
Efficient, Realistic NPC Control Systems using
Behavior-Based Techniques

Aaron Khoo, Greg Dunham, Nick Trienens, Sanjay Sood

Computer Science Dept., Northwestern University
1890 Maple Avenue
Evanston, IL 60201

khoo@cs.northwestern.edu, {gdunham, n-trienens, s-sood3}@northwestern.edu

Abstract
Computer games are an application in which the perception
of intentionality is often more important than intentionality
itself. Players often attribute more intelligence to non-player
characters than is actually warranted. Therefore, rather than
investing more AI complexity in the system, we propose an
approach which refines and extends the finite-state machine
techniques already prevalent in commercially available
games. Taking advantage of the similarities between robots
and NPCs in dynamic environments, we describe two NPC
control systems that uses behavior-based techniques.

Introduction
There has been a recent surge in interest in the use of
computer games as platforms for AI research (Laird and
van Lent 00). However, most research into the AI of non-
player characters, or NPCs, in computer games has focused
on increasing the underlying complexity of the agents. The
motivation has been to develop increasingly ‘human-like’
bots which replicate the thought processes of the human
player in the same given situation. For example, the
QuakeBot agent (Laird and van Lent 99) developed at the
University of Michigan has recently incorporated usage of
predictive capabilities and learning (Laird 00). QuakeBot
is able to anticipate a player’s future actions through
observation of the player’s current behavior and react
accordingly. Its developers have invested a lot of time and
energy incorporating an “expert” human player’s tactical
thought processes into the QuakeBot.

Issues with Cognitive Simulation
However, there are two potential problems with this
human-level approach. First, this method can be expensive.
Many modern computer games are performance driven.
There is typically only a small percentage of the CPU
available for AI relative to the amount devoted to graphics.
Traditional AI reasoning systems allow arbitrarily
sophisticated representations, but usually at the cost of
computational complexity. While that complexity does not
always involve exponential-time or undecidable

computations, it does generally involve highly serial
computations operating on a large database of logical
assertions. Most current NPC implementations in AI
games research, such as QuakeBot or GameBots (Adobbati
et al 01), assume a separate CPU for each NPC.

Second, it is unclear that this increased complexity of
human-like cognition has added much to the final
playability of the product. That is, the player might not
notice any difference in the outward behavior of the NPC.
In some cases, the underlying intricacy might actually
produce strange or annoying NPC behavior from the
player’s perspective since the player is not always able to
discern the NPC’s intricate deliberations. On the other
hand, people are often willing to ascribe far more
intelligence to very simple but obvious actions than is
often warranted. One well-known anecdotal example is
taken from the Half-Life game. During the course of the
Half-Life single player scenario, the player encounters
small groups of hostile marines. In the course of attacking
the player, the marines will yell things such as “cover
me!”. Although the NPC marines are acting as independent
entities and the yells are randomly generated, players often
relate observed instances of ‘skillful AI teamwork’ in
groups of attacking marines. Researchers at the Oz project
have also noticed a similar phenomenon occurring as they
attempt to build believable agents that exhibit emotions
through simple goal-driven behavioral constructs (Bates
94).

Furthermore, a recent case study (Laird and Duchi 00)
seems to suggest that, at least for NPCs in a first-person
shooter, decision time and aiming skill are key to the
perception of humanness. The first parameter implies that
the control program should be made as efficient as possible
to avoid any perceivable slowdown in the NPC’s reaction
time, while the latter is a parameter that does not require
human-like cognition to control. In fact, NPCs often have
perfect information about the world, so varying their
aiming skill simply involves adding some level of noise to
the appropriate sensors.

Ultimately, it is possible to end up constructing an overly
complicated system that is underappreciated by the player.
We would argue that in most cases of NPC development,
the generality that traditional symbolic reasoning systems
bring is overkill. Instead, we should aim for efficient
systems with a simple underlying architecture that allows
us to produce most behaviors that a human observer can
relate to, while avoiding overtly stupid actions that betray
their underlying simplicity. In the end, if an NPC looks,
talks and walks like a duck, then it will probably be
perceived as a duck, regardless of its actual inner
workings.

Behavior-based Techniques
NPC control systems in commercially available games are
generally based on finite-state machine techniques. While
efficient, this approach is usually criticized as being
unwieldy and results in NPCs which are unrealistic. We
admit that, in general, current NPCs leave much to be
desired, with limited response capabilities and simplistic
behaviors. However, we argue that this is not a
consequence of the finite-state machine approach per se,
but rather is a result of the ad hoc AI development model
utilized by most game companies.

We believe that realistic yet efficient NPCs can be
developed by using a methodology based on well-
understood behavior-based techniques. NPCs that reside in
a dynamic environment, such as a first-person shooter
(FPS), real-time strategy game (RTS) or a massively
multiplayer game, live in a continually changing world
where the NPC is not the only change effector. The NPC’s
modeling systems must constantly track the incoming
sensory data, and its control systems must be ready to alter
plans and actions to suit the changing world.

Behavior-based systems (Arkin 98) solve these problems
very effectively. In their purest form, behavior-based
systems divide sensing, modeling, and control between
many parallel task-achieving modules called behaviors.
Each behavior contains its own task-specific sensing,
modeling, and control processes. Behaviors tend to be
simple enough to be implemented as feed-forward circuits
or simple finite-state machines, allowing them to
completely recompute sensor, model, and control decisions
from moment to moment. This, in turn, allows them to
respond immediately to changes in the environment.
Unlike purely stimulus-response systems, it is possible for
behavior-based systems to maintain state information.

Using a behavior-based approach gives us a methodology
for building our NPCs systematically while maintaining
great efficiency. We can add one observably intelligent
behavior at a time, eventually building an NPC which
appears very sophisticated but is still utilizing a finite-state
machine as a control system. In the following section, we
will examine Ledgewalker, a set of behaviors that we

developed to control bots within the Half-Life game. Then,
we conclude with a section on some possible future
directions.

Implementation

Half-Life and FlexBot
Half-Life is a popular first-person shooter game developed
by Valve Studios. We chose this game as our development
platform because the game engine has been open source
for some time, resulting in easy accessibility and an
available online community of veteran programmers who
serve as helpful mentors.

We developed an NPC or ‘bot’ SDK for the Half-Life
game written in C++. Named FlexBot, the SDK allows
designers to create NPCs through a ‘fake client’ interface
and provides a set of sensors and actuators which a
designer uses to program the bots. The sensors and
actuators reside in a DLL which talks to the Half-Life
engine. The designer is responsible for writing FlexBot
control programs, which are separate DLLs that talk to the
FlexBot interface DLL, as shown in figure 1 below.

Although we have focused on behavior-based systems,
FlexBot control programs do not have to adhere to any
particular architecture. It is intended for use as a general
bot development platform for Half-Life. For more
information on FlexBot, including a download of the latest
version, see http://flexbot.cs.northwestern.edu.

Generic Robot Language
The behavior-based control programs we created for Half-
Life bots utilize the sensor and actuator interface provided
by the FlexBot SDK. However, we realized that writing
C++ code to implement ever more complicated finite state
machines would be unfeasible. We wanted to take
advantage of higher-level, Lisp-style functional
programming techniques familiar in AI applications.

Therefore, the bot control programs were written in
Generic Robot Language or GRL (Horswill 99), a
programming language originally designed for robot

Half-Life
Engine

FlexBot Sensor &
Actuator Interface DLL

Bot Control DLL

Figure 1 : FlexBot Control Flow

development. GRL is a simple language that extends
traditional functional programming techniques to behavior-
based systems. It is an architecture-neutral language based
on Scheme for describing reactive control systems. GRL
provides a wide range of constructs for defining data flow
within communicating parallel control systems and
manipulating them at compile time using functional
programming techniques. Most of the characteristics of
popular behavior-based robot architectures can be
concisely written as reusable software abstractions in GRL.
This makes it easier to write clear, modular code, to “mix-
and-match” arbitration mechanisms, and to experiment
with variations on existing techniques. Code written in
GRL can be compiled to a variety of languages, including
Scheme, Basic and C++.

Ledgewalker

Figure 2 : Screenshot of Ledgewalker in action

Ledgewalker is the codename for our original Half-Life
bot. The Ledgewalker control code consists of a series of
behaviors executed in parallel. Arbitration is achieved
through a priority stack with a slight twist. The behaviors
are checked starting with the behavior with the highest
priority, and the first active behavior is taken to be the
output of the bot for the current processing cycle. Figure 3
shows the current set of Ledgewalker behaviors. Most of
the behaviors shown in figure 3 are self-explanatory, so we
will not go into details for each behavior.

There are two interesting points to note about figure 3.
First, the shoot behavior supercedes all others, i.e. if the
bot sees an enemy, it will drop everything it is doing to
attack. Second, notice that that the rest of the behaviors are
divided into two separate stacks, enclosed by a dotted
rectangle. This is because the two stacks can be run in
parallel, e.g. the bot may reload its weapon while it is

wandering or turning to check on a noise it heard.
Therefore, Ledgewalker chooses the most active behavior
from the left and right stacks per processing cycle, and
then combines them into a single action vector through a
union operator. This final action vector is then sent to the
FlexBot DLL, assuming the shoot behavior is turned off.

Groo
The latest incarnation of our Half-Life bot is known as
Groo, named for the Sergio Aragonés comic character of
the same name. Groo is a brutish, fierce but foolish
barbarian who often gets into trouble because of his
propensity for violent action above civil dialogue. This
somewhat aptly describes the behavior of our bots.

The design for Groo came about as we realized the limits
of Ledgewalker’s original design. The FlexBot interface
affords eleven actuators :

• rotate
• translate
• strafe
• pitch
• shoot
• fire secondary

• jump
• switch weapon
• reload
• duck
• use

Furthermore, the interface expects a value for each
actuator on each program cycle. Ledgewalker’s behaviors
initially attempted to control all the actuators
simultaneously. However, we realized that some actuators
should be controlled independently of each other. For
example, as figure 3 shows, the bot can reload or switch
weapons while performing some movement. After more
consideration, we realized that, in fact, most of the
actuators should be controlled independently. We
ultimately divided the actuators into two groups : those
that controlled movement, and those that didn’t. The first
group consists of rotate, translate and strafe. Our reasoning
is that the bots should be able to perform any of the other
actions while maneuvering.

This approach to Groo’s design has two advantages. First,
it is a more modular design. Rather than attempting to
control all eleven actuators simultaneously, we have
divided the control into separate smaller modules that are

Shoot

React to sound
React to shots

Unwedge
Get items

Approach waypoint
Avoid Edges

Wander

Decreasing
Priority

Figure 3 : Ledgewalker Behavior Stack

Reload

Switch Weapons

action

more concise and readable. The modularity also allows us
to easily “shut off” any superfluous actuators if necessary
during debugging, making the development process easier.
The second advantage of Groo’s design is the emergent
properties that arise from the interaction of the actuators.
Since most of the actuators are now independently
controlled, the bot can react to situations with a greater
repertoire of actions. This newfound diversity of reactions
makes for a bot that plays in a more “natural” manner; at
least the bot’s behavior is now less overtly predictable.

Movement Behaviors As discussed earlier, Groo’s
movement consists of three actuators, i.e. rotate, translate
and strafe. The behaviors that control these actuators are
known as the movement behaviors. The arbitration
mechanism used to determine which movement behavior is
allowed to execute during the current program cycle is still
a priority stack. However, the individual behaviors are
now further divided into groups, forming the Tinbergen
hierarchy structure (Tinbergen 51) shown in figure 4. The

higher the behavior is on the stack, the higher its priority.
Hence, Groo’s sense of self-preservation overrules his
killer instinct and the bot will try to flee if necessary. The
feed behavior describes Groo’s attempt to pick up items
such as ammo and weapons. If Groo has no good weapons
in its inventory, no-good-weapons will force it to grab a
weapon if it is in sight. Default-feed will not activate as
long as Groo sees an enemy and has a decent weapon in its
inventory.

Remaining Actuators The remaining eight actuators each
have their own behaviors. The behaviors for these
actuators are mostly a collection of rules of thumb gleaned
from domain experts. For example, the behavior for shoot
actuator is defined as :
shoot =
 (and
 facing-enemy?
 not-fire-secondary?
 (or weapon-clip-not-empty?
 (= current-weapon crowbar))
 (or (and enemy-long-range?
 current-weapon-long-range?)
 enemy-short-range?
 being-shot?))

On every program cycle, the movement behaviors produce
outputs for the rotate, translate and strafe actuators. The
outputs from the behaviors governing each of the
remaining eight actuators is combined with the movement
actuators using a union operator, and the resulting action
vector is sent to the FlexBot DLL on every program cycle,
as shown in figure 5.

Results
The compiled machine code for both Ledgewalker and
Groo are extremely efficient and stable. The bots run
concurrently with the Half-Life game server on the same

groo-move

flee

feed

fight

run-away

duck-behind-object

back-away

no-good-weapons

default-feed

charge

strafe

stand-&-fire

find-enemy

wander

turn-to-sound

unwedge

goto-ladder

follow-freespace

decreasing
priority

Figure 4 : Prioritization of Groo Movement Behaviors

Movement
Behaviors

rotate
translate

strafe

pitch
shoot

fire secondary
jump

switch weapon
reload
duck
use

Action

Figure 5 : Output Actuator Vector

physical machine. We have successfully run 32 bots, the
maximum number supported by the game engine, on one
machine under dedicated server mode, and 16 in listen
server mode. A dedicated server has no graphical
processing duties. Its only job is to provide a multiplayer
game that external players can connect to. A listen server,
on the other hand, is both a server and client, meaning that
a player is physically playing on it while it is also serving
external connections. In the latter case, the added load of
the graphics processing created too much lag as the
number of bots in the game increased.

The game engine updates its world model, including any
bots, once every 0.1 seconds. We have observed our bots
individually consuming 3ms per processing cycle.
Therefore, it is only using 0.3% of the CPU per bot.
Ultimately, the game engine is the bottleneck, not the AI.
Otherwise, the CPU could run over a hundred bots per
game. Each instance of the Ledgewalker bot only uses 436
bytes of memory during runtime, yielding a very small
footprint. The Ledgewalker code base was about 900 lines
of GRL code, which compiled to 1963 lines of C++ code.
The numbers were fairly similar for Groo, which had 800
lines of GRL code and 1600 lines of C++ code. Finally, the
mean time to failure of the system is very long. We have
successfully run the bots in dedicated server mode
continuously for over two weeks. In fact, during one test
run, the variable storing the number of kills for a bot
actually overflowed.

While we have not run any empirical studies similar to
(Laird and Duchi 00), anecdotal evidence seems to indicate
that Ledgewalker has succeeded in its goal of realistic
behavior to a certain extent. Some experienced Half-Life
players, including ourselves, have playtested the
Ledgewalker and Groo bots. The system was also
demonstrated at IJCAI-2001, where it was played by
several participants. In general, the reaction was positive.
Most players agreed that the bots did exhibit behaviors that
one would associate with a human player.

Conclusions and Future Work
The Ledgewalker and Groo bots are an attempt to create an
efficient control system that can exhibit human-like
behavior. Instead of using a traditional AI reasoning
system, we endeavored to utilize behavior-based
techniques from robotics. These techniques allow an agent
to track changes in the dynamic environment quickly, and
react within O(1) time to any relevant events. Behavior-
based systems are extremely efficient, as evidenced by our
ability to run up to 32 bots simultaneously and the small
memory footprint per bot. Anecdotal evidence appears to
suggest that Ledgewalker behaves like a human player, but
this needs to be verified through an empirical experiment.

However, behavior-based systems introduce their own set
of issues. Their greatest weakness is the the use of simple

propositional representations, which makes most reasoning
and planning tasks both difficult and clumsy. We propose
to incorporate variable binding and quantified inference to
Ledgewalker using role-passing (Horswill 98, Horswill
and Zubek 99), a deictic representation technique. This
extension to traditional behavior-based systems maintains
the efficiency of those systems while allowing us to
express control reasoning in a more reusable, taskable
fashion. We also intend to extend Ledgewalker into a
multi-agent research testbed utilizing HIVEMind, a multi-
robot architecture presently implemented on a robotic team
performing a search task.

Reference
R. Adobbati.; A.N. Marshall; A. Scholer; S. Tejada; G. A.
Kaminka.; S. Schaffer; C. Sollitto(2001) Gamebots: A 3D
Virtual World Test-Bed for Multi-Agent Research, In
Proceedings of the Second International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS,
Montreal, Canada.

R.C. Arkin(1998) Behavior-based Robotics. MIT Press.
Cambridge, MA.

J. Bates(1994) The Role of Emotion in Believable Agents.
Communications of the ACM, vol. 37, no. 7, pp. 122-125

I. Horswill(1998). Grounding Mundane Inference in
Perception. In Autonomous Robots, 5, pp. 63-77.

I. Horswill(1999). Functional programming of behavior-
based systems. In Proc. IEEE International Symposium on
Computational Intelligence in Robotics and Automation

I. Horswill and R. Zubek (1999) Robot Architectures for
Believable Game Agents. In Proceedings of the 1999
AAAI Spring Symposium on Artificial Intelligence and
Computer Games.

O. Khatib(1985) Real-time Obstacle Avoidance for
Manipulators and Mobile Robots, Proceedings of the IEEE
International Conference on Robotics and Automation, St.
Louis, MO, pp. 500-05

B. Krogh(1984) A Generalized Potential Field Approach
to Obstacle Avoidance Control, SME-RI Technical Paper
MS84-484, Society of Manufacturing Engineers,
Dearborn, Michigan.

J.E. Laird(2000) It Knows What You’re Going To Do :
Adding anticipation to a QuakeBot AAAI 2000 Spring
Symposium Series : Artificial Intelligence and Interactive
Entertainment, March 2000 : AAAI Technical Report
SS00 –02

J.E. Laird and J.C. Duchi(2000) Creating Human-Like
Synthetic Characters with Multiple Skill Levels: A Case

Study Using the Soar Quakebot AAAI 2000 Fall
Symposium Series : Simulating Human Agents, November
2000 : AAAI Technical Report FS-00-03

J.E. Laird and M. van Lent(1999) Developing an Artificial
Intelligence Engine. In Proceedings of the Game
Developers Conference, San Jose, CA 577-588.

J.E. Laird and M. van Lent(2000) Human-level AI’s Killer
Application : Interactive Computer Games. AAAI Fall
Symposium Technical Report, North Falmouth,
Massachusetts, 2000, 80-97.

N. Tinbergen(1951) The Study of Instinct. Clarendon
Press, Oxford, England.

