fragments, but the method presented hetwex quadrilateral, first make a bilinear map from the
is exact. It may be suitable for hardware implementation, BUY corner points po, p1, p2, ps to the unit square in u,v

is practical only for low-degree polynomiale.g. N,M < 5) space, then integratef (x(u,v),y(u,v)) for 0 < u,v < 1 us-
due to machine-precision limits and high c@§N3M?). Sam- ing matrix convolution.

ple C++ source code is provided online. Extending the same
method to tensors may be useful for higher-dimensional poly-the method is straightforward to write as a computer pro-
nomials within a limited class of curved boundaries as We”-gram, because it requires only an orderly series of shift, add,
scale, and multiply operations. The central ideas are: (a) A
1 Introduction 2D polynomial can be expressed in matrix form, (b) integra-
tion within the unit square with corners é3,0),(1,0),(1,1)
Computing the integral of a function over an arbitrary boundé&d(0, 1) is easy to evaluate, and (c) we can warp any quadri-
area or volume is often messy and cumbersome. The inted@éeral to the unit square to perform this evaluation.
tion limits usually include variables, and conventional eval-
uations apply symbolic manipulations that are tough to ir?
plement in procedural languages such as C, C++ and Java.

Yet these are exactly the sorts of integrals we need {0 evAke most familiar expressions for 2D polynomials can be writ-
uate for image warping and re-sampling, accurate cOmpogii as matrix multiplies, and helped along by introducing a few
ing, anisotropic texture mapping, global illumination, and antiiore notations. A 2-D polynomial(x,y) is usually written
aliased rendering of richly shaded objects with motion blys the sum-of-products (Equation 1), but the polynomial form
These integration problems are usually solved by a wide raRg8-x shown in Equation 2 organizésx, y) into a coefficient

of approximation methods that include MIP-maps, jittered Siiatrix F and column vector¥ andY that each hold sequential
persampling, trapezoidal area calculations, Monte-Carlo i”?ﬁ’feger powers of the variablesy respectively:
gration, EWA filters, and lookup tables.

Polynomial Forms

No single best answer exists, but there is another choice that foo +foax +fox® +...
may prove useful in applications where accuracy is more im+ .)= fioy +fuxy +fi2x%y +... -5 Xyl (1)
portant than speed. This paper presents a simple sequence of fooy? +fa1Xy? +fooX?y? +... 5 .

matrix operations that can directly compute the integral of any faoy® +... +... +...
2-D polynomial within any quadrilateral bounded area, includ-

ing chevrons, bow-ties and triangles. Like Mirtich’s related

method using Green’s Theorem [4], the result is not an approx-

imation; it is the traditional symbolic solution rearranged into

matrix expressions, and machine precision sets its accuracy.

foo for foz ... Convolution works as an orderly, automatic way to expand
f10 f11 f12 and collect terms in a polynomial multiplication. Each element
= [1yy .. } fao f21 f22.... w2 | =YTFX fij is the coefficient fox!y, and to shift the matrixG by i, j
" . @ and scale it byfj; is equivalent to computing the product of
) g(x,y) and thel, j term of f(x,y). Adding together the results
F X of this operation for every term ifi(x,y) will then compute

The degree of (x,y) sets the minimum matrix size: &hx M- the productf (x.y)g(x.y).) o)
degree polynomiaf (x, y) has a coefficient matrik of at least Exponents: Repeatedly convolving with itself will compute

(M+1) x (N+1) elements, even if many are zero. For exarfj’€ Integer powers df(x,Y), so we describé“(x.y) by writing
ple, thed™h x 3¢ degree polynomiaf (x,y) — X'y® needs arF the coefficient matriF with an exponent ofk:

X

YT

of at least4 x 5, but only elemenfz is non-zero. The coeffi- X (xy) =YTF*X where: ®)
cient matrix may also use ‘zero-padding’ as needed: augment- Fl_E-
ing theF matrix by rows of zeros on the bottom or columns of 100 Fr2 _ F'* E
; : ; ; 0 0O - '
zeros on the right side does not change its meaning, and makes .) X)
9 9 9 F°=1| 6 0 o . FS=Fx«F«F; (6)

it easier to combine polynomial forms of different sizes.

Several useful operators on polynomials such as add, multi-
ply, exponentiate, and integrate are simple matrix procedures
on the polynomial forms shown in Equations 2 : Integrals: Indefinite integrals of (x,y) are computed witl§,
Add: To add two 2-D polynomialg (x,y) andg(x,y), we add @ matrix that is zero-valued except for inverse counting on its
pairs of coefficients: thus(x,y) +g(x,y) = h(x,y) is imple- first upper diagonal. (Zero-pad matrkto add one row and
mented af + G = H. If the F and G matrix sizes do not one column of zeros to keepandy large enough):

F*=FxF*FxF;

match, 'zero-padding’ the smaller matrix can enlarge it with- S - -
- . 01000... 1 X
out changing its meaning. 1.2
. . . , ooloo X 32X
Multiply: In the conventional notation of Equation 1, the 2 1 5 1
: . , 00030 X 3
polynomial productf(x,y)gx,y) = h(x,y) is a mess, but in 000 3(‘) 1 B 1 | @
matrix form it becomes a discrete 2-D convolution of coeffi- 4 X N 4 ’
cients, writterF *k G = H. Convolution is a fundamental tool : :

of digital signal processing (see [5]) found in many software — _—

libraries such as MATLAB [3], but it is not commonly asso- S X = Xdx

ciated with polynomial multiplication (although a textbook on

Fourier transforms [1] has a nice 1-D example). To under- /f(x,y)dx = YTF(SX);

stand it, first define ahift(P,a,b) matrix function that offsets

the contents of a matri® downwards and rightwards by aug- / fxy)dy = (SY)TFX;

mentingP on top witha rows of zeros and on the left side T _

with b columns of zeros. The produotx, y) = f(X,y)gX,y) is // fooy)dxdy = (SY) F(SX); (8)

given by theMg +Mg —1) x (Ne +Ng —1) coefficient matrix nqtice how easily we can evaluate these integrals (ofy)
H made by adding shifted copies of t@ematrix that are each han the limits arg0,1}. Wheny = 0 orx= 0, every element

scaled by ar- matrix element. The convolution of matrices kg ;a6 in they™ or X vectors, and whey = 1 or x = 1 every
and G is given by:

element is one in these vectors. If we deflpes a column
N-1M-1 o vector ofl-valued elements, then we can integritever the
H=F*G = izo]Z)Sh'ft(fij G.i.J) ©) unit square (opposite corners@0 and1,1) and evaluate it

_ almost by inspection. First in thedirection:
or equivalently,

1 1
M—1N-1 /f(x,y)dx:YTFSXO:YTF(SQ) 9)
hij= % EOfij I(m—i),(n—j) (4) 0
m=0 n=

and then in the direction:

Equation 4 computes each elembtseparately, but relies on 1.1

zero values for elements with negative or out-of-range indices /o /0 f(xy)dxdy= (SQTF(SQ (10)
of F andG. Though possibly less familiar to some readers,

Equation 3 is simpler and more efficient to implement. where (SQT = { 1 33 (11)

Equation 11 holds a key observation in matrix form: we cdn the next section, this bilinear mapping helps convert inte-
evaluate the integral of any polynomi&lx,y) within unit- gration of f(x,y) over quadrilateral limits into integration of
square limits by computing a constant-weighted sum of its ¢, v) = f(x(u,V),y(u,V)) over unit-square limits.

efficients. The next three sections extend this idea to arbitrary

guadrilateral limits. Section 3 shows how to bilinearly war .

X,y space so that the given quadrilateral maps to a unit squ%re Change of Variables

N U,V space, Section 4 then shows how to properly mtegralig properly evaluate the integral cﬁ’(u,v), we use a change

Fuv) = .f(x(u,v),y(u.,v)) 0 get.the deswgd,yspace result, of variables that follows the previous section’s bilinear map

and Section 6 explains why this result is true even for no(l‘équation 12). Standard calculus texésg, [2]) explain why

convex quadrilaterals. this change-of-variables requires only a change in integration
limits, multiplication by the determinant of the Jacobian, and

3 Bilinear Map a re-writing of f (x,y) in u,v terms:

Y1 X1
A properly chosen bilinear map can convert a convex quadri-/ / f(x,y)dxdy=
. . . Yo /X0
lateral in thex,y plane to a unit square in tHe, v) plane. As

ox ox
shown in Figure 1, we have named they) corner points py(uv)<yr x(uv)<x du ov
- - L Tt uv)yuv) dudv (16)
in counter-clockwise order app = (Xo0,¥0), P1 = (X1,¥1), Jywv)>yo Jxuv)>x dy ay
p2 = (X2,¥2) andps = (x3,y3). If we also define these points as du v

the corners of the unit squareurv coordinates, then a bilinearrhe pilinear map of Equation 12 converts the integration limits
mapping can link each point in thev space to a unigue pointy, (0,1), and its Jacobian determinant is:
in X,y space. Lepg be the origin ofu,v, and then trace around

d

theu,v square in counter-clockwise order to define pqinas % =b+vd, g—é = Cc+ud; a% =f+4vh % =g+uh;
(u,v) = (1,0), p2 as(u,v) = (1,1), andps as(u,v) = (0,1).

To describe the bilinear mapping fromv to x,y space by a o x gb—fc hb—fd| |1
matrix of scalar constanssb,c, ..., h: = {1 v =VTJu;
Y 9 ~—~~|gd—hc 0 u
Ju odv T
1 V ~—~—
J U
x(u,v abcd u
v (12) (17)
y(u,v) efgh|| v . . N .
oV To write the Jacobian determinant in matrix fokmJU, the

column vectordJ andV should adjust to hold any needed
Values fora, b,c, ...,h come from known points irfx,y) and higher integer powers af, v respectively ¢.g. 1,u,u?,u?,...),
(u,v). Replace the left-hand side of Equation 12 witd a4 just as we did earlier foX andY in Equations 7 and 8,
matrix of corner positions irfx,y). On the right-hand side, Next, we need to re-write the polynomidlx,y) in u,v
replace thet x 1 vector with a4 x 4 matrix whose columns terms by replacing eachandy with x(u,v) andy(u,v). Equa-
hold values for the corner positions inv (values of0 or 1). tions 5 and 6 show us how to find tivth and j-th power of
Post-multiply both sides by the inverse of this matrix to get:X(u,v) andy(u, v) from theB, andBy matrices defined in Equa-

tions 14 and 15:

[MX1X2X3]

~|a b c d xly' =VT (B *B;') U; (18)
Yo Y1 ¥2 ¥3 e f g h

O ok

1
-1
1
-1

o O O -
OO r

We can then find a matrix form foff (x(u,v),y(u,v)) by
(13) Weighting eachx'yl term by thei, j-th coefficient off (x,y),

To convertf (x,y) to u,v terms, use Equation 12 to write botir equivalently, by the elemerii; of matrix F. This weighted
x andy as2 x 2 polynomial forms: sum of matrices yields the coefficient matkxfor f(u,v):

wwr - [2

oo = [[50][6

—f —VTE
EVTBXU (14) f (X(U,V),y(U,V)) - f(uvv) =V 'FU (19)

whereF is:
_yT F=Y fij (B *B}).
=VvTBU (15) g i (B *By))

Assemble Equations 11, 16 and 19 for the final result: Convex: Bow-Tie:

-y 1.1, B i
//f(x,y)dxdy - /O/Of(u,v)VTJUdudv
Po,P1,P2,P3 D p
1.1 . 2 0
_ //(VTFU)(VTJU)dudv .
0 Jo Triangles: (hair)
= (SQT(F*J)SQ (20) P P ? P p
p
D 2
. 1
S Im plementatlon Chevron Example: 1]7
p

Using Equation 20 we can compute the definite integral ofan |\ 3
N x M degree 2-D polynomiaf (x,y) within convex quadri- =
lateral bounds. You may find the C++ source code submitted
with this article helpful, or follow these steps to write your 5
own:

p
0
e Apply Equation 13 to finda,b,c,...,h values, and con-

struct theBy, By andJ matrices from Equations 14, 15Figure 2: All kinds of arbitrary quadrilaterals; Equa-

and 17. The cost is only 6 scalar multiplies and 8 scakin 20 can evaluate each of them correctly.
adds.

e Compute two tables of matricég[j] = B andTy[i] = e ConvolveF andJ matrices, then pre- and post-multiply
B;' to describe the powers afandy in u,v terms. Recall by the constant v.ecto(;SQz) as shown in Equations 11
that an(M + 1) x (N + 1) matrix F describes thé (x,y) and 20. The cost i®(N“M<) multiply-accumulate oper-

polynomial whose highest-degree termfig-xI -y = ations.

fmn - XV -yM. TableTy[j] describes the powers &f, and
holds(N + 1) matrices indexed b@ < j < N. Similarly,)]
the T,[i] table holds(M + 1) matrices indexed bp < 6 Chevrons, Bow-Ties and Triangles

i <M to describey in u,v terms. Initialize the first two))))
entries in both tables with known value®;[0] = T,[0], As Figure 2 shows, many different kinds of quadrilaterals are

where both are & x 1 matrix with valuel; the T[1] table possible. Arbitrary values fopp... ps describe either a convex
entry is matrixBy, and theT,[1] entry isB, from Equa- shape, a chevron, a bow-tie, a triangle, a triangle-with-a-hair,
tions 14 and 15. We fill the rest of the table with highdl" & liné. You may think we solved only the convex case, but

powers ofxi andy' by repeated convolutior(j + 1] = Equation 16 is correct foany differentiable change of vari-
Tulj] * By = B+ andT,[i + 1] = T,[i] B, = B;(i+1)_ ables, and our method does indeed work for all quadrilaterals,

Note that the size of th&j] matrix is (j + 1) x (j + 1) and as our demonstration program confirms (see Section 8 for

(Equations 3 and 6 describe convolution). Though tﬁgurcg code). S]
cost of each table is ord&¥* multiply-accumulate opera- To improve your intuition, consider the chevron case at the

tions,N is rarely larger than 3 (bicubic) for most practicat?mtom of Figur-e 2. Even thgugh the griddedv) unit sq.uare
graphics applications. maps to areas ir y well outside the chevron’s boundaries, we

integratef () over these areas twice, but with opposite sign.
o Next, compute thé= matrix as shown in Equation 19Viewed another way, the,v surface that stretches between

from a weighted sum of table entries. For e§0h< i < quadrilaterals boundaries turns upside-down here, it doubles
M, 0 < j <N) find theF matrix elementfj;. Convolve back on itself. Equivalently, the edge-orderirgy is both
the j-th andi-th entries in thd|j] andTy[i] matrix tables, counter-clockwise and clockwise in the overlapped regions
and multiply each element in the result iy (Equiva- outside the chevron boundaries. Examining the edge-ordering
lently, you may multiply the smaller matrix table entry’sor each lobe of the 'bow-tie’ shape reveals they also use op-
elements byfj; before convolution for better efficiency).posite signs in integration; the integral b, y) over one lobe
Add together the matrix results for eadf to construct s subtracted from the other in our result.
theF matrix. Computing cost i©(N3M3). Figure 2 also shows how to identify quadrilateral shapes.

Simply group together opposing pointpo, p2) and (p1, p3)

as “point pairs”, construct linekgz andL;3 between them,
and test point pairs against opposing lines. The demonstration
program source code includes a shape identifier routine to help
with testing.

7 Discussion

Convolutions to create tHe matrix of Equation 19 account for
the bulk of the computational cost in this method. For larger
polynomials, theD(M3N3) cost due to the repeated convolu-
tions might also be improved by thoughtful use of the Fast
Fourier Transform, because repeated matrix convolutions be-
come repeated element-by-element multiplications in the fre-
guency domain.

Finally, higher-order mappings fromv to x,y such as bi-
guadratics or bi-cubics are possible, and could evaluate in-
tegrals within quadrilaterals with polynomially curved sides.
Similarly, just as a 2-D polynomidil(x, y) fits neatly into a 2-D
grid of numbers stored as a matrix, a 3-D polynonfi@d,y, z)
can be described by a 3-D grid of numbers and stored as a
tensor. Combining tensors and similar arrangements to con-
volve, add, and multiply them might evaluate definite integrals
of polynomials of any dimension over curved, hyper-cube-like
boundaries.

8 Web Information

Sample C++ source code and demonstration programs are
available online at:
http://www.acm.org/jgt/papers/Tumblin06.

References

[1] Ronald N. Bracewell.The Fourier Transform and its Ap-
plications chapter 3, pages 30-35. Networks and Sys-
tems. McGraw-Hill, New York, 1989.

[2] Charles H. Edwards and David E. Penn&alculus and
Analytic Geometrychapter 15, pages 748-756. Prentice-
Hall, Inc., Englewood Cliffs, NJ 07632, 1982.

[3] MathWorks. Matlab. software product, 1984.
www.mathworks.com, Natick, MA 01760.

[4] Brian Mirtich. Fast and accurate computation of polyhe-
dral mass properties. ldournal of Graphics ToolsAK
Peters.

[5] Alan V. Oppenheim and Ronald W. Schafeigital Signal
Processingchapter 2.3, pages 21-27. Signal Processing
Series. Prentice Hall, Englewood Cliffs, NJ 07632, 1989.

