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Abstract. Missing data in corrupted audio recordings poses a challeng-
ing problem for audio signal processing. In this paper we present an
approach that allows us to estimate missing values in the time-frequency
domain of audio signals. The proposed approach, based on the Non-
negative Hidden Markov Model, enables more temporally coherent es-
timation for the missing data by taking into account both the spectral
and temporal information of the audio signal. This approach is able to
reconstruct highly corrupted audio signals with large parts of the spectro-
gram missing. We demonstrate this approach on real-world polyphonic
music signals. The initial experimental results show that our approach
has advantages over a previous missing data imputation method.

1 Introduction

The problem of missing data in an audio spectrogram occurs in many scenarios.
For example, the problem is common in signal transmission, where the signal
quality is degraded by linear or non-linear filtering operations. In other cases,
audio compression and editing techniques often introduce spectral holes to the
audio. Missing values also occur frequently in the output of audio source sepa-
ration algorithms, due to time-frequency component masking [2]. Audio impu-
tation is the task of filling in missing values of the audio signal to improve the
perceived quality of the resulting signal. An effective approach for audio impu-
tation could benefit many important applications, such as bandwidth extension,
sound restoration, audio declipping, and audio source separation.

Audio imputation from highly corrupted recordings can be a challenging
problem. The popular existing generic imputation algorithm [1] is usually ill-
suited for use with audio signals and results in audible distortions. Other al-
gorithms such as those in [6] are suitable for imputation of speech, or in the
case of musical audio [3] or [7]. However, these algorithms treat individual time
frames of the spectrogram as independent of adjacent time frames, disregarding
the important temporal dynamics of sound, which makes them less effective for
complex audio scenes or severely corrupted audio.

In this paper, we propose an audio imputation algorithm, based on the Non-
negative Hidden Markov Model (N-HMM) [4], which takes the temporal dynam-
ics of audio into consideration. The N-HMM jointly learns several small spectral
dictionaries as well as a Markov chain that describes the structure of transitions
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between these dictionaries. We extend the N-HMM for missing values imputa-
tion by formulating the imputation problem in an Expectation–Maximization
(EM) framework. We show promising performance of the proposed algorithm
by comparing it to an existing imputation algorithm on real-world polyphonic
music audio.

2 Proposed Method

In this section, we describe the proposed audio imputation method. We first give
an overview of the modeling strategy. We then briefly describe the probabilistic
model that we employ, followed by the actual imputation methodology.

2.1 Overview

Fig. 1. General Procedure of Supervised Audio Imputation

The general procedure of supervised audio imputation methods [7] is as fol-
lows. We first train a dictionary of spectral vectors from the training data using
non-negative spectrogram factorization techniques such as Non-negative Matrix
Factorization (NMF) or Probabilistic Latent Component Analysis (PLCA). Each
frame of the spectrogram is then modeled as a linear combination of the spec-
tral vectors from the dictionary. Given the spectrogram of a corrupted audio, we
estimate the weights for each spectral vector as well as the expected values for
the missing entries of the spectrogram using an EM algorithm.

Fig.1 shows an example of Audio Imputation using PLCA. In this example,
a dictionary of 30 spectral vectors is learned from an intact audio spectrogram.
Given corrupted audio that is similar to the training audio, the original audio
spectrogram can be estimated by a linear combination of the spectral vectors
from the dictionary.

Previous audio imputation methods [3][7] are based on NMF or PLCA to
learn a single dictionary of spectral vectors to represent the entire signal. These
approaches treat individual time frame independently, ignoring the temporal
dynamics of audio signal. Furthermore, it is not always the case that the training
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data has exact the same characteristics as the corrupted audio. For example, the
corrupted audio may contain a piano solo playing an intro of a song but the
training audio from the same song may contain the piano source and the singing
voice. In this case, a single dictionary learned from a mixture of the piano and
singing voice may be less effective in reconstructing the piano sound from the
corrupted audio. This may introduce interference to the reconstructed piano
sound from the dictionary elements that are used to explain the singing voice.

Fig. 2. Supervised Audio Imputation using N-HMM

As shown in Fig.2, our proposed approach uses a N-HMM to learn several
small dictionaries from the training audio. Dictionaries are associated with states
in a model that incorporates the dynamic temporal structure of the given audio
signal. Several small dictionaries are learned from the training data to explain
different aspects of the audio signal. During the imputation process, only spec-
tral vectors from one dictionary are used to reconstruct a certain frame of the
corrupted spectrogram. In this way, it is less likely to introduce interference from
other sources of the training data.

2.2 Probabilistic Model
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Fig. 3. Graphical Model of the N-
HMM. {Q, Z, F} is a set of random
variables and {q, z, f} the realization
of the random variables. vt represents
the number draws at time t.

Fig.3 shows the graphical model of the N-HMM, an extension of Hidden
Markov Model (HMM) by imposing non-negativity on the observation model.
The observation alphabet for each state q in the N-HMM is a dictionary of
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spectral vectors. Each vector z can be thought of a magnitude spectrum. To
maintain consistency with prior work [4] we treat it as a probability distribution.
For frequency f and time t, we notate the contribution to the magnitude of the
spectrogram from a spectral vector z in dictionary q as P (ft|zt, qt). Here, f is one
of a set of K frequencies of analysis of a spectrogram. At time t, the observation
model is obtained by a linear combination of all spectral vectors z from the
current dictionary q:

P (ft|qt) =
∑
zt

P (zt|qt)P (ft|zt, qt) (1)

where P (zt|qt) is the spectral vector mixture weight, given qt. The transitions
between states are modeled with a Markov chain, given by P (qt+1|qt).

In our model, we assume the spectrum Vt at time t is generated by repeated
draws from a distribution Pt(f) given by

Pt(f) =
∑
qt

P (ft|qt)γt(qt) (2)

where γt(qt) is the distribution over the states, conditioned on all the observa-
tions over all time frames. We can compute γt(qt) using the forward-backward
algorithm as in traditional HMM. Please refer to [4] for the full formulation.
Here, the resulting value Pt(f) can be thought as an estimation of the relative
magnitude of the spectrum at frequency f and time t.

A comparison between a N-HMM and a PLCA is illustrated in Fig.4. Com-
pared to most other non-negative spectrogram decomposition techniques, the
N-HMM has taken into account the temporal dynamics of the audio signal.
Instead of using one large dictionary to explain everything in the audio, the N-
HMM learns several small dictionaries, each of which will explain a particular
part in the spectrogram. All the parameters of the N-HMM can be learned using
the EM algorithm detailed in [4].

Fig. 4. A comparison between PLCA and N-HMM

3 Estimation of incomplete data
When the spectrogram is incomplete, a great deal of the entries in the spectro-
gram could be missing. In this paper, we assume the locations of the corrupted
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bins are known. Identifying the corrupted region is beyond the scope of this pa-
per. Our objective is to estimate missing values in the magnitude spectrogram
of audio signals.

In the rest of the paper we use the following notation: we will denote the
observed regions of any spectrogram V as V o and the missing regions as V m =
V \V o. Within any magnitude spectrum Vt at time t, we will represent the set of
observed entries of Vt as V o

t and the missing entries as V m
t . F o

t will refer to the
set of frequencies for which the values of Vt are known, i.e. the set of frequencies
in V o

t . Fm
t will similarly refer to the set of frequencies for which the values of

Vt are missing, i.e. the set of frequencies in V m
t . V o

t (f) and V m
t (f) will refer to

specific frequency entries of V o
t and V m

t respectively.
To estimate the magnitude of each value in V m

t we need to scale the value
Pt(f) from Eq.2. We do not know the total amplitude at time t because some val-
ues are missing. Therefore, we must estimate a scaling factor. We sum the values
of the uncorrupted frequencies in the original audio to get no

t =
∑

f∈Fo
t
V o

t (f).
We sum the values of Pt(f) for f ∈ F o

t to get po
t =

∑
f∈Fo

t
Pt(f). The expected

amplitude at time t is obtained by dividing no
t by po

t . This gives us a scaling
factor. The expected value of any missing term V m

t (f) can be estimated by:

E[V m
t (f)] =

no
t

po
t

Pt(f) (3)

The audio imputation process is as follows:
1. Learn the parameters of a N-HMM from the training audio spectrogram,

using the EM algorithm.
2. Initialize the missing entries of the corrupted spectrogram to random values.
3. Perform the N-HMM learning on the corrupted spectrogram from step 2.

During the learning process,
– Fix most of the parameters such as P (f |z, q) and P (qt+1|qt) to the above

learned parameters from step 1.
– Learn the remaining parameters in the N-HMM model using the EM

algorithm. Specifically, learn the weights distributions P (zt|qt). Then es-
timate the posterior state distribution γt(qt) using the forward-backward
algorithm and update Pt(f) using Eq.2.

– At each iteration, update every missing entry in the spectrogram with
its expected value using Eq.3.

4. Reconstruct the corrupted audio spectrogram by:

V̄t(f) =


Vt(f) if f ∈ F o

t

E[V m
t (f)] if f ∈ Fm

t
(4)

5. Convert the estimated spectrogram to the time domain.

This paper does not address the problem of missing phase recovery. In-
stead we use the recovered magnitude spectrogram with the original phase to
re-synthesize the time domain signal. We found this to be more perceptually
pleasing than a standard phase recovery method [5].
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4 Experiments
We test the proposed N-HMM audio imputation algorithm on real-world poly-
phonic musical data. We performed the experiment on 12 real-world pop music
songs. The proposed method is compared to a recent audio imputation method
using PLCA [7].

(a) (b)

(c) (d)

Fig. 5. 5.5-second audio clip from “Born to be wild” by “Steppenwolf”. The x-axis
is time and y-axis is frequency. a)Original audio; b) Corrupted audio input (1.05 dB
SNR); c) Imputation result by PLCA (1.41 dB SNR); d) Imputation result by proposed
algorithm (4.89 dB SNR).

For a particular audio clip, both the testing data and training data are taken
from the same song. The testing data is about 6-second long, taken from the
beginning of a song. The corrupted audio is obtained from the testing data by
removing all the frequencies between 800 Hz and 12k Hz in the spectrogram.
Another clip (not containing the testing audio) of about 11-second long is taken
from the same song as the training data. The details of each audio clip is listed
in Table.1. We learn the N-HMM parameters for each song from the training
data, and update the N-HMM for the corrupted audio during the imputation
process. Specifically, we learned 10 dictionaries of 8 spectral vectors each as well
as the transition matrix from the training data. When using PLCA, we learn 1
dictionary of 40 spectral vectors. The values for the parameters are determined
by the authors empirically. Signal-to-Noise-Ratio (SNR)3 is used to measure the
outputs of both imputation methods. During the experiments, we find out the
existing signal measurements do not always correspond well to the perceptual
quality of the audio. More examples of the experimental results are available
at the authors’ website [8] to show the perceptual quality of the reconstructed
signals.

We first examine two examples that favor the proposed approach against
the PLCA method. The first one is a 5.5-second audio clip from “Born to be

3 SNR = 10log10

P
t s(t)2P

t(s̄(t)−s(t))2
where s(t) and ¯s(t) are the original and the recon-

structed signals respectively.
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wild” by “Steppenwolf”. The spectrogram of the original audio, corrupted audio,
output of the proposed method and PLCA are illustrated in Fig.5. The proposed
method produces an output with a higher SNR than PLCA.

The next example is a 5.4-second audio clip from “Scar Tissue” by “Red Hot
Chili Peppers”. In this example, both PLCA and the proposed method improve
the SNR of the corrupted audio by about 7 dB. The proposed method has a
lower SNR measurement, however, when listening to the reconstructed audio,
the output of the proposed method has better perceptual quality compared to
the output of the PLCA method. This difference is also shown in the spectro-
gram plot in Fig.6. The spectrogram reconstructed by PLCA has more random
energy scatted in the high frequency region, while the proposed method only
reconstructs the signal in the region where it should have been.

(a) (b)

(c) (d)

Fig. 6. 5.4-second audio clip from “Scar Tissue” by “Red Hot Chili Peppers”. The
x-axis is time and y-axis is frequency. a) Original Audio; b) Corrupted Audio Input
(7.46 dB SNR); c) Imputation result by PLCA (15.56 dB SNR); d) Imputation result
by proposed algorithm (14.34 dB SNR).

Table 1 presents the performance of PLCA and the proposed algorithm on
12 clips of real-world music recordings using the SNR measurement. The average
performance of the proposed method is 15.32 dB SNR, improving 5.67 dB from
the corrupted audio and 1.8 dB from the output of the PLCA. The proposed
method has better SNR measurement than PLCA on 9 out of 12 song clips. For
the audio where the proposed method does not have better SNR measurement, as
shown by the example in Fig.6, the proposed method may still produce an audio
signal with equivalent or better perceptual quality. We encourage the readers to
compare the results of both methods by listening more examples listed at the
authors’ website [8].
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Table 1. Performances of the Imputation results by the proposed method and PLCA

SNR (dB) Audio length (Second)
Song name Input Proposed PLCA Testing Training

Better together 11.23 22.48 19.5 4.5 10.3
1979 14.43 19.72 18.07 5.7 11.3

Born to be wild 1.05 4.89 1.41 5.5 20.4
Scar tissue 7.46 14.34 15.56 5.4 10

Bad day 6.48 13.84 12.55 6.3 11.5
Wonderwall -2.21 8.36 5.28 5.8 5.5

Here I go again 11.49 15.95 14.5 5.1 9.5
Every breath you take 7.46 14.34 15.65 6.9 10

Viva La Vida 7.6 11.66 11.77 6.2 10.1
She will be loved 17.66 18.46 15.2 5.7 11.9

Making memories of us 18.06 21.3 18.11 9.8 12.8
Daughters 15.11 18.47 14.56 8.2 16.2

Average measurement 9.65 15.32 13.52 6.29 11.63

5 Conclusions

In this paper we present an approach that allows us to estimate the missing
values in the time-frequency domain of audio signals. The proposed approach
is based on the N-HMM, which enables us to learn the spectral information as
well as the temporal dynamics of the audio signal. Initial experimental results
showed that this approach is quite effective in reconstructing missing values from
corrupted spectrograms and has advantages over performing imputation using
PLCA. Future work includes developping techiniques for missing phase recovery.

References

1. Brand, M.: Incremental singular value decomposition of uncertain data with missing
values. ECCV pp. 707–720 (2002)

2. Han, J., Pardo, B.: Reconstructing completely overlapped notes from musical mix-
tures. In: ICASSP (2011)

3. Le Roux, J., Kameoka, H., Ono, N., de Cheveigné, A., Sagayama, S.: Computa-
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