
HIVEMind : Grounding Inference in Cooperative Activity

Aaron Khoo and Ian Douglas Horswill

Computer Science Department, Northwestern University
1890 Maple Avenue
Evanston, IL 60201

{khoo, ian}@cs.northwestern.edu

Abstract
In this paper, we describe HIVEMind, a tagged behavior-
based architecture for small teams of cooperative robots. In
HIVEMind, robots share inferences and sensory data by
treating other team members as virtual sensors connected by
wireless links. A novel representation based on bit-vectors
allows team members to share intentional, attentional, and
sensory information using relatively low-bandwidth connec-
tions. We describe an application of the architecture to the
problem of systematic spatial search.

Introduction
Robust autonomous robots are notoriously difficult to de-
sign. The world continually changes and the robot’s sen-
sory systems must continually track those changes. Its
modeling systems must track the sensory data, and its con-
trol systems must be ready to alter plans and actions to suit
the changing model.

Behavior-based systems (Arkin 98) solve these problems
very effectively. In their purest form, behavior-based sys-
tems divide sensing, modeling, and control between many
parallel task-achieving modules called behaviors. Each
behavior contains its own task-specific sensing, modeling,
and control processes. Behaviors tend to be simple enough
to be implemented as feed-forward circuits or simple fi-
nite-state machines, allowing them to completely recom-
pute sensor, model, and control decisions from moment to
moment. This, in turn, allows them to respond immedi-
ately to changes in the environment.

Not surprisingly, the task-specificity and computational
simplicity of behavior-based systems are also a weakness.
We believe that their greatest weakness is the use of simple
propositional representations, which makes most reasoning
and planning tasks both difficult and clumsy.

Traditional symbolic reasoning systems, on the other hand,
allow the manipulation of arbitrarily sophisticated repre-

Support for this work was provided by the DARPA Distributed Robotics
Program and the U.S. Army Soldiers Systems Command under award
#DAAN02-98-C-4023/MOD P3.

sentations at the cost of increased computational complex-
ity. While that complexity need not always involve expo-
nential-time or undecidable computations, it does generally
involve highly serial computations operating on a large da-
tabase of logical assertions. In principle, modifying such a
system to track changes in the environment would require
recording dependencies between stored assertions and their
justifications such that when the perceptual system added
or retracted an assertion, the reasoning system could enu-
merate and update the set of existing assertions affected by
the change. This is a sufficiently complicated process that
we know of no implemented physical robots that do it. In-
stead, the symbolic system is generally equipped with a set
of “epistemic actions” that allow a programmer designing
the knowledge base to force the reasoner to update specific
aspects of the knowledge base at specific times. Any mis-
takes by the programmer will lead to inconsistencies be-
tween the models of the symbolic system and the other
subsystems. While tiered architectures combining sym-
bolic and behavior-based systems (Arkin and Balch 98,
Firby et al. 98, Connell 92) can mitigate these problems by
offloading short-timescale interactions from the symbolic
system, they do not ultimately solve the problem of keep-
ing the many fragmentary models of the different compo-
nents in sync with one another and with the world.

These issues are exacerbated in cooperative activity.
Rather than one robot with one knowledge base, we now
have n robots with n knowledge bases to keep consistent
with one another. Failure to properly coordinate the
knowledge bases will ultimately result in failure to coordi-
nate activity. While excellent work has been done on
communication protocols for insuring consistency (Cohen
and Levesque 91, Tambe 96), in practice, implemented
multi-robot systems almost always use behavior-based ar-
chitectures (Goldberg and Mataric 98, Arkin and Balch 99,
Parker 98) and/or shared, centrally world models created
using an overhead camera (Stone and Veloso 99).

Role-passing
One alternative to using tiered architectures is to generalize
behavior-based systems to more abstract representations.
Obviously, the simple parallel networks and finite-state
machines used in behavior-based systems will never be

able to do arbitrary first-order logic theorem proving. In
practice however, neither do any existing robots. Given
that, one might hope to use some suitable generalization of
behavior-based systems to implement at least most of the
representations and inference techniques that are actually
deployed on present-day robots.

Since behavior-based systems effectively use propositional
representations, variable binding and quantified inference
are the main techniques that are hard to implement with
them. Agre and Chapman (87) argued for the use of in-
dexical constants as a surrogate for variable binding.
Rather than putting a variable binding mechanism into the
reasoning engine, they implemented a propositional rea-
soner whose inputs were driven by an active vision system.
The outputs of the vision system directly measured the
truth values of a fixed set of literals such as near(the-tiger-
that’s-about-to-eat-me). In the metatheory, the-tiger-
that’s-about-to-eat-me is an indexical name whose denota-
tion is determined by the current attentional state of the
perceptual system. By redirecting attention of the visual
system from one object to another, the system could effec-
tively treat the name as a variable and rebind it from object
to object. However, since the reasoning system didn’t
represent the internal structure of the literals, it was purely
propositional and so could be implemented as a feed-
forward logic network. Moreover, since vision systems
are generally attentive in practice, this “variable binding”
mechanism was already present. No additional computa-
tions needed to be added to take advantage of it.

The problem with this “indexical-functional” or “deictic”
style of representation is that there tend to be more indexi-
cal names that there are trackers in the vision system. In
practice, it becomes necessary to decide at design time that
a certain set of indexicals will share one tracker, while an-
other set will use another tracker. The designer then hopes
that there will be no situations in which two indexicals that
share a tracker will need to be bound to distinct objects. In
addition, there are some times when you just really want to
use a quantified inference rule.

Role-passing (Horswill 98) is a variant of deictic represen-
tation that solves both these problems. Rather than a large
number of task-specific indexicals, the designer uses a
small set of domain-independent indexicals, specifically
linguistic roles such as agent, patient, source, destination,
etc. When an indexical is bound to an object, a tracker is
dynamically allocated to it and tagged with the name of the
indexical. Since the number of linguistic roles is relatively
small, we can represent the extensions of unary predicates
as bit-vectors, one bit per role. Inference can then be per-
formed using bit-parallel operations in a feed-forward net-
work. Note that this involves an unusual kind of closed-
world assumption, in which quantifiers are restricted to the
set of objects attended to by the robot at that moment.

Alternatively, on conventional hardware, we can represent
a unary predicate extension using a single machine word.

We can then compile Horn clause inference over unary
predicates to straight-line code consisting only of loads,
stores, and bit-mask instructions. While more limited than
a full logic-programming system, it does allow us to ex-
press much of the kinds of control reasoning that people
really implement on physical robots today. Since the rea-
soning process recomputes all inferences on every cycle of
the system’s control loop, the reasoning system is able to
respond to contingencies as soon as they are sensed. And
since the compilation process is very efficient, inference is
effectively free – 1000 Horn clauses of 5 conjuncts each
can be completely updated at 100Hz using less than 1% of
a current CPU.

HIVEMind
In addition to allowing very fast inference, this representa-
tion allows for very compact storage of a robot’s current
set of inferences. Unary predicates are stored in one ma-
chine word. Functional values associated with indexicals
are stored in an array whose size is equal to the total num-
ber of indexicals, a relatively small number. The represen-
tation is small enough to allow robots to share information
by periodically broadcasting all their inferences, or at least
all those predicates and functions that might be relevant to
other team members. This provides each robot with trans-
parent access to every other robot’s state. The result is a
kind of “group mind”.

We have implemented this technique in the HIVEMind
(Highly Interconnected Verbose Mind) architecture for co-
operative robot teams. Its simple communication and co-
ordination model allows the team to efficiently maintain a
shared situational awareness and to provide hard real-time
response guarantees; when a team member detects a con-
tingency, other members immediately share its awareness
and respond in O(1) time.

Figure 2 shows a HIVEMind configuration for a two-robot
team. Each team member has its own inference network
that is driven both by its own sensory system and by the
sensory data of the other team members. The entire
HIVEMind can be considered a single, parallel control
network whose components happen to be distributed be-
tween the different robot bodies being controlled. Wires

Sensory system

Sensory system

/n

/n

/n

/n
Robot 1

Robot 2

Inferences

Inferences

Figure 2 : Abstract view of HIVEMind

crossing between bodies are simulated using the RF broad-
cast mechanism, so that each member of the team is “con-
nected” to every other member in a web-like structure of
virtual wires.

It may seem inefficient for each robot to have its own
separate copy of the inference network. However, to have
a single robot perform each inference and share the results
would require much more complicated coordination proto-
cols (Cohen and Levesque 91) analogous to the multi-
phase commit protocols used in distributed database sys-
tems. Since communication bandwidth is a scarce resource
and inference in our system is essentially free, it is more
efficient for HIVEMind robots to perform redundant com-
putation.

Aggregation of Data
In an n robot team, each robot’s inference network has n
distinct sets of inputs, one generated internally, and the rest
received from the robot’s teammates. These distinct inputs
are first fused into a single set of inputs:

 K = β(k1, k2, …., kn)

where the ki are the tuples of inputs from each robot, K is
the final fused tuple, and β is some aggregation function
that performs the fusion. For example, if a particular com-
ponent of the input was a proposition, the aggregation
function might simply OR together the corresponding
components of the ki. Thus the robot would believe the
proposition iff some robot had evidence for it. In more
complicated cases, fuzzy logic or Bayesian inference could
be used. Real-valued data is likely to require task-specific
aggregation. For example,

• The team is assigned to scout an area and report the

number of enemies observed. Each team member
has a slightly different count of enemy troops. In
this case, the best solution is probably to average
the disparate counts.

• The task is “converge on the target”. Each robot’s
sensors report a slightly different position for the
target. In this situation, it appears to make sense that
each team member rely on its own sensor values to
track the target and only rely on other robots when
the robot’s own sensors are unable to track the tar-
get, e.g. the target is out of sight.

Communication
While the robots are conceptually connected by wires, in
actuality, they communicate by RF broadcast. In our cur-
rent implementation, each robot broadcasts its sensory data
and state estimates in a single UDP packet at predefined
intervals. In our current implementation, broadcasts are
made every second. Faster or slower rates could be used
when latency was more or less critical, however, 1Hz has
worked well for our applications.

Again, we expect that currently implementable robot sys-
tems could store all the sensory inputs to the inference sys-
tem in a single UDP packet (1024 bytes). As robots de-
velop more complicated sensoria, it may be necessary to
use more complicated protocols, perhaps involving multi-
ple packets, or packets that only contain updates for wires
whose values have changed since the last transmission.
For the moment, however, these issues are moot.

Given the current single-packet-protocol, the aggregate
bandwidth required for coordination is bounded by
1KB/robot/sec, or about 0.1% of a current RF LAN per ro-
bot. Thus robot teams on the order of 100 robots should
be practical from a communication standpoint. However,
hardware failure limits most current robot teams to less
than 10 members, so scaling limits are difficult to test em-
pirically.

Figure 3 shows how aggregation is performed in the actual
system. As packets arrive on from other robots, they are
unpacked into buffers for their respective robots, replacing
whatever data had been stored previously for that robot. In
parallel with this process, the main control loop of the ro-
bot aggregates the inputs from each robot and reruns the
inference rules on the result. These inference rules then
enable and disable low-level behaviors for sensory-motor
control. Since the main control loop is performing real-
time control, it runs much faster than the 1Hz update used
for communication (10Hz in our current implementation).

Preliminary Implementation

Overview
As a proof of concept system, we constructed a simple ro-
bot team that searches for a brightly colored object in a
known environment. A human user is responsible for en-
tering the properties of the desired object to the system.
The user console appears as an extra robot to the team.

Current Perceptual Vector

.

.

.

.

.

.

Current Robot

Final Perceptual Vector

.

.

.

.

.

.

Inference Rules

Figure 3 : Implementation of HIVEMind Wires

Robot 2 Perceptual VectorRobot 2

Robot 3 Perceptual VectorRobot 3

β

When the user inputs the color of the desired object, this
information is passed automatically to the other robots.
Team members then systematically explore the environ-
ment until one of the members locates the object or all
searchable space is exhausted. When the object is found,
all team members converge on its location. We have tested
the system with a two-robot team.

Figure 4 : Two robots leaving on their search task

Figure 5 : One member of the team finding the ball

Hardware
The robotic bases used in this experiment are first genera-
tion Real World Interface(RWI) Magellan bases. The Ma-
gellan provides sonars, infrared sensors and bump
switches; a total of 16 each, arrayed around the circular
base. Vision is provided by a ProVideo CCD camera, con-
nected by a Nogatech USB video capture adaptor cable to
a laptop. The laptops are Dell Latitudes with Pentium II
500Mhz processors, 384Mb of RAM and 11Gb hard
drives. They run Windows98, and communicate with the
base through a serial cable. Remote communication is pro-
vided by LinkSys WPC11 wireless Ethernet cards that fea-

ture an 11Mbps data transfer rate under the IEEE 802.11b
standard.

Perceptual Systems
Sensory and memory systems are divided into pools,
which can either be perceptual systems or passive informa-
tion stores, e.g. descriptions of objects. These pools drive
the inference network, which in turn drives the low-level
behaviors that actually control the robot.

Figure 6 shows a high-level view of the system. The code
was written in a combination of GRL (Horswill 99) and
Scheme, although low-level vision operators were written
in C++. In the following subsections, we will briefly de-
scribe each of the pools, the communicated predi-
cate/function values, the inference rules and the control
behaviors.

Color Pool The color pool stores color coordinates of dif-
ferent objects in a format suitable for use by the visual
tracking system. The color of a desired object can be
specified by binding a given color description in the pool
to the role of the object. Thus the user, would direct the
team to seek a green ball by binding the green color to pa-
tient and then asserting the goal near(patient). The binding
and goal are then automatically passed over the network to
the robots. The color pool presently contains coordinates
for red, green, and blue objects.

Tracker Pool The tracker pool consists of a set of color
blob trackers that can be allocated, and bound to a role.
The trackers can drive low-level behaviors with image-
plane coordinate of the objects they track. In addition,
they generate the low-level predicates see-object(X) and
near-object(X) for input to the inference network.

Place pool The place pool is a probabilistic localization
system that uses a topological (i.e. landmark-based) map.
Roles can be bound to landmarks and the system can de-
termine the next appropriate waypoint in order to reach a
landmark specified by role. The place pool also records

Color Pool

Tracker Pool

Place Pool

Inference
Rules

Stop

Unwedge

Turn-to

Follow corridor

Figure 6 : High-level view of the ball finding system

Follow object

Other robots

the set of landmarks that have been visited with high prob-
ability and can determine the closest unvisited landmark.
The current map contains 11 landmarks distributed over
the west wing of the 3rd floor of the Northwestern Com-
puter Science Department.

Communication
The task can be accomplished by sharing the role bindings
for each color, the bit-vector for the goal(near(X)) predi-
cate, the bit-vector for the see-object(X) predicate, a loca-
tion(X) function, which give the two nearest landmarks, if
known, to any role X, and a bit-vector specifying the set of
landmarks that the robot has personally visited. All of
these are low-level outputs of the various pools, except for
the goal predicate which has to be stored in a separate latch
on the control console.

Inference rules
The inference rules for this case are fairly simple. This is
partly due to the continual recomputation inferences,
which alleviates the need for some error detection and re-
covery logic that would otherwise be necessary. The rules
in the current system are:

1. If near(X) is an unsatisfied goal and see-object(X) is

true, then approach(X).
2. If near(X) is an unsatisfied goal and location(X) is

known, and see-object(X) is false, then
goto(location(X)).

3. If near(X) is an unsatisfied goal and location(X) is un-
known, then goto(next-unsearched-location).

Behaviors
There are five motor behaviors which are activated by the
rules as necessary.
• Approach-object drives to an object specified by

role. It attempts to keep the object in the middle of
its visual image.

• Follow-corridor navigates the hallways. It tries to
remain centered in the middle of the corridor to fa-
cilitate easy recognition of environmental features.

• Unwedge activates when the robot becomes stuck in
some corner unexpectedly. It swivels the robot in
the direction in which it thinks has the greatest open
space so the robot can continue moving.

• Turn-to swivels the robot to face a new direction. It
is used when the robot arrives at a landmark and
needs to turn in a new direction to reach another
landmark.

Interface Console
The Command Console for the HIVEMind team is based
on the Cerebus project (Horswill et al 00). It provides a
natural language interface for the human user and allows
commands such as “find green ball” or “find red ball” to
be entered. The desired color is bound to the patient role
and transmitted to members to the team. The console ap-
pears as another robot to other team member, albeit one
that is not doing any physical work. The Command Con-
sole also provides status information in the form of display
windows based on the broadcast knowledge it is receiving
from other team members. Using this interface, the human
commander can inject new information into the team, as
well as receive data about the current state of the “group
mind”.

Related Work
A number of behavior-based architectures for multi-robot
systems have been successfully implemented. The Alliance
architecture (Parker 98) uses spreading activation to
choose between sets of behaviors that achieve different
goals. Team members can become impatient if teammate’s
task is not accomplished in a timely manner, or alterna-
tively may abandon a goal if it is not making progress.
(Goldberg and Mataric 99) present an approach utilizing
augmented Markov models to learn probabilistic state tran-
sitions for a foraging task. (Balch and Arkin 98) describe
a system that maintains military formations such as a line,
wedge, diamond or column. Our approach, which behav-
ior-based in spirit, differs from these architectures in its
support for explicit inference, limited variable binding, and
shared knowledge. It provides a useful set of symbolic op-
erations while still retaining all the advantages of a behav-
ior-based architecture. Although any of these architectures
could likely have implemented the search task described
here, our expectation is that HIVEMind’s support for ex-
plicit goals and variable binding will make it easier to
build reusable, taskable systems.

Many simulated multi-robot systems that utilize a strong
symbolic approach have also been built. The STEAM ar-
chitecture (Tambe 96) is a particularly ambitious example
based on the Joint Intentions framework of (Cohen &
Levesque 91). The system uses a multiphase commit pro-
tocol to maintain coherence amongst team members. Al-
though the present HIVEMind broadcasting strategy works
well for current systems, it will eventually break down for
very large teams or very large knowledge bases. More
complicated protocols might fare better.

Conclusion
The HIVEMind architecture is an attempt to extend paral-
lel reactive inference to a multi-robot environment. It al-
lows behavior-based systems to abstract over both objects

and sensors. We believe that the right set of representa-
tional choices can allow the kinds of inference presently
implemented on robots to be cleanly grounded in sensor
data and reactively updated by a parallel inference net-
work. If so, then this also provides a clean mechanism for
group coordination. By continually sharing perceptual
knowledge between robots, coordination can be achieved
for little or no additional cost beyond the communication
bandwidth required to share the data. The effect is a kind
of “group mind” in which robots can treat one another as
auxiliary sensors and effectors. As a first step, we have
implemented a proof-of-concept system to validate the ar-
chitecture. The current system finds static objects in a
known environment. Our current goal is to extend the sys-
tem to find and trap evading targets such as other robots.
This is an especially interesting task because it requires
non-trivial spatial reasoning about containment and visibil-
ity.

References

P.E. Agre and D. Chapman(1987) Pengi : An Implementa-
tion of a Theory of Activity. In Proceedings of the Sixth
National Conference on Artificial Intelligence, pp. 268-
272. Seattle, Wa.

R.C. Arkin (1998). Behavior-Based Robotics. MIT Press.
Cambridge, MA.

R.C. Arkin and T.R. Balch(1997) Aura: principles and
practice in review. Journal of Experimental and Theoreti-
cal Artificial Intelligence, 9(2).

T. Balch and R.C. Arkin(1998) Behavior-based formation
control for multirobot teams, IEEE Transactions on Robot-
ics and Automation, vol. 14, no. 6, pp. 926--939, Decem-
ber 1998.

P. Bonasso, R.J. Firby, E. Gat, and D. Kortenkamp (1997).
Experiences with an Architecture for Intelligent Reactive
Agents. In Journal of Theoretical and Experimental Artifi-
cial Intelligence, special issue on software architectures for
physical agents, Hexmoor, Horswill and Kortenkamp, eds.,
9:2-3. Taylor and Francis, Ltd.

P.R. Cohen and H.J. Levesque (1991) Teamwork, Nous 35.

J.H. Connell(1992) SSS: A hybrid architecture applied to
robot navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 92), pages
2719--2724, Nice, France, 1992. IEEE Press, New York,
NY.

R. J. Firby, P.N. Propopowicz, and M.J. Swain(1998), The
animate agent architecture, in Artificial Intelligence and
Mobile Robots: Case Studies of Successful Robot Systems,

eds., D. Kortenkamp, R.P. Bonasso, and R. Murphy, AAA
Press/The MIT Press.

D. Goldberg and M.J. Mataric(1999) Coordinating Mobile
Robot Group Behavior Using a Model of Interaction Dy-
namics, Proceedings, The Third International Conference
on Autonomous Agents (Agents '99), Seattle, Washington,
May 1-5

I. Horswill(1998). Grounding Mundane Inference in Per-
ception. In Autonomous Robots, 5, pp. 63-77.

I. Horswill(1999). Functional programming of behavior-
based systems. In Proc. IEEE International Symposium on
Computational Intelligence in Robotics and Automation

I. Horswill, R. Zubek, A. Khoo, C. Le, and S. Nichol-
son(2000) The Cerebus Project. In Proceedings of the
2000 AAAI Fall Symposium on Parallel Cognition and
Embodied Agents.

L.E. Parker(1998) ALLIANCE: An Architecture for Fault
Tolerant Multirobot Cooperation, IEEE Transactions on
Robotics and Automation, Vol. 14, No. 2, April 1998.

P. Stone and M. Veloso (1999) Task Decomposition, Dy-
namic Role Assignment, and Low-Bandwidth Communica-
tion for Real-Time Strategic Teamwork Artificial Intelli-
gence (AIJ), volume 100, number 2, June 1999.

M. Tambe(1996) Teamwork in real-world, dynamic envi-
ronments. In Proceedings of the Second International Con-
ference on Multi-Agent Systems (ICMAS-96), Menlo
Park, California, December 1996. AAAI Press.

