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ABSTRACT 

 

Implementing Efficient Joint Beliefs on Multi-Robot Teams 

 

Aaron Boo Boon Khoo 

 

In this report, I investigate the problem of coordinating multiple robots in a cooperative 

team activity. Many different approaches have been suggested for team coordination, 

ranging from swarm techniques to symbolic methods. I will propose a class of 

coordination protocols called broadcast-an-aggregate mechanisms and will describe a 

specific instantiation of this approach on a multi-robot control architecture called 

HIVEMind (Highly Interconnected Very Efficient Mind) which operates in the 

following way: 

• Each robot periodically broadcasts all its team-relevant data to its teammates. 
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• Team members base control decisions on shared situational awareness formed 

by aggregating all broadcast data from the team. 

HIVEMind allows near-instantaneous sharing of data between all team members. This 

lets the team respond in real-time to contingencies sensed by individual robots. 

Furthermore, HIVEMind robots can use role-passing inference to support limited real-

time symbolic reasoning over synchronized knowledgebases. This allows the use of 

more structured representations than conventional behavior-based systems, which in 

turn allows the team to be tasked and monitored in natural ways. All this is 

accomplished while using surprisingly little bandwidth. I will show that given the 

assumptions: 

• Relevant aspects of the environment change relatively quickly. 

• All team members must be informed of these changes in bounded time.  

• All team members must be able to detect if they are failing to receiving data in a 

timely manner from their teammates. 

the HIVEMind data sharing method is optimal in the sense that any communication 

scheme would have to transmit at least as many packets as it would.  I also will describe 

an implementation of HIVEMind used to coordinate a team of robots in variety of tasks 

involving systematic search of physical space.    
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Chapter 1 

Introduction 

In this report, I investigate the problem of coordinating multiple robots in a cooperative 

team activity. Coordinating a group of robots can be a very difficult problem. Getting 

one robot to carry out a task properly is hard enough; getting multiple robots to perform 

together in the real world can be like herding cats. Many different approaches have been 

suggested for team coordination, ranging from swarm techniques to symbolic methods.  

I will focus on the particular case of multi-robot teams that perform tasks where only a 

part of the team can observe changes in the environment, but all robots on the team 

should be informed of these changes. An example of this is a team that is assigned to 

capture an intruder in a building; the interior walls separate the robots from each other, 

but to search and trap the intruder effectively the team needs to work closely together. 

Coordination for these types of teams will depend on sharing data between teammates 

in a timely and efficient manner. 

I will propose a multi-robot control architecture called HIVEMind (Highly 

Interconnected Very Efficient Mind) that is based on a simple and effective 

coordination model: 

• Each team member periodically broadcasts all its data to the team. 

• Team members base control decisions on shared situational awareness formed 

by aggregating all broadcast data from the team. 
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HIVEMind allows near-instantaneous sharing of data between all team members; in 

essence, the robots are able to function as a sort of ‘group mind’ where all team 

members share a common situational awareness. This lets the team respond in real-time 

to contingencies sensed by individual robots without the need for complex negotiation 

protocols. In addition, HIVEMind robots are able to use role-passing inference to 

support a limited form of symbolic reasoning over the synchronized world 

representations. This allows the use of more structured representations than 

conventional behavior-based systems, which in turn allows the team to be tasked and 

monitored in natural ways. All this is accomplished while using surprisingly little 

bandwidth. I will show that given the assumptions: 

1. Relevant aspects of the environment change relatively quickly. 

2. All team members must be informed of these changes in bounded time.  

3. All team members must be able to detect if they are failing to receiving data in a 

timely manner from their teammates. 

the HIVEMind approach to data sharing is optimal in the sense that any other 

communication scheme must use as many packets as it. The HIVEMind architecture has 

been implemented on a team of physical robots that perform a variety of tasks involving 

systematic search of physical space.  



 

 

3

1.1 Coordinating robots 

1.1.1 Broadcast-and-aggregate  

Multi-robot teams often operate in dynamic, unpredictable and often unfriendly 

environments. In many cases, the robots on the team will not have the luxury of sharing 

a common physical space, i.e. they may be separated either by distance or physical 

objects. Each autonomous robot on a cooperating team therefore has its own limited 

view of the world. One way of coordinating such a team is to have the robots base their 

control decisions on a unified world model, i.e. the disparate world views from each 

robot are combined to form a single synchronized representation of the world. This 

unified world model would be identical across all robots and therefore form a shared 

situational awareness for the team as a whole. Each team member could then 

autonomously perform action selection based on this shared situational awareness. I call 

this approach the broadcast-and-aggregate coordination method. Robots using this 

coordination method share their team-relevant data with teammates and then the shared 

data is aggregated to form the unified world model on each local robot. The latter step 

(aggregation) is relatively simple once the data has been shared; finding an efficient and 

reliable mechanism for sharing data amongst distributed physical robots is the greater 

challenge.  
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1.1.2 Periodic data broadcasting 

I will argue that a good way of sharing data is by having each robot on the team 

periodically broadcast all its team-relevant data to the entire team. I will show that, 

under certain reasonable assumptions, this periodic data broadcasting technique is an 

optimal way of sharing data between team members. Furthermore, while this method 

appears costly, it is actually quite feasible given the present condition of wireless 

network bandwidth and multi-robot teams. The available bandwidth on modern 

commercial RF networks is fairly large in comparison to the amount of shared data on 

most implemented multi-robot systems (e.g. see [Balch and Arkin 1995], [Parker 1998], 

[Goldberg and Mataric 2000]). For example, a hundred robots communicating 1000 bits 

of data would only utilize approximately 1% of the theoretical bandwidth available on a 

commercial 802.11b wireless network. While the complexity of tasks achievable by 

multi-robot teams will no doubt increase in the future (resulting in a corresponding 

increase in the amount of communicated data), the constant factors are still in our favor. 

That is, an increase in either amount of communicated data or size of the robot team 

would result in a linear increase in bandwidth usage, but the quantity of available 

bandwidth is so much larger by comparison that it simply will not matter.  
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Figure 1.1: One of the Unmanned Ground Vehicles spots an enemy convoy 

 

 

 

 

Figure 1.2: Surrounding the enemy convoy as a team 
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1.2 Example 

Figure 1.1 shows a team of Unmanned Ground Vehicles (UGVs) on a search and 

capture mission. The UGVs must move through their assigned search space in a 

coordinated fashion. Moreover, the search is systematic – each team member attempts 

to avoid traversing an area that has already been searched by its teammates.  If an 

enemy convoy is encountered, the UGVs must surround the convoy (Figure 1.2). We 

assume there are intervening objects like buildings that prevent robots from having a 

clear view of the entire region (otherwise there would be no need to search for the 

target).  Consequently, the team must communicate to know what areas of space have 

already been searched and whether the target has been found. 

We can implement this task using broadcast-and-aggregate as follows.  Each robot 

shares the following information with its teammates: 

• Its current location (assume that the UGVs have GPS devices). 

• Whether or not it observes an enemy convoy. 

• The location of said convoy if it exists. 

Although numerous other protocols can be used for communication, the simplest way to 

achieve this task is to have each robot broadcast its shared data once per second.  

Assuming coordinates are represented as pairs of 32 bit values, this is only 129 bits of 

data, which will easily fit in a single network packet.  Moreover, a 1Hz update rate 

should be more than sufficient for this task.  A robot transmitting all 129 bits of data per 
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second would consume less than 0.001% of the available bandwidth on an 802.11b 

wireless network. So, ten UGVs, transmitting at 1Hz would not even make a noticeable 

impact on the network.  Even without more complicated protocols, this approach could 

support teams of well over a hundred robots for this task.  

 Having broadcast its data to the team, each robot then aggregates the data 

coming from the team to form a unified representation of the situation, e.g. the locations 

of all team members and the mean estimated position of the convoy.  This acts as a 

synchronized virtual sensor that provides real-time update of the situation. The 

aggregate model can then be used in conjunction with local sensor data to drive any of a 

range of control systems. 

1.3 Control and Coordination 

Not surprisingly, the choice of control systems used on a robot has a significant bearing 

on its internal representation of data.  In general, there are two broad classes of 

autonomous robot control systems: parallel-reactive (behavior-based) systems and 

symbolic reasoning systems such as planners or reactive planners. The two types of 

systems have complementary strengths and researchers have combined them 

successfully using different techniques. 
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1.3.1 Behavior-based systems 

Behavior-based systems use tight sensor-actuator integration to provide rapid response 

to changes in the environment.  These systems divide sensing, modeling, and control 

between many parallel task-achieving modules called “behaviors”. Most behavior-based 

systems are equivalent to feed-forward circuits, i.e. parallel networks of finite-state or 

zero-state computational elements linked by a series of fixed connections. In essence, 

these connections are wires connecting circuit nodes in the control system and carry 

data between those nodes. The downside is that behavior-based systems suffer from 

very limited representations, rendering most reasoning tasks clumsy and difficult to 

implement. Most current physical multi-robot systems are behavior-based in nature and 

hence inherit the problems of this approach.  

1.3.2 Symbolic Systems 

Symbolic (or deliberative) reasoning systems traditionally operate by performing search 

algorithms over a set of mutable graph structures in memory.  They are able to use far 

more flexible and expressive representations.  However, they are much more difficult to 

couple to sensors than behavior-based systems since the memory structures must 

somehow be updated and the search algorithms rerun as sensor data changes. Typically, 

these memory structures consist of beliefs (assertions in some appropriate logic) stored 

in a knowledge base, i.e. a database of beliefs.  It is generally left to the programmer to 

add domain-specific rules specifying when to update what aspects of the knowledge 
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base, which can lead to missed events. Behavior-based systems, on the other hand, 

typically update all their sensory inputs on every decision cycle, hence ensuring that the 

control system always uses fresh data.  

If ensuring consistency between a single robot’s knowledge base and the 

environment is difficult, then insuring consistency between the knowledge bases of an 

entire team of robots is even more difficult, since we effectively have a replicated 

database problem. Some researchers in the multi-agent community have proposed 

coordination protocols that guarantee hard synchronization of knowledge bases for key 

items such as team goals (e.g. [Cohen and Levesque 1990]). These coordination 

protocols enforce synchronization by blocking agents at key points during reasoning 

until all knowledgebases have been updated with identical joint beliefs, a process that is 

akin to the commit protocols used in database replication.  

1.3.3 Hybrid Systems 

Recognizing the complementary strengths of behavior-based and symbolic systems, 

researchers have attempted to combine the two, usually by layering one or more 

symbolic systems on top of a behavior-based system. However, tiered systems generally 

do not resolve or really even address the knowledge base synchronization issues 

discussed above.  Layering these two disparate techniques creates two different 

representations of beliefs on a single robot. The behavior-based layer retains its circuit-

semantic representation, while the symbolic system still relies on a separate 
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knowledgebase of logical assertions. On a multi-robot team, synchronizing the joint 

beliefs in all layers of the control system is still a very challenging problem.  

An alternative to layering symbolic and behavior-based systems is to find ways 

of extending behavior-based systems to support more flexible representations while 

retaining the tight sensory-motor coupling of circuit semantics. 

The main weakness of behavior-based systems is that their representations are 

essentially propositional: they have difficulty expressing predicate/argument structure 

and other kinds of variable binding.  “Deictic” or “indexical-functional” representation 

[Agre and Chapman 1987] is an attempt to mitigate this problem by using perceptual 

attention as a form of variable binding. Roughly, the idea is that if a sensory tracker is 

presently tracking one object, it cannot be tracking any other; hence the object it is 

tracking is “bound” to the sensory tracker.  Role-passing [Horswill 1998] is a form of 

deictic representation that provides a finite set of indexical names (typically linguistic 

roles such as agent, patient, source, destination, etc) that can be dynamically bound to 

different objects through sensory attention; when a sensory tracker is assigned to an 

object in the world, the tracker is tagged with the role to be bound to the object. 

The advantage of role passing is that it allows inference rules to be compiled 

into code that looks like a behavior-based system.  The extension of a unary predicate, 

i.e. the set of objects for which the predicate is true, can be easily represented in role-

passing using a bit-vector with one bit per role.  We can then compile forward-chaining 

Horn clause inference into fast, feed-forward Boolean networks [Horswill 1998] whose 
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inputs are driven by the sensory systems and whose outputs drive the inputs of low-

level behaviors.  The network changes these outputs continuously as the sensory data 

changes, allowing behavior-based systems to represent predicate/argument structure 

while retaining the responsiveness of circuit semantics. 

The HIVEMind architecture supports the use of role-passing on world models 

formed using broadcast-and-aggregate coordination. This allows robots to use flexible 

representations, real-time inference, and tightly synchronized knowledge bases.  

Moreover, the compactness of the bit-vector representations used in role passing further 

reduces communication bandwidth. It is, to our knowledge, the only implemented 

system for general, automatic knowledge base synchronization of robot teams. 

1.4 Summary of Results 

This report makes four contributions: the broadcast-and-aggregate method of 

coordination, a new way of incorporating structured representations into multi-robot 

teams, the HIVEMind architecture itself and a HIVEMind implementation running on a 

team of robots. 

1.4.1 Broadcast-and-Aggregate Coordination Method 

Under the broadcast-and-aggregate method, each robot makes its control decisions 

based on a world representation that is synchronized across all team members. The 

synchronized world model is formed by aggregating the individual world 
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representations of each robot. This technique continually maintains a shared situational 

awareness among the robots and allows team members to react appropriately in real-

time to any contingencies. I will argue that it is a feasible approach given the current 

state of available network bandwidth and multi-robot systems, and furthermore, may be 

implemented using very simple data sharing methods.  

1.4.2 Structured representations in multi-robot teams 

Role-passing manages to marry symbolic reasoning and the performance characteristics 

of conventional behavior-based systems in a unified architecture. It is a form of deictic 

representation that provides the system designer with a finite set of domain independent 

indexical variables or roles. These roles can be dynamically bound to objects through 

the sensory system. For example, the role target could be first bound to a color blob 

tracker that is presently following a green target and then later to a pyro-electric sensor 

detecting the body heat of a target. The inference rules in the robot’s control system can 

access the information provided through this role without having to know the origin of 

this data. This allows behavior-based robots to use more expressive representations and 

hence more general inference rules. We took advantage of this in the implementation of 

our robot team to reuse rules that were common to multiple tasks and to create a limited 

natural language interface for the human user that tasked the robots.  

 Another significant advantage of this approach from the context of multi-robot 

communication is that the representations used in role-passing are extremely compact. 
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For example, all unary predicates (e.g. see(X)) can be represented in just 32 bits. This 

further reduces the amount of bandwidth usage necessary for team coordination and 

therefore makes the broadcast-and-aggregate approach more attractive.  

1.4.3 HIVEMind architecture and implementation 

HIVEMind was designed using both the efficient broadcast-and-aggregate technique 

and the role-passing architecture. As such, it has a number of advantageous 

characteristics. The HIVEMind robots: 

• are able to efficiently maintain a shared situational awareness; when a team 

member detects a contingency, other members are immediately informed and 

respond quickly without the need for negotiation protocols.  

• have greater representational power and flexibility in their control systems than 

conventional behavior-based systems. 

• can dynamically subtract or add members of the team at run-time. If a robot has 

a complete or communication failure, the rest of the team will detect it in 

bounded time, and carries on without that team member. On the other hand, if a 

new robot joins the team or an old teammate has its communication restored 

after some downtime, it will quickly be brought up to speed and be a fully 

functioning member of the team.  

• can be heterogeneous, both in their software control and physical design.  
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The HIVEMind architecture was implemented on a team of physical robots that 

performed a set of coordinated systematic search tasks. The robots were controlled by a 

human commander through the use of a console that had a limited natural language 

interface and status displays that indicate the present state of the team. The robots were 

successful in cooperatively performing the complex tasks they were assigned while 

using very little of the available network bandwidth.  

1.5 Structure of the Report 

Chapter 2: Multi-Robot Coordination through Broadcast-and-Aggregation. This 

chapter discusses the broadcast-and-aggregation model of coordination in detail and 

describes techniques for implementing this approach. It also explores techniques for 

extending this approach as the number of robots and shared data increases.  

 

Chapter 3: Behavior-based systems. This chapter starts with a brief overview of 

behavior-based systems. Then, I discuss in detail the virtual wires coordination model 

inherent in such systems. I also examine some existing multi-robot behavior-based 

systems in the context of the virtual wires model and describe how this technique can be 

implemented using broadcast-and-aggregation. Finally, I conclude with a discussion of 

the shortcomings of behavior-based techniques.  
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Chapter 4: Symbolic reasoning systems. A brief overview of symbolic systems, their 

advantages and disadvantages, as well as some techniques for implementing such 

systems on physically embodied robots. 

 

Chapter 5: The HIVEMind architecture. This chapter begins with a discussion of deictic 

representation in general and role-passing in particular. Then, it describes the 

HIVEMind architecture, including a general overview of the approach and the 

assumptions of the architecture. The key advantages of this architecture, as well as its 

possible shortcomings, are also discussed.  

 

Chapter 6: The Experimental System and Environment. This chapter describes the 

robotic team used in the HIVEMind experiments, the environment in which they ran, 

and the tasks which they performed.  

 

Chapter 7: Design of a robot using HIVEMind. This chapter describes in detail all 

components of the system implemented on the robots, including the sensory processes, 

the color blob tracker, the localization system, the inference rules and the HIVEMind 

implementation.  

  

Chapter 8: Tasks implemented using HIVEMind. This chapter discusses the results of 

the experiments performed with the HIVEMind robot team described in chapter 6.  
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Chapter 9: Other Multi-Robot Controllers. A brief discussion of multi-robot control 

systems that fall under other categories, e.g. swarm techniques. 

 

Chapter 10: Discussion and Future Work. This chapter contains some discussion on 

aspects of the HIVEMind architecture and some directions for future work.  
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Chapter 2 

Multi-Robot Coordination through Broadcast-

and-Aggregation 

This report focuses on robot teams that have the following characteristics: 

• The robots operate in a dynamic environment where changes occur frequently. 

• A given change may only be detectable by a few robots, or even just one. 

• All robots nevertheless need to be aware of the changes in order to properly 

carry out the task.  

In this chapter, I will propose a class of coordination mechanisms for such teams known 

as broadcast-and-aggregate mechanisms. These coordination mechanisms generate a 

unified world model across all robots on the team, enabling them to have a shared 

situational awareness that can be used to make effective control decisions. I will also 

explore different protocols for sharing data on physical robot teams and argue the 

simple method of periodic data broadcasting actually suffices for coordinating robots. 

My goal is to convince the reader that using periodic data broadcasting for 

communication in a broadcast-and-aggregate coordination method is both a feasible and 

efficient way of maintaining shared situational awareness between robots. 
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2.1 Broadcast-and-Aggregate Coordination 

Cooperative robot teams often have to face the characteristics of physical space 

(obstacles or dispersion over a large area) and the limitations of their sensory systems; 

this results in each team member having their own partial view of the world, i.e. some 

changes in the environment are observed by only a part of the team.  

These disparate world models pose some challenges for coordination, since each 

team member has a different representation of the world. One way of coordinating the 

robots is to establish a single, unified world representation across the team. I propose to 

accomplish this by using the broadcast-and-aggregate coordination mechanisms. This 

approach creates a synchronized world representation on every robot by aggregating the 

shared data from all team members. Each robot can then autonomously make 

appropriate control decisions based on that team-synchronized view of the environment.  

2.1.1 Aggregating Shared Data 

In a team with n members, each aggregate datum ji is determined by combining the 

values of shared data bi1, bi2,…., bin from robots 1 through n using some aggregation 

function fi: 

 ( )iniiii bbbfj ,......,, 21=  

If the shared data bik are propositional values, then the aggregation function f could be a 

Boolean operator, such as OR or AND. As an example, an OR operator could be 

interpreted as the team believing some proposition ji if and only if at least one member 
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of the team had evidence for it. In more complicated cases, fuzzy logic or Bayesian 

inference could be used.  Real-valued quantitative data is likely to require task-specific 

aggregation.  Some examples: 

• The team is assigned to scout an area and report the number of enemies 

observed. Each team member has a slightly different count of enemy troops. In 

this case, the best solution is probably to average the disparate counts.  

• The task is “converge on the target”. Each robot’s sensors report a slightly 

different position for the target. In this situation, it appears to make sense that 

each team member rely on its own sensor values to track the target and only rely 

on other robots when the robot’s own sensors are unable to track the target, e.g. 

the target is out of sight. 

Ultimately, it is unlikely that there can be a general theory for aggregation functions. As 

researchers and developers create more multi-robot systems, we will understand how to 

better combine inputs from different robots and should be able to construct a toolkit 

containing the most commonly used aggregation techniques for others to reuse.  

 Since the world representation is synchronized across all team members, the 

aggregate values have to be known at all robots. This can be accomplished either by 

sharing the data with all teammates and applying the reductions locally, or sending the 

data to a central location and then transmitting the aggregate values back to the 

individual robots. 
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Figure 2.1: Implementing team-see-blue-object? using broadcast-and-aggregate 

2.1.2 Example of Broadcast-and-Aggregate coordination 

Figure 2.1 shows a simple example of two cooperative robots coordinating using the 

broadcast-and-aggregate method. In this example, a two robot team is looking for some 

blue colored target object. Both robots have a Boolean perceptual output from their 

sensory systems, see-blue-object?, whose current value is shared with their teammate. 
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This shared data is aggregated with the local percept value using an OR-operation to 

generate a new signal: team-sees-blue-object?. This new output is then passed to the 

rest of the control system for processing. 

2.2 Data sharing in distributed robot teams 

Before the team-relevant data can be aggregated, it has to be shared between teammates. 

In this report, I will assume that this sharing is achieved through explicit 

communication between robots. Many different techniques for data sharing have been 

used, ranging from simple broadcast mechanisms to reliable remote procedure call 

mechanisms.  I will argue here that minimalist approaches based on broadcasting at 

regular intervals is, in fact, an efficient and simple way of sharing data between team 

members.  

2.2.1 A model for data sharing 

Before comparing mechanisms for data sharing, we first need to specify what we mean 

by “data sharing”.  Here the relevant aspects of the task are that: 

• Data needs to be shared with all team members 

• That data is time-varying: team members must be continually updated as the 

data changes. 

We will refer to any time-varying data item as a signal and represent it as a function 

from time to the current value of the signal. 
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Figure 2.2: The communication model 

As said I previously, sharing a signal necessarily involves transmitting its value to 

teammates (Figure 2.2).  At least for the foreseeable future, communication is likely to 

take place over some sort of packet-switched network such as the IEEE 802.11 

standard.  Here the simplest case is where the signal is piecewise constant.  There will 

then be discrete events where the signal changes discontinuously and so the robot 

possessing the signal will be required to transmit updates to its teammates (Figure 2.3).  

However, transmission takes time and those update packets can be lost, resulting in 

delay or even complete breakdown of sharing. 

 

Figure 2.3: Sharing a piecewise continuous signal 

Because of these complications, I will adopt a “PAC” definition of sharing: a robot will 

be said to successfully share its signal with a group if group members always have a 

probably almost current value for that signal: 
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Definition 1: A team R shares a signal S with lag ε and reliability p if with 

probability at least p, for all time points t and team members r∈R: 

 ∃ ∆t < ε s.t. r knows S(t-∆t) at time t 

Here the lag parameter ε is a measure of the degree of synchronization of the team and 

the probability parameter p is a measure of the reliability of that synchronization.  It is 

important to remember that synchronization guarantees must always be probabilistic 

because of the unreliability of communication.  They must also involve non-zero lag 

because of the finite bandwidth and latency of real communication channels as well as 

of packet loss. 

 This definition gives us an immediate lower bound on communication for 

sharing in the absence of prediction: 

Proposition 1: Let R be a set of robots, each of which shares an unpredictable 

signal Sr, r∈R with the group.  If c > ε is the mean period between changes for a 

given signal, then on average the robots must exchange at least o(|R|/c) packets 

per unit time to share the signals. 

Proof: Consider two arbitrary robots r and r’.  Since Sr is unpredictable, then in 

order for the group to share signal Sr, r’ must always receive an update from r 

within ε time units of a change in Sr.  If c>ε, then on average, r must transmit at 

least 1/c packets per unit time, simply to keep r’ synchronized with Sr.  Since 
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there are |R| robots and signals, the minimum average number of packets then 

required to keep r’ in sync with all signals is 
1R

c
−

, or o(|R|/c). 

In principle, this bound can be overcome in the special case where the signals can be 

accurately predicted.  In this case, all receivers can predict the value of the signal from 

past values and the sender (who can also perform the prediction) need only transmit 

updates when the prediction is incorrect.  However, even in this case, prediction is only 

likely to save a constant factor, and so the asymptotic bound still applies. 

2.2.2 Mechanisms for sharing signals  

There is a very broad space of protocols that one can use for sharing data. One class of 

such protocols is event-driven communication, where communication is used only when 

necessary, e.g. when the values of the shared signal changes.  

Another class of protocols takes a simpler approach: the value of the shared signal is 

broadcast to the entire team at regular intervals. I call this approach periodic data 

broadcasting.  

Proposition 2: If c > ε is the mean period between changes for signals Sr, r∈R, 

then each robot r periodically broadcasting the value of Sr at intervals of ε 

suffices for a team R to share the signals.  

Proof: Since the transmitter broadcasts packets every ε time units, it is 

guaranteed to broadcast a packet within ε time units of a given change.  
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Therefore, if p is the probability of packet loss, then every receiver is 

guaranteed to have lag less than e with probability > p. 

This approach is equivalent to sampling a signal Sr at some given rate, which is 

appropriate given our model of shared data as a set of signals. To reconstruct the 

underlying signal at the receiving end, the sampling has to be performed at a fast 

enough rate, i.e. broadcast to the team at appropriate intervals. In this case, the lag 

parameter ε determines the periodicity of sampling or periodicity of broadcasts in order 

to share S.  

Proposition 3:  The periodic data broadcasting technique for sharing a signal is 

optimal up to a factor of 
ε
c  in the number of packets transmitted per unit time.  

Proof: A robot r needs a minimum of 1/c packets per unit time to share a signal 

Sr with robot r’. The periodic data broadcasting technique generates 1/ε packets 

per unit time. Therefore, this technique is 
c/1

/1 ε  or 
ε
c  times the optimal amount 

of packets necessary to share a signal.  

Furthermore, if robots on a team have signals S1, S2, …, Sn, and their respective mean 

periods between changes c1, c2, …, cn > ε, then each robot can share the signals by 

periodically broadcasting a single packet with all the current values of S1, S2, …, Sn. 

This improves efficiency by a significant constant factor, since there is no longer any 

need to send individual packets for each signal.  
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2.2.3 Failure awareness 

Again, packet loss requires that any sharing guarantees be only probabilistic.  Sharing 

breakdown is inevitable.  However, different protocols vary in the way they cope with 

breakdown. 

Definition 2: Suppose a group of robots share a signal S that is transmitted by 

robot r.  A robot r’ is Receive Failure Aware (RFA) if it can determine whether 

its current lag for S is greater than ε.  Robot r is Transmit Failure Aware (TFA) 

if it can determine whether another robot’s current lag for S is greater than ε.  

It is useful to have a robot team that is RFA and TFA when team members are sharing 

data continuously. After all, the first step to solving a problem is to be aware that it 

exists. Both RFA and TFA can be easily implemented in the context of the periodic data 

broadcast technique discussed in the previous section.  

 RFA can be easily implemented by having the robot maintain a last-heard-from 

timestamp for each of its teammates. Every time a packet is received from a teammate, 

this timestamp is updated to the current time. If no new packets arrive from one or more 

team members, the robot can notice that the timestamp(s) are now stale and take 

appropriate action. Note that RFA cannot be easily implemented by a purely event-

driven communication model. Robots have no way of distinguishing between no events 

happening (which would generate no new packets) and a communication failure (which 

would prevent sent packets from getting through).  
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 TFA can be implemented by attaching the last-heard-from timestamp value 

for all teammates in outgoing packets. This essentially acts as an acknowledgement 

message for senders. A robot can check the last-heard-from timestamp that its 

teammate is maintaining for it; if that value is not being updated, then that teammate is 

failing to receive the robot’s transmissions.  

Proposition 4: Any communication scheme that is RFA has to send at least as 

many packets as the periodic data broadcasting technique. 

Proof: Two robots r and r’ are sharing data using some protocol is that RFA, but 

transmits less packets than the periodic data broadcasting technique. Consider 

the situation where r has no new data to share and the situation where r 

transmits a packet that is lost; in both cases, the input to r’ is exactly the same, 

i.e. r’ receives no new transmissions from r. The deterministic failure detector 

on r’ has to map this input to one of two possible outputs: there was or was not a 

packet reception failure. Either way, one of the situations will be mapped to the 

wrong output. Therefore, the input to the failure detector has to be changed for 

one of the two situations. The latter situation (the packet fails to arrive) cannot 

be changed, so we should modify the former situation instead: r’ should now 

expect to receive a packet from r at least every ε time, whether or not new data 

exists. This way, there are two different inputs to the failure detector (a packet 

has or has not arrived) that can be clearly mapped to two different outputs (there 

has or has not been a reception failure). Note that this is identical to the 
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communication scheme specified by the periodic broadcasting technique, 

therefore periodic data broadcasting sends the minimum number of packets in 

order for a scheme to be RFA.  

2.2.4 The feasibility of periodic broadcast 

While periodic broadcast appears to be an effective way of sharing data, the approach 

raises obvious questions about the cost of communication. Specifically, would 

periodically sending all shared data overwhelm the bandwidth available for 

communication? As the discussion below shows, the answer is a resounding “No”.  

Most implemented multi-robot systems only share ten kilobits of data or even less per 

robot. Some typical examples: 

• [Balch and Arkin 1995] present a team of robots that perform foraging, 

consuming and grazing tasks. The robots could communicate in two active 

modes: state communication, where one bit of data indicated whether a robot 

was in a particularly state and goal communication, where two bytes represented 

the location of a target.  

• A robot using the Alliance architecture [Parker 1998] periodically broadcast a 

statement of their current action; its teammates could use this information to 

determine their own courses of action based on concepts of impatience and 

acquiescence. It is possible to represent up to 256 different actions in a single 

byte of data.  
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• [Goldberg and Mataric 2000] describe a pack of robots that cooperatively 

foraged for pucks. If a robot with higher precedence is delivering a puck, the 

others are supposed to wait until it completes before they proceed. A robot can 

inform its teammates that it is delivering a puck by transmitting its priority 

value, which can be represented in a few bits.  

Of course, there are exceptions to this rule. Collaborative map-building robots that 

generate occupancy grid maps, for example, have to communicate their current version 

of the map to teammates; this can be fairly expensive, depending on the granularity and 

total size of the map. Specialized bulk protocols can be used for high bandwidth 

applications like collaborative mapping or transmitting a video feed to an Operator 

Control Unit (OCU). 

 Ignoring any overhead costs, 1000 robots transmitting 1000 bits of data at one 

hertz would use 1Mbs of network bandwidth. In comparison, the IEEE 802.11b 

specification for wireless networks provides up to 11Mbps of bandwidth1. Therefore, 

the robots would only use approximately 10% of the available bandwidth. Even 

assuming available network bandwidth never increases in the future (an unlikely 

prospect), the total amount of shared data for the team could theoretically increase 

                                                 

1 Of course, the full theoretical bandwidth of the network is generally not achievable in 

practice; however, the bandwidth achievable in practice still far outstrips what is needed 

for most existing multiple robot teams.  
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fivefold and there would still be sufficient bandwidth available. I believe it is safe to 

say that for the foreseeable future, the amount of available network bandwidth will far 

outstrip the amount of shared data for most implemented multi-robot systems.  

2.2.5 Simulation results for periodic broadcasting  

I ran simulations of a robot communicating a significant event to its teammates. The 

probability of a message arriving intact at a given destination/robot was varied between 

0.1, 0.5 and 0.9, representing different network conditions. Each simulation was run 

1000 times for different team sizes to determine the mean and standard deviation of the 

number of broadcasts needed for all team members to be informed of the event. The 

results are shown in Figures 2.4 through 2.9. 

Figures 2.4 and 2.7 show that, when network conditions are good (90% of 

messages reach their intended recipients), the number of transmissions needed to update 

the entire team does not go up by much as the team size increases. On the other hand, 

when conditions are bad, as in Figures 2.6 and 2.9, then data takes a very long time to 

propagate through the team. However, it should be noted that this is a problem faced by 

all coordination protocols with explicit communication, i.e. noisy or congested 

mediums will be a difficulty for any team that uses communication to coordinate their 

activities.   
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Figure 2.4: Small robot teams, 0.9 message arrival probability 
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Figure 2.5: Small robot teams, 0.5 message arrival probability 



 

 

32

-5

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Number of robots

N
um

be
r o

f t
ra

ns
m

is
si

on
s 

to
 

co
nv

er
ge

nc
e

 

Figure 2.6: Small robot teams, 0.1 message arrival probability 
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Figure 2.7: Large robot teams, 0.9 message arrival probability 



 

 

33

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

Number of robots

N
um

be
r o

f t
ra

ns
m

is
si

on
s 

to
co

nv
er

ge
nc

e

 

Figure 2.8: Large robot teams, 0.5 message arrival probability 
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Figure 2.9: Large robot teams, 0.1 message arrival probability  
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The message delivery model used in this analysis assumes that messages are 

independent and have identical distributions. However, researchers have shown that loss 

characteristics for most wireless networks are not independent across packets (e.g. see 

[Eckhardt and Steenkiste 1996]), i.e. a lost message is generally followed by the loss of 

several subsequent transmissions. A more thorough analysis of data propagation within 

a team should use take into account these error models.  

2.3 Extensions to the data sharing discussion 

The discussion on data sharing has implicitly assumed two points: 

• All robots are within transmission range of each other 

• All shared data can be fit into a single communication packet 

Obviously, these two assumptions will not always be true. As the number of robots on 

the team increase beyond a certain size, it might simply not be possible or even 

desirable to fit all robots on the team into a constricted physical space. The Lucent 

Orinoco Silver cards used by the robots in my experiments have an effective 

communication distance from around 160m at 11Mbps up to about 550m at 1Mbps in 

an open environment. The robots might well be spread out over an area larger than this, 

so some team members could be positioned beyond the maximum effective 

communication distance from each other. Furthermore, as the tasks performed by robots 

become more complex, the amount of shared data will also grow correspondingly.  The 

broadcast-oriented UDP protocol currently used by the robots has a maximum data size 
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of 1024 bytes. While presently sufficient, it is possible to imagine tasks where the 

robots have to share more data than this limit.  

2.3.1 Communication over a large geographic area 

The Mobile Ad Hoc Networking (MANET) community is concerned with collections of 

mobile nodes that are dynamically located and where the interconnections between the 

nodes are capable of changing at a moment’s notice. MANET researchers have created 

a number of routing protocols designed to establish communication routes between two 

nodes so that messages can be delivered in a timely manner [Royer and Toh 1999]. 

These routing protocols could be used to connect robots that are spread out over a large 

area.   

Clustering protocols are one example of such a routing scheme. These protocols 

group nodes (or, in our case, robots) into clusters based on proximity, and perform 

hierarchical routing between these clusters. Many clustering protocols establish a leader 

for each cluster and utilize gateway nodes for inter-cluster communication ([Baker and 

Ephremides 1981], [Basagni 1999], [Chiang et al. 1997]). Other clustering protocols 

take a more distributed approach to cluster management (e.g. see [Lin and Gerla 1997]). 

[Streenstrup 2000] provides an overview of many different clustering protocols. In 

general, the robot team designer can select an appropriate routing protocol based on the 

needs of the application.  
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Figure 2.10: Cluster protocol for communication 

The clustering protocol partitions the robot team into a reduction tree or prefix scan 

communication structure. In most cases, the aggregation functions used to generate the 

synchronized world representation are associative and commutative operations, e.g. the 

bitwise OR and AND functions used to combine propositional values, MIN, MAX, 

MEAN, etc. This allows the natural use of prefix scans as a communication structure for 

sharing data across a dispersed robot team. Sometimes, the aggregation function will 

not be an associative reduction operator, e.g. when the aggregation function is a voting 

mechanism. However, the prefix scan approach can still be used if the output of the 

aggregation function were changed appropriately. For example, instead of returning the 

top vote-getter, the aggregation function returns a vector containing the number of votes 
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for each option. This effectively changes the aggregation function into a vector 

summation operation, which is associative and commutative, and can be easily 

implemented using prefix scans.  

 The use of reduction trees slows down the rate at which the robots are 

synchronized. Within a cluster, assuming no communication failures, robots are 

synchronized within one communication cycle. It would require o(log n) time for all 

clusters to be synchronized, where n is the number of robots in the team.  

2.3.2 Sharing large amounts of data 

There are several different options for getting around the problem of data being too 

large to fit in a single communication packet. One simple approach is to split the shared 

data into multiple packets; each packet has an associated source robot ID and sequence 

number. This approach is implemented in the HIVEMind architecture discussed in 

Chapter 5, although it is a feature that has not been needed for the tasks implemented so 

far.  

Another possibility is to simply let the network layer handle the problem 

through IP fragmentation or IP segmentation. The Internet Protocol (IP) has a 

Maximum Transfer Unit (MTU), which is the largest size of datagram that can be 

transferred using a data link connection. IP packets that are larger than the MTU size 

are cut up into smaller fragments by the network layer. The final receiver can then 

reassemble the parts using information in the IP packet header. Of course, the larger the 
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original packet, the greater the likelihood that the packet will reach its destination 

corrupted. This could necessitate the data being resent or result in information loss.  

  A more sophisticated approach is the use of sparse vectors. Rather than 

unreliable broadcast, this technique calls for multiple point-to-point connections with 

acknowledgement messages. The sender maintains a list of acknowledgements from 

receivers indicating what data they received and when it was received. Then, in the next 

communiqué, the sender only transmits the data that has changed since the 

acknowledgement from the receiver. This approach is effective when there is a lot of 

shared data, but most of it does not change very often.  

2.4 Limitations of the communication model 

The communication model described in Section 2.2.1 guarantees convergence for 

shared signals, i.e. if the system is allowed to run to quiescence (the signal is no longer 

changing), then all parties have the same value for the signal.   

 This convergence property, while convenient and useful, can lead to problems 

for some applications. This approach is analogous to timestamp locking in distributed 

databases [Gray and Reuter 1993] which guarantees convergence and identical end 

states on the different nodes of the system (in our case, data on robots) in a simple and 

efficient manner. Applications that only require convergence, such as Lotus Notes, the 

Internet name service and many email systems, use timestamp locking techniques to 

achieve synchronization.  
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Figure 2.11: Observation of events leading to state transitions 

However, since only the latest received values are stored, timestamp locking does not 

guarantee that transmitted data will be stored in any particular order or that they will 

even be stored at all. If a message arrives later than one that was sent after it, then that 

message is simply discarded. This phenomenon is known as the lost update problem 

and may result in problems if the application depends on communicated data being 

applied in some specific order. One example of the lost update problem is the 

following: Suppose that the robots share the values of see(eventA) and see(eventB). 

Event A should occur before Event B, e.g. Event A could be “see enemy at point A” 

while Event B could be “see enemy at point B”. Upon the observation of Event A by a 

member of the team, all robots should make a transition into State1. Then, when Event 

B is observed, the robots will transition into State2. Since the underlying protocol is 

unreliable, one of the following situations could occur: 

• The observation of Events A and B could be sent and received in the proper 

order.  
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• Event A could be received properly, but Event B is dropped for at least some 

of the robots, leaving some of the robots trapped in State1. 

• Event B is received before Event A, leading the latter to be discarded (since 

Event B was actually sent after Event A). The robots never even transition into 

State1.  

2.4.1 Transaction processing 

A stronger alternative model for data sharing is transaction processing protocols. 

Regular databases use an ACID (Atomicity Concurrency Isolation Durability) 

transaction model which guarantees that: 

• Any updates (i.e. transmitted data) are stored at every node (robot) or not at all.  

• Updates are stored in exactly the same order at every node.  

Each update is treated as a transaction that is stored using a Two Phase Lock and 

Commit [Bernstein, Hadzilacos and Goodman 1987]. This is the strongest solution to 

the lost update problem; essentially, using this approach would be tantamount to 

treating each robot as a database and performing data replication across them. 

Unsurprisingly, this approach has much higher overhead costs than timestamp locking. 

Furthermore, [Gray et al. 1996] have illustrated numerous problems associated with 

database replication; eager replication techniques can lead to an abundance of deadlocks 

while lazy replication can lead to inconsistencies between databases.  
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2.4.2 Reliable communication protocols 

An alternative would be to share data reliably from a networking point of view, hence 

ensuring all packets arrive and are in the right order. In this case, communication could 

be achieved through the use of reliable protocols such as the Transmission Control 

Protocol (TCP) or Scalable Reliable Multicast (SRM) [Floyd et al. 1997]. These 

protocols will account for dropped packets and ensure that messages from a particular 

source always arrive in order. However, it is still possible to lose messages in temporary 

communication blackouts that can cause the protocol to timeout and give up. 

Furthermore, unlike transaction processing, TCP will not guarantee that an update 

happens at all robots or not at all, i.e. there is no rollback functionality. Suppose 

communication fails temporarily on one or more team members and the rest of the team 

continues transmitting and receiving packets. When communication is restored, a subset 

of the team is now out of synch with the remainder for whom there was no break in 

communication. Under transaction processing, updates would not have been applied 

unless all team members received them; reliable transmission protocols, however, 

generally have no such provision.  

2.4.3 Sharing state 

Perhaps the solution lies in the form of the data that is being communicated. The data 

being sent in the example above represents fleeting events; hence, the propositions that 

represent them are true only for a short time. If the packet that carries the TRUE 
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instance of the proposition is dropped or delayed, then at least some robots on the 

team will never know that the events have occurred. So, instead of transmitting state 

transitions, a better technique would be to transmit the state itself. That is, rather than 

sending the beliefs “see enemy at point A” and “see enemy at point B”, the robots 

should communicate “seen enemy at point A” and “seen enemy at point A and B”. This 

approach is tolerant of dropped or delayed messages since in many cases only the most 

recent robot state matters; since the robots are continually rebroadcasting the current 

signal values, the proper state will eventually reach all team members even if some 

packets are dropped. Transmitting their current state rather than observed events will 

allow the robots to exploit unreliable protocols that are use less network bandwidth and 

hence be more efficient.  

2.5 Implementing data sharing on physical robots 

In this section, I will discuss using specific protocols to implement the periodic data 

broadcasting technique. The focus again is to use methods that use as little bandwidth as 

possible while being able to share data among the robots in a timely manner. 

2.5.1 Event-driven communication using reliable protocols 

Many current physical robot teams use an event-driven communication mechanism over 

TCP links to share data. This is actually a fairly expensive way of sharing data. First, 

TCP has considerable overhead costs, especially in relation to the (generally) small 
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amounts of data being shared. Second, TCP is a point-to-point protocol, so each robot 

must maintain a separate TCP connection for each teammate on the team.  

Proposition 6: Let R be a set of robots, each of which shares an unpredictable 

signal Sr, r∈R with the group.  If c > ε is the mean period between changes for a 

given signal and the robots share data using the standard TCP protocol, then the 

robots must exchange at least o(|R|2/c) packets per unit time to share the signals. 

Proof: A robot r has to maintain |R|-1 TCP connections for communication, i.e. 

each time Sr changes, it has to send at least |R|-1 packets (one for each 

teammates). Since c>ε, then on average, r must transmit at least 
c

R 1|| −  packets 

per unit time to keep the rest of the team synchronized with Sr. Since there are 

|R| robots and signals, the minimum average number of packets per unit time is 

therefore 
c

RR |||| 2 − , or o(|R|2/c).  

This is considerably more costly than the lower bound of o(|R|/c) for sharing signals (by 

Proposition 1).  

2.5.2 Periodic broadcasting using unreliable protocols 

An alternative approach would be to use an unreliable broadcast protocol, e.g. non-

blocking broadcast-oriented User Datagram Packets (UDP), to send the messages to 

teammates. The primary advantage of such protocols is that they require less overhead 
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than reliable protocols. The disadvantage, of course, is that packets could arrive out 

of order, be duplicated or even be completely dropped.  

 A partial remedy is to attach a timestamp to each outgoing message. When a 

packet is received by a robot, the timestamp is checked against the last timestamp stored 

for the source of that packet. If the current packet has a later timestamp, its contents 

replace the old values; otherwise the packet is simply discarded. Dropped packets are 

simply ignored and not resent. This suffices to implement data sharing since the 

definition of data sharing only requires team members to have accurate current data, so 

older values may simply overridden or even dropped/ignored. 

In contrast to the expensive event-driven model discussed in the previous section, an 

implementation of the periodic data broadcasting technique using an unreliable protocol 

like non-blocking broadcast-oriented UDP is 
ε
c -optimal in the number of packets per 

unit time (by Proposition 3). In fact, this approach is optimal among RFA systems (by 

Proposition 4). In addition, the overhead cost of a protocol like UDP is generally much 

lower than TCP, resulting in large constant factor savings in bandwidth per message 

sent. So, this approach is, in fact, a much more efficient data sharing mechanism. 

Finally, as I pointed out in the previous section, the main weakness in this approach (i.e. 

dropped packets) can be alleviated in most applications by sharing state rather than 

observation of specific events.  
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Chapter 3 

Behavior-based systems 

3.1 Overview of Behavior-based Systems 

The control systems of behavior-based robots [Arkin 1998] consist of a set of behaviors 

that are tightly coupled to the sensory and actuator components of the robot. Some 

behavior-based systems are biologically inspired (e.g. [Arkin 1989b], [Beer, Chiel and 

Sterling 1990]), while others are built using a bottom-up, experimental approach (e.g. 

[Connell 1989], [Ferrell 1994]).  

 The term “behavior” is somewhat vaguely defined in the robotics literature. For 

example, a behavior can be a simple feedback loop that measures the difference 

between its goal and the current state of the world, and produces an output value that 

attempts to compensate for this difference. A behavior can also be a stimulus-response 

pairing or a finite-state machine. In addition, complicated combinations of simpler 

behaviors are sometimes called behaviors as well. For the current discussion, I take a 

behavior to mean an identifiable component or building block in the control system of 

the robot that directly implements some sort of sensory-motor loop.   

All behaviors in the control system are ostensibly executed in parallel, and some 

arbitration mechanism is responsible for coordinating the output of these behaviors, as 

shown in Figure 3.1. There exists a large body of robotics literature describing
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architectures for behavior-based robotics; by and large, each of these architectures has 

developed its own flavor of arbitration mechanism.  

 

Figure 3.1: Typical Behavior-based Robot Control System 

The subsumption architecture [Brooks 1986] is probably the best-known 

behavior-based robotic architecture. Arbitration is achieved in a competitive manner. 

The control behaviors are arranged in layers of ascending priority. Layers with higher 

priority are said to subsume the operation of lower layers by either overwriting their 

input or output data streams. The layers of control are developed incrementally; the 

robot programmer creates and debugs each layer before moving on to the next. In this 

way, the robot gains new skills in a sort of evolutionary approach.  

Arkin’s Motor Schemas [Arkin 1989a] uses a vector-based approach to behavior 

coordination. Each behavior generates a vector denoting the direction and speed it 

would like the robot to travel. The vectors are summed together, resulting in a 

composite output vector for the entire group. This approach is related to work in 



 

 

47

potential fields (see [Khatib 1985] and [Krogh 1984]), and a detailed presentation of 

such techniques appears in [Latombe 1991].  

The Distributed Architecture for Mobile Navigation (DAMN) [Rosenblatt 1995] 

uses a voting approach to arbitration; each behavior has a certain number of votes 

available for allocation to a number of available actions. The action with the most 

number of votes is chosen.  

Most behavior-based systems are equivalent to parallel networks of finite-state 

or zero-state components that communicate over a set of fixed connections, i.e. circuit 

semantic systems [Nilsson 1994]. In general, the components or computational nodes of 

the system receive input from their incoming connections and recompute their outputs 

on each decision cycle, allowing the control system to track changes in the physical 

world as sensory data changes. The connections between the nodes carry data between 

them and the interpretation of this data is dependent on the node the connection is 

linked to.  

3.2 Behavior-based Multi-Robot Systems 

A number of multi-robot systems based on the behavior-based approach have been 

implemented. In this section, I will describe some typical behavior-based multi-robot 

systems and briefly discuss their coordination strategies.  
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Figure 3.2: The Alliance Cooperative Robot Architecture (from [Parker 1998]) 

The Alliance cooperative robot architecture described in [Parker 1998] is a direct 

descendant of the subsumption approach described in the previous section. Alliance is 

specifically designed for robot teams that perform loosely coupled tasks. Individual 

robots are guided by subsumption-like control programs using both local sensory inputs 

and communicated information from its teammates. Team coordination is based on 

concepts of impatience and acquiescence. Each robot periodically broadcasts the task it 

is currently attempting to perform. This communication feeds directly into its 

teammates’ motivational behaviors (see Figure 3.2) and lets them know how long it has 

attempted to perform a particular task. If a robot does not complete a task in a timely 



 

 

49

fashion, its teammates could become impatient and try to take over that responsibility. 

Conversely, a robot that is failing to perform a task could step aside and allow one of its 

teammates to take over. Robots using the Alliance architecture have successfully 

performed such tasks as formation maintenance, simulated toxic waste clean-up [Parker 

1994a], box pushing [Parker 1994b] and cooperative observation of multiple targets 

[Parker 1997]. A variation of the Alliance architecture, called L-Alliance [Parker 1996], 

incorporates a learning mechanism through the use of parameter tuning. L-Alliance lets 

members of a team to learn the efficacy of each robot in performing a task, hence 

allowing the team to improve its performance over time as robots find out which team 

member is best at executing particular tasks.  

The Societal Agent Theory [MacKenzie 1997], inspired by Minsky’s Society of 

Mind [Minsky 1986], establishes a single representational syntax for expressing both 

sensorimotor behaviors and teams of physical agents. That is, the approach makes no 

distinction between the construction of intra- or inter-agent behaviors. A team of robots 

may, in effect, be viewed as an assemblage itself. The ideas from this approach were 

implemented on a multi-robot design system called MissionLab [MacKenzie, Cameron 

and Arkin 1995]. Multi-robot coordination under this approach can be either state-based 

(assigning responsibilities to team members through state transitions) or continuous (i.e. 

combining real-valued functional output from multiple robots). The underlying robot 

control architecture, as well as the multi-robot coordination mechanism, is behavior-

based.  
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Market-based architectures have been successfully used to coordinate a number 

of robot teams. Under this approach, each robot bids on tasks that are made available by 

a scheduler. The goal of each robot is to maximize its own profit by minimizing its 

individual costs. [Goldberg et al. 2003] describe a market-based architecture that has 

been applied to a Mars exploration scenario where the robots search for interesting 

rocks. MURDOCH [Gerkey and Mataric 2000] [Gerkey and Mataric 2002] is a variant 

of the contract net protocol [Davis and Smith 1983] built on a publish/subscribe 

communication model. This architecture has been implemented on a box pushing task 

as well as a loosely coupled multi-robot experiment where the robots bid on a series of 

tasks that arrive asynchronously over a period of time.  

 

Figure 3.3: The Pack Controller [Goldberg and Mataric 2000] 
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A lot of work in behavior-based multi-robot systems has focused on foraging or 

collection tasks. The foraging task generally involves having the robots collect specific 

objects in the environment and returning them to a home base. [Goldberg and Mataric 

2000] presents a series of experiments utilizing three different multi-robot controllers 

on robots performing collection tasks. Two of the controllers do not explicitly use 

communication; the last one (the Pack controller) uses the radio as an extra “sensor”. 

Figure 3.3 shows the reasoning circuit layout for the pack controller. The “wire” from 

the radio sensor carries data about the status of other robots. If a robot with higher 

precedence is delivering a puck, this input acts as an inhibitor to the rest of the robots, 

allowing only one robot at a time to deliver a collected puck to the home base. In [Balch 

and Arkin 1995], the authors evaluate the performance of robot teams that utilize three 

different communication modes: no communication, state transmission and goal 

communication. The robots are designed to perform foraging, consuming and grazing 

tasks, and are controlled using schema-based reactive control systems. They are able to 

show that no communication whatsoever is required for the successful completion of 

some tasks and it is possible to perform all the tasks examined while sharing very little 

data between robots. [Fontan and Mataric 1997] investigate a cooperative strategy 

where the environment is divided into specific territories for each robot on the team. 

The robots then hand off collected objects from area to area, with the last robot 

delivering the objects to the home base. This approach allows foraging without the need 

for explicit communication between the robots. [Balch 1999] investigates multi-



 

 

52

foraging, which requires robots to collect different objects and deliver them to different 

locations according to type. Three different strategies were investigated: homogeneous 

(all robots may deliver any object), specialize-by-color and territorial (the last robot is 

responsible for sorting and final delivery). The homogeneous strategy was found to be 

the optimal behavior for this task.  

Robotic soccer is another popular domain for multi-robot research. The annual 

Robocup event [Kitano et al. 1997] has attracted many participants and is active arena 

for research in cooperative robot teams. [Roth, Vail and Veloso 2003] describe a 

Robocup team consisting of Sony Aibos that use a shared world model. The shared 

model is generated from data that is broadcast from each team member at 2Hz. This 

approach is very similar to the broadcast-and-aggregate method described in the 

previous chapter; however, due to the high latency, the shared world model is only used 

to make control decisions when a robot cannot rely on its own individual world model.  

[Vail and Veloso 2003] describes the use of this shared world model mechanism to 

implement role assignments via shared potential fields. 

Formation maintenance is another common multi-robot task. The Alliance 

architecture previously mentioned has been used to implement robots in a line-abreast 

formation that navigate through waypoints to a final destination. [Balch and Arkin 

1998] describe a set of motor schemas that implement four different formations based 

on military doctrine in a team of robots. Two different strategies for maintaining the 
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formations are discussed: unit-centered-referenced and leader-referenced. The former 

strategy performs better, but uses more bandwidth for communication.  

3.3 Limitations of Behavior-based systems 

For all the advantages and convenience of behavior-based systems, they do face some 

serious issues. The strengths of this approach are also its weaknesses. Since behavior-

based systems obey circuit semantics, they are equivalent to parallel circuits and are 

therefore restricted to the class of computations expressible as such circuits. This 

restriction limits the representational power of behavior-based systems; all 

representations in the control system are based on wires transmitting scalar values and 

are therefore essentially limited to propositional representations. That is, behavior-based 

systems are limited to representations without predicate/argument structure, term 

expressions, or any data types requiring dynamic graph or tree constructs. While it is 

possible to support such structures in parallel networks by introducing a switching 

network, this approach is expensive and a potential bottleneck. 

 For example, suppose the sensory system on the behavior-based robot is capable 

of tracking objects of various colors. The sensory system can determine if the robot is 

facing a colored object (i.e. it provides the propositions facing-blue-object?, facing-red-

object?, facing-green-object?, etc), and knows if it is currently located near the object 

(the propositions near-blue-object?, near-red-object?, near-green-object?, etc). Each of 

these propositions is represented as a wire that carries its truth-value to the rest of the 



 

 

54

reasoning system. The robot may grab an object if it is both near the object, and 

sufficiently close to it, i.e. 

 see-object(X) ∧ near-object(X) ⇒ can-grab-object(X) 

However, for circuit semantic systems, this logic has to be repeated for every color the 

sensory system can track. That is, to perform the equivalent of variable binding in 

predicate logic, the inference network that controls the grab proposition has to be 

cloned for every instance of color, as shown in Figure 3.4. 

 

Figure 3.4: Propositional explosion in the inference network 

The inability to cleanly represent these structures in behavior-based systems can result 

in large networks, making most reasoning and planning tasks both difficult and clumsy. 

The behavior-based solution to the blocks-world problem, for example, requires distinct 

nodes for each ground instance of each predicate and action [Maes 1990]; a behavior-

based dialog system [Hasegawa, Nakano and Kato 1997] required separate behavior 

modules for each possible utterance of each possible speaker. Such reasoning networks 

are ultimately exponential in the order of the domain theory’s highest-order predicate or 



 

 

55

action. Since most multi-robot controllers are extensions of behavior-based techniques, 

they ultimately inherit the same issues from the basic underlying architecture.  
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Chapter 4 

Symbolic reasoning on robots 

This chapter discusses the implementation of symbolic reasoning systems on multi-

robot controllers. Symbolic reasoning systems use search algorithms on dynamic graph 

structures stored in world model or knowledge base. Their output is generally a plan 

(i.e. sequence of steps or actions) that is performed by an executor. These symbolic 

planners can use representations that are far more powerful and expressive than the 

behavior-based systems discussed in the previous chapter because they are not 

constrained by propositional structures. However, they encounter some problems when 

faced with rapid and dynamic changes in the real world.  

4.1 Model Coherency and Inference Tracking 

One shortcoming of symbolic reasoning systems is their use of a database-like world 

model. The world model used by the reasoning system has to be grounded in the 

physical world, and kept constantly up to date. This information is stored as a set of 

logical assertions in a database, indexed perhaps by predicate name [Russell and Norvig 

1995].  

 The symbol grounding problem is of particular concern for autonomous robots 
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that are forced to interact with a highly dynamic and unpredictable world. The 

autonomous robot literature contains numerous examples of work that has addressed 

this issue (e.g. [Hexmoor, Lammens and Shapiro 1993], [Bajcsy and Kosecka 1994] and 

[Wasson, Kortenkamp, and Huber 1999]). Some researchers have focused on the related 

issue of symbol anchoring, i.e. the problem of reacquiring a physical grounding after 

having lost sensory contact with the object. [Coradeschi and Saffiotti 2000] proposes a 

formal framework for creating and maintaining a correspondence between a symbol and 

a physical object in the real world; subsequently, [Coradeschi and Saffiotti 2001] 

extended this work to encompass action properties (i.e. properties necessary for an 

action represented by a symbol), partial matches and indefinite references. Other 

researchers have proposed allowing the robots to establish their own symbolic 

groundings. For example, [Steels 1998] and [Vogt 2000] describe multi-robot systems 

that use language games to construct symbol-meaning associations.  

 The sensors on a robot generate beliefs or assertions for the knowledge base. In 

this dissertation, I assume a broad definition of the term belief. Specifically, I take a 

belief to either be a proposition (e.g. see(convoy232)) or an assignment of a value to a 

function (e.g. longitude-of(convoy232)). The values of beliefs vary over time as data 

from the sensors changes. However, in a way, each sensor on the robot has its own 

small, fragmented model of the world. Somehow, these models have to be synchronized 

with the central knowledge base used by the symbolic reasoner for the robot to display 

coherent behavior. That is, the beliefs or assertions in the central knowledge base have 
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to reflect reality in a timely manner. If a tracking module in the sensory system updates 

its representation of the distance of an enemy convoy, then some mechanism must 

ensure the symbolic system’s representation of that is updated too. 

Additionally, beliefs in the central knowledge base can be dependent on other 

beliefs. For example, the belief that an area is safe could depend on the assertion that 

the robot does not currently observe any enemies in the area. If the latter assertion is 

withdrawn, then the former must be too. Hence, each update from the sensory systems 

can trigger a cascade of further transactions, resulting in additional load on the system. 

In principle, modifying such a system to track changes in the environment would 

require recording dependencies between stored assertions and their justifications such 

that when the perceptual system added or retracted an assertion, the reasoning system 

could enumerate and update the set of existing assertions affected by the change.  This 

is a sufficiently complicated process that we know of no implemented physical robots 

that do it. 

 The former issue is known as the model coherency problem and the latter the 

inference tracking problem [Horswill et al. 2000]. Behavior-based systems are 

particularly successfully at dealing with these issues; when new data arrives at the 

sensory systems, there is a natural data flow path from there to the rest of the reasoning 

system, seamlessly updating the robot’s view of the world. On the other hand, at 

present, most symbolic systems have to solve these issues by relying on the programmer 

to handcraft rules in the domain theory to specify when to run epistemic actions. This 
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can lead to significant events being missed because the knowledge base was not 

updated at the proper time.  

4.1.1 Implications for Multi-Robot Systems 

Multi-robot controllers naturally inherit the characteristics of the systems they are based 

on. In general, the problems faced by symbolic systems are exacerbated in multi-robot 

scenarios. Rather than one robot with a single knowledge-base, we now have n robots 

with n knowledge bases to keep consistent both with the world and with one another.  

 The robots on a cooperative team establish a consistent team-wide 

representation of the world through a set of joint beliefs, i.e. beliefs that have identical 

values across all robots. However, this synchronization of joint beliefs across 

distributed team members can be a difficult endeavor. The programmer is now 

responsible for maintaining coherence across multiple distributed platforms connected 

via tenuous RF links, which are well-known to have higher error rates [Eckhardt and 

Steenkiste 1996] [Xylomenos and Polyzos 1999], and hence higher message delays, 

than their regular wired counterparts. These problems complicate the task of ensuring 

that data is shared and joint beliefs are generated in a timely fashion.  

 Some researchers in the multi-agent community have proposed strong 

coordination protocols for controlling teams of agents. The Joint Intentions framework 

[Cohen and Levesque 1991] coordinates cooperating agents through the use of joint 

persistent goals. Agents on a team can form a joint persistent goal only if they mutually 
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believe that the goal is unsatisfied and is currently a mutual goal. If an agent comes to 

believe that a joint persistent goal has been satisfied, or can no longer be satisfied, then 

that agent is obligated to inform all other team members of this. The same mechanisms 

that ensure synchronization when attempting to form a joint goal are also used to 

enforce communication when plans break down. Each agent that wishes to enact a joint 

persistent goal first has to notify the other team members. Conversely, agents who have 

accepted the joint goal must confirm this through explicit communication.  

 The Joint Intentions framework is essentially a blocking commit protocol that 

ensures synchronization between teammates. At key points in the process of 

computation (e.g. when team members must agree to establish a joint goal), the agents 

are blocked from taking further action until the protocol completes. Joint Intentions 

ensures team-wide consistency by ensuring that agents always store relevant beliefs (in 

this case, joint goals) in their knowledge bases before subsequent actions are taken. 

However, the act of synchronization on joint goals is considered a primitive action in 

the original Joint Intentions theory and there is little discussion on how this is actually 

accomplished or how long it takes. 

 [Tambe 1997] describes an implementation of Joint Intentions where the joint 

persistent goals are created through the use of personal achievement goals. This 

implementation handles inconsistencies in world models by designating one agent as a 

team leader that maintains the “master copy” of the knowledge base; all other agents 

defer to the leader’s decisions, even if they disagree, i.e. have beliefs that contradict the 
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leader’s choice. The team leader is the final arbiter of joint persistent goals. However, 

this can be problematic since the team leader’s decision may not be the best one. 

Dissenting agents may have access to information the team leader does not have. 

Furthermore, should the current leader fail, the team is forced to spend valuable time 

electing a new one.  

While the Joint Intentions framework specifies the establishment of joint goals 

as well as certain mutual beliefs upon goal failure, it does not prescribe a method of 

synchronizing beliefs in general. As my previous example from Chapter 1 shows, 

cooperation involves more than the creation of team goals, it also involves the sharing 

of joint beliefs that are pertinent to the team’s objectives. This lack of explicit joint 

belief synchronization can lead to situations where the agents have inconsistent 

knowledge bases, e.g. when team members disagree with the team leader’s decisions as 

noted in [Tambe 1997]. [Qiu and Tambe 1998] attempts to remedy this problem by 

reconciling any conflicts that are detected through the use of a negotiation protocol. 

4.2 Alternatives to Traditional Symbolic Systems 

In response to the shortcomings discussed above, researchers have proposed some 

modifications to symbolic reasoning systems. In most cases, these modifications have 

focused on the speed and reactivity of the system. By and large, less focus has been 

placed on a solution to the model coherency and tracking issues.  
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4.2.1 Tiered architectures  

In the robotics community, the state of the art is to construct a tiered system that 

incorporates reactive and symbolic systems as components. That is, one or more 

symbolic systems are run in parallel with the behavior-based system; the symbolic 

system is responsible for high-level reasoning and planning, while the behavior-based 

system handles low-level actions.  

 

Figure 4.1: Typical Tiered Architecture 

The Autonomous Robot Architecture (AuRA) [Arkin 1986][Arkin and Balch 

1997] was among the first systems to combine deliberative and reactive systems. AuRA 

used a conventional planner that could reason over a modular behavior-based control 

system; [Arkin 1989a] describes the first robot navigational system to be presented in 

this integrated manner. Atlantis [Gat 1991] is a three tiered system that includes a 

deliberative planner, a sequencer modeled after the RAPs system [Firby 1989] and a 

reactive controller. [Lyons and Hendriks 1992] proposed using the planner as an 
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execution monitor that adapts the underlying behavioral control system to the agent’s 

goals and changing environment. Other examples of successful tiered architectures 

include 3T [Bonasso et al. 1997], the Procedural Reasoning System (PRS) [Georgeff 

and Lansky 1987] and SSS [Connell 1992].  

The main issue with this approach is that tiered architectures per se do not 

resolve the model coherency and inference tracking problem. The symbolic layers 

ultimately still use a separate knowledge base of logical assertions that must be kept in 

sync with the representations used by the behavior-based layer. Moreover, if the tiered 

system has multiple symbolic layers (e.g. [Bonasso et al. 1997]), the world model for 

each would have to be kept consistent with one another. These issues are typically left 

up to the programmer, who is responsible for adding the proper rules in the domain 

model to ensure proper world model updates. The fact that many tiered systems use the 

planner only during startup to configure the behavior-based layer is a reflection of this 

world model update problem.   

 

Figure 4.2: DIRA architecture and interaction paths [Simmons et al. 2000]. 
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There are very few implemented physical multi-robot systems that utilize 

symbolic reasoning systems (either standalone or in a tiered system) on every robot 

while coordinating through active communication.  

One instance of such an approach is the Distributed Robot Architecture (DIRA) 

[Simmons et al. 2000] [Simmons et al. 2002]. A planner decides the high-level goals, an 

executive layer sequences and monitors task execution, and the behaviors interface 

directly to the robot’s sensors and actuators. The layers interact in the manner shown in 

Figure 4.2. This system has been demonstrated on a three robot visual servo-ing task as 

well as a multi-robot map-building task. The vast majority of communication occurred 

at the behavioral layer and almost no communication took place at the planner level.  

Another example is [Jung and Zelinsky 2000], who describe a team of cleaning 

robots that communicate through the use of symbols. They define a symbol as a 

relationship between icons (physical representations), indexicals (associations between 

icons) or other symbols. For example, a robot observing a pile of litter may 

communicate this information to its teammate through a symbol containing two 

indexicals representing known or labeled locations, and a set of wheel encoder data. 

This symbolic relationship defines a grounded unique location that the teammate can 

use to navigate towards the litter.  
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4.2.2  Mapping to circuit semantic systems 

An alternative approach is to find methods of mapping cases of symbolic reasoning 

onto parallel circuit semantic systems. The parallel reasoning networks can then 

compute the same input/output mappings as a planner, but run in bounded time.  

[Rosenschein and Kaelbling 1986] is the earliest example of such a system; in 

this case, propositional logic axioms were compiled into sequential circuits. The 

GAPPS system [Kaelbling 1988] used goal regression to compile a propositional 

planner-like formalism into sequential circuits. [Maes 1989] describes a behavior 

network system that could compute an approximation of propositional STRIPS planning 

using spreading activation. 

However, as discussed in the previous chapter, the use of propositional logic’s 

lack of variables or predicate/argument structure is highly limiting. [Agre 1997] has 

argued that this problem is ultimately inescapable, and that we must consider alternative 

forms of abstraction and representation.  

One solution is to grow the propositional reasoning network incrementally as 

new combinations of arguments are encountered. Some examples of this approach are 

TeleoReactive Trees [Nilsson 1994], Running Arguments [Agre 1988], Truth 

Maintenance Systems (TMS) [Forbus and Kleer 1993] and SOAR [Newell 1990]. This 

technique caches the chains of reasoning and beliefs that have been performed by the 

symbolic system in a propositional network, allowing subsequent searches along similar 

lines to be much faster. Traditionally, these networks grow monotonically in the size of 
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the cache, which can lead to high maintenance cost. One way of alleviating this is to 

remove the parts of the reasoning network that are no longer needed; for example, 

[Everett and Forbus 1996] describe a garbage collection algorithm that eliminates the 

storage overhead for Truth Maintenance Systems.  

4.2.3 Deictic Representation 

Rather than growing the propositional reasoning network, Agre and Chapman have 

argued for the use of indexical constants as a surrogate for variable binding to improve 

on the limitations of propositional representations [Agre and Chapman 1987]. Instead of 

putting a variable binding mechanism into the symbolic reasoning engine, they 

implemented a propositional reasoner whose inputs were driven by an active vision 

system. The outputs of the vision system directly measured the truth values of a fixed 

set of literals such as near(the-tiger-that’s-about-to-eat-me).  In the metatheory, the-

tiger-that’s-about-to-eat-me is an indexical name whose denotation is determined by the 

current attentional state of the perceptual system. By redirecting attention of the visual 

system from one object to another, the system could effectively treat the name as a 

variable and rebind it from object to object.   However, since the reasoning system did 

not represent the internal structure of the literals, it was purely propositional and so 

could be implemented as a feed-forward logic network. Moreover, since vision systems 

are generally attentive in practice, this “variable binding” mechanism was already 

present. No additional computations needed to be added to take advantage of it. 
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However, sensory systems only have a limited set of trackers that can be 

assigned to a small number of objects and continuously report their characteristics over 

time. The problem with this indexical-functional or deictic style of representation is that 

there tend to be more indexical names that there are trackers in the vision system.  In 

practice, it becomes necessary to decide at design time that a certain set of indexicals 

will share one tracker, while another set will use another tracker. The designer then 

hopes that there will be no situations in which two indexicals that share a tracker will 

need to be bound to distinct objects.  In addition, this approach does not provide the 

ability to utilize quantified inference, which is a useful and powerful representation to 

have in a reasoning system.  

4.3 Role-passing 

Role-passing [Horswill 1998] is a variation of deictic representation that solves the two 

problems associated with this approach (see Section 3.2.3). Rather than postulating a 

potentially unlimited number of task-specific variables, role-passing provides the 

system designer with a small, finite set of domain-independent indexicals. These 

indexical variables are in the form of linguistic role names such as agent, patient, 

object, source, destination, etc. Role-passing is similar to pronomes [Minsky 1986] and 

the SHRUTTI system [Shashtri and Ajjanadadde 1993]; however, the binding is 

performed in the sensory system rather than inside the central reasoning system.  
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 When the control system on the robot binds a role to an object, a sensory tracker 

is dynamically allocated to it and tagged with the name of the role. The tracker is tagged 

with that role, and it can then be accessed associatively by that tag. Inference rules may 

utilize the information provided by the tracker through the role without needing to know 

the origin of that data. That is, role-passing allows behavior-based systems to abstract 

over both sensory systems and objects. In fact, an object may even have multiple 

representations across different sensory modalities.   

 As an example, suppose the robot binds the role patient to a blue colored ball; 

the tracker assigned to the ball is a standard color blob tracker that provides data such as 

whether the object is in view, the distance from the robot to the object, etc. Now 

suppose there is an inference rule 

 If see(X) and near(X), then can-grab(X)  

Assuming the blue colored ball is directly in front of the robot, and close to it, then this 

inference rule will allow the robot to infer that it can-grab the object that is bound to the 

role patient. Notice however, that the inference rule did not know the origin of the 

information for the object bound to patient. The patient role can later be rebound to 

some other object (say, a green ball); however, all this is conveniently hidden from the 

inference rules that utilize the indexical roles.  
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4.3.1 Compact Storage 

Two types of information can be accessed through the indexical roles about objects that 

are being tracked: Boolean unary predicates or numeric functional values. An example 

of a unary predicate would be near(X), and a function would be distance-to(X) or size-

of(X).  

Since the number of linguistic roles is finite and relatively small, unary 

predicates can be represented as bit-vectors, with one bit per corresponding role. If the 

ith bit of the vector is set, then the predicate is true of the object bound to the ith role, as 

shown in Figure 4.3. In the control system, the bit-vector with only the ith bit set would 

refer to the object bound to the ith role. On a standard Von Neumann machine, a unary 

predicate can be efficiently represented as a single memory word.  

 

Figure 4.3: Unary predicates represented as bit vectors 
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Real-valued functions are represented in a similar manner. A function is a vector of 

numbers in which the ith slot of the vector contains the value of the function on the 

object bound to the ith role (see figure below).  

 

Figure 4.4: Functional outputs represented as numeric vectors 

4.3.2 Efficient Inference 

The representation of unary predicates as fixed-size bit-vectors at compile-time allows 

them to be efficiently implemented. Forward-chaining modal Horn clause inference can 

be implemented as simple feed-forward Boolean networks. Each predicate can be 

considered a compact bus of wires, with each wire holding the truth value for its 

corresponding indexical role. On conventional hardware, these reasoning networks can 

be compiled to straight-line code consisting only of loads, stores, and bit-mask 

instructions. Logical connectives can be implemented as bit-wise logic operations, e.g.  

  )())()(( xRxQxP ∧∨  

can be evaluated as 
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  ))(( rqpbitwiseorbitwiseand  

This approach is closely related to the automated compilation of domain axioms to 

digital logic described in [Kaelbling and Rosenschein 1991]. 

 

Figure 4.5: Efficient inference using bit-wise logic operations on unary predicates 

Unfortunately, compiling role-passing inference requires hardware exponential 

in the arity of the highest arity predicate in the rule base. This is why role-passing is 

limited to unary predicates in practice. However, we have found that this approach is 

sufficient for most robot control programs so far. Cases where this technique falls short 

have been relatively infrequent. So, while the role-passing approach is more limited 

than a full logic-programming system, it does allow us to express much of the kinds of 

control reasoning that people really implement on physical robots today. Role-passing 

allows inference rules expressed using indexical roles be compiled into a form that can 

track all inferences at sensor rates. Since the reasoning process recomputes all 

inferences on every cycle of the system’s control loop, the reasoning system is able to 

respond to contingencies as soon as they are sensed.  Furthermore, the compilation 

process is very efficient, resulting in inference that is effectively free; 1000 Horn 
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clauses of 5 conjuncts each can be completely updated at 100Hz using less than 1% of a 

current CPU. 
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Chapter 5 

HIVEMind 

The HIVEMind architecture is a result of joining the broadcast-and-aggregate method 

for coordination with the role-passing architecture for robot control systems. The result 

is a multi-robot system that has the ability to use symbolic reasoning over tightly 

synchronized knowledgebases. This chapter describes the design of the HIVEMind 

architecture and its characteristics.     

5.4 Control  

The underlying control system on HIVEMind robots is based on role-passing. 

Therefore, the robots are able to use more structured representations while retaining the 

advantageous characteristics of conventional behavior-based systems. The entire 

HIVEMind team can be considered a single, parallel control network whose 

components happen to be distributed between the different robot bodies being 

controlled. It may seem inefficient for each robot to have its own separate copy of the 

inference rule network.  However, to have a single robot perform each inference and 

share the results would require much more complicated coordination protocols 
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analogous to the multi-phase commit protocols used in distributed database systems. 

Since role-passing inference is essentially free, it is more efficient for HIVEMind robots 

to perform redundant computation. 

The inference rules on HIVEMind robots are not based on propositional values 

such as see-blue-object or see-red-object, but rather on predicates such as see-object(X). 

Furthermore, since the representation for such structures in role-passing is finite and 

highly compact, they can be easily shared using the broadcast-and-aggregate method. 

Each unary predicate and functional quantity (e.g. size-of-object(X)) is treated as a 

signal and communicated as such.  

5.1 Coordination 

The HIVEMind architecture uses the broadcast-and-aggregate method to coordinate the 

robots and the periodic data broadcasting technique for sharing data. The latter is 

accomplished using the non-blocking broadcast-oriented User Datagram Protocol 

(UDP). The present implementation of HIVEMind assumes that the set of signals 

shared by each robot is identical and known during compile-time. The shared data are 

generally role-passing predicates and functions. For example, the robots could share the 

values of two predicates (see(X) and near(X)) and two functions (size-of(X) and 

distance-to(X)). 

In general, all shared signals can be conveniently crammed into a single packet 

per communication cycle since the representations are very compact . However, this 
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might not always be true. The current HIVEMind implementation can automatically 

split the shared data into multiple packets if it exceeds the 1024 bytes available in a 

single UDP packet, but this feature has never been utilized in practice.  

By default, the shared data are transmitted once a second by all robots, which 

our experiments have shown to be sufficient for maintaining situational awareness 

among the team members for the tasks they perform. This interval can be increased or 

decreased depending on the needs of the application.  

 The majority of this data is in the form of the compact role-passing predicates 

and functional values discussed previously. However, nothing precludes other types of 

data from being shared. For example, the robots may wish to share information on 

locations that have been searched. This information could be represented as a bit vector 

of locations where a set bit indicates a location that has been personally searched by the 

current robot; a disjunction of these bit vectors would indicate the locations that have 

been searched by the robots as a team. This locations-searched bit vector for each robot 

can also be treated as a signal and sent using broadcast-and-aggregate.   

5.1.1 Unique Identification Numbers 

Each robot on the HIVEMind team has a unique identification number that is attached 

to all outgoing messages. This allows robots to discern the origin of each received 

communiqué.  
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Figure 5.1: The HIVEMind Architecture in practice 
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5.1.2 Maximum Team Size 

The amount of buffer space available for storing the contents of incoming messages is 

fixed beforehand. This is achieved by predetermining the set of shared data for all 

robots and also fixing the maximum number of robots that can be on a HIVEMind team 

during compile-time. There can be fewer members on the team than the maximum 

number during run-time, but never more than that upper limit. At present, the maximum 

team size is set at ten. However, there is no theoretical limitation to the number of 

robots that can serve on a HIVEMind team. In the present implementation, the 

programmer simply has to change the value of the variable maximum-team-members 

and recompile the code for the robots in order to increase the size of the team.  

5.2 Aggregating Shared Data to form Joint Beliefs 

When an incoming UDP packet is received by a robot, the components of the list it 

contains are stored into locations indexed by the originating robot’s unique 

identification number. Returning to the previous example, the incoming messages from 

teammates contain their values for the two predicates (see(X) and near(X)) and two 

functions (size-of(X) and distance-to(X)). The local robot has a storage vector for each 

piece of shared data, which has size equal to maximum-team-members. The values in 

the incoming message are extracted and stored into the storage vectors at a location 

indexed by the originating robot’s identification number. For example, the value of 
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see(X) in a message from robot with an identification number of 3 will be stored into the 

third slot of the see(X) storage vector. 

On every process cycle, the current values for each component from all robots 

are aggregated into a single joint belief output value. In general, each joint belief has its 

own aggregation function. For example, the latest values in the see(X) storage vector 

could be combined using an OR operation to generate the joint belief team-see(X). The 

joint beliefs are then passed to the inference rules for reasoning. 

As more HIVEMind systems are built, we will have a better understanding of 

the commonly used aggregation techniques. These commonly used aggregation 

functions would be collected in a toolkit that is available for use by multi-robot system 

developers. At present, I have written several aggregation functions that form the 

beginnings of such a toolkit: 

• predicate-or 

Since unary predicates in role-passing are bit-vectors containing information for 

all indexical roles, predicate-or is implemented as: 

RrxXorpredicate r ∈∨=− ,)(   

where xr is the bit-vector representing the unary predicate from robot r in team 

R, and ∨ is a bitwise-or operation. A predicate value is true if at least one robot 

on the team believes it to be true. For example, some-robot-see(X) is generated 

using a predicate-or of individual see (X) values from team members. 
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• predicate-and 

The predicate-and function is implemented as: 

RrxXandpredicate r ∈∧=− ,)(  

where xr is the bit-vector representing the unary predicate from robot r in team 

R, and ∧ is a bitwise-and operation. The predicate value is true if and only if all 

robots on the team believe it to be true. For example, all-see(X) is true only 

when all members of the team currently observe the object bound to the role, i.e. 

the see(X) predicate is returns true for the bound role on all robots.  

• first-non-false 

Returns the identification number of the first robot that has a TRUE value in a 

predicate for a particular indexical role. For example, this function could be used 

on the value of the patient role for see(X) from the individual robots. The 

important point is that some subset of the team has seen the object bound to the 

patient role, and the programmer wants to know the id number for one of those 

robots. This aggregation function is generally used in conjunction with the 

following one.  

• get-value-by-index 

Returns a functional value based on a role variable and an identification number 

for a robot. Essentially, this function retrieves a current value of a function 

generated by a specific robot for a particular role variable. For example, if a 

teammate claims to see(X) for the object bound to the patient role, the current 
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robot may obtain the specific value of location-of(X) for patient using that 

teammate’s identification number.  

• mean 

Returns the average value of the outputs for a function from all team members. 

For example, average-count is the mean of count(X) from all robots on the team.  

• min and max 

Correspondingly, min and max returns the minimum and maximum value of the 

outputs from a function generated by all robots respectively. 

5.2.1 Multi-robot task allocation (MRTA) 

An important special case of joint beliefs is the assignment of responsibilities during the 

execution of a task. Ideally, the most suitable robot should be chosen to perform each 

goal or task, where “suitable” is defined by some metric represented as a reward or cost 

function. For example, the goal could be for one member of the team to move over to a 

particular location (say, the X spot in the figure below). A simple way of determining 

which robot should be responsible for that goal is by using the Cartesian distance from 

the robots’ present positions to the target location; the closest robot could then be the 

most suitable member of the team to take the responsibility.  
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Figure 5.2: Determining which robot is responsible for going to the X position 

Suppose there are concurrent jobs T1…Tm that need to be accomplished by 

robots R1…Rn. If m ≠ n, then we can add virtual goals or robots until both sets are the 

same size. Assume that only one robot will be assigned to each goal. Each robot-job 

pairing has an associated reward value s, which is computed as: 

 sij = f(bij1, bij2,…, bijk), sij ∈ R 

where bij1, bij2,…, bijk are the beliefs for robot i that are relevant to goal j and are used to 

compute the reward. In the example above, the relevant beliefs could be the robot’s 

present coordinates and those of the target location. The multi-robot task allocation 

(MRTA) problem is to find a set of robot-goal pairs that maximizes the total reward 

function; in other words, we want a set of pairings 

 (r1, t1), (r2, t2), …,(rm, tm) 

that maximizes 
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The single-robot-single-task assignment problem has been shown to be a degenerate 

form of the scheduling problem [Gerkey and Mataric 2003] that can be solved using 

Kuhn’s Hungarian method [Kuhn 1955] which runs in O(n3) time.  

HIVEMind robots presently recompute all their inferences and joint beliefs on 

every process cycle, so determining the global optimum for teams on the order of, say, 

1000 robots and concurrent goals could be prohibitively expensive. At the moment, 

however, the size of most physical robot teams and the complexity of achievable tasks 

are low enough that computing the global optimum for assignments on every cycle does 

not use a significant amount of time.  

There are two ways of implementing the reward function for the team: 

• All relevant beliefs can be shared among team members, so each robot can not 

only compute the suitability of itself for the task, but also the suitability of all 

other team members.  

• The suitability value be calculated locally by each robot and then shared as a 

belief with all team members.  

For the experiments described in Chapter 8, I used the former method; some of the 

beliefs used in the computation of the metric had to be shared for other purposes and 

hence it was more convenient to compute the metric for all robots locally.  
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5.2.2 Clearing slots in the storage vectors 

Each storage vector is allocated a number of slots equal to the value of maximum-team-

members during compile-time. During run-time, however, not all these slots will have 

robots associated with them. There could be fewer robots than the maximum size 

currently active, or a robot could have experienced communication or total system 

failure. Therefore, there must be some way of letting the aggregation functions know 

that a slot in the storage vectors does not contain a valid value. 

 Every storage vector has a value associated with it that is designated “invalid” or 

“nogood”. By default, this is simply the FALSE value (#f) in Scheme; the programmer 

may specify another value if necessary. When the values in the storage vector are being 

combined by the aggregation functions, any slots labeled with an invalid value are 

ignored.  

5.3 Configuring a HIVEMind team member 

HIVEMind robots are configured using a macro called define-default-peer. This macro 

invokes a set of Scheme functions and generates some interface structures in a 

programming language called Generic Robot Language (GRL), which is the language 

used for the control programs on the robots and is explained in greater detail in Chapter 

6. The define-default-peer macro is invoked in this way: 

 (define-default-peer  some-name  

bot-id  



 

 

84

…<list of aggregation functions> … 

… <list of data to be transmitted> …) 

Bot-id is the unique identification number for the current robot. The list of aggregation 

functions are either drawn from ones in the toolkit described in Section 5.2, or may be 

programmer-defined for the current task. Finally, the list of data to be shared may either 

be unary predicates or functions with role indexicals, or some other GRL data structure.  

The macro itself is defined as: 

 (define-syntax define-default-peer 

     (syntax-rules () 

      ((define-default-peer ?peer-name  

            ?bot-id  

            (?handler ...) 

            (?peerval ...)) 

        (begin 

            (init-vector-storage (length (list ?handler ... )))        

            (init-role-handlers-list ?handler ...) 

               (set-peer-handlers) 

       (set-*peer-messages*) 

            (define-peer ?peer-name ?bot-id ?peerval ...))))) 

init-vector-storage allocates the storage vectors used to hold the contents of incoming 

messages and initializes them with the “invalid” value. Handlers are the aggregation 
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functions used to combine beliefs from the team in order to generate joint beliefs; init-

role-handlers-list and set-peer-handlers initialize the aggregation functions and store 

them in the appropriate data structures. The set-*peer-messages* function creates the 

data structure that will hold the latest belief values that are to be shared with teammates. 

Finally, define-peer is another macro; it is defined as: 

(define-syntax define-peer 

     (syntax-rules () 

      ((define-peer ?peer-name ?bot-id ?peerval ...) 

        (begin 

          (define-signal peer-info  

            (set-peer-information ?bot-id ,(length (list '?peerval ...)))) 

          (create-set-peervals-transducer  

       (length (list '?peerval ...))) 

          (define-signal peer-values  

       (set-peervals ?peerval ...)) 

          (define ?peer-name 

           (list peer-info 

             peer-values 

              multiagent-send))))))  

The define-peer macro is responsible for creating a set of GRL data structures that 

provides an interface from the HIVEMind system to the rest of the reasoning system on 
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the robots. The interface structures are used to connect the joint beliefs generated by the 

HIVEMind system to the inference rules on the robots. 

5.4 Characteristics of HIVEMind 

5.4.1 Communication costs 

HIVEMind relies on the User Datagram Protocol for communication of team messages. 

The data size for UDP packets can ostensibly be set by the programmer in the packet 

header and be up to 65k bytes in length. In practice, however, this is often constrained 

by hardware imposed limitations; packets that are in excess of imposed limits may be 

treated as invalid and simply discarded. Larger data lengths can produce better 

throughput, but also increase the chance of errors in the packet during transmission. 

 The present HIVEMind implementation uses non-blocking broadcast-oriented 

UDP sockets. Any messages sent by a robot are received by anyone who is listening on 

the same port on the same subnet. The buffer size for the data portion of the UDP 

packet is capped at a maximum of 1024 bytes. By default, each robot sends one UDP 

packet per second, meaning that the aggregate bandwidth required for coordination is 

bounded by 1KB/robot/sec.   

 From a hardware perspective, the robots communicate in a peer-to-peer fashion 

using an 802.11b wireless LAN at 11Mbps for communication. At the one UDP packet 

per second rate, each robot is only using approximately 0.07% of the available 

bandwidth. As wireless LAN technology improves, each robot will use an even less 
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percentage of available bandwidth, assuming the communication rate of one UDP 

packet per second remains the same; e.g. the newer 802.11g specification is backward 

compatible with 802.11b but provides 20+Mbps of bandwidth. Therefore, robot teams 

of more than a hundred robots should be practical from a communication standpoint.   

5.4.2 Failure awareness 

Physical robots face the possibility of communication breakdown or even total system 

failure. Robots in a cooperative team must be able to somehow account for this 

occurrence. A related issue is that a new robot could join the team at any time or a robot 

could rejoin the HIVEMind after an interval of communication failure. So, it is also 

useful to have a system in place for handling the dynamic addition or subtraction of 

robots from the team.  

The current implementation of the HIVEMind architecture is Receive Failure 

Aware (RFA); it is not Transmission Failure Aware (TFA), but can be trivially made so. 

HIVEMind robots maintain a last-heard-from value for each member of the team. If a 

teammate has not been heard from for over 10 seconds (a programmer tunable value), 

then it is considered “dead” and its data values in the storage vector are automatically 

cleared so that no stale information is used for reasoning. Robots only use information 

from “live” teammates for reasoning. The last-heard-from variable will be updated with 

a new value when communication is restored to an old teammate or a new robot joins 

the group, allowing the HIVEMind to seamlessly assimilate a new member into the 
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team. Newcomers are able to integrate into the HIVEMind within one communication 

transmission cycle because of the assumption of a convergence property for data values 

(discussed in Chapter 2), meaning that only the latest signal values matter.  

5.4.3 Negotiation 

The design of the HIVEMind architecture negates the need for negotiation amongst 

team members in many cases. HIVEMind robots are able to maintain a shared 

situational awareness in real-time and are therefore able to take the right actions in an 

appropriate fashion. In general, negotiation has been used in three cases to synchronize 

team actions. 

The first case where negotiation is required is when the cooperating entities are 

self-interested and have different end goals. In this case, negotiation is required to 

satisfy all parties that their interests have been accounted for and to obtain an acceptable 

resolution to any conflicting actions. Communication of information can be tricky under 

these circumstances since the agent must balance the need to negotiate versus the 

danger of revealing too much. There is much research on techniques to achieve 

consensus for groups for self-interested agents, mostly in the realm of game theory (for 

example, see [Kraus 2001]. However, the HIVEMind approach assumes that all agents 

on the team share common objectives and may freely share any information. Therefore, 

self-interest is not an issue and this condition for negotiation does not apply.  
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The second situation requiring negotiation concerns differing world views 

among team members; even if the agents are fully cooperative, it is possible that team 

members may have different sets of beliefs due to sensory limitations. Therefore, one or 

more team members might lack information that leads them to undertake suboptimal or 

perhaps even contradictory courses of action. An example of this situation has been 

discussed previously in Chapter 4: The Joint Intentions framework [Cohen and 

Levesque 1991] explicitly synchronizes team goals, but does not specifically coordinate 

beliefs in general, which can lead to cases where team members explicitly lack the 

necessary information to perform agreed-upon team actions; [Qiu and Tambe 1998] 

specifies a negotiation framework that attempts to remedy this situation for agents that 

utilize joint intentions. HIVEMind robots have two features that allow them to 

circumvent this problem. First, the present values of any relevant team beliefs are 

communicated to all teammates at regular intervals, ensuring that fresh information is 

continuously being shared across the team. Second, the convergence property for belief 

values allows communicated information to be quickly integrated into the reasoning 

process. These two advantageous features allow HIVEMind robots to share a common 

situational awareness, and there is no necessity for additional negotiation mechanisms 

to ensure synchronization. While communication lag can cause HIVEMind robots to 

have slight different data (and hence different states) at the same time, this is a problem 

all teams using communication have to deal with and the HIVEMind robots generally 

converge to the same team state eventually.  
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Finally, different opinions on the appropriate course of action to take in a given 

situation could lead to a need for negotiation; that is, it is conceivable that even with 

perfectly synchronized beliefs, the robots could differ on the best action to perform in 

order to achieve team goals. Specifically, each member has its own internal plan, and at 

least some of the plans differ. In this case, negotiation is necessary to ensure that the 

team takes coherent action; otherwise, it is conceivable that the team members could 

execute plans which are redundant or even contradictory in nature. A simple example 

will serve to show this situation is not a problem for HIVEMind robots and certainly 

does not necessitate additional complex negotiation protocols to solve: Suppose two 

cooperating robots have different notions as to the right action to take in a given 

situation. There are two possibilities: one plan is better (by some measurable metric) 

than the other, or the plans are equally good. In the first case, since HIVEMind robots 

always have a shared situational awareness, it should be trivial to determine which plan 

is better given the team’s current knowledge. For the second case, either plan is 

acceptable, so one simple solution is to utilize an arbitrary tie-breaker to determine 

which plan “wins”; in the HIVEMind case, since each robot has a unique identification 

number, the lowest number is chosen to always win in the case of a tie. It is easy to see 

how this two robot case generalizes to robot team with n members, so HIVEMind 

robots are also immune to this problem. Again, communication lag can be a problem, 

but as before, in most cases the HIVEMind robots will generally converge to the same 

conclusion after several communication cycles.  
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5.4.4 Heterogeneity 

The HIVEMind architecture’s negotiation-free approach to multi-robot coordination 

does not imply that all team members have to possess identical inference networks or 

even that they necessarily have similar physical forms. HIVEMind makes two key 

assumptions about the robots’ reasoning system:  

• That the robots share common goals, i.e. there is no self-interest; hence openly 

sharing any and all beliefs is safe and acceptable.  

• That the robots have a pre-determined method of deciding the actions to take in 

order to achieve those goals, as well as the team member that is responsible for 

executing a particular action.  

Neither assumption imposes homogeneity upon the robots, either in terms of software 

control or physical design. Robots that have different physical designs can utilize 

HIVEMind to share beliefs about the world and the continually updated situational 

awareness allows them to avoid interfering with each other during task execution.  

5.5 Handling oscillation 

In Section 5.2.1, I discussed the way HIVEMind robots assign responsibilities for 

executing goals amongst themselves. Based on the current beliefs of each team member, 

the robots use a function to compute a reward value that determines the suitability of 

each robot for each goal. Then, these rewards values are used to find the optimal robot-

goal pairings. These assignments are recomputed by the team on every process cycle, so 
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if new opportunities or contingencies arise, the team can quickly react to it by switching 

responsibilities if necessary.  

 However, this can also lead to thrashing between team members. For example, 

suppose two robots on a trash collection task both observe the same piece of garbage in 

front of them. Normally, the robot that is closest to the garbage would take the 

responsibility for collecting it. In this case, both robots are approximately the same 

distance from the piece of garbage (less than 2 cm difference) and their sensors have an 

error of ± 5 cm. During run-time, the distance measurement from each robot to the piece 

of garbage will vary slightly due to sensor noise. This could result in the team first 

believing one robot is closer and then the other, which causes the robots to switch 

responsibilities for completing the goal continuously, hence thrashing and doing no 

useful work between them. Obviously, this is suboptimal and undesirable behavior.  

 Of course, this is a well-known phenomenon in control systems design. 

Techniques for dampening or smoothing such oscillatory behavior are common in the 

control systems and robotics literature. In the example above, a simple solution would 

be to introduce some hysteresis into the system. When one of the robots takes the 

responsibility of collecting the piece of garbage, only a significant change in the 

situation (e.g. the other robot suddenly realizes that it is actually far closer to the 

garbage than originally thought or the first robot fails completely) for it to surrender its 

charge to another teammate. 
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Chapter 6 

The Experimental System and Environment 

I used a team of physical mobile robots to explore the issue of synchronizing joint 

beliefs across multiple robots in a cooperative group. Named after psychological 

phobias, Ochlo (fear of crowds), Kineso (fear of motion), Alektoro (fear of chickens) 

and Zemmi (fear of the great mole rat) reside on the third floor of the Northwestern 

University Computer Science Department building. For the experiments described in 

this report only two of the robots were used at a time, even though there are four 

available.  

 In this chapter, I shall describe the task, environment and basic structure of the 

robots. Section 6.1 describes the robot team’s habitat and the tasks they perform. 

Section 6.2 describes the basic hardware components of the robots. Finally, Section 6.3 

briefly describes the programming language used to implement the robot control 

programs.  

6.1 Task and environment 

The robots’ habitat is a network of corridors in the west wing of the third floor of the 

C.S. Department. Each robot has a topological map of its environment; see Figure 6.1. 

The labels on the map in the figure correspond to either people whose offices are 
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nearby, or features of that location. Each labeled node represents a landmark, e.g. a T-

intersection or corner, and edges between nodes are corridors. The corridors span an 

area approximately 6 meters by 20 meters with an aggregate path length of 50m. The 

robots can perform three tasks in this environment, all of which involve the systematic 

coordinated traversal of space. 

Note that in chapter 7, some of the labels are different, and the lounge node does 

not exist in some cases, replaced instead by a connecting corridor between the aaron 

and pinku nodes.  

 

Figure 6.1: The topological map used by the robot team for navigation 

6.1.1 Town Crier 

The Town Crier task is the simplest of the three tasks that the robot team can perform. 

The two robots act as town criers who make announcements at each landmark on the 

map shown in Figure 6.1. Each landmark is visited at least once, and a verbal 

announcement is made there by the visiting robot. Both robots dynamically select 
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locations during execution of the task. If an announcement has already been made at a 

landmark, then the robots will no longer make an announcement there, even if a robot 

should happen to pass by that landmark again. There are two situations where a visited 

landmark could be revisited: 

• The robot is traversing the visited landmark on its way to an unvisited one.  

• The landmark recognition software misclassified the landmark on the previous 

visit, and the robot believes that this landmark has not yet been visited.  

The town crier task is considered accomplished when announcements have been made 

at all the landmarks. 

6.1.2 Find Static Object 

In this task, the team cooperatively searches for a static object located somewhere in the 

operating environment. The robots explore the environment in a systematic manner 

until one of them locates the object or all searchable space is exhausted. When the 

object is found, both robots converge on its location. 

 The robots traverse the environment in a different way for this task compared 

with the previous town crier task. Merely visiting all the landmarks on the map is not 

sufficient; the object is more likely to be located in the hallways connecting the 

landmarks than at the landmarks themselves. Therefore, the robots systematically divide 

unexplored corridors during the execution of the task, rather than unvisited landmarks. 
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 The objects that the robots are responsible for finding in this experiment are a 

set of brightly colored non-specular balls. One of these balls is placed somewhere in the 

network of corridors, and the human user is responsible for specifying the color of the 

ball as an argument to the command console. The robots can detect the balls by using a 

color blob tracking algorithm. 

 The find object task is considered accomplished when all team members have 

converged at the location of the object. 

6.1.3 Capture Evading Target 

The objective for this task is similar to the previous task, with one important exception: 

the target is now allowed to take evasive action. A human intruder is located 

somewhere within the network of corridors. The robots have to first search for the 

intruder, and then cooperatively maneuver into position to trap the target. There is only 

one exit point in this environment --- the gauntlet node. If the intruder manages to reach 

that location, then she would be considered victorious. The robots obviously operate at 

a physical and mental disadvantage compared to the intruder. To even the odds a little, I 

defined some basic rules of fairness: 

1. The intruder cannot jump over the robots. The robots cannot help being short. 

Furthermore, one could easily imagine a larger robot performing this task, which 

would prevent the human from dodging the trap in this manner.  
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2. The intruder must stay in the corridors at all times. Specifically, the human is 

not allowed to climb objects like tables to avoid being seen. Again, the robots 

cannot help being short and limited in their range of view.  

3. The human is not allowed to damage the robots. Throwing things at the robot to 

disable it is not fair unless the robot is allowed to fight back with stun guns.   

The rules of this game are obviously stacked in favor of the robots; essentially, for the 

human to win, the robots have to make mistakes and maneuver into bad positions, 

allowing the intruder to get around them.  However, given the inherent limitations of 

our current robots, I believe this is a fair tradeoff.  

 The execution of this task is divided into four phases:  

• First, the robots start out in search mode. This is similar to the find object task; 

the robots systematically explore all the corridors until one of them locates the 

intruder.  

• The robot that sees the intruder then transitions into sentry mode. This robot 

remains stationary in its position while taunting with the human with the spoken 

phrase “Do not attempt to run, human intruder!”, which serves to indicate the 

current mode of the robot. The sentry will not follow should the human attempt 

to run away, but instead remains stationary and changes its taunt to “You can 

run, but you can’t hide!”  

• In the meantime, the other robot is the stalker. Knowing the location of the 

sentry, the stalker selects a path that will bring it to the opposite end of the 
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corridor where the sentry is currently located. That is, the robots are attempting 

to cover both ends of the corridor, trapping the intruder in between them. If the 

human runs away from the sentry and encounters the stalker, then the robots will 

switch responsibilities. The stalker becomes the sentry and remains stationary, 

while the sentry takes on the stalker role and moves to intercept the intruder.  

• When both robots have the intruder in sight, they close in and trap the human 

between them. At this point, the taunting switches to “We have you now, human 

scum”.  

The sentry and stalker modes serve to emphasize the interaction between the two 

robots. The environment in which the robots reside is fairly limited; in fact, if the robots 

are started from the gauntlet landmark, then they could likely trap the intruder by 

simply going down the two long parallel corridors that form the majority of the space. 

The two modes show that the robots are not merely executing this simple strategy, but 

are in fact exchanging information and responsibilities dynamically as the situation 

changes.  

As with the find object task, the robots locate their target through the use of 

color. This will be facilitated through the use of brightly colored non-specular pants 

worn by the human playing the role of the intruder. A human user is again responsible 

for providing the target’s color as an argument for the task to the command console.  

 The capture task is considered done when the human intruder has been trapped 

been the robots and is unable to move any further. 
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6.2 Hardware 

Ochlo, Kineso, Alektoro and Zemmi are based on a commercial robotic platform, the 

Real World Interface (now iRobot) Magellan Compact Mobile Robot [RWI 1999], with 

some in-house modifications performed by other members of the Autonomous Mobile 

Robot Group (AMRG). The Magellan platforms are controlled through the use of 

laptops mounted on them. In Figure 6.2, Ochlo is shown in side profile, while Alektoro 

is shown from the front.  

 

Figure 6.2: Ochlo and Alektoro shown in side and front profiles respectively 

It is important to note that, while the robots are ostensibly duplicates of each other, 

there is significant variation in the sensitivity and accuracy of their sensors and 

effectors.  



 

 

100

6.2.1 Mechanical Design 

The Magellan robot platform is a small wheeled vehicle measuring 14.5 inches in 

diameter and 7.8 inches high. It weighs 29 lbs. and has two 4.5 inch rubber tires that can 

be driven differentially at speeds up to 2.5m/s. Caster wheels in the front and rear 

provide stability. Two onboard rechargeable batteries provide 12 AH capacity at 12 

volts; in practice, this allows greater than 8 hours of continuous operation.  

 An additional structure was added on top of the original Magellan platforms to 

allow us to attach laptops onto them. This consists of two square plexiglass plates held 

together at a right angle by an L-bracket, and then attached to the Magellan by four steel 

support columns. Foam padding was added on the plexiglass plates for cushioning, and 

Velcro strips were applied to the foam. The Velcro strips, three in all, sufficed to hold 

the laptop firmly against the foam padding.  

 The laptops used on the Magellan platforms are Dell Latitude CPx models, each 

with Pentium III 500 MHz processors, 384 Mb of RAM, Gb of hard drive space, and 

running Windows98 Second Edition.  Each laptop also has an Orinoco Silver Card that 

provides an 11Mbps data transfer rate for wireless communication. The laptop 

communicates with the base through the use of a standard 9-pin serial port.  

6.2.2 Sensors 

The Magellan platform is equipped with two types of sensors. Sixteen sonar sensors and 

sixteen tactile sensors are arranged in a ring around the circular base; each perimeter 
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panel has one sonar sensor and one tactile sensor. For the purposes of my experiments, 

none of the tactile sensors were used, and only the front three sonar sensors were 

utilized as a backup for the visual navigation system. A third sensory modality, infrared 

sensors, is present but non-functional on the Magellan platforms.  

 

Figure 6.3: ProVideo Camera attached to the Nogatech framegrabber 

The primary sensor used on the robots is a ProVideo CVC-514BC ¼” Color 

Board Camera mounted at a slight downward angle on the vertical plexiglass plate (see 

Figure 6.2). The camera is connected to a Nogatech NV 2000 framegrabber. Figure 6.3 

shows an unmounted camera attached to a framegrabber. The framegrabber is 

connected to the laptop through a standard USB connection.  
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6.3 The GRL Programming Language  

Most of the software for the experiments described in this chapter is written in Generic 

Robot Language (GRL) [Horswill 1999], which is a high-level language for designing 

behavior-based systems. 

6.3.1 Primitive signals 

GRL is an architecture neutral language embedded within Scheme and its programs 

consist of signals that are ostensibly computed in parallel and continuously updated. In 

practice, these programs are generally run on serial uniprocessors. Therefore, signals 

must be compiled down into a form that can be easily implemented in a language like 

Scheme or C. Primitive signals can be: 

• A constant value. 

• A source signal, for which the programmer has provided raw Scheme code. 

• An application of a primitive procedure (e.g. +, -, log) to a set of signals. 

Procedures map signal values to values. A value can be scalar (integer, float, 

Boolean, etc) or a vector.  

• An application of a finite-state transducer on a set of signals. The programmer is 

again responsible for the Scheme code for computing the output of the 

transducer from the current values of the input signals. Since transducers may 

contain state information, they are mappings from signal time histories to time 

histories.  
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Sources and transducers are the only ways a programmer may directly utilize raw 

Scheme code. However, the Scheme code is restricted to be statically typed and may not 

dynamically allocate memory. 

 Signals allow a programmer to write real-time control loops in a straightforward 

manner. For example, suppose the robot is looking for an open doorway using a 

directional sensor such as sonar or infrared while driving down a corridor. One 

approach could be to utilize the readings from the sideways-facing sensors: 

 (define-signal doorway? 
   (> (true-time (> (max left-reading right-reading) 

                  distance-threshold)) 

      time-threshold)) 

true-time is a transducer that returns the number of milliseconds for which its input 

signal has been true, and is a part of the standard GRL library. The use of this 

transducer prevents misidentification of doorways due to occasional sensor errors; it 

ensures that the robot will believe that a doorway exists only if the sensor reading has 

been true for a sufficient amount of time. 

6.3.2 Compile-time abstractions 

GRL supports compile-time procedural abstractions in the form of signal procedures. A 

signal procedure is a mapping from signal networks to signal networks. During 
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compilation, signal procedures are calls to signal procedures are expanded into 

networks of primitive signals. 

 GRL supports record-like data abstractions called groups. Records are generally 

defined using the define-group-type macro which defines constructor and accessor 

functions for the data type. For example, an rt-vector is defined as: 

 (define-group-type rt-vector 
     (rt-vector rotation translation) 

     (rotation rotation-of) 

    (translation translation-of)) 

The rt-vector has two components, a rotational and a translation velocity, which are 

accessed through rotation-of and translation-of respectively. New rt-vectors can be 

created though the rt-vector function, which takes rotation and translation arguments.   

6.3.3 Behaviors 

Another commonly used data type is a behavior, which is represented as a group 

consisting of a motor-vector (what the behavior wants to do) and an activation-level 

(how badly it wants to do it).  

 (define-group-type behavior 
     (behavior activation-level motor-vector) 

     (activation-level activation-level) 

  (motor-vector motor-vector)) 
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Activation levels can be Booleans (i.e. on or off) or scalars (generally between 0 and 1). 

For the experiments described in this report, a motor-vector is actually an rt-vector 

representing the desired rotational and translational velocities of the robot.  

 The GRL library contains implementations of several popular behavior-based 

programming mechanisms. This allows the programmer to mix-and-match mechanisms 

as necessary, and also makes it convenient to experiment with variant and hybrid 

arbitration mechanisms.  

 As an example, the Motor Schema system has behaviors that generate motor-

vectors that are combined through weighted summation. To model Motor Schemas, we 

can define a weighted-motor-vector using the activation-level of the behavior as a 

weight: 

(define-signal (weighted-motor-vector beh) 

  (* (activation-level beh)  

  (motor-vector beh))) 

The weighted sum of behaviors can then be defined as: 

(define-signal (weighted-sum . behaviors) 

 (apply + (weighted-motor-vector behaviors))) 

The weighted-motor-vector signal procedure is implicitly mapped across the list of 

behaviors in the above example. Assuming we had defined two behaviors: move-

toward-destination and avoid-obstacle. Then the final motor output could be computed 

as: 
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(define-signal motor-output 

  (weighted-sum move-toward-goal 

     avoid-obstacles)) 

 Now suppose that we would prefer to use a weight average rather a weight sum 

of the behaviors. The following definitions would allow us to do so: 

(define-signal (weighted-average . behaviors) 

  (/ (apply weighted-sum behaviors) 

     (apply + (activation-level behaviors)))) 

 

(define-signal motor-output 

  (weighted-average move-toward-goal 

          avoid-obstacles)) 

6.3.4 Sequencing 

GRL programs are typically a collection of signals running in parallel. However, at 

times, it is useful to have sequential control. Plans are a construct for compiling serial 

expressions into sequences implemented as GRL transducers, which means that they are 

finite state machines internally. Therefore none of the plan sequencers have a stack, so 

it is not possible to write recursive plans. Plans expressions are primarily responsible for 

starting or stopping behaviors (by switching their activation levels on or off) and other 
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plans. Other expressions include blocking expressions that temporarily halt the 

execution of the plan, or conditional expressions such as if-then or while. 

 The following plan first drives the robot down a hallway by activating the 

follow-corridor behavior, then turns it sharply leftward when the robot encounters a 

wall: 

 (define-plan (straight-and-left) 

   (start follow-corridor) 

   (wait wall-in-front?) 

   (stop follow-corridor) 

   (ballistic-left-turn)) 

6.3.5 Pools  

Pools are representational modalities that contain items that may be conveniently bound 

to role variables. A pool is created using the signal-procedure make-pool; for example, 

the color pool is defined as: 

 (define-signal color-pool 

   (make-pool ‘color-pool  

    (vector 'green 'red 'blue))) 

The first argument to make-pool is the name of the pool, and the second is a vector 

representing the items in the pool. In this case, the pool is being used as a memory 
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system that stores items in a set of registers. Items in the pool may be bound to role 

variables; e.g. the color green could be bound to the object role: 

 (bind-item! color-pool ‘green (roleset object)) 

roleset is a macro that returns a bit mask representing the set of roles passed to it as 

arguments; so, bind-item! may actually bind an item to multiple role variables 

simultaneously. Conversely, the item that is currently bound to a given role may be 

accessed by using pool-lookup: 

 (pool-lookup color-pool object #f) 

The above signal-procedure call returns the present color bound to the object role; the 

last argument to pool-lookup (#f in the above example) is a default value that is 

returned if no binding is found.  

Pools can also represent a group of sensory systems; for example, the tracker 

pool is defined as: 

 (define-signal tracker-pool 

      (make-pool 'tracker-pool tracker-count)) 

where tracker-count is an integer representing the number of trackers in the pool. When 

a pool contains sensory systems, the items in the pool are collections of functionally 

equivalent sensory processes that can be dynamically allocated to different tasks, i.e. 

each tracker in the tracker pool may be dynamically assigned to track different objects 

during run-time:  

 (%pool-allocate->slot! tracker-pool current-context object) 



 

 

109

%pool-allocate->slot! allocates an item slot in the pool to the role variable and returns 

the slot index; a free slot is allocated if one is available, otherwise the least recently 

used slot is allocated. Information from the sensory systems may be accessed using 

pool-predicate or pool-function: 

 (pool-predicate pool vector) 

 (pool-function pool scalar-vector default) 

The former takes a pool and a Boolean vector of length equal to the items; it returns a 

roleset (bit mask) of the roles bound to items whose corresponding entries in the 

Boolean vector are true. The latter takes a pool, a vector of scalars and a scalar as 

arguments and returns a vector of length equal to the number of role variables. The ith 

element of this vector is the respective value from scalar-vector of whichever item in 

pool is bound to the ith role; if no item is bound to that role, then the element is default. 

So, if the object role variable is represented as the first role in the roleset and is bound 

to the second item in the pool, then the first element of the returned vector contains the 

second element in scalar-vector.  

6.3.6 The GRL Compiler 

The GRL compiler is always called with a list of top-level signals to compile. It 

recursively evaluates the compile-time constructs such as signal procedures until it has 

reduced the program to a graph of primitive signals. A topological sort is performed 

over the signal graph to determine the total ordering of primitive signals that drive the 
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original signals passed to the compiler. This ordering is used to decide the order of 

evaluation in the object code. GRL attempts to optimize the signal graph through 

standard optimizations such as inlining, algebraic simplification, constant folding and 

hoisting of loop invariants. Occasionally, there are cycles in the signal graph, and these 

are “broken” by inserting a unit delay before one of the signals in the cycle. 

GRL may generate output code in various languages, including Scheme, C, 

C++, BASIC, and UnrealScript2. For the experiments described here, the GRL code was 

compiled into Scheme.  

6.3.7 Calling programs external to GRL 

Given the lack of pointer semantics in GRL, it is difficult to perform certain 

computations. For example, the path planning code for the capture evading target task 

requires the use of a queue or of spreading activation. Fortunately, calling native 

Scheme code from within GRL is fairly straightforward; for more information on this, 

refer to [Horswill 2000]. Therefore, parts of the code used in the experiment (including 

the topological map, the path planner, and some of the team communication code) were 

written directly in native Scheme instead of GRL. The specifics of the implementation 

are discussed in greater detail in the next chapter.  

                                                 

2 UnrealScript is an interpreted scripting language for a popular computer game.  
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Chapter 7 

Design of A Robot Using HIVEMind 

This chapter describes the experimental system used as a proof of concept for the 

HIVEMind architecture. This system was used in the execution of all three tasks 

described in Chapter 6: Town Crier, Find Object and Capture Evading Target. Figure 

7.1 shows the high-level view of the entire system. 

 

 

Figure 7.1: High-level layout of the experimental system 

During startup, none of the actions in the action pool are active, so the robots do 

nothing. The user can assign a task through the use of a command console (see Section 

7.6). The current task, as well as any arguments for it, is communicated to the other 

team members and the appropriate action is activated. During the execution of the task, 

the incoming video stream is processed by low-level visual routines written in C++, and 
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then passed to high-level procedures in the tracker or place pools. The active action may 

bind roles to items in the tracker or place pools. In return, information from one or both 

of these pools is passed back to the action, and is also communicated to the other team 

members. Percepts from the local sensors are merged with percepts from other team 

members before being processed by the current action. Finally, the active action drives 

the base by turning the four control behaviors on and off appropriately.   

7.1 Color Pool 

The color pool stores information about the colors that the tracker system (see Section 

7.2) can detect. There are currently three colors in the pool: red, green and blue. Each 

color is represented as an intensity-normalized YUV tuple:  

 Color = <NU, NV> where 

 NU, NV = <mean, stdev, min_mean, max_mean, min_stdev, max_stdev> 

 NU and NV are the normalized color components. The tuples contained in the color 

pool represent the initial values for each color. The color trackers utilize these values to 

acquire the object to be tracked, or reacquire the object, if it is lost.  

 There is enough variance across cameras on different robots that the resulting 

initial color values are fairly disparate. The table below shows a typical set of color 

YUV values for a robot. 
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 NU NV 

Red <69.0, 15.0, 49.0, 89.0, 5.0, 20.0> <38.0, 15.0, 18.0, 58.0, 5.0, 20.0> 

Green <-27.8, 15.0, -42.8, -12.8, 5.0, 20.0> <24.6, 15.0, 9.6, 39.6, 5.0, 20.0> 

Blue <-60.0, 15.0, -105.0, -15.0, 5.0, 20.0> <100.0, 15.0, 55.0, 145.0, 5.0, 20.0>

Table 7-1: Typical initial intensity-normalized YUV values 

 

7.2 Tracker Pool 

The adaptive color tracker system [Depristo 1999] is based on a limited N-Clusters 

algorithm. The tracker operates on intensity-normalized YUV, or NUV, images. Each 

pixel P in the image is viewed as a four-tuple, P = <X, Y, NU, NV>, where X and Y are 

the position of the pixel in the image, and NU and NV are as defined in Section 7.1. The 

tracker partitions the set of pixels in the image into a collection of disjoint clusters 

through the use of a similarity criterion. In this case, the similarity criterion is based on 

a statistical measure; that is, each cluster is treated as a statistical distribution, with a 

mean and standard deviation. A pixel P is in a cluster C if, for each dimension D in <X, 

Y, NU, NV>: 

( )
( ) Threshold
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This similarity criterion ensures that pixels that are located close to each other, and are 

of a similar color, will tend to end up in the same cluster, i.e. the set of pixels in the 



 

 

114

image is partitioned into clusters that are localized in both space and color. Observe that 

such clusters will tend to correspond to uniformly colored objects in the world. 

 The color tracker requires a set of mean and standard deviation values to 

bootstrap the tracking process. This is the responsibility of the color pool described in 

Section 7.1. During runtime, an active action may call on the tracker pool to track a 

target represented by a role; the target’s color is bound to that role. The tracker pool 

selects an available tracker and assigns it to the role. This tracker then uses the role to 

index the mean and standard deviation values of the target color in the color pool.  

 Since the target may move during active tracking, the X, Y positions of the 

cluster could change, and different lighting conditions might affect the NU, NV values. 

The color tracker compensates for this by recomputing the mean and standard deviation 

for all four dimensions of the cluster on every cycle. That is, after the tracker computes 

the current set of pixels in the cluster, it calculates the mean and standard deviation of 

the <X, Y, NU, NV> dimensions for these pixels, and uses these new values to 

determine the next set of pixels in the cluster on the following processing cycle.    

Percept Information provided 

see-object? Predicate indicating if the target is seen.  

near-object? Predicate indicating if robot is sufficiently close to the target. 

x-coords x-position of target in the robot’s field of view. 

y-coords y-position of target in the robot’s field of view. 

Table 7-2: Percepts provided by the tracker pool 
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 The tracker pool provides an interface for binding a role to an available tracker, 

and conversely for checking if a role is currently bound to a tracker. In addition, the 

tracker pool also provides the percepts shown in Table 7-2 that the active action may 

use to obtain information about targets being tracked. The two predicates, see-object? 

and near-object?, are represented as bit-vectors, where each bit represents one of the 

thirty-two roles. A set bit indicates that the predicate is true for the corresponding role. 

see-object? is true when the number of pixels in the relevant cluster is sufficiently large, 

while near-object? is true when the robot sees the object and it is centered in the robot’s 

field of view. x-coords and y-coords are both integer arrays of size thiry-two. Again, 

each slot in the array represents one of the roles.   

The left image in Figure 7.2 shows a small green ball in the robot’s camera 

view. The right image shows the pixels assigned to the cluster that represents the ball by 

the color tracker.  

 

 

Figure 7.2: Camera image containing target object and  

silhouette of pixels in the representative cluster.  
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7.3 Place Pool 

The place pool holds information on specific locations in the robots’ habitat. These 

locations are landmarks on the map that the robots utilize for navigation. The place pool 

contains the name and index number of each landmark. A role may be bound to one or 

more landmarks simultaneously.  

 In the following subsections, I will discuss the internal format for the 

topological map. Then I will describe the probabilistic localization technique used to 

determine the current position of the robots. Finally, I will describe the algorithm that 

the robots use to search the area represented by the map.  

7.3.1 Map Format 

The map used by the robots is a topological one, i.e. it consists of a set of nodes or 

landmarks, connected by a set of edges representing hallways. A landmark is defined as 

an intersection (a corner, t-junction, etc) or a dead end.  

Corridors can extend from landmark only in eight possible directions set at 45 

degree intervals. This simplifies the map representation and the feature detectors 

required to find the landmarks. Fortunately, most office environments have rectilinear 

corridors that fit this straightforward design. 

The system finds landmarks through the use of three simple feature detectors: 

delayed-see-wall-ahead?, delayed-see-left-wall?, and delayed-see-right-wall?. The 
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Figure 7.3: Possible corridor outlets from a landmark node 

“delayed” in the name of each refers to the fact that each signal is delayed by a constant 

amount of time. The reason for this is that the cameras on the robots are angled high 

enough that features are triggered before the robot is physically at the correct location, 

and conversely when the robot actually arrives at the correct place, the feature can no 

longer be seen. Hence, the signals are delayed by a small time amount (approximately 

1-2 seconds) to allow the robot to trigger feature detection only when it is actually at the 

correct location. Using these three feature detectors, a corridor is defined as: 

 (define-signal corridor? 

(and (not delayed-see-wall-ahead?) 

         delayed-see-left-wall? 

         delayed-see-right-wall?) 

In turn, a landmark is defined as anything that is not a corridor: 
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 (define-signal landmark? 

  (> (true-time (not corridor?))  

    min-landmark-seen-time)) 

true-time is a signal-procedure that returns the number of milliseconds for which its 

input argument has been true. The use of true-time and min-landmark-seen-time 

helps to eliminate noise in the vision input and ensure only real landmarks are 

identified.  

 The map used by the robots in the execution of all their tasks is that of the west 

wing of the third floor of 1890 Maple Avenue in Evanston, where the Northwestern 

University Computer Science Department is located. There are eleven landmarks on this 

map, as shown in Figure 7.1. Furthermore, as Figure 7.3 shows, the westward direction 

was arbitrarily chosen as 0 degrees in absolute world coordinates. During startup, the 

robots are assumed to be facing directly west or 0 degrees. This is due to the fact that 

the landmark recognition system needs to have an absolute world orientation in order to 

reference the map correctly. Since the robots begin with a “clean slate” each time they 

are started, they require some human assistance to gain their bearings. I was not 

attempting to solve the kidnapped robot problem, and therefore considered this an 

acceptable solution.  
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7.3.2 Probabilistic Localization 

The robots utilize a probabilistic method to perform localization, the act of determining 

one’s current location in the environment. The localization technique used is similar to 

the one described in [Thrun 2000]; however, the type of map I used is topographical 

rather than metric3.  

 The probabilistic approach to localization views the problem as a density 

estimation one, i.e. the robot is attempting to estimate a posterior distribution over the 

space of its possible locations conditioned on available data. A location in this context 

is a landmark on the topological map. Denoting the robot’s location by st and the data 

leading up to time t by d0..t, the distribution bt(st) can be expressed as: 

 bt(st)  = p(st|d0..t, m) 

where m is the map of the environment.  

 There are two types of available sensory data: observations and action data. The 

former characterizes the current, momentary situation (e.g. camera images), while the 

latter relates to the change of the situation (e.g. odometer readings). Assuming without 

loss of generality that both types of data arrive in an alternating sequence, then: 

 d0..t = o1a1o2a2………otat 

                                                 

3 A metric map divides the environment into a grid of evenly spaced cells. In general, 

metric maps are more precise and easier to construct but more expensive in terms of 

storage and computation. 
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Then, starting from this expression, 

bt(st)  = p(st| o1a1………otat, m) 

we can apply Bayes rule and the theorem of total probability, and exploit the Markov 

assumption twice to obtain: 

( ) ∑
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where ηt is a constant normalizer which ensures the result sums up to 1. The Markov 

assumption states that the past is independent of the future given knowledge of the 

current state. Practical experience has shown that probabilistic algorithms are tolerant of 

mild violations of this assumption.  

 This approach is generally known as Markov localization [Burgard et al. 1996] 

[Fox, Burgard and Thrun 1999] [Kaelbling, Cassandra and Kurien 1996]. However, it 

equally represents the update equation in Kalman filters [Kalman 1960], Hidden 

Markov Models [Rabiner and Huang 1986], and dynamic belief networks [Dean and 

Kanazawa 1989].  

 To implement the above equation, we need to specify p(st | at-1, st-1, m) and p(ot | 

st, m). The first density may be thought of as a probabilistic generalization of the mobile 

robot’s transition to a landmark (represented as a state) given some motion from 

previous landmark. The second density is a probabilistic model of perception. In this 

system, p(ot | st, m) is calculated using the three feature detectors described in Section 

7.3.1; this density relates the perceived walls (or lack therefore) to the expected features 
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as indicated by the topological map, under the assumption that the robot is located at s. 

The distribution b(st) is updated each time the robot believes it has arrived at a 

landmark, and is computed in the following manner for this system: 

Let M be an nn×  matrix of vector distances between landmarks, where n is the total 

number of landmarks. Create a transition matrix M’ by taking each element m in M and 

computing: 







 −

−

=
2' σ
mk

em  

where k is the magnitude of the measured motion of the robot, and σ is the standard 

deviation of the assumed Gaussian error; this essentially weights the probability for 

each landmark in terms of the total distance traveled since the previous landmark. Let V 

be a vector of size n. For each vj in V: 
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fi is the boolean valued output from the feature detector i. 

rij is the expected feature from feature detector i at landmark j. 

x is the probability of making a false negative observation (i.e. not seeing a wall  

    where one exists). 



 

 

122

y is the probability of making a false positive observation (i.e. seeing a wall  

     where none exists). 

V represents the probability of the robot observing a given set of features at a landmark 

given a priori knowledge of the actual features that that landmark; in this case, the 

features being walls in front, to the left of and to the right of the robot. Putting this all 

together, b(st) is computed using the following expression: 

 ( ) ( )( )VMsbsb tt '1−=η  

b(st) is computed by first multiplying the previous distribution b(st-1) by the transition 

matrix M’, and then an element-wise product is done over the resulting vector and the 

evidence vector V. Finally, the normalizer η is applied to ensure the distribution sums 

up to 1. 

 For actual navigation purposes, the robot has to commit to a particular landmark 

each time it comes to one. Therefore, whenever the robot arrives at a landmark, it 

computes b(st) and decides that the landmark with the highest probability value in that 

distribution is the one where it is presently located.  

7.3.3 Landmark-to-Landmark Navigation 

During normal navigation, the robots do not utilize an online path planner (the 

exception to this is discussed in Section 7.3.4) Instead, all landmark-to-landmark paths 

are stored in a lookup table that is generated a priori from the topological map. This 

code was primarily written in Scheme, with some interface functions to GRL. 
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Each landmark in turn is used as the root of a tree, and a breadth-first walk is 

performed over all other landmarks, ignoring cycles. When an unvisited landmark is 

encountered during the breadth-first walk, its parent is checked. If the parent is the root, 

then the direction (represented as degrees in absolute world terms) from the root to that 

landmark is recorded in the lookup table. If the parent is not the root, then the parent’s 

directional entry in the lookup table is propagated to the current landmark. As an 

example, the breadth-first walk in Figure 7.4 uses landmark 1 (“Lynn”) as the root. The 

number on the links between nodes indicates the direction the robot should turn towards 

to reach that landmark. For example, if the robot is currently at Lynn and wishes to 

travel to the Lounge, it should turn to face 90 degrees in absolute world terms (which 

would be southward). Notice that all nodes share the same direction as their parent, with 

the exception of the root node.  

 

Figure 7.4: Breadth-first walk using landmark 1 as the root node 
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Robots are assumed to start out at a known landmark during navigation. The 

robot indexes the table using the current landmark and its intended destination. The 

table entry indicates the direction the robot should turn to. After turning appropriately, 

the robot moves forward until its reaches another landmark, whereupon it localizes to 

determine its current location. If this landmark is its original destination, then it is done. 

Otherwise, it indexes the table again with the destination and this new landmark as the 

source, and repeats the process.  

It is easy to see that determining the next landmark given the current landmark 

and ultimate destination is an Θ(1) time operation.  Storing the lookup table requires 

O(N2) space in the number of landmarks; this is not a significant problem because total 

landmarks in the test environment is very small. The total running time for a breadth-

first traversal is O(N+E) time in the number of landmarks (N) and corridors (E). Hence, 

creating the lookup table takes O(N2+NE) time. While expensive, this lookup table only 

needs to be generated once. 

7.3.4 Navigating around blocked landmarks 

For the Capture Evading Target task, the robots have to trap the human between each 

other. Suppose the human is observed by Robot1 as it is traveling from landmark A to 

landmark B. Robot2 has to maneuver to landmark B in order to trap the human in that 

corridor. However, since the robots all shared the same navigation paths, Robot2 will 

attempt to reach landmark B by going through landmark A; obviously, this is not the 
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appropriate approach. Robot2 should realize that Robot1 is already at landmark A, and 

it should seek an alternative path to landmark B.  

 

Figure 7.5: Robot1 spots the intruder as it goes from A to B 

 

Figure 7.6: The normal path that Robot2 would take to B is blocked by Robot1 

 This is implemented by creating a lookup vector for Robot2 dynamically when it 

realizes that it is in the situation described above. Using its current position as the root, 

a breadth-first walk is again performed over all other landmarks. The lookup vector that 

is generated has two significant differences from before: 
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Figure 7.7: Robot2 takes an alternative path to B in order to trap the intruder 

• The landmark where its teammate is located is now marked as “blocked”, and 

the links to it are removed. Therefore the breadth-first walk of the tree will not 

go through it.  

• Rather than storing the direction to face for the next landmark, the lookup vector 

simply stores the next landmark itself. The system then utilizes the original 

lookup table to determine the direction.  

 

Figure 7.8: Visual representation of lookup vector 
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The figure above shows the lookup vector that would be generated if the current robot is 

at Lynn, and its teammate spotted the human target while traveling from Rob to Aaron. 

Only the path from Lynn to Aaron is stored in the lookup vector. All nodes with no 

outward links point back to themselves; if the robot wanders into one of these nodes 

during its journey, it will have to replan the path using that node as root.  

The code for this was also written in Scheme, with some procedures provided as 

interface functions. The GRL code uses these interface functions to connect to this 

system. As before, it is an Θ(1) time operation to determine the next landmark given the 

current landmark and ultimate destination is. Populating the lookup vector is a breadth-

first traversal operation that takes O(N+E) time in the number of landmarks (N) and 

corridors (E). However, this is not a procedure that is executed frequently, and the 

number of landmarks and corridors on the map is very low.  

7.3.5 Searching the Map 

Searching the environment is not equivalent to simply traversing all the landmarks. The 

links joining landmark nodes represent real physical space where an object could be 

located. Merely visiting landmarks could leave some corridors unsearched. Given the 

vast proportion of corridor space compared to landmark space, any target object is more 

likely to be in a corridor than at a landmark. Therefore, the search system records 

unvisited corridors, rather than unvisited nodes. However, the navigation system 
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expects landmarks as input, not corridors; so, the search system has to take this into 

account. On an abstract level, the search procedure is a three-step process: 

 
The first step (choosing a landmark) is accomplished in the following manner: 

1. Check the list of unvisited corridors. Each corridor is assumed to have two 

landmarks anchoring it. 

2. If the list is empty, then all corridors have been searched.  

3. If there is an unvisited corridor with the current landmark as an anchor, then 

return the other anchoring landmark; the robot can simply turn to the appropriate 

direction and travel down that corridor to search it.  

4. If all nearby corridors have been searched, then get the list of nodes neighboring 

the current landmark. For each node in the neighbor list that has not been 

previously examined, push that node onto a queue. Since the map is a graph and 

not a tree, it is possible for loops to occur. To prevent the algorithm from going 

into an infinite loop, nodes that have already been examined are not put back 

onto the queue.  

5. Remove the first node from the queue. Check the unvisited corridor list to see if 

there exists an unvisited corridor with this node/landmark as an anchor. If so, 

return this node. Otherwise, go back to step 3 using this node as the ‘current 

landmark’.   

The second step (traveling to the landmark) uses the navigation system described in 

Section 7.3.3. This step terminates whenever the robot reaches any landmark, i.e. the 

robot does not have to actually reach the targeted landmark. At this point, the third step 

(recording searched corridors) runs: 
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1. Suppose the robot started out at Landmark1, and is currently at Landmark2.  

2. If there is a corridor anchored by both Landmark1 and Landmark2, then mark it 

as searched.  

3. Otherwise, check to see if there exists Landmark3 such that (Landmark1, 

Landmark3) and (Landmark3, Landmark2) are both corridors. If so, then 

assume that the localization system somehow missed identifying Landmark3. 

Mark both (Landmark1, Landmark3) and (Landmark3, Landmark2) corridors as 

searched. Of course, this is a heuristic approach; however, practical experience 

has shown this to be useful.  

4. If neither of the above two cases hold, then do not mark any corridors as 

searched.  

7.4 Action Pool 

The action pool consists of three reflected plans, one for each task the robots can 

perform. Reflected plans are GRL plans that can be bound to roles; the plan can then be 

activated by calling “start” with the bound role as an argument. The code segment 

below shows the main plan for the system: 

(define-plan (main) 

     (trigger-when bindings-changed?) 

     (stop-indirect activity) 

     (global-unbind! -1) 

     (bind-activity-roles!) 

     (bind-color-roles!) 

     (start-indirect activity)) 
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The main plan is activated when the bindings from the Command Console (see Section 

7.6) change, i.e. when the user inputs a new command for the robot team. First, main 

stops the current activity and undoes all current bindings. Then, it binds the current 

inputs to the appropriate roles; the activity role holds the name of the current reflective 

plan. Finally, it activates the current reflective plan by passing the activity role to the 

start-indirect procedure. 

 Each reflected plan consists of a set of inference rules that are recomputed on 

every process cycle. This continual recomputation alleviates the need for error detection 

and recovery logic that could otherwise be necessary, hence simplifying the inference 

rules.  

7.4.1 Town-Crier 

The inference rules contained in the Town-Crier plan are: 

1. If at-landmark(X) and unvisited-landmark(X), then speak-string(). 

2. If TRUE, then bind(Y, get-unvisited-landmark()) and goto(Y). 

The first rule causes the robot to speak the announcement if the landmark it is currently 

at has not been visited previously. The announcement should be made only once at each 

landmark to avoid annoying the inhabitants of local offices with repetitive 

announcements.  

 The second rule is always true. The procedure get-unvisited-landmark() returns 

the current landmark if all landmarks have been visited. Otherwise, the next landmark 
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to be visited is bound to a role and passed to goto(), which is a polymorphic function 

that is explained further in Section 7.4.4. 

 In the original specification of the Town-Crier task, the user was supposed to 

provide the robots with the text of the announcement via the Command Console. 

However, a component of the Command Console necessary for this was not 

implemented in time. Therefore, the current announcement is actually hardwired into 

the Town-Crier plan. Nevertheless, this does not affect the HIVEMind coordination 

system in any way. So, it was considered an acceptable flaw.  

7.4.2 Find-Object 

The inference rules for Find-Object are: 

1. If see-object(X) is true, then goto(X). 

2. If location(X) is known, and see-object(X) is false, then bind(Y, location(X)) 

and goto(Y). 

3. If location(X) is unknown, and see-object(X) is false, then bind(Y, next-

unsearched-location()) and goto(Y). 

See-object() is a predicate provided by the color trackers in the tracker pool. It takes a 

role as an argument, and returns true if the object bound to the role is visible in the 

camera. The first rule moves the robot towards the target object if it is in sight.  

 Location() is a function that takes a role as an argument and returns a list of two 

landmarks from the place pool. If the current location of the target object is known but 
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not in sight of the current robot, then the current location is bound to a role. Recall from 

Chapter 4 that roles may be bound to multiple items in a pool. Then, the role is passed 

to goto().The goto() function attempts to navigate the robot to the first landmark bound 

to the role, then the second; hence traversing the corridor where the target is located. 

During this traversal, the first inference rule should fire when the target becomes 

visible. 

 If the target is not currently seen, and the robot does not know the target’s 

position, then the third rule calls next-unsearched-location(). This function returns a 

landmark that is bound to a role and then passed to goto(). The procedure next-

unsearched-location() is the first step of the search functionality described in Section 

7.3.5; the goto() function subsumes both the second and third step. 

7.4.3 Sentry  

The Capture Evading Target task is performed by the “Sentry” reflective plan. The 

inference rules for this task are: 

1. If not(observed(X)), then bind(Y, next-unsearched-location()) and goto(Y). 

2. If see-object(X) or location(X) is known, then set observed(X) to TRUE. 

3. If not(all-see(X)) and see-object(X), then set-current-mode(SENTRY). 

4. If current-mode() is SENTRY, then stop-moving() and announce-taunt(). 

5. If not(see-object(X)) and location(X) is known, then set-current-

mode(STALKER). 
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6. If current-mode() is STALKER, then bind(Y, trapping-path(location(X))) and 

goto(Y).  

7. If all-see(X), then set-current-mode(TRAP), goto(X) and announce-capture(). 

The rules for this task are somewhat more complicated than the other two tasks because 

the task itself is a more complex one.  

Recall from the previous chapter that the execution of this task involves the 

robots going through several different modes. Rule 1 is the search mode. If the target 

has not yet been observed, either by the current robot or its teammate, then the robot 

should perform a normal search, i.e. move through any unexplored corridors and 

eliminate them from consideration. When the target is observed, Rule 2 terminates the 

search mode.  

 

Figure 7.9: Rule 1 – The robots search for the intruder 
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Figure 7.10: Rule 2 – The intruder has been spotted 

Rules 3 and 4 concern the sentry mode, i.e. the current robot sees the target, but 

its teammate does not. The former rule sets the mode, while the latter halts the robot, 

and has it taunting the target with spoken insults. If the target attempts to escape by 

running away, the sentry does not move, but simply remains in position and continues 

taunting.  

 

Figure 7.11: Rules 3&4 – Robot1 halts and taunts the intruder in Sentry mode 
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Figure 7.12: Rules 5&6 – Robot 2 (the Stalker) moves around to trap the intruder 

The stalker mode is handled by rules 5 and 6. The former activates the stalker 

mode if the target is not seen, but its location is known from a communiqué by a 

teammate. Rule 6 computes a path to the target location using the trapping-path() 

function, which is described in Section 7.3.4. Remember that the objective of the stalker 

is to arrive at opposing landmark from its teammate in the corridor, hence trapping the 

target between them.  

Finally, rule 7 activates when both robots see the target. This rule changes the 

mode to trap, and moves the robots toward the target. Both robots move forward, 

reducing the area in which the target until he or she can no longer move, while 

simultaneously calling out taunts.  

The sentry and stalker modes were put in place primarily for the purpose of 

showing the robots dynamically switching responsibilities. When the target runs away 

from the sentry, he or she will run into the stalker robot. The stalker then becomes the 
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sentry, and vice versa. This demonstrates the ability of the robots to immediately react 

to changing circumstances and switch functions when necessary.  

 

Figure 7.13: Rule 7 – Both robots move to trap the intruder while taunting 

In addition, the navigation system for the robots relies on visual feature 

detectors. This means that the robots are severely hampered when a large object, such as 

the target, is located directly in front of them. By stopping in place, the sentry is able to 

latch its current position and be assured that its localization system will not be confused 

by the target. When both robots are in trap mode, the target is already cornered, so 

localization is less important.  

7.4.4 Goto 

Goto() is a generic action in GRL. Generic actions provide a data-directed 

programming mechanism similar to Common Lisp generic functions. When a generic 

action is called, all methods associated with it attempt to match themselves to the 

argument values. All matching methods then run in parallel until one of them 
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terminates. In this HIVEMind implementation, there are three methods associated with 

goto(), and each one is designed to run exclusively of the others. Goto() takes one 

argument: a role variable.  

 The first method is goto-visual, which is active when the role passed it is bound 

to a color tracker and the see-object predicate provided by that tracker returns true. This 

method triggers the approach behavior (see Section 7.5.1) with the current role 

argument when it is active.  

 The second method is goto-place. This method is triggered when the role 

argument is bound to a landmark.  When active, this method calls goto-landmark, which 

is part of the navigation system described in Section 7.3.3. 

 The final method is goto-locations, which is triggered when the role is bound to 

multiple landmarks (rather than just a single landmark, as in the previous method). This 

method calls goto-landmark on each landmark bound to the role in turn, so the robot can 

navigate to a sequence of landmarks using this approach.  

7.5 Behaviors 

Behaviors in the HIVEMind system are feedback control loops that have a “switch”, i.e. 

can be turned on or off. The switch can be connected directly to the sensory systems, or 

may be driven by expressions in plans. A behavior continually measures the difference 

between its goal and the true state of the world (via the sensory system), computes an 

adjustment to compensate or partially compensate for it, and issues the adjustment to 
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the robot motors. The output vector from the behaviors has two components, one 

representing the rotational velocity, and the other the translational velocity.  

 

 Figure 7.14:Priority of Behaviors 

All behaviors are ostensibly run in parallel, and any number of them may be 

active at any time. The system arbitrates between multiple simultaneously active 

behaviors through the use of prioritization, i.e. a fixed ordering has been imposed on the 

set of behaviors. If multiple behaviors are active, the one that has the highesy priority 

gains control of the motors. There are four behaviors in this system, with the priority 

ordering shown in Figure 7.14.  

7.5.1 Approach 

The Approach behavior takes one argument: a role that is bound to the color of the 

target object. This behavior tries to keep the target in the center of its field of view at all 

times. The camera field of view is represented as a set of Cartesian coordinates, with 

(fwidth/2, fheight/2) as the center point. We use the two rules 
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where vrotation and vtranslation represent the rotational and translation velocities for the 

robot respectively; rx and ry are the current x, y coordinates of the target in the field of 

view. αr and αt are the rotational and translational gain parameters.  

 The robot smoothly rotates or moves forward in order to track the target in its 

field of view, decelerating as the target approaches the center of the camera view. If the 

target is below the center of the camera view (i.e. it is closer than necessary), the robot 

does not back off; hence the max component of vtranslation. 

7.5.2 Turn-to 

When the robot reaches a landmark or intersection, it executes a ballistic turn in order to 

switch from one corridor to another. This ballistic turn is performed by issuing an open-

loop ballistic command to the robot base. This behavior is driven by the turn-to-dest 

plan, which computes the desired heading given the current landmark and the next 

destination. This final heading is passed to turn-to as an argument. Turn-to keeps the 

translational velocity at zero when it is executing (it is not a good idea to move forward 

while turning fast blindly), and terminates when the current robot heading is within 

some small tolerance of the desired heading.   
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7.5.3 Unwedge 

Occasionally, the robot will get stuck in a local minimum. When this happens, the robot 

performs an open-loop turn in the direction it thinks has the most open space in order to 

free itself. The stuck rule is defined as 

 ( )( )( )stucktt tvelveltruetimestuck min? <>=   

That is, the robot is stuck when the translational velocity (velt) has been below some 

threshold velmin for at least tstuck amount of time.  

7.5.4 Follow-corridor 

The follow-corridor behavior actually consists of four subordinate behaviors arbitrated 

once again through prioritization.  

 

Figure 7.15: Priority of Follow-Corridor Behaviors 

The translational velocity component for all four behaviors is identical: 

 ( )( )0,max stopcentert ddvel −= α  
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where dcenter is the distance to the closest object in the center of the robot’s field of view, 

dstop is the stopping distance and α is the gain parameter. That is, the robot will move 

forward as long as the closest object in front of it is beyond some stopping distance 

away. The further away the center object, the faster the robot will move. As it 

approaches the object, it will decelerate and come to a stop.  

The remainder of this section will focus on the rotational velocity component of 

the behaviors. 

The avoid-side-impact behavior is active when there is an obstacle too close to 

the left or right side of the robot. When this happens, this behavior overrides any wall-

following behaviors and turns the robot away from the offending object.  

 Follow-left-wall and follow-right-wall align the robot with the walls that form 

the corridor. The Polly algorithm [Horswill 1994] computes a depth map from the 

camera image by labeling floor pixels and finding the image plane height of the lowest 

non-floor pixel in each column (see below).  

The walls along the corridor are found by projecting a line along the left and 

right regions of the depth map, and using the following rule 

( ) ( )slopeslopeerrorerror llandllwall min_min_? ><=  
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Figure 7.16: Original image and depth map computed from Polly algorithm. Used 

with permission from [Horswill 1994]. 

That is, the robot sees a wall if the line fit error lerror is below a threshold lmin_error, and 

the slope of the projected line lslope is above a threshold lmin_slope. The wall-following 

behaviors are active when their respective walls are observed using the above rule. The 

rotational velocity of the robot is then calculated in the following way: 

 ( )desiredcurrentfreespacer vpvpvvel −+= 21 αα  

vfreespace is the rotational component of the freespace-follower behavior (described 

below), vcurrent is the estimate of the vanishing point based on the line/wall projection, 

and vdesired is the ideal vanishing point in the center of the camera image. α1 and α2 are 

gain parameters that acts as weights, making the rotational velocity a weighted sum of 

the freespace rotation and vanishing point computation.  

 The freespace-follower behavior runs by default if no other behaviors are active. 

Its purpose is simply to guide the robot to the area with the greatest amount of open 

space within sight. The rotational velocity of this behavior operates using the rule 
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( )rightleftr ddvel −= α  

where dleft and dright are the distances to the closest object in the left and right regions of 

the camera image respectively. α, as usual, is a gain parameter.  

 

Figure 7.17: Line projections along the left and right walls of the corridor 

7.6 Command Console 

The command console allows the human user to provide the robot team with the current 

task, as well as any arguments that may go along with it. A status display shows the 

user a map of the environment with the current positions of the robots, as well as any 

other status information. The console has the exact communication interface as the 

physical robot members of the team. Hence it appears as ‘just another robot’ as far as 

the robots are concerned; albeit one that performs no useful work.  

7.6.1 Command Interface 

The (very limited) natural language interface for the command console is based on a 

simplified version of the system described in [Horswill et al. 2000]; specifically, the 
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scaled-down system can only handle imperative input statements, such as “find green”, 

or “announce”. The interface system uses a rudimentary finite-state parser that contains 

a small lexicon of words. As words are typed into the system, the parser looks up their 

lexical categories and binds them to appropriate roles.  A typical interaction with the 

system is shown below: 

Hello. 

 > find green  

ok. 

Cerebus find green. 

OK. Activating team…… 

The task (“find” in this case) is bound to the activity role, and the argument green 

(indicating the color of the object to be found) is bound to the object role. The bindings 

are stored in an alist format and transmitted to all members of the team. The alist 

formed by the above interaction would be: ((find . 16384) (green . 16)). 

7.6.2 Status Display 

The above figure shows the status display window of the command console. The 

display shows the topological map used by the robots, with the names of the nodes 

marked, and the current position of any robots. The display window originally had a 

black background, with the map nodes and edges in bright yellow, and the robots in 

different shades (including blue, red, etc). For the purposes of this document, I reversed 
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the colors and converted the image to grayscale for better viewing. In the above figure, 

there is a robot at the gauntlet node on the far left, shown by a lighter colored circle 

with a reverse v-shape protruding from it indicating the heading of the robot.   

 

Figure 7.18: Map display on the command console 

During the find object task, the line representing the corridor where the target 

object is located will be highlighted in green. For the capture evading target task, there 

are two cases. If the target is observed by only a subset of robots, the corridor is 

highlighted in blue; if all robots in the team see the target, then the corridor is 

highlighted in red.  

7.7 Communication  

To perform the current set of tasks, the robots need to communicate four pieces of data: 
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• The current role bindings, including bindings for the current activity or task, and 

any bindings for pertinent arguments. 

• The bit vector for the see-object(X) predicate. 

• An array representing the location-of(X) function, which gives the two nearest 

landmarks, if known, for any role X. 

• A bit-vector specifying the set of landmarks that the robot has personally visited. 

The status window on the command console requires an additional four pieces of 

information in order to render the current position of the robot correctly: 

• The last landmark visited by the robot (the source node). 

• The landmark that the robot is heading towards (the destination node). 

• The current base odometry reading in x-coordinates. 

• The current base odometry reading in y-coordinates. 

The number of aggregation functions and the number of shared GRL signals should be 

the same. Using the define-default-peer macro discussed in Chapter 5, the configuration 

for the HIVEMind communication system for a single robot is: 

(define-default-peer peer-comm  

  1 

(set-alist-bindings  

 merge-matrices  

 set-team-know-location  

   set-locations 
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 no-op  

 no-op  

 no-op  

 no-op) 

(#f  

 (source (searched? ils-search-record))  

 self-know-location?  

 role-locations  

 source-node  

 dest-node  

 (round->integer base-x)  

 (round->integer base-y))) 

In the above case, the current robot identification number is 1, and there are eight pieces 

of communication data corresponding to the ones described previously. However, there 

is a difference for role-locations. Rather than passing a locations array representing all 

roles, role-locations is a list containing a subset of the roles and the locations associated 

with them. Roles that do not appear in the list are assumed not to have any locations 

associated with them.  

The no-op function is essentially a placeholder combination function that does 

no actual work. Recall that the physical robots do not need the last four pieces of data; 

they are purely for the benefit of the command console. Physical robots always transmit 
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#f (FALSE) for the role bindings; the task of setting the role bindings is solely the 

responsibility of the command console. All the physical robots have identical 

definitions for define-default-peer, with the exception of their unique identification 

numbers. On the other hand, the command console has a different structure: 

(define-default-peer peer-comm  

  0 

(no-op  

 merge-matrices  

 set-team-know-location  

 set-locations 

 set-robot-source-vect  

 set-robot-dest-vect 

 set-robot-x-vect  

 set-robot-y-vect) 

(transmitted-lexicon-bindings  

 #f  

 #f  

 #f 

 #f  

 #f 

 #f  
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 #f)) 

By convention, the command console always has an identification number of 0. The 

console does not transmit any useful data except for the current role bindings in 

transmitted-lexicon-bindings; hence the list of #f values.  However, it does make use of 

the latter four data communicated by the robots to determine where to put them on the 

map display, as represented by the four aggregation functions set-robot-source-vect, set-

robot-dest-vect, set-robot-x-vect, and set-robot-y-vect. 
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Chapter 8 

Tasks implemented using HIVEMind

The HIVEMind architecture is designed to be an efficient coordination mechanism for 

multi-robot systems that retains the variable binding capabilities normally found only in 

traditional symbolic systems. I have successfully constructed a team of three members, 

consisting of two physical robots and the command console, that perform the three tasks 

involving tightly coordinated search described in Chapter 2. The control and 

coordination components that form the core of the HIVEMind architecture worked 

flawlessly in all the tests performed on this multi-robot team. All team members 

maintained a shared situational awareness in real time (assuming no outright 

communication failures) using the efficient virtual wires model that employed very little 

of the available network bandwidth. The reasoning system on the physical robots 

operated on inference rules that utilized indexical roles bound in the sensory system, 

giving them more representational power than traditional behavior-based techniques.  

 At present, the landmark recognition system is the weak point of the 

implementation. This system relies on vision provided by a camera fixed on the robot 

that is only about two feet off ground level. The recognition of landmarks is tuned to the 

robot being in the center of the corridor; any deviation from this, perhaps due to a 

passerby or other such unexpected obstacles, could lead to misclassifications. Minor 



 

 

151

errors are common, but the navigation system is generally robust enough to handle 

these. False negatives (i.e. the robot does not see a landmark even though one has been 

encountered) can lead to sub-optimal behavior since the robots will try to revisit an 

encountered landmark since they did not detect it initially; however, this does not lead 

to catastrophic failure. On the other hand, false positives can occasionally lead to 

serious problems. A robot could believe that it has visited a landmark that it actually has 

not, and this information propagates to the entire team; now, there is a location that will 

go unexplored because the team believes it has already been searched. While the 

landmark recognition system presents some challenges, it should be emphasized again 

that the HIVEMind architecture itself performed exactly as it should have.  

In the following sections, I will discuss experiments pertaining to each of the 

three tasks performed by the robot team. It should be noted that the HIVEMind 

approach makes no claims to create teams that produce more optimal behavior, i.e. 

cooperative robots that can provably complete a task in less time or consume less 

power. Multi-robot team programmers may use the HIVEMind approach to create such 

teams, but that is orthogonal to the current discussion. For this reason, the data 

presented below is qualitative rather than quantitative. The experiments described here 

serve to demonstrate that the HIVEMind approach may be successfully used to create 

robots that can cooperate using an efficient virtual wires model to solve complicated 

tasks that require communication and tight coordination.   
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All experiments were run in the environment described in Chapter 7. The 

robots drive at approximately 1m/s in straight corridors, although stopping for ballistic 

turns at corners and intersections somewhat reduces their mean velocity. Sensing, 

inference and control decisions are each performed at 10Hz. Each robot transmitted its 

beliefs to the others at the rate of 1Hz.  

8.1 Town Crier 

For the Town Crier experiments, all team members were started from a central point at 

the extreme east end of the wing near the node labeled “Gauntlet” on the map. 

Generally, the physical robots were able to visit all the landmarks and make the 

announcements under 5 minutes. In three out of twelve test runs, a false positive 

identification of a landmark led to the robots not announcing at all landmarks.  

8.2 Find Static Object 

In the Find Static object experiments, team members were again started from the 

Gauntlet location. The goal object, a green ball, was placed out of view, about 15-20 

meters from the starting point; it was always located at least two corridors and three 

landmarks away from the starting point. When the command “find green” was entered 

on the command console, the robots began a systematic search of the wing for the goal 

object. The systematic search approach guarantees that each landmark is searched at 

most once and that all landmarks are searched if necessary. The robots were 
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consistently able to locate the green ball within 30 seconds provided that there were 

no catastrophic failures of the landmark recognition system. Once the first robot 

discovered the position of the target object, its teammate was typically able to converge 

on that location within another 20-30 seconds.  

8.2.1 Transcript of a Find Static Object test run 

The following screen captures were taken from a video of one of the test runs for the 

Find Static Object task.  

Comments Screen Capture 

Both physical robots are started from the 

Gauntlet location.  

 

The human user enters “find green” on the 

command console. This information is 

propagated to all team members via virtual 

wires. 
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The robots begin their mission to locate a 

green-colored static object within the 

environment. 

 

The first robot reaches the t-intersection 

and proceeds to turn right.  

 

The second robot arrives at the t-

intersection; meanwhile, the first robot has 

started up the right corridor. 

 

The second robot knows that the right 

corridor is already being searched by its 

counterpart, and proceeds to turn towards 

the left corridor.  
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The user monitors the team on the 

command console’s status display 

window. This shows the positions of the 

robots, and the corridors that have been 

searched (thicker lines).  
 

The first robot approaches the green ball 

down the hallway.  

 

The image on the right shows a view from 

the first robot’s camera. The horizontal 

lines represent distance to the closest 

obstacle within that line area. The small 

green ball can be seen in the middle near 

the top of the image as a small circle.  

 

When the first robot locates the green ball, 

it informs the rest of the team of this. On 

the command console, the corridor where 

the ball is located is highlighted green. 

Meanwhile, the other robot moves to that  
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corridor to join its teammate at the green 

ball.  

 

8.3 Capture Evading Target 

The robots were once again started at the Gauntlet position for the Capture Evading 

Target task. These experiments were conducted with the aid of some fellow graduate 

students, as I played the part of the evading target. They ran the commander console 

and the camcorders during the experiment. The evading target always started out at the 

deadend node, on the far end from the starting position of the robots. From there, I 

always took an initial route through the nodes Hammond  Donna Aaron Rob. If a 

robot was encountered, I would turn around and attempt to escape down the other 

corridor (Hammond Pinku Brian).  

 The robots were consistently able to locate me quickly and begin their sentry-

stalker routine, as described in Chapter 7. Generally, the first robot would see me within 

30-40 seconds, whereupon it would halt and begin taunting me. Its counterpart would 

then find me as I backtracked and tried to escape through the other corridor. Finally, the 

robots would trap me between the two of them between one or two minutes. 

8.3.1 Transcript of a Capture Evading Target test run 

The following screen captures were taken from a video of one of the test runs for the 

Capture Evading Target task. This particular test run was interesting because one of the 
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robots actually failed during the run. However, the ability of HIVEMind to robustly 

handle failed members and to rapidly integrate new robots came to the rescue. The 

failed robot was quickly rebooted, whereupon it rejoined the HIVEMind and was able 

to continue functioning as before.  

 

Comments Screen Capture 

As with the other two tasks, the user is 

responsible for entering the current 

task via the command console. 

 

This time, the command is “sentry 

green”, which activates the Capture 

Evading Target program, and sets the 

color of the intruder to be green.  
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Both robots begin at the gauntlet node; 

the first robot heads down the hallway 

once the current command has been 

received. 

 

The Status Display window on the 

command console shows the current 

state of the robots. The first robot is 

between the rob and aaron nodes, 

while the second is just starting out 

from the gauntlet. A thicker line 

indicates that an area has been 

searched. 

 

The first robot is heading down the 

long hallway…….. 
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……when it spies an intruder wearing 

green! The robot halts in its tracks and 

begins taunting the intruder.  

 

In the meantime, all other members of 

the team have been informed of the 

intruder’s presence and location. The 

thick, lighter colored line between rob 

and aaron indicates the current 

location of the intruder.   

Knowing the location of the intruder, 

the second robot plans a path that will 

trap the intruder by blocking the path 

to the exit. 
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The second robot proceeds along its 

path (traversing gauntlet  lynn  

brian  pinku  ming) 

 

While the second robot is coming 

around, the intruder tries to flee from 

the first robot. That robot doesn’t 

pursue, but remains in position and 

continues taunting. The Status Display 

window shows that the first robot no 

longer has the intruder in sight.  

The intruder runs right into the second 

robot as he tries to escape through the 

other long corridor.  
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However, at this point, the operating 

system on the first robot (Windows 98) 

crashes! Notice this robot has 

disappeared from the Status Display. 

The second robot reacts accordingly 

and moves towards the intruder. In the 

meantime, frantic rebooting is being 

performed at the first robot. 

 

After the first robot has returned to 

life, it rejoins the HIVEMind within 

one transmission cycle and proceeds to 

the current location of the intruder (in 

truth, the intruder did not move during 

the reboot of the first robot). The 

second robot waits for its counterpart 

to arrive at the intruder’s position. 
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When both robots have the intruder in 

view simultaneously, they both move 

forward to “trap” the intruder between 

them.  
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Chapter 9 

Other Multi-Robot Control Strategies 

The joint beliefs approach I have discussed so far assumes a coordination model where 

the beliefs of each participant are strongly synchronized through explicit 

communication. Obviously this is not the only possible view of coordination. There is 

plenty of work in the robotics literature describing different strategies for coordinating 

multiple robots. Some researchers have investigated techniques that rely on eventual 

convergence over time. Others have eschewed active communication altogether, relying 

instead on plan recognition through passive observation or a single world model located 

on one physical machine that is shared by all robots. In this chapter, I will briefly 

discuss some alternative strategies for coordination.  

9.1 Swarm Cooperation 

One major area of research in cooperative multi-robot systems involves the study of 

large numbers of homogeneous cooperative robots; these large robotic groups are 

generally called swarms. The control techniques used in this research draws inspiration 

from a variety of fields, including neurobiology, evolutionary biology and sociology 

[Kennedy and Eberhart 2001]. These approaches generally make use of a set of simple
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control laws and do not utilize any world models. The typical methodology used is a 

stochastic one, relying on mathematical convergence results (such as the random walk 

theorem [Chung 1974]) that produce the desired outcome over a sufficiently long period 

of time. Swarm researchers apply principles such as stigmergy, i.e. indirect 

communication between individuals via modification of a shared environment, to 

achieve the collective behavior. Stigmergy was first described by Grasse [Bonabeau, 

Dorigo and Theraulaz 1999] as a way of explaining how insect societies could 

collectively generate complex behaviors while each individual seemingly works on its 

own.  

Swarm robots are very reactive to the environment and characteristically rely on 

local interactions to generate desired global effects. This has the advantage of overall 

robustness, i.e. reducing sensitivity towards individual robot failures, but at the cost of 

increased difficulty in maintaining global team coherency.  

Most of the tasks studied using these methodologies involve group behaviors such as 

harvesting, collecting, foraging and flocking. [Deneubourg et al. 1990] describe 

strategies for the collection and transportation of objects; the cooperative behavior 

between the simulated robots emerged either through implicit or explicit 

communication. The experiments were performed on simulated and physical “ant-like” 

robots. In [Kube and Bonabeau 2000], the authors present a formal model of 

cooperative transportation of objects by ants, and describe an implementation of this on 

a group of physical robots. [Melhuish, Holland, and Hoddell 1998] show that very 
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simple, homogeneous robots are able to sort and segregate items of different colors by 

sensing only the object colors and not the local density of the objects. [Steels 1990] 

present simulations of rock sample collection on a distant planet using dynamical 

systems (partially random movement, potential fields and a dissipative structure). 

[Mataric 1992] describes implementing group behaviors such as dispersion, aggregation 

and flocking on groups of up to 20 physical robots. [Kube and Zhang 1992] present an 

emergent control strategy used on a group of five physical robots performing a box 

pushing task. They extend this work in [Kube and Zhang 1994] by examining the 

phenomenon of stagnation, i.e. members of a team are not cooperating efficiently with 

each other, leading to suboptimal or even detrimental results. For example, in box 

pushing, stagnation may result from robots pushing from opposite directions, canceling 

each other’s efforts. The paper describes a solution requiring no explicit communication 

between the robots; the robots cooperate solely through direct interactions with the box 

itself.  

9.2 Coordination through observation 

Some researchers have proposed systems that cooperated solely through mutual 

observation alone. Explicit communication, it is argued, can be unsuitable if the method 

of communication is unavailable (e.g. an enemy jams the transmission signals) or risky 

(e.g. stealth is a key component of the mission). Moreover, it is possible that systems 

designed with explicit inter-robot communication in mind will have a difficult time 
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cooperating with systems that are outside the scope of that communication methodology 

(e.g. a human being).  

 [Kuniyoshi et al. 1994] present a framework for cooperation by mutual 

observation, and discuss several issues such as viewpoint constraint and role 

interchange between robots. They also introduce the concept of attentional structure, 

which defines a set of relationships and roles between members of the cooperative team. 

Their approach is illustrated on a group of physical robots that cooperatively perform 

tasks such as posing (following a leader), passing an object between two team members 

and unblocking (i.e. one robot clears an obstructed path for another).  

 [Tambe and Rosenbloom 1995] describes RESC (REal-time Situated 

Commitments), an approach for tracking a single agent’s on-going actions in the 

context of the current situation. RESC heuristically commits to a model of the agent 

being tracked, relying on a repair mechanism to correct any errors. [Tambe 1996b] 

extends this work to a multi-agent team setting. This work was demonstrated on a 

simulation of helicopters on an attack mission.  

 [Wie 2000] presents a probabilistic solution for mutual observation between 

robots. Plans are treated as scripts that are converted to Hidden Markov Models 

(HMMs). The HMMs are then used during the plan recognition process to determine the 

current intent and actions of the other robots. This approach was implemented on a 

Robocup simulation league team.  
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 The main problem with passive observation-only approaches is that all team 

members have to be within sensory range of each other. A robot cannot infer its 

teammates’ actions or intent if it cannot perceive them and cannot communicate with 

them. The techniques in this report are intended for use in domains where passive 

communication through observation is insufficient. That is, team members must 

explicitly communicate with each other in order to coordinate their activities.  

9.3 Centralized world model 

Research has been done in domains where there are multiple acting agents that share a 

single global perspective. For example, in the Robocup small-sized robot league (also 

known as the F180 league), an overhead camera provides global vision of the field. 

Reasoning is generally performed at a central server location where the master 

knowledgebase is located (although each robot may have its own client thread on the 

server), and then actions are transmitted to the individual robots. Little, if any, 

reasoning is done on the physical robots themselves. See [Veloso et al. 1999], 

[D’Andrea and Lee 1999] and [Kiat et al. 2001] for typical examples of teams that have 

been built around this environment. However, [Asada et al. 2000] notes that some 

participants in Robocup 2000 did manage to integrate on-board vision into the size 

limitations of the small-sized robot league.  

 The shared knowledgebase eliminates any inconsistencies between world 

models for different team members, resulting in a simpler coordination process. 
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However, this type of centralized control is only relevant when a “god’s eye view” 

sensor that can perceive the entire environment at once and update in real-time is 

available. 
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Chapter 10 

Conclusions and Future Work 

10.1 Discussion on coordination 

The space of cooperative team activity is very large, and there are a correspondingly 

large number of possible solutions for coordinating a team of robots. Ultimately, 

choosing the right approach depends on many factors, including: 

• The nature of the operating environment; for example, the characteristics of an 

urban disaster area are vastly different from that of a tightly controlled industrial 

factory.  

•  Time restrictions; does the application face tight time constraints (e.g. playing 

soccer) or can it be solved over a long period (e.g. vacuuming a room)? 

• The availability of communication. While some applications face no 

communication constraints, other applications demand little or no 

communication (e.g. a covert military operation) and still others simply do not 

have it available (e.g. there is too much interference in the environment). 

• The need for tight coordination; some applications require close-knit 

coordination between team members (e.g. searching room-to-room in a 
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building) while others do not have such a requirement (e.g. cleaning the 

floor in a large, empty warehouse). 

The HIVEMind architecture is not intended to coordinate all possible robot teams. It is 

designed to be used for the case where the robots have to tightly coordinate their 

activities by explicitly sharing data with each other and be aware of the teammate 

failures. Still, this describes a large class of applications. For instance, many “search” 

tasks can be solved by small robot teams using this strategy (e.g. clearing buildings in 

an urban battlefield, surveillance operations, search-and-rescue, etc). In these situations, 

I have shown that the HIVEMind approach works exceedingly well in these situations. 

The communication strategy used by the robots is optimal in the number of packets 

transmitted. The broadcast-and-aggregate coordination mechanism generates a shared 

situational awareness among the robots, ensuring tight synchronization of their team 

actions. Any failures are quickly noticed and can be swiftly dealt with, and new 

resources (i.e. additional robots) can be dynamically integrated into the team.  

 The HIVEMind architecture has also been implemented in a virtual world. 

Robots operating in the physical world face the constraints of noisy sensors, limited 

effectors and unreliable communication. Bots that function in a virtual world, on the 

other hand, are less susceptible to such problems. FlexBot [Khoo et al 2002][Khoo and 

Zubek 2002] is an SDK for building agents or bots in a first-person shooting game 

called Half-Life. The agents participate in a deathmatch game where they function in 

teams that attempt to maximize opposition kills while minimizing their own number of 
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deaths. All agents, as well as the game engine, operate on a single PC desktop. 

Since all bots are located on the same physical machine, communication is reduced to a 

set of shared global variables. The bots use HIVEMind in much the same way as their 

physical counterparts; on each program cycle, a bot sends (writes) its data into the 

appropriate slots of shared arrays, and forms aggregate values by combining the values 

of those arrays. Using the HIVEMind architecture, I implemented a team of bots that 

dynamically form squads in the game. When a member of the squad is attacked or sees 

an enemy, the rest of the team reacts to it within one communication cycle. Each bot 

only uses 0.3% of the CPU cycles and 52 bytes of static data memory during runtime. 

We have been able to run 32 bots (a hard limitation imposed by the game, not the AI 

system) and the game engine simultaneously on a present day desktop (1.8 GHz 

Pentium VI with 1 Gb of RAM).  

10.2 Future Work 

The implementation of HIVEMind on physical robots has only been tested on the small 

team described in Chapters 7 and 8 thus far. More experiments should be performed 

using HIVEMind using larger teams of robots and for different task domains in order to 

better understand its strengths and weaknesses in practice. Furthermore, while I have 

discussed some methods for extending the periodic data broadcasting technique for 

larger teams and data, I have not yet tested these ideas in practice. One possible route is 

to implement HIVEMind on robots that use infrared for communication. These robots 
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will require line of sight for communication and also have less bandwidth available. 

So, we can experiment with different strategies for maintaining shared situational 

awareness under these conditions.  

In addition, during the development of the HIVEMind architecture, I realized 

that most existing physical robots systems have very short lives. They are activated, 

perform their tasks in a few minutes and are then deactivated. While there are now 

efforts to extend the active lifetimes of these robots to 24 hours and beyond, many of 

these efforts are hampered by hardware constraints. In particular, a lot of research for 

long-lived robots has focused on power issues, i.e. getting the robot to recharge itself 

when batteries are low.   

 One piece of potentially interesting future work is to use the commander console 

as the long-lived collective knowledge of the robot team. Throughout the development 

of HIVEMind system on the physical robot team, the commander console was always 

considered part of the team. The inter-robot communication interface for the console is 

identical to that of the physical robots; for all the robots know, the console is an extra 

member of the team that does no useful work. However, it does receive all relevant 

information from the team and, more importantly, is the most stable, longest lived 

member of the team. I would often leave the console running for long periods of time 

while the other robots were being debugged.  When the robots were activated, they 

hooked into the running HIVEMind on the console seamlessly. The present console 

does not store data persistently, but this can be easily implemented. Shared data from its 
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fleeting teammates can be stored and processed, perhaps when no physical robots 

are active or in a background batch process. Potential areas of research for the shared 

data on the commander console: 

• Data mining on the shared data. When sufficient amounts of shared data from 

different runs have been collected, this data can be mined for interesting 

patterns and relationships using data mining algorithms.  

• Representation of long term memory. The commander console should store 

information gleaned from multiple runs and load it onto robots that are newly 

activated so they immediately possess the knowledge of their predecessors. 

However, behavior-based systems generally have fixed control structures. How 

do we represent long term memory in an appropriate form that it can be 

transmitted efficiently to the robots and be used effectively by their control 

systems? 

• Stabilization of the environment. Humans often modify their surrounding 

environment in order to make it more hospitable. [Hammond, Converse and 

Grass 1995] called this “stabilizing the environment”.  Is it possible for robots 

to reason about their environment and change it in ways that make their lives 

easier? This research problem entails figuring out how the robots can take 

advantage of long term memory to determine what parts of the operating 

environment present challenges, and what actions they can take to effect 

changes in a way that would alleviate those problems in the future.   
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The ultimate goal of this proposed research direction is very difficult to accomplish, 

to say the least. While robotic research has progressed to the point where a robot can 

now traverse the world reliably and even know to a high degree of confidence its 

location in that environment, many questions remain unanswered. Robots, for the most 

part, remain sensor and effector poor. However, the ability to alter the environment 

around us to make our lives easier is one of the hallmarks of human intelligence. The 

stabilization of the environment frees us from some immediate concerns, allowing us to 

focus on other interesting tasks and problems. It would be highly beneficial if 

autonomous robots could be imbued with similar capabilities.  
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