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Abstract 
Most physically implemented multi-robot controllers are 
based on extensions of behavior-based systems. While 
efficient, such techniques suffer from weak 
representational power. Symbolic systems, on the other 
hand, have more sophisticated representations but are 
computationally complex and difficult to keep 
synchronized with changes in the environment. In this 
paper, we describe HIVEMind, a tagged behavior-based 
architecture for small teams of cooperative robots.  In 
HIVEMind, robots share inferences and sensory data by 
treating other team members as virtual sensors connected 
by wireless links.  A novel representation based on bit-
vectors allows team members to share intentional, 
attentional, and sensory information using relatively low-
bandwidth connections.  We describe an application of 
the architecture to the problem of systematic spatial 
search.   

Introduction   

More hands obviously make light work. For this reason, 
multi-robot control systems have been a hotbed of 
research activity. However, the continually changing 
world is ultimately a cruel place for robots. It is difficult 
enough to keep one robot’s world model synchronized 
with the outside world; synchronizing the shared 
situational awareness of an entire team of robots is an 
even more difficult issue. 

Behavior-based systems 
Many physically implemented multi-robot systems  focus 
on extending traditional behavior-based techniques 
(Arkin 98) to a team setting. Some examples : 

� (Balch and Arkin 98) describe a schema system 
that maintains military formations such as a line, 
wedge, diamond or column. 

� The Alliance architecture (Parker 98) uses 
spreading activation to choose between sets of 
behaviors that achieve different goals 

                                                 
Support for this work was provided by the DARPA Distributed 
Robotics Program and the U.S. Army Soldiers Systems Command 
under award #DAAN02-98-C-4023/MOD P3. 
 

� (Goldberg and Mataric 00) presents several 
behavior-based multi-robot controllers used in a 
collection task.  

 
In their purest form, behavior-based systems divide 
sensing, modeling, and control between many parallel 
task-achieving modules called behaviors.  Each behavior 
contains its own task-specific sensing, modeling, and 
control processes.  Behaviors tend to be simple enough to 
be implemented as feed-forward circuits or networks of 
simple finite-state machines.  This allows them to 
completely recompute sensor, model, and control 
decisions from moment to moment, which in turn, allows 
them to respond immediately to changes in the 
environment. 
 
Not surprisingly, the task-specificity and computational 
simplicity of behavior-based systems are also a weakness.  
We believe that their greatest weakness is the use of 
simple propositional representations, that is, 
representations without predicate/argument structure.  
Propositional representations make reasoning and 
planning more difficult and clumsy since they require 
redundant copies of the system for each possible 
argument to a predicate or action (Maes 90).  Since most 
multi-robot controllers are extensions of behavior-based 
techniques, they inherit the same issues from the basic 
underlying architecture. 

Symbolic Techniques 
Traditional symbolic reasoning systems, on the other 
hand, allow the manipulation of arbitrarily sophisticated 
representations at the cost of increased computational 
complexity.  While that complexity need not always 
involve exponential-time or undecidable computations, it 
does generally involve highly serial computations 
operating on a large database of logical assertions.  In 
principle, modifying such a system to track changes in the 
environment would require recording dependencies 
between stored assertions and their justifications such that 
when the perceptual system added or retracted an 
assertion, the reasoning system could enumerate and 
update the set of existing assertions affected by the 
change.  This process is sufficiently complicated that we 



know of no implemented physical robots that do it.  
Instead, the symbolic system is generally equipped with a 
set of “epistemic actions” that allow a programmer 
designing the knowledge base to force the symbolic 
system to update specific aspects of its knowledge base at 
specific times.  Any mistakes by the programmer will 
lead to inconsistencies between the models of the 
symbolic system and the other subsystems.  While tiered 
architectures combining symbolic and behavior-based 
systems (Arkin and Balch 97, Firby et al. 98, Connell 92) 
can mitigate the computational complexity issues by 
offloading short-timescale interactions from the symbolic 
system, they do not ultimately solve the problem of 
keeping the many fragmentary models of the different 
components in sync with one another and with the world. 
 
These issues are exacerbated in cooperative activity.  
Rather than one robot with one knowledge base, we now 
have n robots with n knowledge bases to keep consistent 
both with the world and with one another.  Failure to 
properly coordinate the knowledge bases will ultimately 
result in failure to coordinate activity. Excellent work has 
been done on communication protocols for insuring 
consistency (Cohen and Levesque 91, Tambe 96). 
However, it is telling that physically implemented multi-
robot systems almost always use purely behavior-based 
architectures and/or shared, centrally controlled world 
models created using an overhead camera (Stone and 
Veloso 99).  

HIVEMind 

HIVEMind (Highly Interconnected Verbose Mind), is a 
multi-robot control architecture that supports very 
efficient sharing of symbolic information between team 
members.  Based on role-passing (Horswill 98), a variant 
of deictic representation (Agre and Chapman 87), 
HIVEMind can efficiently implement quantified 
inference over unary predicates and provide hard real-
time guarantees for synchronization of knowledge bases 
between team members and the world.  Objects in a team 
member’s working memory are bound to a small, fixed 
set of roles such as agent, patient, source, destination, etc.  
When a role is bound to an object, a tracker is 
dynamically allocated to it and tagged with the name of 
the role.  Since the number of roles is relatively small, we 
can represent the extensions of unary predicates as bit-
vectors, one bit per role. 
 
This representation allows inference to be performed 
using bit-parallel operations in a feed-forward network. 
Alternatively, for commodity serial hardware, we can 
represent a unary predicate extension using a single 
machine word.  Inference rules can then be compiled into 
directly into straight-line machine code consisting only of 
load, store, and bit-mask instructions (Horswill 98).  
While more limited than a full logic-programming 
system, it does allow us to express much of the kinds of 

inference used on physical robots today.  The inference 
rules can be completely rerun on every cycle of the 
system’s control loop, allowing the robots to respond to 
contingencies as soon as they are sensed.  The compiled 
code is sufficiently efficient that inference is effectively 
free – 1000 Horn rules of 5 conjuncts each can be 
completely updated at 100Hz using less than 1% of a 
current CPU. 
 
In addition to allowing very fast inference, this 
representation allows for very compact storage of a 
robot’s current set of inferences. Unary predicates are 
stored in a single machine word.  Function values are 
represented using small arrays indexed by role.  For the 
kinds of tasks currently implemented by multi-robot 
teams, this representation is sufficiently compact to allow 
all function and predicate values of a robot to fit into a 
single UDP packet.  Robots can therefore share 
information by periodically broadcasting the entire 
knowledge base, or at least all those predicates and 
functions that might be relevant to other team members. 
 
Knowledge-base broadcast is a simple communication 
and coordination model that provides each robot with 
transparent access to every other robot’s state, a kind of 
“group mind”.   It allows the team to efficiently maintain 
a shared situational awareness and to provide hard real-
time response guarantees; when a team member detects a 
contingency, other members are immediately informed 
and respond in O(1) time without the need for negotiation 
protocols. Moreover, since HIVEMind systems are based 
on role-passing, multi-robot controllers implemented 
using this architecture have greater representational 
power and flexibility than behavior-based systems with 
propositional representations. 

 
Figure 1 shows a HIVEMind configuration for a two-
robot team.  Each team member has its own inference 
network.  The network is driven both by its own sensory 
system and by the sensory data of the other team 
members.   The entire HIVEMind can be considered a 
single, parallel control network whose components 
happen to be distributed between the different robot 
bodies being controlled.  Wires crossing between bodies 
are simulated using the RF broadcast mechanism, so that 
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Figure 1 :  Abstract view of HIVEMind



each member of the team is “connected” to every other 
member in a web-like structure of virtual wires. 
 
It may seem inefficient for each robot to have its own 
separate copy of the inference network.  However, to 
have a single robot perform each inference and share the 
results would require much more complicated 
coordination protocols (Cohen and Levesque 91) 
analogous to the multi-phase commit protocols used in 
distributed database systems.  Since communication 
bandwidth is a scarce resource and inference in our 
system is essentially free, it is redundant computation is 
more efficient than additional communication. 

 
Aggregation of Data In an n robot team, each robot’s 
inference network has n distinct sets of inputs, one 
generated internally, and the rest received from the 
robot’s teammates.  These distinct inputs are first fused 
into a single set of inputs: 

 

 K = β(k1, k2, …., kn) 

 

where the ki are the tuples of inputs from each robot, K is 
the final fused tuple, and β is some aggregation function 
that performs the fusion.  For example, if a particular 
component of the input was a proposition, the 
aggregation function might simply OR together the 
corresponding components of the ki.  Thus the robot 
would believe the proposition iff some robot had 
evidence for it.  In more complicated cases, fuzzy logic or 
Bayesian inference could be used.  Real-valued data is 
likely to require task-specific aggregation.  For example, 

� If the team is assigned to scout an area and report 
the number of enemies observed, each team 
member is likely to report a slightly different troop 
strength., so averaging the different reports might 
make sense. 

� On the other hand, if the team is to converge on a 
target, each robot will have a slightly different 
estimate of both its position and the target’s 
position.  Rather than averaging, each robot should 
then trust its own sensors unless the target is out of 
sight.. 

 
Communication While the robots are conceptually 
connected by wires, in actuality, they communicate by RF 
broadcast.  In our current implementation, each robot 
broadcasts its sensory data and state estimates in a single 
UDP packet at predefined intervals. Presently, broadcasts 
are made at 1Hz.   Slower rates could be used when 
bandwidth or stealth are more critical. 

 

Again, we expect that currently implementable robot 
systems could store all the sensory inputs to the inference 
system in a single UDP packet (1024 bytes).  As robots 

develop more complicated sensoria, it may be necessary 
to use more complicated protocols, perhaps involving 
multiple packets, or packets that only contain updates for 
wires whose values have changed since the last 
transmission.  For the moment, however, these issues are 
moot. 
 
Given the current single-packet-protocol, the aggregate 
bandwidth required for coordination is bounded by 
1KB/robot/sec, or about 0.1% of a current RF LAN per 
robot.  Thus robot teams on the order of 100 robots 
should be practical from a communication standpoint.  
However, hardware failure limits most current robot 
teams to less than 10 members, so scaling limits are 
difficult to test empirically. 

Figure 2 shows how aggregation is performed in the 
actual system.  As packets arrive from other robots, they 
are unpacked into buffers for their respective robots, 
replacing whatever data had been stored previously for 
that robot.  In parallel with this process, the main control 
loop of the robot aggregates the most recent inputs from 
each robot and reruns the inference and control rules on 
the result.  These rules enable and disable low-level 
behaviors for sensory-motor control.  Since the main 
control loop is performing real-time control, it runs much 
faster than the 1Hz update used for communication (10Hz 
in our current implementation). 

Preliminary Implementation 

Overview 
As a proof of concept system, we constructed a simple 
robot team that performs a systematic search of a known 
environment for an object.  A human user is responsible 
for entering the properties of the desired object to the 
system. The user console appears as an extra robot to the 
team. When the user inputs the color of the desired 
object, this information is passed automatically to the 
other robots. Team members then systematically explore 
the environment until one of the members locates the 
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object or all searchable space is exhausted. When the 
object is found, all team members converge on its 
location.   

Hardware 
The robotic bases used in this experiment are first 
generation Real World Interface(RWI) Magellan bases. 
The Magellan provides sonars, infrared sensors and bump 
switches; a total of 16 each, arrayed around the circular 
base. Vision is provided by a ProVideo CCD camera, 
connected by a Nogatech USB video capture adaptor 
cable to a laptop. The laptops are Dell Latitudes with 
Pentium II 500Mhz processors, 384Mb of RAM and 
11Gb hard drives. They run Windows98, and 
communicate with the base through a serial cable. 
Remote communication is provided by LinkSys WPC11 
wireless Ethernet cards that feature an 11Mbps data 
transfer rate under the IEEE 802.11b standard. 

Perceptual Systems 
Sensory and memory systems are divided into pools, 
which can either be perceptual systems or passive 
information stores, e.g. descriptions of objects. These 
pools drive the inference network, which in turn drives 
the low-level behaviors that actually control the robot. 

 
Figure 3 shows a high-level view of the system. The code 
was written in a combination of GRL (Horswill 99) and 
Scheme, although low-level vision operators were written 
in C++. In the following subsections, we will briefly 
describe each of the pools.  
 
Color Pool The color pool stores color coordinates of 
different objects in a format suitable for use by the visual 
tracking system.  The color of a desired object can be 
specified by binding a given color description in the pool 
to the role of the object.  Thus the user, would direct the 
team to seek a green ball by binding the green color to 
patient and then asserting goal(near(patient)).  
The binding and goal are then automatically passed over 
the network to the robots.  The color pool presently 
contains descriptions for red, green, and blue objects. 

 

Tracker Pool The tracker pool consists of a set of color 
blob trackers that can be allocated, and bound to a role. 
The trackers can drive low-level behaviors with image-
plane coordinate of the objects they track.  In addition, 
they generate the low-level predicates see-object(X) 
and near-object(X) for input to the inference 
network.  

 

Place pool The place pool is a probabilistic localization 
system that uses a topological, i.e. landmark-based, map.  
Roles can be bound to landmarks and the system can 
determine the next appropriate waypoint in order to reach 
a landmark specified by role.  The place pool also records 
the set of landmarks that have been visited with high 
probability and can determine the closest unvisited 
landmark.  The current map contains 11 landmarks 
distributed over the west wing of the 3rd floor of the 
Computer Science Department building. 

Communication   

The task can be accomplished by sharing the role 
bindings for each color, the bit-vector for the 
goal(near(X)) predicate, the bit-vector for the see-
object(X) predicate, a location(X) function, 
which is effectively a table of the two nearest landmarks, 
if known, for each role X, and a bit-vector specifying the 
set of landmarks that the robot has personally visited.  All 
of these are low-level outputs of the various pools, except 
for the goal predicate which has to be stored in a separate 
latch on the control console (see below).  

Inference rules  

The inference rules for this task are simple, in part 
because the continual recomputation of inferences 
alleviates the need for some error detection and recovery 
logic that would otherwise be necessary.  The rules in the 
current system are: 

 

For all objects X: 

1. If near(X) is an unsatisfied goal and see-
object(X) is true, then approach(X). 

2. If near(X) is an unsatisfied goal and location(X) 
is known, and see-object(X) is false, then 
goto(location(X)). 

3. If near(X) is an unsatisfied goal and location(X) 
is unknown, then goto(next-unsearched-
location). 

Behaviors  

There are five motor behaviors which are activated by the 
rules as necessary. 
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• Approach-object drives to an object specified by 
role. It attempts to keep the object in the middle of 
its visual image. 

• Follow-corridor navigates the hallways. It tries to 
remain centered in the middle of the corridor to 
facilitate easy recognition of environmental 
features. 

• Unwedge activates when the robot becomes stuck 
in some corner unexpectedly. It swivels the robot 
in the direction in which it thinks has the greatest 
open space so the robot can continue moving. 

• Turn-to swivels the robot to face a new direction. 
It is used when the robot arrives at a landmark and 
needs to turn in a new direction to reach another 
landmark. 

Interface Console  

The Command Console for the HIVEMind team is based 
on the Cerebus project (Horswill et al 00). It provides a 
rudimentary natural language interface for the human 
user and allows commands such as “find green ball,” 
“find red ball,” or “patrol corridor,” to be entered. The 
console appears as another robot to other team member, 
albeit one that is not doing any physical work.  It reads 
commands, parses them, and binds their component 
nouns and verbs (e.g. the color of the object to search for) 
to the appropriate roles (e.g. patient) and begins 
broadcasting them to the rest of the team.  It displays the 
shared knowledge base broadcast by the team in windows 
on the screen to provide status information to the human 
commander. Using this interface, the human commander 
can inject new information into the team, as well as 
receive data about the current state of the “group mind”.  

Results 
We have tested the system with a three-member team 
consisting of two robots and the command console.  The 
team was tested in the west wing of the 3rd floor of the 
Computer Science Department building.  The wing 
consists of a network of six corridors spanning an area 
approximately 6m×20m with an aggregate path length of 
50m.  The wing is represented by 12 landmarks in the 
topological map showing the locations of features such as 
corners and intersections.  The robots drive at 
approximately 1m/s on straightaways, although stopping 
for ballistic turns at corners and intersections somewhat 
reduces their mean velocity.  Sensing, inference and 
control decisions are each performed at 10Hz. 

 
In the experiments, all team members were started from a 
central point at the extreme East end of the wing.  The 
goal object, a green ball, was placed out of view, 15-20m 
from the starting point.  The object was always at least 
two corridors and three landmarks away from the starting 
point.   When the command “find green” was entered on 
the command console, the robots begin a systematic 

search of the wing for the goal object.  Unlike stochastic 
search techniques such as foraging, the systematic search 
guarantees that each landmark is searched at most once 
and that all landmarks are guaranteed to be searched, if 
necessary.  Using a greedy algorithm for landmark 
selection, the team was consistently able to find the 
landmark within 30 seconds provided that there were no 
catastrophic failures of the place recognition system.  On 
typical runs, the team found the object in approximately 
20 seconds. 

Figure 4 : Two robots leaving on their search task 
 
 

Figure 5 : One member of the team finding the ball 
 
The place recognition system is the weak point of the 
current implementation.  Minor errors are common and 
occasional catastrophic failures can cause one of the team 
members to think that it has searched the true location of 
the goal when in fact it has not.  While we are working on 
improving the place recognition system, it should be 
stressed that the actual control and coordination 
architecture worked without error. 

 



Conclusion 

The HIVEMind architecture is an attempt to extend 
parallel reactive inference to a multi-robot environment. 
It allows behavior-based systems to abstract over both 
objects and sensors, while remaining efficient enough in 
both inference speed and bandwidth consumption to be 
usable on physical robotic teams. HIVEMind provides 
multi-robot system designers with more powerful 
representations than behavior-based systems, and has a 
simple, efficient model for group coordination. We 
believe that the right set of representational choices can 
allow the kinds of inference presently implemented on 
robots to be cleanly grounded in sensor data and 
reactively updated by a parallel inference network. By 
continually sharing perceptual knowledge between 
robots, coordination can be achieved for little or no 
additional cost beyond the communication bandwidth 
required to share the data.  The effect is a kind of “group 
mind” in which robots can treat one another as auxiliary 
sensors and effectors. As a first step, we have 
implemented a proof-of-concept system to validate the 
architecture.  The current system finds static objects in a 
known environment.  Our current goal is to extend the 
system to find and trap evading targets such as other 
robots.  This is an especially interesting task because it 
requires non-trivial spatial reasoning about containment 
and visibility. 
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