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Abstract 
In this paper, we describe HIVEMind, a tagged behavior-
based architecture for small teams of cooperative robots.  In 
HIVEMind, robots share inferences and sensory data by 
treating other team members as virtual sensors connected by 
wireless links.  A novel representation based on bit-vectors 
allows team members to share intentional, attentional, and 
sensory information using relatively low-bandwidth connec-
tions.  We describe an application of the architecture to the 
problem of systematic spatial search.  

Introduction   
Robust autonomous robots are notoriously difficult to de-
sign.  The world continually changes and the robot’s sen-
sory systems must continually track those changes.  Its 
modeling systems must track the sensory data, and its con-
trol systems must be ready to alter plans and actions to suit 
the changing model. 
 
Behavior-based systems (Arkin 98) solve these problems 
very effectively.  In their purest form, behavior-based sys-
tems divide sensing, modeling, and control between many 
parallel task-achieving modules called behaviors.  Each 
behavior contains its own task-specific sensing, modeling, 
and control processes.  Behaviors tend to be simple enough 
to be implemented as feed-forward circuits or simple fi-
nite-state machines, allowing them to completely recom-
pute sensor, model, and control decisions from moment to 
moment.  This, in turn, allows them to respond immedi-
ately to changes in the environment. 
 
Not surprisingly, the task-specificity and computational 
simplicity of behavior-based systems are also a weakness.  
We believe that their greatest weakness is the use of simple 
propositional representations, which makes most reasoning 
and planning tasks both difficult and clumsy. 
 
Traditional symbolic reasoning systems, on the other hand, 
allow the manipulation of arbitrarily sophisticated repre-
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sentations at the cost of increased computational complex-
ity.  While that complexity need not always involve expo-
nential-time or undecidable computations, it does generally 
involve highly serial computations operating on a large da-
tabase of logical assertions.  In principle, modifying such a 
system to track changes in the environment would require 
recording dependencies between stored assertions and their 
justifications such that when the perceptual system added 
or retracted an assertion, the reasoning system could enu-
merate and update the set of existing assertions affected by 
the change.  This is a sufficiently complicated process that 
we know of no implemented physical robots that do it.  In-
stead, the symbolic system is generally equipped with a set 
of “epistemic actions” that allow a programmer designing 
the knowledge base to force the reasoner to update specific 
aspects of the knowledge base at specific times.  Any mis-
takes by the programmer will lead to inconsistencies be-
tween the models of the symbolic system and the other 
subsystems.  While tiered architectures combining sym-
bolic and behavior-based systems (Arkin and Balch 98, 
Firby et al. 98, Connell 92) can mitigate these problems by 
offloading short-timescale interactions from the symbolic 
system, they do not ultimately solve the problem of keep-
ing the many fragmentary models of the different compo-
nents in sync with one another and with the world. 
 
These issues are exacerbated in cooperative activity.  
Rather than one robot with one knowledge base, we now 
have n robots with n knowledge bases to keep consistent 
with one another.  Failure to properly coordinate the 
knowledge bases will ultimately result in failure to coordi-
nate activity.  While excellent work has been done on 
communication protocols for insuring consistency (Cohen 
and Levesque 91, Tambe 96), in practice, implemented 
multi-robot systems almost always use behavior-based ar-
chitectures (Goldberg and Mataric 98, Arkin and Balch 99, 
Parker 98) and/or shared, centrally world models created 
using an overhead camera (Stone and Veloso 99).  

Role-passing 
One alternative to using tiered architectures is to generalize 
behavior-based systems to more abstract representations.  
Obviously, the simple parallel networks and finite-state 
machines used in behavior-based systems will never be 



able to do arbitrary first-order logic theorem proving.  In 
practice however, neither do any existing robots.  Given 
that, one might hope to use some suitable generalization of 
behavior-based systems to implement at least most of the 
representations and inference techniques that are actually 
deployed on present-day robots. 
 
Since behavior-based systems effectively use propositional 
representations, variable binding and quantified inference 
are the main techniques that are hard to implement with 
them.  Agre and Chapman (87) argued for the use of in-
dexical constants as a surrogate for variable binding.  
Rather than putting a variable binding mechanism into the 
reasoning engine, they implemented a propositional rea-
soner whose inputs were driven by an active vision system.  
The outputs of the vision system directly measured the 
truth values of a fixed set of literals such as near(the-tiger-
that’s-about-to-eat-me).  In the metatheory, the-tiger-
that’s-about-to-eat-me is an indexical name whose denota-
tion is determined by the current attentional state of the 
perceptual system.  By redirecting attention of the visual 
system from one object to another, the system could effec-
tively treat the name as a variable and rebind it from object 
to object.   However, since the reasoning system didn’t 
represent the internal structure of the literals, it was purely 
propositional and so could be implemented as a feed-
forward logic network.   Moreover, since vision systems 
are generally attentive in practice, this “variable binding” 
mechanism was already present.  No additional computa-
tions needed to be added to take advantage of it. 
 
The problem with this “indexical-functional” or “deictic” 
style of representation is that there tend to be more indexi-
cal names that there are trackers in the vision system.  In 
practice, it becomes necessary to decide at design time that 
a certain set of indexicals will share one tracker, while an-
other set will use another tracker.  The designer then hopes 
that there will be no situations in which two indexicals that 
share a tracker will need to be bound to distinct objects.  In 
addition, there are some times when you just really want to 
use a quantified inference rule. 
 
Role-passing (Horswill 98) is a variant of deictic represen-
tation that solves both these problems.  Rather than a large 
number of task-specific indexicals, the designer uses a 
small set of domain-independent indexicals, specifically 
linguistic roles such as agent, patient, source, destination, 
etc.  When an indexical is bound to an object, a tracker is 
dynamically allocated to it and tagged with the name of the 
indexical.  Since the number of linguistic roles is relatively 
small, we can represent the extensions of unary predicates 
as bit-vectors, one bit per role.  Inference can then be per-
formed using bit-parallel operations in a feed-forward net-
work.  Note that this involves an unusual kind of closed-
world assumption, in which quantifiers are restricted to the 
set of objects attended to by the robot at that moment. 
 
Alternatively, on conventional hardware, we can represent 
a unary predicate extension using a single machine word.  

We can then compile Horn clause inference over unary 
predicates to straight-line code consisting only of loads, 
stores, and bit-mask instructions.  While more limited than 
a full logic-programming system, it does allow us to ex-
press much of the kinds of control reasoning that people 
really implement on physical robots today.  Since the rea-
soning process recomputes all inferences on every cycle of 
the system’s control loop, the reasoning system is able to 
respond to contingencies as soon as they are sensed.  And 
since the compilation process is very efficient, inference is 
effectively free – 1000 Horn clauses of 5 conjuncts each 
can be completely updated at 100Hz using less than 1% of 
a current CPU. 

HIVEMind 
In addition to allowing very fast inference, this representa-
tion allows for very compact storage of a robot’s current 
set of inferences. Unary predicates are stored in one ma-
chine word. Functional values associated with indexicals 
are stored in an array whose size is equal to the total num-
ber of indexicals, a relatively small number. The represen-
tation is small enough to allow robots to share information 
by periodically broadcasting all their inferences, or at least 
all those predicates and functions that might be relevant to 
other team members.  This provides each robot with trans-
parent access to every other robot’s state.  The result is a 
kind of “group mind”.  
 
We have implemented this technique in the HIVEMind 
(Highly Interconnected Verbose Mind) architecture for co-
operative robot teams.  Its simple communication and co-
ordination model allows the team to efficiently maintain a 
shared situational awareness and to provide hard real-time 
response guarantees; when a team member detects a con-
tingency, other members immediately share its awareness 
and respond in O(1) time. 

 
Figure 2 shows a HIVEMind configuration for a two-robot 
team.  Each team member has its own inference network 
that is driven both by its own sensory system and by the 
sensory data of the other team members.   The entire 
HIVEMind can be considered a single, parallel control 
network whose components happen to be distributed be-
tween the different robot bodies being controlled.  Wires 
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Figure 2 : Abstract view of HIVEMind



crossing between bodies are simulated using the RF broad-
cast mechanism, so that each member of the team is “con-
nected” to every other member in a web-like structure of 
virtual wires. 
 
It may seem inefficient for each robot to have its own 
separate copy of the inference network.  However, to have 
a single robot perform each inference and share the results 
would require much more complicated coordination proto-
cols (Cohen and Levesque 91) analogous to the multi-
phase commit protocols used in distributed database sys-
tems.  Since communication bandwidth is a scarce resource 
and inference in our system is essentially free, it is more 
efficient for HIVEMind robots to perform redundant com-
putation. 

Aggregation of Data 
In an n robot team, each robot’s inference network has n 
distinct sets of inputs, one generated internally, and the rest 
received from the robot’s teammates.  These distinct inputs 
are first fused into a single set of inputs: 
 
 K = β(k1, k2, …., kn) 
 
where the ki are the tuples of inputs from each robot, K is 
the final fused tuple, and β is some aggregation function 
that performs the fusion.  For example, if a particular com-
ponent of the input was a proposition, the aggregation 
function might simply OR together the corresponding 
components of the ki.  Thus the robot would believe the 
proposition iff some robot had evidence for it.  In more 
complicated cases, fuzzy logic or Bayesian inference could 
be used.  Real-valued data is likely to require task-specific 
aggregation.  For example, 
 
• The team is assigned to scout an area and report the 

number of enemies observed. Each team member 
has a slightly different count of enemy troops. In 
this case, the best solution is probably to average 
the disparate counts. 

• The task is “converge on the target”. Each robot’s 
sensors report a slightly different position for the 
target. In this situation, it appears to make sense that 
each team member rely on its own sensor values to 
track the target and only rely on other robots when 
the robot’s own sensors are unable to track the tar-
get, e.g. the target is out of sight. 

Communication 
While the robots are conceptually connected by wires, in 
actuality, they communicate by RF broadcast.  In our cur-
rent implementation, each robot broadcasts its sensory data 
and state estimates in a single UDP packet at predefined 
intervals.   In our current implementation, broadcasts are 
made every second.  Faster or slower rates could be used 
when latency was more or less critical, however, 1Hz has 
worked well for our applications. 

 
Again, we expect that currently implementable robot sys-
tems could store all the sensory inputs to the inference sys-
tem in a single UDP packet (1024 bytes).  As robots de-
velop more complicated sensoria, it may be necessary to 
use more complicated protocols, perhaps involving multi-
ple packets, or packets that only contain updates for wires 
whose values have changed since the last transmission.  
For the moment, however, these issues are moot. 
 
Given the current single-packet-protocol, the aggregate 
bandwidth required for coordination is bounded by 
1KB/robot/sec, or about 0.1% of a current RF LAN per ro-
bot.  Thus robot teams on the order of 100 robots should 
be practical from a communication standpoint.  However, 
hardware failure limits most current robot teams to less 
than 10 members, so scaling limits are difficult to test em-
pirically. 

 
 
Figure 3 shows how aggregation is performed in the actual 
system.  As packets arrive on from other robots, they are 
unpacked into buffers for their respective robots, replacing 
whatever data had been stored previously for that robot.  In 
parallel with this process, the main control loop of the ro-
bot aggregates the inputs from each robot and reruns the 
inference rules on the result.  These inference rules then 
enable and disable low-level behaviors for sensory-motor 
control.  Since the main control loop is performing real-
time control, it runs much faster than the 1Hz update used 
for communication (10Hz in our current implementation).  

Preliminary Implementation 

Overview 
As a proof of concept system, we constructed a simple ro-
bot team that searches for a brightly colored object in a 
known environment. A human user is responsible for en-
tering the properties of the desired object to the system. 
The user console appears as an extra robot to the team. 
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When the user inputs the color of the desired object, this 
information is passed automatically to the other robots. 
Team members then systematically explore the environ-
ment until one of the members locates the object or all 
searchable space is exhausted. When the object is found, 
all team members converge on its location. We have tested 
the system with a two-robot team.   

Figure 4 : Two robots leaving on their search task  
 

 
Figure 5 : One member of the team finding the ball 

Hardware 
The robotic bases used in this experiment are first genera-
tion Real World Interface(RWI) Magellan bases. The Ma-
gellan provides sonars, infrared sensors and bump 
switches; a total of 16 each, arrayed around the circular 
base. Vision is provided by a ProVideo CCD camera, con-
nected by a Nogatech USB video capture adaptor cable to 
a laptop. The laptops are Dell Latitudes with Pentium II 
500Mhz processors, 384Mb of RAM and 11Gb hard 
drives. They run Windows98, and communicate with the 
base through a serial cable. Remote communication is pro-
vided by LinkSys WPC11 wireless Ethernet cards that fea-

ture an 11Mbps data transfer rate under the IEEE 802.11b 
standard. 

Perceptual Systems 
Sensory and memory systems are divided into pools, 
which can either be perceptual systems or passive informa-
tion stores, e.g. descriptions of objects. These pools drive 
the inference network, which in turn drives the low-level 
behaviors that actually control the robot. 
 
Figure 6 shows a high-level view of the system. The code 
was written in a combination of GRL (Horswill 99) and 
Scheme, although low-level vision operators were written 
in C++. In the following subsections, we will briefly de-
scribe each of the pools, the communicated predi-
cate/function values, the inference rules and the control 
behaviors.  
 
Color Pool The color pool stores color coordinates of dif-
ferent objects in a format suitable for use by the visual 
tracking system.  The color of a desired object can be 
specified by binding a given color description in the pool 
to the role of the object.  Thus the user, would direct the 
team to seek a green ball by binding the green color to pa-
tient and then asserting the goal near(patient).  The binding 
and goal are then automatically passed over the network to 
the robots.  The color pool presently contains coordinates 
for red, green, and blue objects. 
 
Tracker Pool The tracker pool consists of a set of color 
blob trackers that can be allocated, and bound to a role. 
The trackers can drive low-level behaviors with image-
plane coordinate of the objects they track.  In addition, 
they generate the low-level predicates see-object(X) and 
near-object(X) for input to the inference network.  
 
Place pool The place pool is a probabilistic localization 
system that uses a topological (i.e. landmark-based) map.  
Roles can be bound to landmarks and the system can de-
termine the next appropriate waypoint in order to reach a 
landmark specified by role.  The place pool also records 
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the set of landmarks that have been visited with high prob-
ability and can determine the closest unvisited landmark.  
The current map contains 11 landmarks distributed over 
the west wing of the 3rd floor of the Northwestern Com-
puter Science Department. 

Communication   
The task can be accomplished by sharing the role bindings 
for each color, the bit-vector for the goal(near(X)) predi-
cate, the bit-vector for the see-object(X) predicate, a loca-
tion(X) function, which give the two nearest landmarks, if 
known, to any role X, and a bit-vector specifying the set of 
landmarks that the robot has personally visited.  All of 
these are low-level outputs of the various pools, except for 
the goal predicate which has to be stored in a separate latch 
on the control console.  

Inference rules  
The inference rules for this case are fairly simple. This is 
partly due to the continual recomputation inferences, 
which alleviates the need for some error detection and re-
covery logic that would otherwise be necessary.  The rules 
in the current system are: 
 
1. If near(X) is an unsatisfied goal and see-object(X) is 

true, then approach(X). 
2. If near(X) is an unsatisfied goal and location(X) is 

known, and see-object(X) is false, then 
goto(location(X)). 

3. If near(X) is an unsatisfied goal and location(X) is un-
known, then goto(next-unsearched-location). 

Behaviors  
There are five motor behaviors which are activated by the 
rules as necessary. 
• Approach-object drives to an object specified by 

role. It attempts to keep the object in the middle of 
its visual image. 

• Follow-corridor navigates the hallways. It tries to 
remain centered in the middle of the corridor to fa-
cilitate easy recognition of environmental features. 

• Unwedge activates when the robot becomes stuck in 
some corner unexpectedly. It swivels the robot in 
the direction in which it thinks has the greatest open 
space so the robot can continue moving. 

• Turn-to swivels the robot to face a new direction. It 
is used when the robot arrives at a landmark and 
needs to turn in a new direction to reach another 
landmark. 

 

Interface Console  
The Command Console for the HIVEMind team is based 
on the Cerebus project (Horswill et al 00). It provides a 
natural language interface for the human user and allows 
commands such as “find green ball” or “find red ball” to 
be entered. The desired color is bound to the patient role 
and transmitted to members to the team. The console ap-
pears as another robot to other team member, albeit one 
that is not doing any physical work. The Command Con-
sole also provides status information in the form of display 
windows based on the broadcast knowledge it is receiving 
from other team members. Using this interface, the human 
commander can inject new information into the team, as 
well as receive data about the current state of the “group 
mind”.  

Related Work 
A number of behavior-based architectures for multi-robot 
systems have been successfully implemented. The Alliance 
architecture (Parker 98) uses spreading activation to 
choose between sets of behaviors that achieve different 
goals. Team members can become impatient if teammate’s 
task is not accomplished in a timely manner, or alterna-
tively may abandon a goal if it is not making progress. 
(Goldberg and Mataric 99) present an approach utilizing 
augmented Markov models to learn probabilistic state tran-
sitions for a foraging task.  (Balch and Arkin 98) describe 
a system that maintains military formations such as a line, 
wedge, diamond or column.  Our approach, which behav-
ior-based in spirit, differs from these architectures in its 
support for explicit inference, limited variable binding, and 
shared knowledge.  It provides a useful set of symbolic op-
erations while still retaining all the advantages of a behav-
ior-based architecture.  Although any of these architectures 
could likely have implemented the search task described 
here, our expectation is that HIVEMind’s support for ex-
plicit goals and variable binding  will make it easier to 
build reusable, taskable systems. 
 
Many simulated multi-robot systems that utilize a strong 
symbolic approach have also been built.  The STEAM ar-
chitecture (Tambe 96) is a particularly ambitious example 
based on the Joint Intentions framework of (Cohen & 
Levesque 91). The system uses a multiphase commit pro-
tocol to maintain coherence amongst team members. Al-
though the present HIVEMind broadcasting strategy works 
well for current systems, it will eventually break down for 
very large teams or very large knowledge bases.  More 
complicated protocols might fare better. 

Conclusion 
The HIVEMind architecture is an attempt to extend paral-
lel reactive inference to a multi-robot environment. It al-
lows behavior-based systems to abstract over both objects 



and sensors.  We believe that the right set of representa-
tional choices can allow the kinds of inference presently 
implemented on robots to be cleanly grounded in sensor 
data and reactively updated by a parallel inference net-
work.  If so, then this also provides a clean mechanism for 
group coordination.  By continually sharing perceptual 
knowledge between robots, coordination can be achieved 
for little or no additional cost beyond the communication 
bandwidth required to share the data.  The effect is a kind 
of “group mind” in which robots can treat one another as 
auxiliary sensors and effectors. As a first step, we have 
implemented a proof-of-concept system to validate the ar-
chitecture.  The current system finds static objects in a 
known environment.  Our current goal is to extend the sys-
tem to find and trap evading targets such as other robots.  
This is an especially interesting task because it requires 
non-trivial spatial reasoning about containment and visibil-
ity. 
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