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Abstract

Monaural sound source separation is the process of separating sound
sources from a single channel mixture. In mixtures of pitched musical instru-
ments, the problem of overlapping harmonics poses a significant challenge to
source separation and reconstruction. One standard method to resolve over-
lapped harmonics is based on the assumption that harmonics of the same
source have correlated amplitude envelopes: common amplitude modulation
(CAM). Based on CAM, overlapped harmonics are approximated using the
amplitude envelope from the nonoverlapped harmonics of the same note.
CAM assumes nonoverlapped harmonics from the same noteare available
and have similar amplitude envelopes to the overlapped harmonics. This
is not always the case. A technique is proposed for harmonic temporal
envelope estimation based on the idea of scene completion. The system
learns the harmonic envelope for each instruments notes from the nonover-
lapped harmonics of other notes played by that instrument, wherever they
occur in the recording. This model is used to reconstruct the overlapped
harmonic envelopes for obstructed harmonics. This allows reconstruction of
completely overlapped notes, yet does not require predetermined instrument
models. Experiments show the proposed algorithm performs better than an
existing system based on CAM when the harmonics of pitched instrument
are strongly overlapped.



Contents

1 Introduction 2
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation and Contribution . . . . . . . . . . . . . . . . . . 5

2 Background 8
2.1 Sinusoidal Model . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Common Amplitude Modulation . . . . . . . . . . . . . . . . 11
2.3 Harmonic Temporal Envelope Similarity . . . . . . . . . . . . 14

3 Method Description 17
3.1 Harmonic Mask Estimation . . . . . . . . . . . . . . . . . . . 19
3.2 Harmonic Envelope Estimation . . . . . . . . . . . . . . . . . 20
3.3 Harmonic Phase and Amplitude Estimation . . . . . . . . . . 24
3.4 Re-synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experiment 27
4.1 Dataset and Experiment Setup . . . . . . . . . . . . . . . . . 27
4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 35

Bibliography 36

1



Chapter 1

Introduction

Musical sound separation is the process of isolating individual sound from
a polyphonic mixture (e.g. singing voice and its accompaniment, a wind
ensemble etc). Fig. 1.1 illustrates the process of single channel mixture
recording and separation process. A solution to this problem has poten-
tial applications in many music information retrieval tasks, such as music
transcription, content-based analysis, query by example system, and speech
enhancement. Source separation would also facilitate post production of
preexisting recordings, sample-based musical composition, multichannel ex-
pansion of mono and stereo recordings, and structured audio coding.

Figure 1.1: Single channel mixture recording and separation process
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In this paper, we address the problem of monaural source separation of
harmonic sounds, where multiple monophonic sounds produced by harmonic
instruments are mixed to a single channel. The main contribution of this
paper is that we proposed a new method for estimating the overlapped
harmonics from a completely overlapped note.

The following sections define the problem of monaural harmonic sound
separation and describe the related work in this area. We introduce the
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background knowledge used in musical harmonic sound separation in Chap-
ter 2. In Chapter 3 we present a new source separation approach, designed to
isolate multiple simultaneous instruments from a single channel mixture of
tonal music. The proposed method incorporates an existing technique based
on sinusoidal model and improves on it by solving the completely overlapped
harmonics problem that arises very often in recordings of tonal music. Chap-
ter 4 provides a comparison of our algorithm to an existing source separation
algorithm on real recordings of harmonic instruments, and a discussion of
the advantages and limitations of using our approach. Finally, in Chapter 5
we summarize our findings and discuss directions for future research.

1.1 Problem Definition

When different sounds are recorded by a single microphone or mixed to a
single channel, the observed time-domain signal is the linear superposition
of individual source signals:

z(t) =
I∑
i=1

xi(t) (1.1)

where xi(t) is the signal of source i and z(t) is the mixture. I is the number
of sound sources. The task of monaural source separation is to isolate one or
more source signals xi(t) from z(t). Since the number of mixtures is less than
the number of sources, the separation problem is underspecified. Knowledge
at some level about the sources has to be assumed in order to solve this prob-
lem. In this paper, we assume the sound sources are monophonic harmonic
sounds produced by musical instruments. ‘Monophonic’ means each source
only has one fundamental frequency and ‘harmonic’ means the signal typi-
cally contains strong energy at integer multiples of its fundamental frequency
called harmonics.

1.2 Related Work

Broadly speaking, existing monaural sound separation systems applied to
music mixtures are either based on traditional signal processing techniques
(mainly sinusoidal modeling) [1, 2], computational auditory scene analysis
[3], or statistical methods [4, 5, 6] such as independent subspace analysis,
sparse coding and nonnegative matrix factorization. The method proposed
in this paper belongs to the first two categories, assuming the pitch track
of each underlying source is already known. The estimation of pitch tracks
[7, 8] in a polyphonic mixture is another important research problem in
music information retrieval community.
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Sinusoidal Modeling

Sinusoidal modeling [9, 10] assumes a sound can be represented by a linear
combination of sinusoids with time-varying frequency, amplitude, and phase
parameters. Fundamental frequencies of the harmonic sounds are often uti-
lized to assist the source separation process. For a harmonic sound, each
harmonic within a short period of time (compared to the rate-of-change of
the sound) is represented as a sinusoid with fixed frequency, amplitude and
phase parameters. So the task of the sound separation method is to estimate
these parameters for each harmonic of each sound source in the mixture
[2, 11, 12, 13]. Fundamental frequencies of each source are often used to
identify the overlapped harmonics and estimate the frequency parameters
of the sinusoids. A sinusoidal model provides a compact representation for
harmonic sources. Thus sinusoidal model has often been used for separating
harmonic sounds from a mixture. This paper has also adopted sinusoidal
model to represent the harmonic sound sources. More details about sinu-
soidal model are discussed in Sec. 2.1.

Computational Auditory Scene Analysis

Computational auditory scene analysis (CASA) [3] is inspired by auditory
scene analysis (ASA) [14], a perceptual theory that attempts to explain the
remarkable capability of human auditory system to perform selective atten-
tion. Many CASA researchers try to create a symbolic representation of a
sound scene in terms of individual sources[15]. Generally, CASA systems
have two stages: segmentation (analysis) and grouping (synthesis). In seg-
mentation, the acoustic input is decomposed into sensory segments, each of
which originates from a single source. In grouping, the segments that likely
come from the same source are put together.

The core of many monaural harmonic sound separation systems based
on CASA[16][17][18][19] is a time-frequency (T-F) mask. Specifically, the
Time-Frequency units in the acoustic mixture are selectively weighted in
order to enhance the desired signal. The weights can be binary or real. The
binary T-F masks are motivated by the masking phenomenon in human
audition, in which a weaker signal is masked by a strong one in the same
critical band [20]. Additionally, from the speech segregation perspective,
the notion of an ideal binary mask has been proposed as the computational
goal of CASA [21]. Such a mask can be constructed from a priori knowledge
about target and interference; specifically a value of 1 in the mask indicates
that the target is stronger than the interference and 0 indicates otherwise.

Another very widely used time-frequency mask is one that assumes en-
ergy should be present in the harmonics of each harmonic source. In many
sound separation systems [2, 22] inspired by CASA, a harmonic mask is
constructed from the fundamental frequencies of each source to help the
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source separation. By assuming that the input signals contain its main en-
ergy at its harmonics ( integer multiples of its fundamental frequency), we
could estimate the energy in regions where sources are not overlapped in
the time-frequency representation by estimating each source’s fundamental
frequency and making harmonic masks that represent the expected high-
energy time-frequency frames for each source. Due to the complexity and
difficulty of multiple-pitch tracking in polyphonic music, the fundamental
frequency of each source is usually assumed to be given or obtained partly
by human correction. In this paper, harmonic mask is also utilized to help
identify the overlapped and non-overlapped harmonics of each source. We
concentrate on the separation of overlapped harmonics itself so the ground
truth fundamental frequency of each source is assumed to be given in this
paper. Our previous work on multiple-pitch tracking is described in [8, 23]
and has reached promising results.

Statistical methods

Statistical methods for musical sound separation generally assume certain
statistical properties of sound sources. Independent Component Analysis
(ICA) [24, 25] assumes source signals are statistically independent, it iter-
atively determines time-invariant demixing filters to achieve maximal inde-
pendence between sources. Independent subspace analysis (ISA) [26] ex-
tends ICA to single-channel source separation.

Sparse coding [6] assumes that source is a weighted sum of bases from an
over-complete set. The weights are assumed to be mostly zeros, i.e., most
of the bass are inactive most of the time.

Nonnegative matrix factorization (NMF) [5] attempts to find a mixing
matrix and a source matrix with non-negative elements such that the recon-
struction error is minimized. It implicitly requires the mixing weights are
sparse[4].

The method proposed in this paper utilized techniques from the first
two categories. Incorporating some statistical learning methods is one of
our future research directions.

1.3 Motivation and Contribution

The main motivation behind this work is the remarkable capability of the hu-
man auditory system to separate sounds originating from different sources.
For example, a human listener can single out a singing voice despite the ac-
companiment or follow several instruments simultaneously. Although these
tasks seem to be effortless to humans, they turn out to be very difficult for
machines. A robust monaural separation system could enhance the under-
standing of how the human auditory system performs these tasks, which
remains a mystery at the present time.
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Almost all music separation systems have to deal with the overlapped
harmonics problem. Two harmonics of different sources overlap in the Time-
Frequency domain when their frequencies are the same or close. In music
that favors the twelve-tone equal temperament scale, a large number of har-
monics of a given source may be overlapped by the harmonics of another
source in the mixture. Resolving overlapping harmonics is the key to suc-
cessfully reconstructing the original music sources.

Early separation systems based on CASA [16, 27] allocate energy in
each time-frequency bin exclusively to one source and make no attempt to
separate overlapping harmonics. Therefore the separation performance for
these systems is limited.

The statistical methods handle overlapping harmonics implicitly, relying
on the observed magnitudes in overlapped T-F regions to recover individual
harmonic while ignoring the relative phases of the harmonic, which play a
critical role in the observed magnitude spectrum. For example, assume that
two overlapping harmonics have the same frequency and peak amplitude. If
the relative phase of these two harmonics is 0, then the observed peak mag-
nitude will be two times of the individual peak amplitude. However, if the
relative phase is π, then the observed magnitude would be 0 because these
two signal cancelled each other out. So the observed magnitude spectrum
in the overlapped region will be different depending on the relative phase;
thus, the phase information must be considered in order to accurately re-
cover individual harmonic from the overlapped regions.

Recent systems that attempt to resolve the overlapped harmonics ex-
plicitly can be divided into two categories.

The systems inspired by CASA try to utilize the information of the neigh-
boring non-overlapped harmonics to get reliable estimation of the overlapped
region. Several different assumptions on the relationship of neighboring har-
monics have been proposed. Spectral smoothness [28] assumes that the spec-
tral envelope of instrument sound is smooth. Based on this assumption, the
amplitude of an overlapped harmonic is estimated from the amplitudes of the
neighboring non-overlapped harmonics using different kind of interpolation
(Linear or Nonlinear) or weighting techniques[28, 29, 30]. Another assump-
tion, known as Common amplitude modulation (CAM) [3] assumes that the
amplitude envelopes of different harmonics of the same source tend to be
similar so that the amplitude envelope of the overlapped harmonic could be
approximated by the amplitude envelope of the non-overlapped harmonics
of the same source. CAM has been utilized recently both for stereo and
monaural musical sound separation and achieved good results.[31, 2].

Another way to deal with the overlapping harmonics is to use instrument
model [32] that contain the relative amplitudes of harmonics. However,
instrument-model based methods are limited because harmonic amplitude
relationships are not consistent between recordings of different pitches, play-
ing styles, and even different builds of the same instrument type.
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The above-mentioned methods both failed when the energy of the avail-
able non-overlapped harmonics are too week or there is no non-overlapped
harmonic available in the overlap region, e.g., one instrument playing one oc-
tave higher than the other one. Tonal music makes extensive use of multiple
simultaneous instruments, playing consonant intervals. It is very common
that the pitches of different instrument have integer relationship with each
other; in which case, reliable non-overlapped harmonics of the higher pitched
sound are not available. When two instruments are playing pitches of in-
teger relationships, most harmonics of the higher pitched instrument are
overlapped by the harmonics of the lower pitched instrument. We say the
higher pitched instrument is “completely overlapped” in the mixture. The
above-mentioned methods described in this section all failed to deal with
the “complete overlap”. In this paper, we proposed a novel framework to
solve the “completely overlapped” harmonic amplitude estimation problem
based on ideas from Scene Completion.

Scene Completion

Scene Completion [33] is the process of patching up missing sections in im-
ages by matching color and texture to other photos. It has been an active
research area for years in the image processing community. This process
has similarities with the above mentioned instrument-model method. Meth-
ods based on instrument models use the harmonic structure of similar notes
to reconstruct the overlapped notes from the mixture while Scene Comple-
tion uses the content of other texture-similar images to patch the holes in
the target image. However, the image produced with a scene completion
method may be a totally different image, while the goal in sound separation
is to recover the original underlying sound as accurately as possible. Due to
inconsistency of harmonic amplitude relationships among different record-
ings, it is hard to reconstruct the underlying harmonic structure based on a
harmonic structure model created from a different recording.

In a mixture containing several instruments playing simultaneously, we
learn a linear model of the temporal harmonic envelope for each instrument
from the non-overlapped reliable harmonics of that source throughout the
recording. To separate a completely overlapped note from the mixture, this
model is applied to reconstruct the harmonic envelope for each overlapped
harmonic. Our proposed method incorporates the advantages of Common
Amplitude Modulation but also allows dealing with completely overlapped
notes. Since the envelope models are learned within the same recording as
the overlapped notes are, it partly overcomes the limitation of the instrument
model based method that the instrument model is inconsistent with the
target notes to be separated.
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Chapter 2

Background

2.1 Sinusoidal Model

A sinusoid[34] is any function of the form α sin(ωt + φ),where α, ω, and φ
are fixed amplitude, frequency, and phase parameters of the sinusoid respec-
tively. Any tonal sound can be naturally and efficiently modeled as a sum
of sinusoids over short period of time (compared to the rate-of-change of
the sound). Over longer time durations, tonal sounds are well modeled by
modulated sinusoids, where the amplitude and frequency parameters change
slowly over time. Sinusoidal modeling [9, 10] is a well established technique
in audio synthesis and signal processing. It models a sound sources as the
summation of individual sinusoidal components.

In Sec. 1.1, we defined the general problem of musical sound separation.
In this section, we will show how to use sinusoids to model tonal sounds.
Given a harmonic sound source, we break it into small segments of short
period of time (e.g., several tens of milliseconds), called frames. Within an
analysis frame with index m, Eq. 1.1 can be rewritten in the discrete time
domain.

zm[n] =

I∑
i=1

xmi [n] (2.1)

where m and n denotes the frame index and sample index within the frame
respectively.

Since we assume harmonic sound sources, each sound source can be
expressed as a sum of sinusoids at frequencies given by integer multiples of its
fundamental frequency. The harmonics of each source could be characterized
as time-variant sinusoids. Within an analysis frame of suitable length, the
frequencies and amplitudes of the sinusoids can be assumed constant. The
sinusoidal model of a harmonic sound xmi [n] (source i at the nth sample of
the mth frame) can be written as
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xmi [n] =

Hi∑
hi=1

αhii (m) cos(2πfhii (m)nTn + φhii (m)) (2.2)

where αhii (m) and fhii (m) are the amplitude and frequency parameters re-
spectively, of the hi (hi = 1, ...,Hi) harmonic of source i within time frame
m. φhii (m) is the phase of hi harmonic of source i at the beginning of time
frame m. Hi denotes the number of harmonics in source i and Tn denotes
the sampling period in seconds.

The sinusoidal model of x
(m)
i [n] can be transformed to the time-frequency

domain by the discrete Fourier transform (DFT) using an analysis window

w[n]. The DFT of x
(m)
i [n], windowed by w[n], at frequency bin k is

Xi(m, k) =
H∑

hi=1

αhii (m)

2
(ejφ

hi
i (m)W (kfb − fhi(m)) (2.3)

+e−jφ
hi
i (m)W (kfb + fhi(m))) (2.4)

where fb = fs/N is the frequency resolution of the DFT, fs is the sampling
frequency. W is the discrete-time Fourier transform (DTFT) of the analysis
window of the same length as the frame in this paper:

W (f) =

N−1∑
n=0

w[n]e−j2π(f/fs)n (2.5)

where N is the length of the DFT.
For a perfectly harmonic sound, fh

i
(m) = hiFi(m), where Fi(m) denotes

the fundamental frequency of source i at time frame m, if we assume that
W (f) ≈ 0 for |f | > θ1, where θ1 is a threshold in Hz, then |W (kfb +
fh

i
(m))| ≈ 0 provided Fi(m) > θ1 at time framem. Furthermore, if Fi(m) >

2θ1, then |W (kfb − fh
i
(m))| > 0 for at most one harmonic of source i,

allowing us to drop the summation over harmonics from Eq. 2.3. This
means the harmonics of the same source are not overlapped with each other
in the Time-Frequency domain given a suitable analysis window of the DFT.

Given the above assumptions, the DFT of x
(m)
i [n] in Eq. 2.3 could be further

simplified as:

Xi(m, k) =
αhii (m)

2
eiφ

hi
i (m)W (kfb − hiFi(m)) (2.6)

where Fi denotes the fundamental frequency of source i at time frame m.
Assuming that the mixing process is linear as illustrated in Eq.2.1, the

sinusoidal model of a mixture of I harmonic sound sources in the time-
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frquency domain can be written as

Z(m, k) =

I∑
i=1

Xi(m, k). (2.7)

This model treats a polyphonic mixture as a collection of harmonic com-
ponents from multiple sound sources. Given the fundamental frequency
Fi of each source i, the task of musical sound separation is to estimate
{αhii (m), φhii (m)} for all the harmonic components of the I sources.

As shown in Eq.2.2, the phase change of a harmonic is related to the
instantaneous frequency of a sinusoid as follows:

φhii (m+ 1)− φhii (m) = 2πfhii (m)Tm (2.8)

The above equation is equivalent to

4φhii (m) = 2πfhii Tm = 2πhiFi(m)Tm (2.9)

Here Tm denotes the hop size of the STFT in seconds. The relationship
gives us the progression of a harmonic’s phase from the sources’ fundamental
frequencies, provided the signal adheres to the harmonic sinusoidal model,
the frequency is stable over the duration of the time frame and the pitch
estimate is accurate.
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Figure 2.1: Logarithm of the amplitude envelopes for the first 20 harmonics
of a clarinet playing a F4
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Figure 2.2: The normalized amplitude envelopes for the first 10 harmonics,
which contain 98% energy of the same F4 note played by a clarinet
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Figure 2.3: First 20 harmonic amplitude envelopes normalized by the aver-
age amplitude of each harmonic of the same F4 note played by a clarinet

2.2 Common Amplitude Modulation

Common Amplitude Modulation (CAM) assumes that the amplitude en-
velopes of spectral components from the same sound source are correlated.
Fig. 2.1 showed the amplitude envelopes of first 20 harmonics of a clarinet
playing the pitch F4. It suggests that, although the amplitudes of different
harmonics are quite different, the envelopes of the harmonics, especially the
strongest ones, do share the same general modulation trend.

The amplitude envelopes of the first 10 harmonics, which consist 98% of
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the energy from the same note from Fig. 2.1 are plotted in Fig. 2.2, where
each harmonic is normalized by the its average amplitude. Comparing it
to Fig. 2.3, where the normalized envelopes of the first 20 harmonics are
plotted, we can see that CAM holds most of the time for the first a few
harmonics with strong energy, while fails to hold for those with week energy.

In [2], the correlation coefficient between the strongest harmonic of an
individual instrument tone with the other harmonics is calculated as a func-
tion of difference in amplitude. The box plots of the results taken from [2]
is shown in Fig. 2.4. We cam see that the correlation is high for harmonics
with energy close to that of the strongest harmonic and tapers off as the
energy in the harmonic decreases. The evidence from [2] agrees with our
assumption that CAM holds most of the time for harmonics with strong
energy.LI et al.: MONAURAL MUSICAL SOUND SEPARATION BASED ON PITCH AND COMMON AMPLITUDE MODULATION 1363

In (2), is the frequency resolution of the DFT,
where denotes the sampling frequency and is the length of
the DFT.

For a perfectly harmonic sound, , where
denotes the pitch of source at time frame . If we

assume that for , where is a threshold in
Hz, then provided that for
all sources and time frames . Further, if , then

for at most one harmonic of each
source, allowing us to drop the summation over harmonics from
(2). We discuss how is set in Section III-B, but for now let us
assume that harmonic is the only harmonic with appreciable
energy in frequency bin . Given the above assumptions, we can
simplify (2) as

(4)

Assuming that the mixing process is linear, the sinusoidal
model of a mixture of harmonic sound sources in the time–fre-
quency domain can be written as

(5)

This model treats a polyphonic mixture as a collection of
harmonic components from multiple sound sources. Given the
pitch contour of each source, the task of musical sound sepa-
ration is to estimate for all the harmonic
components of the sources. As discussed in Section I, this
is a challenging problem for harmonics that are overlap in the
mixture.

B. Common Amplitude Modulation

CAM assumes that the amplitude envelopes of spectral com-
ponents from the same source are correlated. In this section,
we show empirical evidence that suggests this assumption holds
most of the time for harmonics, especially the ones with strong
energy, of many instrument sounds. We calculate the correla-
tion between harmonics of 100 individual instrument note sam-
ples selected at random from the University of Iowa instrument
database [1]. Instruments contained in the selected portion of
the database were alto saxophone, bassoon, b-flat clarinet, e-flat
clarinet, flute, French horn, oboe, soprano saxophone, trom-
bone, and trumpet. Because the onset times of different har-
monics from the same instrument note are likely to be sim-
ilar, we first remove the attack portion of each note before per-
forming the correlation analysis. This removes the possibility of
an upward bias in correlation values for cases where harmonics
start at the same time, but otherwise do not exhibit similar mod-
ulation trends.

To remove the attack and isolate the sustained portion of each
note we employ a simple method of onset detection on the time-
domain waveform by searching for the maximum value in the
derivative of the signal’s envelope, where the envelope is cal-
culated by squaring and low-pass filtering the signal. We mea-
sure correlation of harmonics at the time frame level because
as Section III describes, the CAM assumption is utilized at the

Fig. 1. Box plots of correlation coefficients [see (6)] measured between the
strongest harmonic and other harmonics of individual instrument notes for the
sustained portions of each note, plotted as a function of amplitude difference
between harmonics. Results are calculated using 100 note samples. The upper
and lower edges of each box represent the upper and lower quartile ranges, the
middle line shows the median value and the whiskers extend to the most extreme
values within 1.5 times the interquartile range.

STFT frame level in our proposed system. We consider the sus-
tained portion of the signal to be all time frames after the frame
that contains the onset to the final frame of the signal. After
transforming each individual instrument signal to the STFT do-
main (where all parameters are set as described in Section IV-A)
we associate frequency bins with each harmonic according to
(9) and calculate each harmonic’s amplitude values using (16).

As will be shown in Section III-E, we utilize the CAM prin-
ciple to estimate the ratio between amplitude values in different
time frames of an overlapped harmonic from the ratio between
amplitude values of a non-overlapped harmonic. Accordingly,
let us introduce the notation . Thus,

is the amplitude change (in terms of a ratio) of harmonic
from frame to . Given this definition, we calculate the

correlation coefficient between the strongest harmonic, denoted
by , and another harmonic over a note segment with time
frames from to as

(6)

where . We select
using this method to avoid scaling distortions when

.
Fig. 1 shows box plots of the correlation coefficients between

harmonics for the sustained portions of the notes. The plots are
shown as a function of the difference in average amplitude be-
tween harmonics (rounded to 3-dB increments), where ampli-
tude values are averaged over all time frames being used in the
correlation measure. The upper and lower edges of each box
represent the upper and lower quartile ranges, the middle line
shows the median value and the whiskers extend from each end
of the box to the most extreme values within 1.5 times the in-
terquartile range.

We can see that the correlation is very high for harmonics with
energy close to that of the strongest harmonic and tapers off as
the energy in a harmonic decreases. At roughly 30 dB below the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 11, 2009 at 16:54 from IEEE Xplore.  Restrictions apply. 

Figure 2.4: Box plots of correlation coefficients measured between the
strongest harmonic and other harmonics of individual instrument notes for
the sustained portions of each note, plotted as a function of amplitude dif-
ference between harmonics. Results are calculated using 100 note samples.
From [2], by permission of the authors

Since the low-energy harmonics do not have a strong influence on the
perception of a signal and high-energy harmonics follow the CAM, we could
impose the harmonic amplitude envelope of high-energy harmonic on all of
the harmonics and not change the perception of a tone too much.

Fig. 2.5 and 2.6 in next page show an example of imposing CAM on all
harmonics of two tones played by bassoon and violin. The common harmonic
envelope is taken from the harmonic with strongest energy of each tone and
the amplitude value of the first frame for each harmonic is estimated so
as to minimizes the difference between the original harmonic amplitude and
regenerated harmonic amplitude. A small human subject study 1 performed
by the author showed that the regenerated tones using CAM is perceptually

1This study was participated by five students and has never been published
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Figure 2.5: The figure above is the amplitude of the first 10 harmonics of
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the first 10 harmonics of the re-synthesized note by imposing CAM
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Figure 2.6: The figure above is the amplitude of the first 10 harmonics of
the original note played by violin; The figure below is the amplitude of the
first 10 harmonics of the re-synthesized note by imposing CAM
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indistinguishable from the original tones.
The above-mentioned empirical evidences suggest that the amplitude

envelope of an overlapped harmonic could be approximated from the ampli-
tude envelopes of non-overlapped harmonics of the same source within the
same note, provided that the non-overlapped harmonics have strong enough
energy.

2.3 Harmonic Temporal Envelope Similarity
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Figure 2.7: Comparison between the Original Harmonic envelope and the
estimated envelope by CAM. The original envelopes of the first harmonic
from 9 notes played by clarinet are plotted in solid blue line. The red line
indicates the overlapping region. Four notes played a clarinet with funda-
mental frequencies 398.4Hz, 397.7Hz, 296.6Hz and 293.3Hz are completely
overlapped with four notes with fundamental frequencies 132.6Hz, 198.2Hz,
98.2Hz and 146.9Hz, played by bassoon. The dashed black line is the esti-
mated envelope by CAM. The available non-overlapped harmonic for these
four overlapped notes have harmonic numbers 48, 48, 39 and 39

In this section, we show empirical evidence for harmonic envelope ap-
proximation based on information from non-overlapped harmonics of other
notes.

Tonal music makes extensive use of multiple simultaneous instruments,
playing consonant intervals. It is very common that the pitches of differ-
ent instrument have integer relationship with each other, in which case,
most harmonics with strong energy from the higher pitched instrument are
overlapped, leaving the non-overlapped harmonics with very high harmonic
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numbers. Since most harmonics with high harmonic numbers have very
weak energy, they do not follow the same amplitude modulation as the
high-energy harmonics do.

Fig.2.7 showed an example of harmonic envelope estimation by CAM
when almost all harmonics of the overlapped notes are overlapped with
another lower-pitched instrument. It is clear that the harmonic envelope of
the first harmonic has little similarity with the harmonic envelope estimated
by CAM from the 39th or 48th harmonics. A close examination showed that
the harmonic envelopes of these four overlapped notes have very similar
shape with the envelopes from the non-overlapped notes (e.g. the 3rd note
in this example). Fig.3.5 from Sec. 3.2 of Page. 25 showed the harmonic
envelope estimation of the same four overlapped notes based on the envelope
information from the 3rd and last non-overlapped notes.

Although the harmonic temporal amplitude evolution of tones played by
different instruments may be very different, the harmonic temporal envelope
of different notes played by the same instrument within a short period of
time usually shows great resemblance.

Fig. 2.8 and Fig. 2.9 showed the first 10 harmonic envelopes of four con-
secutive notes played by a clarinet and bassoon. We can see that although
these four notes have different fundamental frequencies and lengths, their
amplitude envelopes of the strong-energy harmonics evolve similarly to each
other.

This similarity of harmonic envelope among different notes played by the
same instrument exists commonly in wind instruments. For string instru-
ment, the similarity among different notes is less obvious which is supported
by the experiment results presented in Chap. 4.

This empirical evidence shows that the envelopes of strong-energy har-
monics from different notes of the same instrument are usually better cor-
related with each other than the envelopes of harmonics of strong-energy
and weak-energy from the same note. We will show that in Sec.3.2 how to
use the harmonic envelope of an non-overlapped note to approximate the
changes of harmonic amplitude of an overlapped note.
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Figure 2.8: The first 10 harmonics of four consecutive notes played by a
clarinet within a same piece. The pitches of the four notes are 400Hz,
375Hz, 300Hz and 330Hz
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Figure 2.9: The first 10 harmonics of four consecutive notes played by a
bassoon within a same piece. The pitches of the four notes are 132Hz,
147Hz, 197Hz and 100Hz
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Chapter 3

Method Description

Harmonic Envelope 
Estimation
(Sec.3.2)

ESTIMATED 
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HARMONICS Harmonic Amplitude & 

Phase Estimation
(Sec.3.3)

ESTIMATED 
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ESTIMATED HARMONICS
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Phase Change 
Estimation
(Sec.2.1)

 

Figure 3.1: System overview. Rectangle indicates the functional module in
our system. Arrow indicates the input and output of the functional module

Our proposed separation system is illustrated in Fig. 3.1. The input
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to the system is a polyphonic, single-channel mixture and fundamental fre-
quency of each source. We address the source separation problem in four
stages. The first stage is Harmonic Mask Estimation (Sec. 3.1), where the
input fundamental frequencies are used to construct a harmonic mask for
each source to identify the non-overlapped and overlapped harmonics. In
the second stage, Harmonic Envelope Estimation (Sec. 3.2), the harmonic
envelopes of the non-overlapped harmonics are modeled by a linear func-
tion model and the harmonic envelopes of the overlapped harmonics are
estimated by these linear models. In the stage of Harmonic Phase and Am-
plitude Estimation (Sec. 3.3), the amplitudes and phases for the overlapped
harmonics from different sources are estimated. Given the phase changes es-
timated from the instantaneous frequencies and harmonic envelopes of the
overlapped harmonics estimated from the second stage, the initial phase and
amplitude of each overlapped harmonic are estimated under a least-square
estimation framework. The resulting amplitude and phase parameters are
used to estimate the STFT values for each source in the overlapped T-F
regions and these values are passed to the Re-synthesis (Sec. 3.4) stage and
added to the STFT values from the non-overlapped bins identified by the
harmonic masks. Finally, the overlap-add method is used to convert the
estimated STFT of each signal to a time-domain estimate of each source.

The main contribution of this paper lies in the second stage. We pro-
posed a new framework to solve the problem of estimating the
overlapped harmonic envelope when the source is completed over-
lapped with other sources.

We propose a simple but efficient method to reconstruct overlapped har-
monic envelopes using the envelopes of the non-overlapped harmonics wher-
ever they are available. It is based on the same idea as the scene completion
technique in computer vision that the corrupted sections in images could be
patched up using sections of other photos with similar color and textures. In
our framework, the corrupted sections correspond to the overlapped harmon-
ics and our goal is to find a similar harmonic envelops for the overlapped
harmonics from the harmonics that are not overlapped. We utilized the
property that notes played by the same instrument within a short period of
time have similar harmonic envelopes. When the non-overlapped harmonics
of the same note is available and reliable, we use the linear model built from
the non-overlapped harmonic of the same note to estimate the envelope of
the overlapped harmonic. In this case, our approach is equivalent to us-
ing CAM for harmonic envelope estimation. When reliable non-overlapped
harmonics are not available, we utilize the linear model built from the non-
overlapped harmonics of other notes that have similar length to the target
harmonic. The experiment results showed that using the harmonic envelope
of similar note, we could achieve relatively reliable envelope estimation and
better separation of the overlapped harmonics.
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3.1 Harmonic Mask Estimation

The first processing stage takes as input a polyphonic mixture signal and
pitch estimates for each source signal. This stage first transforms the input
using STFT into spectrogram and use the fundamental frequency estimates
to generate a harmonic mask for each source by identifying the frequency
bins associated with each harmonic at each time frame. A frequency bin k
at time frame m is associated with harmonic hi of source i if

|kfb − fhii (m)| < θ1 (3.1)

where θ1 is a same threshold described in Sec.2.1.
We denote the set of frequency bins associated with hi of source i at

frame m as Khi
i (m):

Khi
i (m) = {k | |kfb − fhii (m)| < θ1} (3.2)

We can define overlapped and non-overlapped harmonics similarly. Har-
monic hi of source i is overlapped by some other harmonics hj of source j
at time frame m if

|fhii (m)− fhjj (m)| < θ2 (3.3)

where θ2 is also a threshold.
In this case, we say harmonic hi from source i is overlapped with har-

monic hi from source j. Notice that when θ1 > θ2/2, it means that a
frequency bin could be assigned to multiple harmonics of different sources.

If no other harmonic has a frequency within θ2 of harmonic hi, we call hi
non-overlapped and denote the set of non-overlapped harmonics for source i
in frame m as H̃i(m). Furthermore, we say the set of frquency bins Khi

i (m)
associated with harmonic hi of source i at time frame m is non-overlapped
if hi itself is non-overlapped:

|fhii (m)− fhjj (m)| ≥ θ2, ∀j 6= i,∀hj} (3.4)

A harmonic mask is simply a collection of overlapped harmonics at each
time frame and their associated frequency bins. We construct Mi(k,m), the
harmonic mask for source i, by finding each frequency bin k at time frame
m, that belongs to a overlapped harmonic of source i. We place a 1 in each
of these elements in the harmonic mask as shown in Eq.3.5

Mi(k,m) =

{
1 if k ∈ Khi

i (m) & hi is overlapped
0 o.w.

(3.5)

Given the harmonic masks for each source, the non-overlapped bins of
each source are identified by Eq.3.6.

X̃i(k,m) = Z(k,m)× (1−Mi(k,m)) (3.6)
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where X̃i(k,m) denote all the non-overlapped bins of source i.
The non-overlapped bins of each source are passed to the Re-synthesis

stage directly. After the overlapped and non-overlapped harmonics are iden-
tified for each source, the non-overlapped harmonics are used to construct
the linear model for harmonic envelope in Sec. 3.2 and the overlapped har-
monics are further processed in Sec.3.2 and Sec.3.3.

3.2 Harmonic Envelope Estimation

In Sec.2.2 and Sec.2.3, we presented empirical evidences on using the non-
overlapped harmonic envelope to approximate the overlapped harmonic en-
velope. In this stage, we describe the details of our proposed framework on
harmonic envelope estimation based on “Scene Completion”

Note Model Construction

The amplitudes from a non-overlapped harmonics hi of source i identified
in Sec. 3.1 are estimated by finding the amplitude αhi(m) that minimizes
Eq.3.7 in all the bins k ∈ Khi

i (m):

∑
k∈Khi

i (m)

(|Z(m, k)| − αhi(m)

2
|W (kfb − hiFi(m))|)2 (3.7)

where |Z(m, k)| is the observed amplitude of the spectrogram of frequency
bin k at time frame m.

The minimization of the above equation is

αhi(m) =
2
∑

k∈Khi (m) |Z(k,m)| · |W (kfb − hiFi(m))|∑
k∈Khi (m) |W (kfb − hiFi(m))|2

(3.8)

where W (kfb − hiFi(m)) is calculated using Eq. 2.5. This gives us an
estimation of the amplitude parameter for the non-overlapped harmonics of
each source.

For one single note, let t ≡ (m1, ...,mN )T denote the time frame in-
dices associated with it, and r ≡ (r1, ...., rN )T denote the corresponding
normalized harmonic envelope where rl = αhi(ml)/α

hi(m1) estimated using
Eq.3.8. Here, hi is the available non-overlapped harmonics with strongest
energy from the same note. We re-index the frame indeces by (x1, ..., xN )T =
(1, ..., N)T . Fig.3.2 shows a plot of a normalized harmonic envelope of a note
with length N = 24. The envelope is obtained by estimating the harmonic
amplitude of the first harmonic of a note played by a clarinet and normalized
by the amplitude of its first frame.
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Figure 3.2: The original harmonic envelope of a note played by clarinet and
its linear model: y = 0.4019+0.7804×x−0.1158×x2+0.0069×x3−0.0001×x4

Our goal is to exploit the harmonic envelopes from the non-overlapped
harmonics to make predictions for the envelopes of the overlapped harmon-
ics. In this paper, we consider this as a curve-fitting problem and fit the
envelope data using a polynomial function of the form:

y(x,w) = ω0 + ω1x+ ω2x
2 + ...+ ωMx

M =
M∑
j=0

ωjθj(x) (3.9)

where y(x,w) is the predicted envelope value at time index x. M is the order
of the polynomial, θj(x) = xj is the basis function and xj denotes x raised
to the power of j. The polynomial coefficients ω0, ..., ωM are collectively
denoted by the vector w.

The values of the coefficients will be determined by fitting the polyno-
mial to the harmonic envelope. This can be done by minimizing an error
function that measures the misfit between the function y(x,w), for any
given value of w, and the training set data points which is the observed
non-overlapped harmonic envelope. One simple widely used error function
described in Eq.3.10 is given by the sum of the squares of the errors between
the predictions y(xl, w) for each time index xl and the corresponding target
values rl.

E(w) =
1

2

N∑
l=1

{y(xl, w)− rl}2 (3.10)

The solution w∗ minimizing Eq. 3.10 is obtained by:

w∗ = (θT θ)−1θT r (3.11)
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where θ is an N ×M matrix, whose elements are given by θlj = θj(xl):

θ =



θ0(x1) θ1(x1) ... θM−1(x1)
θ0(x2) θ1(x2) ... θM−1(x2)
. . . .
. . . .
. . . .

θ0(xN ) θ1(xN ) ... θM−1(xN )

 (3.12)

For every note which is not completely overlapped, we construct a linear
model (w∗, N) for it, where w∗ is the polynomial coefficients and M is the
length of the note. In Fig. 3.2, we showed an example of the result of fitting
polynomial having order M = 5 to a harmonic envelope. Fig.3.2 showed
more linear model fitting results to different kind notes played by a clarinet.

Figure 3.3: Linear Model fitting of order 5 to two notes played by a clarinet
with different lengths and shape dynamics
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Given a completely overlapped note of length L, we could approximate
its harmonic envelope r∗ using an existing linear model (w∗, N) learned from
another non-overlapped harmonics of length N by Eq.3.13

r∗ = ω∗0 + ω∗1x+ ω∗2x
2 + ...+ ω∗Mx

M =

M∑
j=0

ω∗j θj(x) (3.13)

where xi = 1 + (i− 1)× N−1
L−1 for i = 1, ..., L.

Envelope Estimation

Given a overlapped harmonic, our proposed method for estimating the har-
monic envelope is illustrated in Fig. 3.4. When a note is note “completely
overlapped” by other sources, we use the linear model built from the envelope
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Figure 3.4: Framework for overlapped harmonic envelope estimation
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Figure 3.5: Comparison between the Original Harmonic envelope and the
estimated envelope by Linear Model. The original envelopes of the first har-
monic from 9 notes played by a clarinet are plotted in solid blue line. The
red line indicates the overlapping region. Four notes with fundamental fre-
quencies 398.4Hz, 397.7Hz, 296.6Hz and 293.3Hz are completely overlapped
with four notes played by a clarinet with fundamental frequencies 132.6Hz,
198.2Hz, 98.2Hz and 146.9Hz, played by a bassoon. The dashed black line
is the estimated envelope by CAM. The dashed green line is the estimated
envelope by Linear Model. The available non-overlapped harmonic for these
four overlapped notes have harmonic numbers 48, 48, 39 and 39

of the strongest non-overlapped harmonic of the same note to approximate
the overlapped harmonics. Otherwise, we find another note that has the
closest length to the length of the target note, and use the linear model
learned from that note to regenerate a new envelope by Eq.3.13. These re-
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estimated envelopes are used in the next stage of our system to estimate the
initial amplitude value of the overlapped harmonics.

Fig.3.5 showed the estimated harmonic envelope by Linear Model de-
scribed in this section for the same completely overlapped notes from Sec.
2.3. The first, second, fourth and eighth notes are completely overlapped by
another instrument playing lower pitches. The first available non-overlapped
harmonics for these four notes have harmonic number 48, 48, 39 and 39 re-
spectively. The estimation based on the non-overlapped harmonics of the
same by CAM are illustrated in dashed blacked line, which are very unsta-
ble and different from the original envelope. The dashed green line is the
envelope estimated by utilizing the linear model built from the third note
and last note of the example. It showed that our proposed model produces
much better envelope estimates for the completely overlapped notes than
the CAM does.

The estimated harmonic envelopes, along with the estimated phase changes
by Eq.2.9, are used in next stage to estimate the amplitude and phase of
the overlapped harmonics under a least-square estimation framework.

3.3 Harmonic Phase and Amplitude Estimation

Given an overlapped harmonic in a sequence of continuous time frame, the
phase change of this harmonic could be estimated using the sinusoidal model
described in Eq. 2.9 from Sec. 2.1, and the envelope of this harmonic could
be estimated based on the framework described in Sec.3.2. The parameters
remained to be estimated are the initial phase and amplitude of the over-
lapped harmonic. In this section, we described a method to estimate the
initial phase and amplitude under a least-square estimation framework.

The hop size of the STFT is in the tens of milliseconds, which tends to
be shorter than the length of individual notes. As a result, overlap between
harmonics often occurs in sequences of time frames as well as a series of
frequency bins. Accordingly, we extend the idea of overlapped harmonic to
an overlapped T-F region. Let {hi1 , ......., hiP } be a set of P harmonics from
sources from i1 through iP that overlap during time frames from m0 to m1.
The overlapped T-F region for this set of harmonics is defined as

D(m0,m1; k0, k1) = {m, k|m ∈ {m0...m1}; k ∈ {k0...k1}} (3.14)

where k0 is the smallest k ∈ U iPi=i1U
m1
m=m0

Khi
i (m), k1 is the largest and

Khi
i (m) denotes the set of frequency bins associated with hi of source i at

frame m.
The above-defined overlapped region is the bounding box that includes

the frequency bins associated with all of the overlapping harmonics. For
example, assume that hi1 and hi2 overlap during time frames 10 through 18
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during frequency bins 21 through 26. Then the overlapped T-F region is
D(10, 18; 21, 26).

According to Eq. 2.6 and Eq.2.7 from Sec.2.1 the observed STFT value
Z(m, k) of the mixture can be written as

Z(m, k) =
∑
i

Shii (m)W (kfb − hiFi(m)) (3.15)

where

Shii (m) =
αhii (m)

2
eiφ

hi
i (m) (3.16)

is the sinusoidal parameter of harmnic hi from source i.
The relation between Shii (m), the sinusoidal parameter in current frame

m, and Shii (m0), the sinusoidal parameter in the initial frame m0 of the
bounding box is as follow:

Shii (m) = Shii (m0)(γ
hi
m )(e

i
∑m
ι=m0

4φhin (ι)
) (3.17)

where γhim is the estimated envelope value of harmonic hi at frame index m
and 4φhin (ι) is the phase change during the frame ι calculated by Eq.2.9.
The envelope of harmonic hi was estimated from the previous section and
normalized so that the initial value γhim0

= 1.
We could rewrite Eq. 3.15 as:

Z(m, k) =
∑
i

Shii (m0)R
hi
i (m, k) (3.18)

where Ri(m, k) is defined as follow:

Rhii (m, k) = W (kfb − hiFi(m))γhim (e
i
∑m
ι=m0

4φhin (ι)
) (3.19)

In Eq.3.18, Z(m, k) is the observed DTFT value of the mixture and
Rhii (m, k) only depends on the harmonic envelope and phase changes of the

harmonics, both of which are estimated from previous sections. Shii (m0), the
initial amplitude and phase of harmonic hi, is the only term to be estimated.

We further rewrite Eq. 3.18 in overlapping region D(m0,mi; k0, ki) in
matrix format:

 R1(m0, k0) ... RN (m0, k0)
... ... ...

R1(mi, ki) ... RN (mi, ki)

 Sh11 (m0)
...

ShiN (m0)

 =

 X(m0, k0)
...

X(mi, ki)


(3.20)

⇓ ⇓

RS = X (3.21)
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The least-squares estimation of S is given by:

S = (RHR)−1RHX (3.22)

Where H denotes the conjugate transpose.
After S is estimated, the complex sinusoidal parameter of each harmonic

at all the frames contributing to the overlapped region can be estimated
using Eq.3.17.

3.4 Re-synthesis

In the final estimation of the STFT of each source signal, we combine the
spectrogram from the non-overlapped harmonics and the estimates from the
overlapped harmonic regions.

In Sec.3.1, we have already shown how to use Eq.3.6 to generate the
spectrogram X̃i from the non-overlapped region of source i. For the bins
associated with overlapped harmonics hi, we utilize the sinusoidal model to
calculate the STFT as follows:

X̂i(m, k) = Shii (m)W (kfb − hiFi(m)) (3.23)

Finally, the overall source STFT is

Xi = X̂i + X̃i (3.24)

and we use the overlap-add method to obtain the time domain estimate xi[n]
for each source i.
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Chapter 4

Experiment

4.1 Dataset and Experiment Setup

The proposed system was tested on a dataset extracted from 10 real music
performances, totaling about 330 seconds of audio. Each performance was
of a four-part Bach chorale, performed by a quartet of instruments: violin
(soprano), clarinet or trumpet (alto), tenor saxophone (tenor) and bassoon
(bass). Each musician’s part was recorded in isolation while the musician
listened to the others through headphones.

We call a note “completely overlapped” in some period of time if almost
all of its harmonics are overlapped with harmonics from another instrument.
This happens when a instrument is playing a pitch of roughly integer number
of the pitch from another instrument. For example, if source i and source
j are playing simultaneously with fundamental frequencies 398.2Hz and
132.6Hz respectively, and θ2 is set to be 16.14Hz, according to the Eq.
3.3, the first 40 harmonics of source i are all overlapped with harmonics
of source j. The first available non-overlapped harmonics is thus harmonic
41, which has very low energy and shows very unstable harmonic envelope.
In this case, we say source i is “completely overlapped” within the note
of 398.2Hz fundamental frequency. Our algorithm is designed to separate
these “completely overlapped” harmonics while the previous methods all
failed.

We tested our algorithm on mixtures of two instruments with one instru-
ment (bassoon) playing the bass line and the other playing the alto (clarinet
or trumpet) or soprano line (violin) of the Bach chorale mentioned above.
Since we are only interested in the separation results of the higher-pitched
instruments where the “completely overlap” happens very often, the sepa-
ration results on three instruments (violin, clarinet and trumpet) playing
higher pitches are reported in this paper because they are extensively “com-
pletely overlapped” by the bass line. The instruments playing the bass or
tenor line are not “completely overlapped” and can be separated very well
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Table 4.1: Segments of mixtures at musical phrase boundaries

Mixtures a Number of segments Ave. length Total length

Clarinet (alto) 50 6.67s 333.71s

Truempet (alto) 48 6.63s 324.34s

Violin (soprano) 49 6.95s 340.75s

aBassoon as the bass line

Table 4.2: Completely overlapped notes for clarinet, trumpet and violin

Mixtures a Number of notes Ave. length Total length

Clarinet (alto) 207 1.11s 230s

Truempet (alto) 214 1.07s 229s

Violin (soprano) 228 1.14s 260s

aBassoon as the bass line

by just using CAM.
The mixtures we tested on contain two instruments. They are bassoon

and clarinet, bassoon and trumpet, or bassoon and clarinet. For the conve-
nience of experiment setup, each performance was segmented at its musical
phrase boundaries into segments of roughly 5 to 8 seconds in length. Aver-
agely, about two third of the segments are “completely overlapped”. More
information about the segments of different instrument was listed in Table.
4.1.

In order to show the performance result only on the “completely over-
lapped” notes, we further segmented segments in Table. 4.1 into smaller
note-level segments which only contains two overlapped notes from two in-
struments, one of which is completely overlapped by the other. This proce-
dure produced more than 200 completely overlapped notes for each instru-
ment. The statistics of these completely overlapped notes are listed in Table
4.2.

It should be noticed that we only run the experiment on the segments
at musical phrase boundaries, but not on the note-level segments. This is
because our method needs non-overlapped harmonics to build the linear note
models for each instrument. The performance on the completely overlapped
notes is obtained by comparing the separated notes from the segments to
the original notes.

In mixing, all signals are mixed with equal energy. In testing, the audio
is broken into frames with length of 93 ms and 23 ms hop. No zero-padding
is used in the DFT.

Hamming window was used in the DFT. We set θ1 using the magnitude
spectrum of the windowing function W . We associate frequency bins with a
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harmonic until the magnitude windowing function W has dropped by 40dB.
We choose θ2 = 1.5fb, which is approximately the 6-dB bandwidth of the
Hamming window. The number of harmonics for each source Hi is chosen
such that fHii (m) < fs/2 for all time frames, where fs denotes the sampling
frequency. The sampling rate of all recordings is 44.1 kHz.

As mentioned earlier, the input to our system is the polyphonic mix-
ture and the fundamental frequency of individual source. The ground-truth
fundamental frequencies of each testing piece were estimated using [35] on
monophonic sound tracks prior to mixing.

4.2 Experiment Results

Figure 4.1: Separation example of a clarinet from a 6.5 seconds mixture of
clarinet and bassoon. SDR measurement showed there was a 5 dB improve-
ment of the proposed method over LWW
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We compare the proposed system to a recent musical separation system[2],
denoted by “LWW”. “LWW” is a state-of-art harmonic musical sound sepa-
ration system based on CASA and Sinusoidal Model. It exploits the assump-
tion CAM that the harmonics of the same source have correlated amplitude
envelopes.

The difference between the proposed system and “LWW” lies in the esti-
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mation of the overlapped harmonic envelopes. “LWW” is based on CAM, us-
ing the non-overlapped harmonics of the same note to predict the envelopes
of the overlapped harmonics. This approach gets more problematic when
the non-overlapped harmonics has very low energy, or does not work when
the non-overlapped harmonics of the same note are not available. These
two cases happen very often when two instruments are playing pitches with
integer relationship with each other. Our proposed method is designed to
resolve this problem by grabbing the note envelope of another note to help
predict the note envelope of the currently “completely overlapped” notes.

Separation Examples

Figure 4.2: Separation examples of a trumpet from a 6 seconds mixture of
trumpet and bassoon, our proposed method and LWW have the same SDR
measurement on the separated signals but produce a perceptually better
separated signal
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In this section, we present some empirical evidences that our proposed
method produces superior separation results than the “LWW” does on the
completely overlapped notes by comparing the waveform of the separated
signals to the waveform of the original signals.

Fig. 4.1 on Page 31 showed a real separation example of clarinet from a
mixture segment of clarinet and bassoon. There is an improvement (SDR)
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by 5 dB of the proposed method over “LWW”. The waveform of the sep-
arated signal by “LWW” showed the “completely overlapped” notes (the
first, second, fourth, seventh and eighth note) have very irregular envelope.
Our proposed system successfully learned the harmonic envelope for clarinet
from the non-overlapped harmonics of other notes and applied these learned
models to the completely overlapped notes. Comparing the separated signal
by our proposed system to the original signal, we could see that although
the envelopes of the completely overlapped notes are somewhat different
from their original envelopes, the regenerated envelopes preserve the main
characteristics of the shape of “a clarinet note” in this segment. This cre-
ates a perceptually similar reconstruction of the overlapped notes using the
“texture” from the non-overlapped notes.

Figure 4.3: Separation example of a clarinet from a 4.5 seconds mixture of
clarinet and bassoon. The separation performance of our proposed method
has decreased by 2 dB by the measure of SDR

−1

0

1

Separation by LWW: 14.3 dB SDR

−1

0

1

Separation by Proposed: 12.3 dB SDR

1 2 3 4
−1

0

1

Original signal

Time (s)

Fig 4.2 on Page 32 showed another example where there was no SDR
improvement between our proposed method and “LWW”, but the note en-
velopes of the completely overlapped notes separated by our proposed system
are more similar to the original note envelopes played by trumpet in this
segment, than the “LWW” does. Although there was no performance im-
provement measured by SDR, judging from the waveform of the separated
signal our proposed method produced better separation results compared
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the “LWW”.
Fig. 4.3 further showed an example where there was performance de-

creasing of the proposed method compared “LWW”. However, a close look
at the waveform of the separated signals by “LWW” showed that the forth
note of segment, which is “completely overlapped”, has very irregular enve-
lope shape. The envelope for this note by “LWW” is actually taken from the
50th harmonic that is the first non-overlapped harmonic in the same note.
On the contrary, our proposed method applied the harmonic envelope model
learned from the other non-overlapped notes, which produced a much better
envelope estimation result. Although the separation performance was de-
creased by 2dB by the measure of SDR, it is clearly shown by the waveform
of the separated signals that the separated notes by our proposed system
have a better envelope shape than the “LWW” does.

Quantitative Result

Besides providing the real separated examples presented in previous section,
we also measured the performance of our proposed method by some quanti-
tative measurement. In this section, we describe the quantitative separation
results of our experiments, and compare them to the separation results by
“LWW”.

The separation results are measured using source-to-distortion ratio (SDR),
source-to-interfering ratio (SIR), and source-to-artifacts ratio (SAR) pro-
posed in [36] for evaluation of sound separation algorithms. SDR, SIR and
SAR measure overall distortion, energy from interfering sources and arti-
facts introduced by the separation algorithm, respectively. Results from
preliminary study [37] indicate that these measures correlate more closely
with human perception of signal similarity than other measures.

Overall separation performance on segments at musical phrase bound-
aries from Table. 4.1 are shown in Table 4.3 and Fig. 4.2. The proposed sys-
tem improved the separation performance of Clarinet and Trumpet on SDR
and SAR. Specifically, the average improvement on Clarinet is about 1.9 dB
measured both by SDR and SAR, and 1.1 dB on Trumpet. Student Test
showed that there are significant differences between the proposed method
and LWW on performance measured by SDR and SAR but not on SIR.
For the performance on violin, there is no significant difference between the
proposed method and LWW. One reason is that violin has very unstable
harmonic envelope and it is hard to characteristic the harmonic envelope
using linear model. More complex model need to be applied to model the
harmonic envelope of violin.

The separation results on the “completely overlapped” notes (the notes
which are completely overlapped by another instrument) described in Table.4.2
are shown in Table. 4.4 and Fig. 4.2. The proposed system achieved a per-
formance improvement on the completely overlapped notes of clarinet and
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Table 4.3: Performance result on segments at musical phrase boundaries.
Average SDR, SAR and SIR of the proposed system and the LWW are
shown here. Results are obtained over 50 5-to-8 seconds long segments of
totally about 330 seconds per instrument. Higher value of SDR, SAR and
SIR means better separation result. Numbers in bold indicate that there
are statistical differences on the measurement

Mixturesa
SDR SAR SIR

Proposed LWW Proposed LWW Proposed LWW

Clarinet 12.28 10.41 12.31 10.42 42.29 41.85

Trumpet 10.72 9.61 10.75 9.62 41.38 39.71

Violin 6.33 6.37 6.34 6.38 44.12 43.68

abassoon as the bass line

Table 4.4: Performance result on completely overlapped notes. Average
SDR, SAR and SIR of the proposed system and the LWW are shown here.
Results are obtained over more than 200 notes of totally more than 230-
second long per instrument. Higher value of SDR, SAR and SIR means
better separation result. Numbers in bold indicate that there are statistical
differences on the measurement

Mixturesa
SDR SAR SIR

Proposed LWW Proposed LWW Proposed LWW

Clarinet 11.70 9.68 11.82 9.79 37.73 34.65

Trumpet 10.57 9.43 10.64 9.49 39.21 38.42

Violin 6.04 6.37 6.12 6.41 38.00 38.55

abassoon as the bass line

trumpet by 2 dB and 1.1 dB respectively. “Student T Test” showed that
the separation performance of our proposed system measured by SDR and
SAR are statistically better than “LWW” on clarinet and trumpet. There
is on statistical difference on the separation results of violin.
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Figure 4.4: Separation performance on clarinet signal from mixtures of two
instruments. The separation results on segments at musical phrase bound-
aries are shown on the left. The separation results on note-level segments
in Table.4.2 are shown on the right
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Figure 4.5: Separation performance on trumpet signal from mixtures of two
instruments. The separation results on segments at musical phrase bound-
aries are shown on the left. The separation results on note-level segments
in Table.4.2 are shown on the right
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Figure 4.6: Separation performance on violin signal from mixtures of two
instruments. The separation results on segments at musical phrase bound-
aries are shown on the left. The separation results on note-level segments
in Table.4.2 are shown on the right
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Chapter 5

Conclusion

In this paper, we proposed a monaural musical sound separation system that
explicitly deals with the “completely overlapped” notes. Inspired by the idea
“Scene Completion” from image processing, our approach is based on Com-
mon Amplitude Modulation (CAM) and the harmonic envelope similarity of
different notes from the same instrument.

Quantitative results showed that when pitches can be estimated accu-
rately, and the harmonic envelope of the instrument is stable among different
notes, the separation performance achieves better separation performance
than a state-of-art monaural music separation system that only exploits
CAM. In addition to the improvement in quantitive measurement of SDR
and SAR, the perceptual quality of the separated signals is improved judging
by the waveform of the separated signals.

We have shown that the harmonic envelope of an instrument can be
modeled using a linear function to some extend. The experiment results
showed that the proposed linear model learned from the same recording of
the instrument could be used to get stable prediction for harmonic envelope
of the overlapped harmonics from another note, overcoming the disadvan-
tages of instrument model. This approach works especially better for wind
instrument that has a stable harmonic envelope. For instruments with un-
stable harmonic envelope such as violin, more sophisticated models need to
be investigated to show the superiority of our method.

35



Bibliography

[1] T. Virtanen and A. Klapuri, “Separation of harmonic sound sources
using sinusoidal modeling,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference
on, 2000, vol. 2, pp. II765–II768 vol.2.

[2] Yipeng Li, John Woodruff, and DeLiang Wang, “Monaural musical
sound separation based on pitch and common amplitude modulation,”
IEEE Transactions on Audio, Speech & Language Processing, vol. 17,
no. 7, pp. 1361–1371, 2009.

[3] D. Wang and G. J. Brown, Computational Auditory Scene Analysis:
Principles, Algorithms and Applications, Wiley, 2006.

[4] Daniel D. Lee and Sebastian H. Seung, “Learning the parts of objects
by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp.
788–791, October 1999.

[5] Tuomas Virtanen, “Monaural sound source separation by nonnegative
matrix factorization with temporal continuity and sparseness criteria,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol.
15, no. 3, pp. 1066–1074, March 2007.

[6] Paris Smaragdis, Madhusudana Shashanka, and Bhiksha Raj, “A
sparse non-parametric approach for single channel separation of known
sounds,” in Advances in Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.Williams, and A. Cu-
lotta, Eds., pp. 1705–1713. 2009.

[7] A. Klapuri, “Multipitch analysis of polyphoneic music and speech sig-
nals using an auditory model,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 16, pp. 255–266, 2008.

[8] Z.Duan, J.Han, and B.Pardo, “Harmonically informed pitch tracking,”
in Proc. of the 10th International Conference on Music Information
Retrieval, 2009.

36



[9] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a
sinusoidal representation,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 34, no. 4, pp. 744–754, Aug 1986.

[10] X Serra, “Musical sound modeling with sinusoids plus noise,” Musical
Signal Processing, pp. 497–510, 1997.

[11] M.Every and J.Szymanski, “A spectral-filtering approach to music sig-
nal separation,” in Proceedings of the 7th International Conference on
Digital Audio Effects, 2004.

[12] T Virtanen, Audio signal modeling with sinusoids plus noise, Master
of science thesis, Tampere University of Technology, 2000.

[13] T Virtanen, Sound Source Separation in Monaural Music Signals, Phd
thesis, Tampere University of Technology, 2006.

[14] A.S.Bregman, Auditory Scene Analysis: The Perceptual Organization
of sound, The MIT Press, 1990.

[15] D.F.Rosenthal and H.G.Okuno, Computational Auditory Scene Analy-
sis, Lawrence Erinbaum Associates, 1998.

[16] G.N. Hu and D.L. Wang, “Monaural speech separation,” in Advances
in Neural Information Processing Systems 15, S. Thrun S. Becker and
K. Obermayer, Eds., pp. 1221–1228. MIT Press, Cambridge, MA, 2003.

[17] G.Hu and D.L.Wang, “Monaural speech segregation based on pitch
tracking and amplitude modulation,” Neural Networks, IEEE Trans-
actions on, vol. 15, pp. 1135–1150, 2004.

[18] M. Wu and D.L. Wang, “A two-stage algorithm for one-microphone re-
verberant speech enhancement,” IEEE Transactions on Audio, Speech
& Language Processing, vol. 14, no. 3, pp. 774–784, 2006.

[19] N. Roman and D.L. Wang, “Pitch-based monaural segregation of re-
verberant speech,” The Journal of the Acoustical Society of America,
vol. 120, pp. 458–469, 2006.

[20] B.C.J. Moore, An Introduction to the Psychology of Hearing, Fifth
Edition, Academic Press, 2003.

[21] D.L. Wang, “On ideal binary mask as the computational goal of audi-
tory scene analysis,” Speech Separation by Humans and Machines, pp.
181–197, 2005.

[22] J.Han and B.Pardo, “Improving separation of harmonic sources with
iterative estimation of spatial cues,” in Proc. IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics, 2009.

37



[23] Z.Duan, J.Han, and B.Pardo, “Song-level multi-pitch tracking by heav-
ily constrained clustering,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2010.

[24] A.Hyvärinen, “Survey on independent component analysis. neural com-
puting surveys,” Neural Computing Surveys, vol. 2, pp. 94–128, 1999.

[25] L. Parra and C. Spence, “Separation of non-stationary natural signals,”
Independent Component Analysis: Principles and Practice, 135–157.,
2001.

[26] Te-Won Lee G.J.Jang and Yung-Hwan Oh, “Single-channel signal sep-
aration using time-domain basis functions,” Signal Processing Letters,
IEEE, vol. 10, pp. 168–171, 2003.

[27] Yipeng Li and DeLiang Wang, “Musical sound separation using pitch-
based labeling and binary time-frequency masking,” in Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on, 31 2008-April 4 2008, pp. 173–176.

[28] A.P. Klapuri, “Multipitch estimation and sound separation by the spec-
tral smoothness principle,” in Acoustics, Speech, and Signal Processing,
2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference
on, 2001, vol. 5, pp. 3381–3384 vol.5.

[29] A.P. Klapuri, “Multiple fundamental frequency estimation based on
harmonicity and spectral smoothness,” Speech and Audio Processing,
IEEE Transactions on, vol. 11, no. 6, pp. 804–816, Nov. 2003.

[30] M.R. Every and J.E. Szymanski, “Separation of synchronous pitched
notes by spectral filtering of harmonics,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 14, no. 5, pp. 1845–1856, Sept.
2006.

[31] J.Woodruff and B.Pardo, “Using pitch, amplitude modulation and
spatial cues for separation of harmonic instruments from stereo mu-
sic recordings,” EURASIP Journal on Applied Signal Processing, vol.
2007, 2007.

[32] M. Bay and J. Beauchamp, “Harmonic source separation and poly-
phonic pitch detection using prestored spectra,” in 6th International
Conference on Independent Component Analysis and Blind Source Sep-
aration, 2006.

[33] James Hays and Alexei A. Efros, “Scene completion using millions of
photographs,” Communications of the ACM, vol. 51, pp. 87–940, 2008.

38



[34] Julius O. Smith, Spectral Audio Signal Processing, October 2008 Draft,
//ccrma.stanford.edu/~jos/sasp/, 2007, online book.

[35] P. Boersma, “Accurate short-term analysis of the fundamental fre-
quency and the harmonics-to-noise of a sampled sound,” in Proc. the
Institute of Phonetic Sciences, 1993, vol. 17, pp. 97–110.

[36] E.Vincent, R.Gribonval, and C.Fevotte, “Performance measurement in
blind audio source separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, pp. 1462–1469, 2006.

[37] B.Fox, A.Sabin, B.Pardo, and A.Zopf, “Modeling perceptual similarity
of audio signals for blind source separation evaluation,” in Proceed-
ings of the 7th International Conference on Independent Component
Analysis and Signal Separation, 2007.

39


