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ABSTRACT

We propose a new approach for automatic melody extraction
from polyphonic audio, based on Probabilistic Latent Component
Analysis (PLCA). An audio signal is first divided into vocal and non-
vocal segments using a trained Gaussian Mixture Model (GMM)
classifier. A statistical model of the non-vocal segments ofthe signal
is then learned adaptively from this particular input musicby PLCA.
This model is then employed to remove the accompaniment fromthe
mixture, leaving mainly the vocal components. The melody line is
extracted from the vocal components using an auto-correlation algo-
rithm. Quantitative evaluation shows that the new system performs
significantly better than two existing melody extraction algorithms
for polyphonic single-channel mixtures.

Index Terms— Melody Extraction, Probabilistic Latent Com-
ponent Analysis, Singing Voice Detection and Extraction

1. INTRODUCTION

Melody is one of the most basic and easily recognizable traits of mu-
sical signals. The main melody of a song is usually defined as the
pitch sequence that a human listener is most likely to perceive and
associate with that piece of music. Knowing the melody of a song is
useful in numerous applications, including music recognition, anal-
ysis of musical structure, and genre classification. Although humans
have a natural ability to identify and isolate the main melody from
polyphonic music, automatic extraction of melody by a machine re-
mains a challenging task.

In polyphonic music, there are multiple instruments and sound
sources playing simultaneously. Determining the main melody from
such an audio recording involves extracting a single dominant pitch
contour out of a mixture of concurrent spectral events. In this paper,
melody is defined as the pitch contour of the lead vocal in a song.
This is a reasonable assumption since when music contains a singing
voice, many people remember and recognize that piece of music by
the melody line of the lead vocal part.

Many melody extraction algorithms have been proposed over the
last decade. Generally speaking, they can be classified intotwo cat-
egories. Systems inspired by multi-pitch estimation employ differ-
ent probabilistic models for pitch candidate selection, followed by a
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pitch tracker that finds the most probable melodic line [1, 2]. These
systems consider the probabilistic relationships betweenthe main
melodic source and the polyphonic audio mixture. Previous algo-
rithms [3, 4, 5, 6] have used GMM, Hidden Markov Model (HMM)
and Particle Filtering to model this relationship.

Systems based on source separation use statistical methodsto
model the lead singing components and the background accompa-
niment separately. The main melody line is then extracted from the
singing components, based on the assumption that the main melody
is usually the vocal melody. GMM, Gaussian Scaled Mixture Model
(GSMM), Instantaneous Mixture Model (IMM) and Non-negative
Matrix Factorization (NMF) are popular generative models for each
individual component [7, 8]. The above-mentioned methods usually
introduce generative models for the signal. Another possibility is the
use of classification schemes such as Support Vector Machinein [9].

Our proposed system belongs to the second category. In con-
trast to previous methods requiring a source/filter model, our algo-
rithm is based on adaptively learning a statistical model for each
component of the music from the mixture itself. In this paper, we
are concerned with polyphonic music containing singing voice and
accompaniment. Based on the assumption that the sound produced
by the accompaniment is similar during both the non-vocal and vo-
cal parts of the song, a probabilistic model for the accompaniment
is learned from the non-vocal segments of the mixture and then used
to remove the accompaniment from the polyphonic mixture. After
the accompaniment is suppressed in the mixture, the melody line of
the music can be more easily extracted from the remaining singing
components of the signal.

Although our system is only tested to extract melody from mix-
tures containing singing voice, it is noted that it could be easily ap-
plied for melody extraction from music with a lead instrument.

The paper is organized as follows. Section 2 introduces the prob-
abilistic model used in our system. Section 3 presents the overall
melody extraction algorithm. Experimental Results are provided in
Section 4. Section 5 concludes this paper.

2. PROBABILISTIC LATENT COMPONENT ANALYSIS

Probabilistic Latent Component Analysis (PLCA) decomposes a
multi-dimensional distribution as a mixture of latent components
where each component is given by the product of one-dimensional
marginal distributions. Recently, it has been shown that PLCA
is numerically identical to NMF for two-dimensional input,and
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Fig. 1. Example of PLCA models of three different sounds. The two left plots display a spectrogram of singing voice and a set of derived
frequency marginals. Likewise the middle two and right two display the same information for a piano sound and snare drum sound. A set
of four latent variables is introduced for conditional independence. Note how the derived marginals in different casesextract representative
spectra for each sound

non-negative tensors for arbitrary dimensions [10], however, PLCA
presents a much more straightforward way to make easily extensible
models.

The basic model of PLCA is defined as:

P (x) =
X

z∈Z

P (z)ΠN
j=1P (xj |z) (1)

whereP (x) is an N-dimensional distribution of the random vari-
ablex = x1, x2, ..., xN . Z is a set of latent variables introduced to
achieve the conditional independence ofx, andP (xj|z) are one di-
mensional distributions. This model effectively represents a mixture
of marginal distribution products to approximate an N-dimensional
distribution based on conditional independence. The objective is to
discover the most appropriate marginal distributions.

The estimation of the marginalP (xj |z) can be performed using
the Expectation Maximization (EM) algorithm [10]. In the expecta-
tion step, the posterior of the latent variablez is estimated:

P (z|x) =
P (z)ΠN

j=1P (xj|z)
P

z′ P (z′)ΠN
j=1

P (xj|z′)
(2)

and in the maximization step, the marginals are re-estimated as fol-
lows:

P (z) =

Z

P (x)P (z|x)dx (3)

P
∗(xj |z) =

Z

. . .

Z

P (x)P (z|x)dxk,∀k 6= j (4)

P (xj |z) =
P ∗(xj |z)

P (z)
(5)

Given the spectrogram of a piece of polyphonic music, PLCA
can be used to explicitly model the spectrogram as a two-dimensional
distribution in time and frequency

P (f, t) =
X

z

P (z)P (f |z)P (t|z) (6)

whereP (f, t) represents the distribution of the spectrogram, and
P (f |z) andP (t|z) are conditional distributions along the frequency
and time dimensions. While the time axis marginals are not particu-
larly informative, the frequency axis marginals contain a dictionary
of the spectrogram which best describes the sound represented by
the input.

These frequency marginals can be used as a model for certain
kinds of sounds such as singing voice, speech or particular instru-
ments. Fig. 1 shows three sets of frequency marginals learned from
three different kinds of sounds: singing voice, piano and snare drum.
It is shown that the extracted frequency marginals capture aunique
energy distribution along the frequency dimension for the sound. For
example, the frequency marginals extracted from singing voice dis-
play clear harmonic structures for the vowel sounds and highfre-
quency distribution for the fricative at the end, while the marginals
from the snare drum have a flatter and more uniform distribution.

Note that once the frequency marginals are known for a certain
sound in a mixture, they can be used to extract this kind of sound
from the mixture in a supervised way [11] . In the next section, we
describe how this model can be used in an un-supervised way for
melody extraction.

3. METHOD DESCRIPTION
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Fig. 2. System overview



Assume that we have a polyphonic audio signal featuring a
singing voice and multiple instruments. Previous work [12]used a
set of training instruments to learn a model space which fits each
individual instrument based on Latent Component Analysis.In con-
trast to [12], our method does not use pre-trained models, instead,
the models for the accompaniment and singing voice are learned
adaptively from the mixture itself.

Our system illustrated in Fig. 2 follows a generic procedurefor
adapted source separation such as presented in [7] and [13].We deal
with the melody extraction problem in four stages.

In the first stage,Singing Voice Detection, the mixture is di-
vided into vocal and non-vocal partitions using a trained Gaussian
Mixture Model (GMM) classifier similar to [4]. LetXv be the
spectrogram of the vocal partition containing the singing voice and
Xnv be the non-vocal partition with only accompaniment. The fre-
quency marginals distributionPnv(f |z) for the accompaniment are
then learned fromXnv in theAccompaniment Model Training stage
using the PLCA model described in Section 2.z ∈ Znv is the set of
latent variables extracted fromXnv.

In the third stage,Accompaniment Reduction, the singing voice
is extracted from the mixture as follows. Assuming that the accom-
paniment stays stable during both the non-vocal and vocal segments
of the music,Xv(f , t) can be decomposed into two sets of frequency
marginals:

Xv(f, t) =
X

z∈Znv

P (z)Pnv(f |z)P (t|z)+
X

z∈Zv

P (z)Pv(f |z)P (t|z)

(7)
whereZnv is the same set of latent variables extracted from

Xnv, andZv is the set of additional latent variables we added to ex-
plain the singing voice inXv(f , t). We perform PLCA onXv as we
usually do when learning both the frequency and the time marginals,
but we make sure that the frequency marginals correspondingtoZnv

are fixed toPnv(f |z) as we update only the remaining ones using the
same training procedure as before.

The additional frequency marginalsPv(f |z) we learned will
best explain the lead singing voice in the mixture which is not present
in the non-vocal partitionsXnv. Once the marginals of the singing
sources have been learned, we can reconstruct the spectrogram of the
singing componentsXs(f, t) using only the distributions associated
with Zv:

Xs(f, t) =
X

z∈Zv

P (z)Pv(f |z)P (t|z). (8)

We assume the phase of the singing components is the same
as the phase of the polyphonic audio, since the human ear is not
sensitive to phase variations. ThenXs plus the original phase of
the mixture can be converted to the time domain signal by a sim-
ple overlap-add technique. The time domain signal is passedto the
fourth stagePitch Estimation for final melody extraction. Given the
singing voice extracted from the mixture, the main pitch sequence
can be easily estimated by a simple auto-correlation technique simi-
lar to [14].

4. EXPERIMENT

To test the effectiveness of the PLCA model for accompaniment re-
moval, we obtained a clip of rock music which contains a mix of
four sources (singing voice, electric guitar, electric bass and drum

kit), as well as a separate track of the singing voice. We manually
divided the clip into a 15-second non-vocal segment and 14-second
vocal segment. A statistical model for the accompaniment islearned
from the non-vocal segment and then applied to reduce the accompa-
niment from the mixture as described in Section 3. Fig. 3 shows the
result of this process on the vocal segment of the mixture. The spec-
trogram of the mixture is shown in Fig. 3(a). The spectrogramof the
signal extracted from the mixture is plotted in (b) and the spectro-
gram of the separate vocal track is plotted in (c). The melodypitch
estimation (red dots) extracted from the mixture is plottedagainst
the ground-truth pitch (black solid line) extracted from the separated
vocal track in (d). In this example, the detected pitch trackmatches
well the ground-truth track with80% overall accuracy. This example
shows that our proposed system works well when we have a perfect
Singing Voice Detection module.
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Fig. 3. Melody extraction on a clip of “Simple Man” by Lynyrd
Skynyrd. (a) Spectrogram of the mixture. (b) Spectrogram ofthe ex-
tracted singing voice. (c) Spectrogram of the original singing voice
before mixing. (d) Melody detection result.

Next we show quantitative evaluation of our system with an au-
tomatic singing voice detector.

The GMM-based singing voice detector is trained on a data set
of 51 commercial songs across various genres. The ground-truth
vocal/non-vocal segments are manually annotated by the authors.
Mel-frequency cepstral coefficients (MFCCs) are used as theinput
feature for the classifier. We performed three-fold cross validation
on this data set. The average precision of the classifier is76% for
vocal detection and73% for non-vocal detection. The parameters
for the best GMM classifier are used for theSinging Voice Detection
module of the overall system.

The overall melody extraction system is tested on parts of the IS-
MIR 2005 training data set of 13 songs for audio melody extraction
[9]. We only considered songs the database containing lead vocals,
i.e., 9 songs, totaling about 270 seconds of audio, with two musical
styles: jazz and pop. All test songs are single channel PCM data



with 44.1 kHz sample rate and 16-bit quantization.
We compared our proposed system to two recent pitch/melody

estimation systems: DHP [2] and LW [4]. DHP is a state-of-art
multi-pitch estimation algorithm based on spectral peak and non-
peak region selection. It outputs a likelihood score for each pitch
hypothesis to indicate the confidence level of the estimate.The first
pitch being detected is considered the predominant pitch inthe sense
that the score of this pitch hypothesis is the highest. LW is apredom-
inant pitch detection algorithm based on channel/peak selection and
HMM model. This algorithm is specially designed for extracting the
singing voice melody from polyphonic audio. For both algorithms,
we use the source code and recommended parameters provided by
the authors. The pitch value is estimated every 10 milliseconds.

Precision Recall F-measure Accuracy
DHP 0.52 0.48 0.50 0.48
LW 0.09 0.086 0.09 0.19

Proposed 0.43 0.80 0.55 0.61

Table 1. Performance comparison of the proposed algorithm
against DHP and LW, averaged across 9 songs

The metrics considered arePrecision, Recall, F-measure and
overallAccuracy. The results are summarized in Table 4. The LW al-
gorithm performs poorly in all metrics. We believe the strong energy
from accompaniment in the music causes the poor performanceof
LW, because the estimated pitches are found to match many pitches
from the pitched accompaniment instruments. We also speculate
that the parameters for LW may need to be specially tuned for a
certain data set, even though we used the recommended valuesfor
all the parameters. DHP has the best precision measurement but it
failed to output pitch estimates in the singing voice regions where
there is strong interference from the percussion instruments, produc-
ing a much lower recall than our system. In the presence of other
instrumental sounds, our proposed system achieves the bestrecall,
F-measure and overall accuracy on this data set. The high recall
of our system indicates that the proposedAccompaniment Reduc-
tion stage successfully suppresses the background instruments, leav-
ing the singing voice as the predominant component in the extracted
spectrogram. The relatively low precision is because that the back-
ground music is not completely removed from the mixture partly due
to an imperfectSinging Voice Detection stage. Compared to the80%
overall accuracy achieved in the example presented in Fig.3, we be-
lieve the proposed system can perform significantly better with an
improved singing voice detection technique.

5. CONCLUSION

We developed an unsupervised algorithm for melody extraction from
single channel polyphonic music. Our system assumes no prior in-
formation on the type or the number of instruments in the mixture.
We introduce Probabilistic Latent Component Analysis to model
the accompaniment and lead vocal adaptively. Experimentalresults
show that the PLCA model successfully suppressed the background
music in the mixture audio. Quantitative evaluation showedour pro-
posed algorithm is significantly better than two other melody ex-
traction algorithms. The proposed system can be easily extended to
extract the melody from a lead instrument or to a singing voice sep-
aration system. Although the proposed method does not require pre-
trained instrument models, its performance indeed dependson the
performance of the singing voice detection. More advanced singing

voice detection and pitch estimation techniques are currently under
investigation.

6. REFERENCES

[1] A.P. Klapuri, “Multiple fundamental frequency estimation
based on harmonicity and spectral smoothness,”IEEE Trans.
Speech and Audio Processing, vol. 11, no. 6, pp. 804–816,
2003.

[2] Z. Duan, J. Han, and B. Pardo, “Harmonically informed pitch
tracking,” inProc. ISMIR, 2009.

[3] M. Goto, “A real-time music-scene-description system:
predominant-f0 estimation for detecting melody and bass lines
in real-world audio signals,”Speech Communication, vol. 43,
no. 4, pp. 311 – 329, 2004.

[4] Y. Li and D. Wang, “Separation of singing voice from music
accompaniment for monaural recordings,”IEEE Trans. Audio,
Speech, and Language Processing, vol. 15, pp. 1475–1487,
2007.

[5] H. Fujihara, M. Goto, T. Kitahara, and H. Okuno, “A
modeling of singing voice robust to accompaniment sounds
and its application to singer identification and vocal-timbre-
similarity-based music information retrieval,”IEEE Trans. Au-
dio, Speech, and Language Processing, vol. 18, no. 3, pp. 638
–648, 2010.

[6] S. Jo and C.-D. Yoo, “Melody extraction from polyphonic au-
dio based on particle filter,” inProc. ISMIR, 2010.

[7] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval, “Adap-
tation of bayesian models for single-channel source separation
and its application to voice/music separation in popular songs,”
IEEE Trans. Audio, Speech, and Language Processing, vol. 15,
no. 5, pp. 1564 –1578, 2007.

[8] J.-L. Durrieu, G. Richard, B. David, and C. Fevotte,
“Source/filter model for unsupervised main melody extraction
from polyphonic audio signals,”IEEE Trans. Audio, Speech,
and Language Processing, vol. 18, no. 3, pp. 564 –575, 2010.

[9] G. Poliner and D. Ellis, “A classification approach to melody
transcription,” inProc. ISMIR, 2005.

[10] M. Shashanka, B. Raj, and P. Smaragdis, “Probabilisticla-
tent variable models as nonnegative factorizationss,”Compu-
tational Intelligence and Neuroscience, 2008.

[11] P. Smaragdis, B. Raj, and M. Shashanka, “Supervised
and semi-supervised separation of sounds from single-channel
mixtures,” inProc. ICA, 2007.

[12] G. Grindlay and D. Ellis, “A probabilistic model for multi-
instrument polyphonic transcription,” inProc. ISMIR, 2010.

[13] S. Vembu and S. Baumann, “Separation of vocals from poly-
phonic audio recordings,” inProc. ISMIR, 2005, pp. 337–344.

[14] P. Boersma, “Accurate short-term analysis of the fundamental
frequency and the harmonics-to-noise of a sampled sound,” in
Proc. the Institute of Phonetic Sciences, 1993, vol. 17, pp. 97–
110.


