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ABSTRACT

Given a set of monophonic, harmonic sound sources (e.g. human
voices or wind instruments), multi-pitch estimation (MPE) is the task
of determining the instantaneous pitches of each source. Multi-pitch
tracking (MPT) connects the instantaneous pitch estimates provided
by MPE algorithms into pitch trajectories of sources. A trajectory
can be short (within a musical note), or long (an entire piece of
music). While note-level MPT methods usually utilize local time-
frequency proximity of pitches to connect them into a note, song-
level MPT is much more difficult and needs more information. This
is because pitches evolve discontinuously from note to note, and
pitch trajectories can even interweave. In this paper, we cast the
song-level MPT problem as a constrained clustering problem. The
constraints are time-frequency locality of pitches and the clustering
objective is their timbre consistency. Due to this problem’s unique
properties, existing constrained clustering algorithms cannot be di-
rectly applied. We propose a new constrained clustering algorithm.
Experiments show that our approach produces good results on real-
world music recordings of 4 musical instruments.

Index Terms— Pitch tracking, multi-pitch estimation, funda-
mental frequency, constrained clustering

1. INTRODUCTION

In an audio mixture of several concurrent harmonic sound sources,
estimating and tracking pitches into pitch trajectories for each under-
lying source is an important problem, called Multi-pitch Estimation
& Tracking. It has immediate applications to source separation, auto-
matic music transcription, and content-based music search. To date,
this problem remains challenging.

Due to its complexity, researchers usually decompose the whole
problem into stages: First, they segment an audio example into time
frames and estimate pitches in each frame, called Multi-pitch Es-
timation (MPE) [1]. Then, they connect pitch estimates of differ-
ent frames to form pitch trajectories, called Multi-pitch Tracking
(MPT). A pitch trajectory can be short (within a note, note-level)
or long (goes through the whole song, song-level). To address note-
level MPT, researchers utilize the local time-frequency proximity of
pitches in the same trajectory using different models, e.g. note event
models [2, 4] and harmonic temporal structure models [3].

This information, however, is not enough for song-level MPT.
This is because pitch trajectories evolve discontinuously from one
note to another note and notes are interspersed with silence; pitch
trajectories may even interweave. To our knowledge, no existing al-
gorithmic method explicitly addresses the song-level MPT problem.
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Song-level MPT is closely related to unsupervised monaural
source separation. However, a number of source separation systems
[7, 8] are built assuming good multi-pitch trajectories as input. Other
are only tested on synthetic data [9], or note-long mixtures [10].

In this paper, we cast the song-level MPT problem as a con-
strained clustering problem [11, 12, 13], where each pitch trajec-
tory (source) corresponds to a cluster of pitch estimates (pitches).
Instance-level constraints (must-links and cannot-links) are defined
on pairs of pitches, to utilize their local time-frequency locality infor-
mation. The objective function is defined as the intra-class distance
between harmonic structures of pitches, to utilize their timbre con-
sistency. This is reasonable, since humans use timbre consistency as
an important cue to help discriminate and track sound sources [5].

According to the definition of our constraints (Section 2.2), our
constrained clustering problem has a unique property: almost ev-
ery pitch estimate is involved in some constraint. This makes exist-
ing constrained clustering algorithms inappropriate. In addition, the
pitch estimates upon which constraints are applied may not be accu-
rate, making their constraints non-applicable. Therefore, we propose
a new constrained clustering algorithm, which minimizes the objec-
tive function, while trying to satisfy as many constraints as possible.

The proposed approach is tested on instrumental recordings of
ten J. S. Bach four-part chorales. Experimental results are very
promising. They also support our claim that both the time-frequency
locality (constraints) and the timbre consistency (objective function)
is essential to song-level MPT. This paper builds on work in [6] by
giving a formal formulation for the song-level MPT problem, intro-
ducing a new incremental constrained clustering algorithm for heav-
ily constrained problems.

2. PROBLEM FORMULATION

Given an audio mixture containing K sound sources, and at most
K pitch estimates provided by a multi-pitch estimator [14] in each
time frame, the song-level MPT problem can be viewed as a pitch
clustering problem, where each pitch trajectory (source) is a cluster.

2.1. Timbre consistency

To define the clustering objective function, we note that humans use
timbre consistency to discriminate and track sound sources [5]. Thus
we try to find a timbre feature for each pitch estimate and make tim-
bre consistency within each pitch trajectory a clustering objective.
Since we are dealing with harmonic sources (pitched musical in-
struments) we represent timbre by harmonic structure [9]. This is
defined as the vector of relative amplitudes of the harmonics of the
pitch, with amplitude measured on a log scale. We expect that differ-
ent notes produced by the same instrument have harmonic structures



that are more similar to each other than they are to notes produced
by a different instrument [9].

For each pitch estimate in a frame of the audio mixture, we mea-
sure the energy in the mixture at first 50 integer multiples of the
pitch. This is taken as the harmonic structure of that pitch estimate.

The clustering objective can then be defined as minimizing the
intra-class distance of harmonic structures of pitches:

f =

KX

k=1

X
xi∈Tk

‖xi − ck‖2 (1)

where K is the number of pitch trajectories; xi is the harmonic struc-
ture vector of pitch i; ck is the average harmonic structure vector of
pitches in trajectory Tk; ‖ · ‖ denotes the Euclidean norm.

2.2. Constrained clustering

When minimizing Eq. (1), we do not want to put concurrent pitches
into the same cluster, since we assume our sources are monophonic.
Also, we prefer to put similar pitches in adjacent frames into the
same cluster, since they are likely from the same source. This makes
our MPT problem a constrained clustering problem.

Constrained clustering [11, 12, 13] is a class of semi-supervised
learning algorithms. Constraints can be imposed on the instance
level, where there are two basic forms: must-link and cannot-link. A
must-link (cannot-link) specifies that two instances should (should
not) be assigned to the same cluster.

In our problem, constraints are imposed on pairs of pitch es-
timates. A must-link is imposed between two pitches in adjacent
frames that differ less than 2% in Hz (1/3 of a musical semitone).
A cannot-link is imposed between two pitches in the same frame.
These must-links and cannot-links form the set of all constraints C.

2.3. Properties of the MPT problem formulation

For different audio signals, the thresholds used to define the con-
straints may vary (e.g. more or less reverberation in a room), but they
share two same properties: 1) Noisy Constraints: Constraints have
errors, since they are defined on pitch estimates which are not always
correct. 2) Heavily Constrained: Since pitch evolves smoothly over
short periods (several frames) and several sources sound simultane-
ously, nearly every pitch has some must-links and/or cannot-links.

Because of the “Noisy Constraints” property, there may not exist
any feasible clustering under all the constraints. This makes exist-
ing algorithms [11, 12] inapplicable, since they attempt to to find a
clustering minimizing Eq. (1) while satisfying all the constraints.

Instead, we seek an algorithm that minimizes Eq. (1) while sat-
isfying as many constraints as possible. An Incremental Constrained
Clustering algorithm [13] fits this purpose. It starts from an initial
clustering Π0 that satisfies a subset of all the constraints C0 ⊂ C
and then incrementally add constraints during following iterations.
However, we will show that [13] is inapplicable to our problem in
Section 2.4. We will propose a new algorithm in Section 3, which
adopts the idea of incremental constrained clustering.

2.4. Forming the initial clustering

For a general incremental constrained clustering problem, the initial
clustering Π0 can be simply set by a random label assignment to all
the instances, and the initial constraints C0 can be set to the empty
set ∅. For our multi-pitch tracking problem, we can give a more in-
formative setting to Π0 and C0: We set Π0 by sorting pitches in
each frame from high to low and assigning cluster labels from 1 to

K. This is possible because there are at most K pitches in each
frame. Also, we define C0 as the set of all the cannot-links in C,
then C0 will be satisfied by Π0, because cannot-links are only de-
fined on pitch pairs within a frame and concurrent pitches are in
different clusters in Π0.

Given Π0 and C0, we want to minimize Eq. (1) while incre-
mentally adding constraints. Davidson et al. [13] showed that in-
crementally adding new constraints during clustering is NP-hard in
general. But they identified several sufficient conditions under which
the clustering could be efficiently updated to satisfy the new and old
constraints. The conditions require either (1) at least one instance
involved in the new constraint is not currently involved in any old
constraint or (2) the new constraint is a cannot-link.

For our MPT problem, however, from the initial constraints C0,
any new constraint from C does not meet any of these sufficient
conditions. This is because: 1) due to the “Heavily Constrained”
property, almost every pitch estimate has already been constrained
by some cannot-links, so Condition 1 is not satisfied. 2) since all the
cannot-links are already in C0, any new constraint will be a must-
link, so Condition 2 is not satisfied. Therefore, the algorithm in [13]
will do nothing beyond the initial clustering we formed above.

3. NEW CONSTRAINED CLUSTERING ALGORITHM

Here we design a new incremental constrained clustering algorithm,
which alternately updates clusterings and constraints from Π0 and
C0. Suppose we are in the n-th iteration, where the previous clus-
tering is Πn−1 and the set of constraints that it satisfies is Cn−1,
we will not add new constraints according to some “sufficient con-
ditions” as Davidson et al. [13] does. Instead, we first update Πn−1

to a new clustering Πn that also satisfies Cn−1, then we expand the
set of constraints to Cn, which is the set of all the constraints that
can be satisfied by Πn. So we have Cn−1 ⊆ Cn. Although in
some iterations no new constraint may be added, in general the set
of satisfied constraints will expand. The algorithm is presented in
Algorithm 1. The objective function f(Π) decreases when a new
clustering is found at Line 2. This part is key to this algorithm and
will be explained in Section 3.1. Algorithm 1 terminates when no
new clustering can be found at Line 6.

Algorithm 1: IncrementalClustering

for n ← 1 to ∞ do1
Πn = FindNewClustering(Πn−1,Cn−1,f);2
if Πn == Πn−1 then3

Π′ = Πn−1;4
C′ = Cn−1;5
return Π′ and C′;6

else7
Cn = The set of all constraints satisfied by Πn;8

end9

end10

3.1. Find a new clustering by swapping labels

In Line 2 of Algorithm 1, we want to update Πn−1 to a new cluster-
ing Πn that also satisfies Cn−1. We do this by moving at least one
point between clusters in Πn−1. However, if we move some point p
from cluster Tk to cluster Tl, all the points that have a must-link to
p according to Cn−1 should be moved from Tk to Tl. Then all the



points in cluster Tl that have cannot-links to either above-mentioned
point need also be moved out of Tl. This may cause a chain reaction.

Here we define an operation swap to change the label of p. This
operation swaps cluster labels of all the points in the swap set of node
p between clusters Tk and Tl, which is defined as the set of points in
these clusters that form a connected graph containing p, where each
node is a point and each edge is a must-link or cannot-link. Figure 1
illustrates a swap set. It is easy to see that after a swap operation, the
newly found clustering satisfies all the previous constraints. This is
because the swap set is isolated from the other part of the graph, and
all constraints inside are maintained.

Fig. 1. An illustration of the swap set (dashed box) of node p15

between the triangle cluster and the circle cluster. Must-links are
represented by two nodes touching (e.g. between p1 and p2); cannot-
links are represented as arrows.

In the “FindNewClustering” function of Algorithm 1, we ran-
domly traverse all the points and try the swap operation until we
find a new clustering Πn that decreases the objective function. This
subroutine is described in Algorithm 2.

Algorithm 2: FindNewClustering

for Randomly traverse all the points p1, · · · , pM do1
Suppose pm is in cluster Tk;2
Jbest = f(Πn−1);3
for l ← 1, · · · , K; l 6= k do4

Find the swap set of point pn between Tk and Tl;5
From Πn−1, do swap to get a new clustering Πs;6
if f(Πs) < Jbest then7

Jbest = f(Πs);8
Πn = Πs;9

end10

end11
if Jbest < f(Πold) then12

return Πn;13
end14

end15
return Πn−1;16

3.2. Discussion

Given the number of all points M and the number of clusters K, the
running time of each iteration of Algorithm 1 is O(KM2). This is
because in Algorithm 2, there are MK nested loops from Line 5 to
Line 10. Line 5, 6 and 8 all cost O(M) operations. In addition, Al-
gorithm 1 always terminates, because the space of feasible solutions
is finite and in every iteration the new clustering found by “Find-
NewClustering” monotonically decrease the objective function.

However, we do not know how many iterations Algorithm 1
may take analytically. In the experiments of our multi-pitch tracking
problem, where there are about 12,000 points and 20,000 pairwise
constraints, the algorithm terminates in hundreds of iterations.

Fig. 2. An illustration of Algorithm 1. Ellipses represent solution
spaces under constraints in different iterations. Points represent clus-
terings. Arrows show how clusterings are updated to decrease the
objective function.

Figure 2 illustrates the process of Algorithm 1 from the perspec-
tive of solution spaces. The algorithm starts with the initial con-
straints C0 and clustering Π0, where the solution space under C0 is
S0. Then it updates to a new clustering Π1 in S0 which decreases
the objective function f . After adding all the new constraints that
Π1 satisfies, the set of satisfied constraints is expanded C1, and the
solution space is shrunk to S1. Then, a new clustering Π2 is updated
in S1, but this time there is no new constraint satisfied. Therefore,
C2 = C1 and S2 = S1. This iteration terminates in Π′ and C′,
where Π′ is a local minimum of f in the solution space S′. S is the
solution space under all the constraints C, and Π is its optimal solu-
tion. It is noted that if the constraints are noisy, S might be empty.

4. EXPERIMENT

4.1. Data set and error measure

The data set we used was ten pieces of J.S. Bach four-part chorales,
totalling 330 seconds of audio. Each piece was performed by a quar-
tet of instruments: violin (Track 1), clarinet (Track 2), tenor saxo-
phone (Track 3) and bassoon (Track 4). Each musician’s part was
recorded in isolation as 44.1 kHz, 16 bit PCM audio. These individ-
ual recordings were then mixed together into single-channel record-
ings containing all four parts.

Each recording was broken into 46 ms frames with 10 ms be-
tween frame centers. Ground-truth pitch trajectories for each piece
were created using a robust single pitch detection algorithm [15] on
the isolated instrument recordings prior to mixing the recordings to-
gether. Ground-truth pitch tracks were then manually corrected.

Pitch estimates for each frame were obtained with our previously
published multi-pitch estimator [14]. Pitch tracks were derived from
pitch estimates using the approach described in this paper.

We evaluate the proposed approach at the frame-level. For each
estimated pitch trajectory, a pitch estimate is called correct if it de-
viates less than 3% in Hz (a quarter-tone) from the pitch in the same
frame in the ground-truth pitch trajectory. This threshold is in accor-
dance with the standard tolerance used in measuring correctness of
pitch estimation for music [1]. Then accuracy is calculated for each
pitch trajectory of each piece of music as Acc = TP

TP+FP+FN , where
TP (true positives) is the number of correctly clustered pitches, FP
(false positives) is the number of pitches that do not belong to but are
clustered to the trajectory, and FN (false negatives) is the number of
pitches that belong to but are not clustered to the trajectory.



4.2. Results

As there is no existing method addressing the song-level MPT prob-
lem, we investigate the effectiveness of different techniques that are
used in our method. The proposed algorithm utilizes both the time-
frequency locality information (represented by constraints in Section
2.2) and the timbre consistency information (represented by the ob-
jective function in Section 2.1). As claimed in Section 1, both are
necessary for song-level MPT. In order to show this, we run two
baseline iterative algorithms: one called “Constraints only” tries to
satisfy as many constraints as possible while ignoring the objective
function; the other called “Objective only” tries to minimize the ob-
jective function while ignoring the constraints. Both algorithms start
from the same initial clustering (denoted as “Initial”) as the proposed
algorithm, which is obtained simply according to pitch heights in
each frame, as described in Section 2.4.

Figure 3 shows box plots of MPT accuracy comparisons. Each
box consists of 40 points, corresponding to 4 tracks of 10 music
pieces. The lower and upper lines of each box show 25th and 75th
percentiles of the sample. The line in the middle is the sample me-
dian, which is also presented as the number in each box. The lines
extending above and below each box show the extent of samples,
excluding outliers. Outliers are defined as points over 1.5 times the
interquartile range from the sample median and are shown as crosses.
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Fig. 3. Song-level MPT accuracy comparisons.

Compared to the initial clustering, both “Constraints only” and
“Objective only” significantly reduce the MPT accuracy. However,
utilizing both together, the proposed method significantly improves
the accuracy. This supports our claim that song-level MPT requires
both the time-frequency locality information and the timbre consis-
tency information of pitches.

Although the median accuracy of the proposed algorithm is only
62.1%, we note that the input to our algorithm is the multi-pitch es-
timation (MPE) results provided by [14], which are not error-free. A
wrong pitch estimate cannot be correctly put into any pitch trajectory
no matter what algorithm is used. In [14], the average MPE accu-
racy among all 10 pieces is 70.0±3.1%. If we assume these MPE
errors are evenly distributed into all the tracks, then it is the upper
bound accuracy for any song-level MPT algorithm that works on
these pitch estimates. In fact, among all the correct pitch estimates
provided by [9], on average 89.1% of them in each track are put into
the correct pitch trajectory by the proposed algorithm. For a random
guess, however, only 25% of correct input pitch estimates can be put
into the correct pitch trajectory. In this sense, the proposed algorithm
obtains very good results.

5. CONCLUSION

In this paper, we propose an approach to address the song-level
multi-pitch tracking (MPT) problem, which no existing method ex-
plicitly addresses. We claim that both the time-frequency locality
information and the timbre consistency information of input pitch
estimates should be utilized. We cast the problem as a constrained
clustering problem, where constraints represent the former informa-
tion and the objective function represents the latter. The unique
characteristics of our problem makes previous constrained cluster-
ing algorithms inapplicable. Therefore, we design a new algorithm
that minimizes an objective function while satisfying as many con-
straints as possible. Experiments on 10 pieces of recorded music
demonstrate good performance.

6. REFERENCES

[1] A. Klapuri, “Multiple fundamental frequency estimation by
summing harmonic amplitudes,” Proc. ISMIR, pp. 216-221, 2006.

[2] M. Ryynänen and A. Klapuri, “Polyphonic music transcription
using note event modeling,” Proc. WASPAA, pp. 319-322, 2005.

[3] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch an-
alyzer based on harmonic temporal structured clustering,” IEEE
Trans. on Audio, Speech and Language Processing, Vol. 15,
No. 3, pp. 982-994, 2007.

[4] W.-C. Chang, A. W.Y. Su, C. Yeh, A. Roebel and X. Rodet,
“Multiple-F0 tracking based on a high-order HMM model,” Proc.
DAFx, 2008.

[5] A. S. Bregman, Auditory Scene Analysis, Cambridge, MA, MIT
Press, 1990.

[6] Z. Duan, J. Han and B. Pardo, “Harmonically informed multi-
pitch tracking,” Proc. ISMIR, 2009.

[7] T. Virtanen and A. Klapuri, “Separation of harmonic sounds us-
ing multipitch analysis and iterative parameter estimation,” Proc.
WASPAA, pp. 83-86, 2001.

[8] Y. Li, J. Woodruff and D.-L. Wang, “Monaural musical sound
separation based on pitch and common amplitude modulation,”
IEEE Trans. Audio Speech Language Process., Vol. 17, No. 7,
pp. 1361-1371, 2009.

[9] Z. Duan, Y. Zhang, C. Zhang and Z. Shi, “Unsupervised single-
channel music source separation by average harmonic struc-
ture modeling,” IEEE Trans. Audio Speech Language Process.,
Vol. 16, No. 4, pp. 766-778, 2008.

[10] M. Lagrange and G. Tzanetakis, “Sound source tracking and
formation using normalized cuts,” Proc. ICASSP, pp. 61-64,
2007.

[11] K. Wagstaff and C. Cardie, “Clustering with instance-level
constraints,” Proc. ICML, pp. 1103-1110, 2000.

[12] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Con-
strained K-means clustering with background knowledge,” Proc.
ICML, pp. 577-584, 2001.

[13] I. Davidson, S. S. Ravi and M. Ester, “Efficient incremental
constrained clustering” Proc. ACM SIGKDD, pp. 240-249, 2007.

[14] Z. Duan, B. Pardo and C. Zhang, “Multiple fundamental fre-
quency estimation by modeling spectral peaks and non-peak re-
gions,” under view.
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