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Abstract 
Computer games are an application in which the perception 
of intentionality is often more important than intentionality 
itself. Players often attribute more intelligence to non-player 
characters than is actually warranted. Therefore, rather than 
investing more AI complexity in the system, we propose an 
approach which refines and extends the finite-state machine 
techniques already prevalent in commercially available 
games. Taking advantage of the similarities between robots 
and NPCs in dynamic environments, we describe two NPC 
control systems that uses behavior-based techniques. 

Introduction 
There has been a recent surge in interest in the use of 
computer games as platforms for AI research (Laird and 
van Lent 00). However, most research into the AI of non-
player characters, or NPCs, in computer games has focused 
on increasing the underlying complexity of the agents. The 
motivation has been to develop increasingly ‘human-like’ 
bots which  replicate the thought processes of the human 
player in the same given situation. For example, the 
QuakeBot agent (Laird and van Lent 99) developed at the 
University of Michigan has recently incorporated usage of 
predictive capabilities and learning (Laird 00). QuakeBot 
is able to anticipate a player’s future actions through 
observation of the player’s current behavior and react 
accordingly. Its developers have invested a lot of time and 
energy incorporating an “expert” human player’s tactical 
thought processes into the QuakeBot. 

Issues with Cognitive Simulation 
However, there are two potential problems with this 
human-level approach. First, this method can be expensive. 
Many modern computer games are performance driven. 
There is typically only a small percentage of the CPU 
available for AI relative to the amount devoted to graphics. 
Traditional AI reasoning systems allow arbitrarily 
sophisticated representations, but usually at the cost of 
computational complexity. While that complexity does not 
always involve exponential-time or undecidable 

computations, it does generally involve highly serial 
computations operating on a large database of logical 
assertions. Most current NPC implementations in AI 
games research, such as QuakeBot or GameBots (Adobbati 
et al 01), assume a separate CPU for each NPC.   
 
Second, it is unclear that this increased complexity of 
human-like cognition has added much to the final 
playability of the product. That is, the player might not 
notice any difference in the outward behavior of the NPC. 
In some cases, the underlying intricacy might actually 
produce strange or annoying NPC behavior from the 
player’s perspective since the player is not always able to 
discern the NPC’s intricate deliberations. On the other 
hand, people are often willing to ascribe far more 
intelligence to very simple but obvious actions than is 
often warranted. One well-known anecdotal example is 
taken from the Half-Life game. During the course of the 
Half-Life single player scenario, the player encounters 
small groups of hostile marines. In the course of attacking 
the player, the marines will yell things such as “cover 
me!”. Although the NPC marines are acting as independent 
entities and the yells are randomly generated, players often 
relate observed instances of ‘skillful AI teamwork’ in 
groups of attacking marines. Researchers at the Oz project 
have also noticed a similar phenomenon occurring as they 
attempt to build believable agents that exhibit emotions 
through simple goal-driven behavioral constructs (Bates 
94).  
 
Furthermore, a recent case study (Laird and Duchi 00) 
seems to suggest that, at least for NPCs in a first-person 
shooter, decision time and aiming skill are key to the 
perception of humanness. The first parameter implies that 
the control program should be made as efficient as possible 
to avoid any perceivable slowdown in the NPC’s reaction 
time, while the latter is a parameter that does not require 
human-like cognition to control. In fact, NPCs often have 
perfect information about the world, so varying their 
aiming skill simply involves adding some level of noise to 
the appropriate sensors. 
 



Ultimately, it is possible to end up constructing an overly 
complicated system that is underappreciated by the player. 
We would argue that in most cases of NPC development, 
the generality that traditional symbolic reasoning systems 
bring is overkill. Instead, we should aim for efficient 
systems with a simple underlying architecture that allows 
us to produce most behaviors that a human observer can 
relate to, while avoiding overtly stupid actions that betray 
their underlying simplicity. In the end, if an NPC looks, 
talks and walks like a duck, then it will probably be 
perceived as a duck, regardless of its actual inner 
workings.  

Behavior-based Techniques 
NPC control systems in commercially available games are 
generally based on finite-state machine techniques. While 
efficient, this approach is usually criticized as being 
unwieldy and results in NPCs which are unrealistic. We 
admit that, in general, current NPCs leave much to be 
desired, with limited response capabilities and simplistic 
behaviors. However, we argue that this is not a 
consequence of the finite-state machine approach per se, 
but rather is a result of the ad hoc AI development model 
utilized by most  game companies. 
 
We believe that realistic yet efficient NPCs can be 
developed by using a methodology based on well-
understood behavior-based techniques. NPCs that reside in 
a dynamic environment, such as a first-person shooter 
(FPS), real-time strategy game (RTS) or a massively 
multiplayer game, live in a continually changing world 
where the NPC is not the only change effector. The NPC’s 
modeling systems must constantly track the incoming 
sensory data, and its control systems must be ready to alter 
plans and actions to suit the changing world. 
 
Behavior-based systems (Arkin 98) solve these problems 
very effectively.  In their purest form, behavior-based 
systems divide sensing, modeling, and control between 
many parallel task-achieving modules called behaviors.  
Each behavior contains its own task-specific sensing, 
modeling, and control processes.  Behaviors tend to be 
simple enough to be implemented as feed-forward circuits 
or simple finite-state machines, allowing them to 
completely recompute sensor, model, and control decisions 
from moment to moment.  This, in turn, allows them to 
respond immediately to changes in the environment. 
Unlike purely stimulus-response systems, it is possible for 
behavior-based systems to maintain state information.  
 
Using a behavior-based approach gives us a methodology 
for building our NPCs systematically while maintaining 
great efficiency. We can add one  observably intelligent 
behavior at a time, eventually building an NPC which 
appears very sophisticated but is still utilizing a finite-state 
machine as a control system. In the following section, we 
will examine Ledgewalker, a set of behaviors that we 

developed to control bots within the Half-Life game. Then, 
we conclude with a section on some possible future 
directions. 

Implementation 

Half-Life and FlexBot 
Half-Life is a popular first-person shooter game developed 
by Valve Studios. We chose this game as our development 
platform because the game engine has been open source 
for some time, resulting in easy accessibility and an 
available online community of veteran programmers  who 
serve as helpful mentors. 
 
We developed an NPC or ‘bot’ SDK for the Half-Life 
game written in C++. Named FlexBot, the SDK allows 
designers to create NPCs through a ‘fake client’ interface 
and provides a set of sensors and actuators which a 
designer uses to program the bots. The sensors and 
actuators reside in a DLL which talks to the Half-Life 
engine.  The designer is responsible for writing FlexBot 
control programs, which are separate DLLs that talk to the 
FlexBot interface DLL, as shown in figure 1 below. 

 
Although we have focused on behavior-based systems, 
FlexBot control programs do not have to adhere to any 
particular architecture. It is intended for use as a general 
bot development platform for Half-Life. For more 
information on FlexBot, including a download of the latest 
version, see http://flexbot.cs.northwestern.edu. 

Generic Robot Language 
The behavior-based control programs we created for Half-
Life bots utilize the sensor and actuator interface provided 
by the FlexBot SDK. However, we realized that writing 
C++ code to implement ever more complicated finite state 
machines would be unfeasible. We wanted to take 
advantage of higher-level, Lisp-style functional 
programming techniques familiar in AI applications.  
 
Therefore, the bot control programs were written in 
Generic Robot Language or GRL (Horswill 99), a 
programming language originally designed for robot 
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Figure 1 : FlexBot Control Flow



development. GRL is a simple language that extends 
traditional functional programming techniques to behavior-
based systems. It is an architecture-neutral language based 
on Scheme for describing reactive control systems. GRL 
provides a wide range of constructs for defining data flow 
within communicating parallel control systems and 
manipulating them at compile time using functional 
programming techniques. Most of the characteristics of 
popular behavior-based robot architectures can be 
concisely written as reusable software abstractions in GRL. 
This makes it easier to write clear, modular code, to “mix-
and-match” arbitration mechanisms, and to experiment 
with variations on existing techniques. Code written in 
GRL can be compiled to a variety of languages, including 
Scheme, Basic and C++.  

Ledgewalker 
 

 
Figure 2 : Screenshot of Ledgewalker in action  

 
Ledgewalker is the codename for our original Half-Life 
bot. The Ledgewalker control code consists of a series of 
behaviors executed in parallel. Arbitration is achieved 
through a priority stack with a slight twist. The behaviors 
are checked starting with the behavior with the highest 
priority, and the first active behavior is taken to be the 
output of the bot for the current processing cycle. Figure 3 
shows the current set of Ledgewalker behaviors. Most of 
the behaviors shown in figure 3 are self-explanatory, so we 
will not go into details for each behavior.  
 
There are two interesting points to note about figure 3. 
First, the shoot behavior supercedes all others, i.e. if the 
bot sees an enemy, it will drop everything it is doing to 
attack. Second, notice that that the rest of the behaviors are 
divided into two separate stacks, enclosed by a dotted 
rectangle. This is because the two stacks can be run in 
parallel, e.g. the bot may reload its weapon while it is 

wandering or turning to check on a noise it heard. 
Therefore, Ledgewalker chooses the most active behavior 
from the left and right stacks per processing cycle, and 
then combines them into a single action vector through a 
union operator. This final action vector is then sent to the 
FlexBot DLL, assuming the shoot behavior is turned off.   
 

Groo  
The latest incarnation of our Half-Life bot is known as 
Groo, named for the Sergio Aragonés comic character of 
the same name. Groo is a brutish, fierce but foolish 
barbarian who often gets into trouble because of his 
propensity for violent action above civil dialogue. This 
somewhat aptly describes the behavior of our bots.  
 
The design for Groo came about as we realized the limits 
of Ledgewalker’s original design. The FlexBot interface 
affords eleven actuators : 
 

•  rotate 
•  translate 
•  strafe 
•  pitch 
•  shoot 
•  fire secondary 

•  jump 
•  switch weapon 
•  reload 
•  duck 
•  use 

 
 
Furthermore, the interface expects a value for each 
actuator on each program cycle. Ledgewalker’s behaviors 
initially attempted to control all the actuators 
simultaneously. However, we realized that some actuators 
should be controlled independently of each other. For 
example, as figure 3 shows, the bot can reload or switch 
weapons while performing some movement.  After more 
consideration, we realized that, in fact, most of the 
actuators should be controlled independently.  We 
ultimately divided the actuators into two groups : those 
that controlled movement, and those that didn’t. The first 
group consists of rotate, translate and strafe. Our reasoning 
is that the bots should be able to perform any of the other 
actions while maneuvering.  
 
This approach to Groo’s design has two advantages. First, 
it is a more modular design. Rather than attempting to 
control all eleven actuators simultaneously, we have 
divided the control into separate smaller modules that are 
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more concise and readable. The modularity also allows us 
to easily “shut off” any superfluous actuators if necessary 
during debugging, making the development process easier. 
The second advantage of Groo’s design is the emergent 
properties that arise from the interaction of the actuators. 
Since most of the actuators are now independently 
controlled, the bot can react to situations with a greater 
repertoire of actions. This newfound diversity of reactions 
makes for a bot that plays in a more “natural” manner; at 
least the bot’s behavior is now less overtly predictable.  
 

 
Movement Behaviors As discussed earlier, Groo’s 
movement consists of three actuators, i.e. rotate, translate 
and strafe. The behaviors that control these actuators are 
known as the movement behaviors. The arbitration 
mechanism used to determine which movement behavior is 
allowed to execute during the current program cycle is still 
a priority stack.  However, the individual behaviors are 
now further divided into groups, forming the Tinbergen 
hierarchy structure (Tinbergen 51) shown in figure 4. The 

higher the behavior is on the stack, the higher its priority. 
Hence, Groo’s sense of self-preservation overrules his 
killer instinct and the bot will try to flee if necessary. The 
feed behavior describes Groo’s attempt to pick up items 
such as ammo and weapons. If Groo has no good weapons 
in its inventory, no-good-weapons will force it to grab a 
weapon if it is in sight. Default-feed will not activate as 
long as Groo sees an enemy and has a decent weapon in its 
inventory.  
 
Remaining Actuators The remaining eight actuators each 
have their own behaviors. The behaviors for these 
actuators are mostly a collection of rules of thumb gleaned 
from domain experts. For example, the behavior for shoot 
actuator is defined as : 
shoot = 
 (and  
  facing-enemy? 
  not-fire-secondary? 
  (or weapon-clip-not-empty? 
    (= current-weapon crowbar)) 
  (or (and enemy-long-range? 
      current-weapon-long-range?) 
    enemy-short-range? 
    being-shot?)) 
 
On every program cycle, the movement behaviors produce 
outputs for the rotate, translate and strafe actuators. The 
outputs from the behaviors governing each of the 
remaining eight actuators is combined with the movement 
actuators using a union operator, and the resulting action 
vector is sent to the FlexBot DLL on every program cycle, 
as shown in figure 5.  
 

 

 

 

 

 

 

Results 
The compiled machine code for both Ledgewalker and 
Groo are extremely efficient and stable. The bots run 
concurrently with the Half-Life game server on the same 
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physical machine. We have successfully run 32 bots, the 
maximum number supported by the game engine, on one 
machine under dedicated server mode, and 16 in listen 
server mode. A dedicated server has no graphical 
processing duties. Its only job is to provide a multiplayer 
game that external players can connect to. A listen server, 
on the other hand, is both a server and client, meaning that 
a player is physically playing on it while it is also serving 
external connections. In the latter case, the added load of 
the graphics processing created too much lag as the 
number of bots in the game increased.  
 
The game engine updates its world model, including any 
bots, once every 0.1 seconds. We have observed our bots  
individually consuming 3ms per processing cycle. 
Therefore, it is only using 0.3% of the CPU per bot. 
Ultimately, the game engine is the bottleneck, not the AI. 
Otherwise, the CPU could run over a hundred bots per 
game. Each instance of the Ledgewalker bot only uses 436 
bytes of memory during runtime, yielding a very small 
footprint. The Ledgewalker code base was about 900 lines 
of GRL code, which compiled to 1963 lines of C++ code. 
The numbers were fairly similar for Groo, which had 800 
lines of GRL code and 1600 lines of C++ code. Finally, the 
mean time to failure of the system is very long. We have 
successfully run the bots in dedicated server mode 
continuously for over two weeks. In fact, during one test 
run, the variable storing the number of kills for a bot 
actually overflowed. 
 
While we have not run any empirical studies similar to 
(Laird and Duchi 00), anecdotal evidence seems to indicate 
that Ledgewalker has succeeded in its goal of realistic 
behavior to a certain extent. Some experienced Half-Life 
players, including ourselves, have playtested the 
Ledgewalker and Groo bots. The system was also 
demonstrated at IJCAI-2001, where it was played by 
several participants. In general, the reaction was positive. 
Most players agreed that the bots did exhibit behaviors that 
one would associate with a human player.   

Conclusions and Future Work 
The Ledgewalker and Groo bots are an attempt to create an 
efficient control system that can exhibit human-like 
behavior. Instead of using a traditional AI reasoning 
system, we endeavored to utilize behavior-based 
techniques from robotics. These techniques allow an agent 
to track changes in the dynamic environment quickly, and 
react within O(1) time to any relevant events. Behavior-
based systems are extremely efficient, as evidenced by our 
ability to run up to 32 bots simultaneously and the small 
memory footprint per bot. Anecdotal evidence appears to 
suggest that Ledgewalker behaves like a human player, but 
this needs to be verified through an empirical experiment. 
 
However, behavior-based systems introduce their own set 
of issues. Their greatest weakness is the the use of simple 

propositional representations, which makes most reasoning 
and planning tasks both difficult and clumsy. We propose 
to incorporate variable binding and quantified inference to 
Ledgewalker using role-passing (Horswill 98, Horswill 
and Zubek 99), a deictic representation technique. This 
extension to traditional behavior-based systems maintains 
the efficiency of those systems while allowing us to 
express control reasoning in a more reusable, taskable 
fashion. We also intend to extend Ledgewalker into a 
multi-agent research testbed utilizing HIVEMind, a multi-
robot architecture presently implemented on a robotic team 
performing a search task. 
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