Improving melody extraction using Probabilistic Latent Component Analysis

Jinyu. Han¹ Ching-Wei. Chen²

¹Interactive Audio Lab Northwestern Univsersity, USA

> ²Media Technology Lab Gracenote, Inc

> > May 19, 2011

Agenda

- Introduction
- Modeling the Spectrogram
 - Multinomial Model
 - Probabilistic Latent Component Analysis
- System Description
- Experiment Results
 - Illustration Example
 - System Comparison
- Conclusion

Pick only the singing voice as the Melody

3 / 15

System Overview

Multinomial Distribution for Spectrogram

Figure: Probability distribution underlying the t-th spectrum

-
- Treat the spectrum in each time slice as a histogram
- Treat the histogram as a probability distribution

4 D > 4 D > 4 E > 4 E > E 99 P

Multinomial Distribution for Spectrogram

System Overview

Train $P_{nv}(f|z)$ from the non-vocal segment

Extract singing voice in the mixture

Extract singing voice in the mixture

A 14-s clip of "Simple Man" by Lynyrd Skynyrd

Mixture

Extracted Voice

Clean Voice

Compare out system to DHP[1] and LW[2]

	Precision	Recall	F-measure	Accuracy
DHP	0.52	0.48	0.50	0.48
LW	0.09	0.086	0.09	0.19
Proposed	0.43	0.80	0.55	0.61

Parts of MIREX 2005 dataset: 9 recordings, totalling about 270 seconds of autio.

Z. Duan, J. Han, and B. Pardo, "Harmonically informed pitch tracking",in Proc. ISMIR, 2009.

<ロ > ← □

Y. Li and D. Wang,

[&]quot;Separation of singing voice from music accompaniment for monaural recordings", IEEE Trans. Audio, Speech, and Language

Conclusion

- The Probabilistic Latent Variable Model is introduced to model the accompaniment and lead vocal adaptively
- Experimental results show that the melody of the singing voice in mixture adulo is successfully extracted to some extent.
- Future directions include improving the vocal/nonvocal segementation module and the pitch estimation algorithm.

Acknowledgement

- The first author performed this work with Ching-Wei Chen while at the Gracenote Media Technology Lab. We thank Markus Cremer, Bob Coover, Phillip Popp, Trista Chen, and Peter Dunker for enlightening discussions.
- The authors would like to thank the reviewers for their comments that help improve the paper.
- We also want to thank Bryan Pardo, David Little, Zhiyao Duan, Zafar Rafii, and Mark Cartwright for their suggestions that improve the presentation.