
An Efficient Coordination Architecture for Autonomous Robot Teams

Aaron Khoo and Ian Douglas Horswill

Computer Science Department, Northwestern University
1890 Maple Avenue
Evanston, IL 60201

{khoo, ian}@cs.northwestern.edu

Abstract
Most physically implemented multi-robot controllers are
based on extensions of behavior-based systems. While
efficient, such techniques suffer from weak
representational power. Symbolic systems, on the other
hand, have more sophisticated representations but are
computationally complex and difficult to keep
synchronized with changes in the environment. In this
paper, we describe HIVEMind, a tagged behavior-based
architecture for small teams of cooperative robots. In
HIVEMind, robots share inferences and sensory data by
treating other team members as virtual sensors connected
by wireless links. A novel representation based on bit-
vectors allows team members to share intentional,
attentional, and sensory information using relatively low-
bandwidth connections. We describe an application of
the architecture to the problem of systematic spatial
search.

Introduction

More hands obviously make light work. For this reason,
multi-robot control systems have been a hotbed of
research activity. However, the continually changing
world is ultimately a cruel place for robots. It is difficult
enough to keep one robot’s world model synchronized
with the outside world; synchronizing the shared
situational awareness of an entire team of robots is an
even more difficult issue.

Behavior-based systems
Many physically implemented multi-robot systems focus
on extending traditional behavior-based techniques
(Arkin 98) to a team setting. Some examples :

� (Balch and Arkin 98) describe a schema system
that maintains military formations such as a line,
wedge, diamond or column.

� The Alliance architecture (Parker 98) uses
spreading activation to choose between sets of
behaviors that achieve different goals

Support for this work was provided by the DARPA Distributed
Robotics Program and the U.S. Army Soldiers Systems Command
under award #DAAN02-98-C-4023/MOD P3.

� (Goldberg and Mataric 00) presents several
behavior-based multi-robot controllers used in a
collection task.

In their purest form, behavior-based systems divide
sensing, modeling, and control between many parallel
task-achieving modules called behaviors. Each behavior
contains its own task-specific sensing, modeling, and
control processes. Behaviors tend to be simple enough to
be implemented as feed-forward circuits or networks of
simple finite-state machines. This allows them to
completely recompute sensor, model, and control
decisions from moment to moment, which in turn, allows
them to respond immediately to changes in the
environment.

Not surprisingly, the task-specificity and computational
simplicity of behavior-based systems are also a weakness.
We believe that their greatest weakness is the use of
simple propositional representations, that is,
representations without predicate/argument structure.
Propositional representations make reasoning and
planning more difficult and clumsy since they require
redundant copies of the system for each possible
argument to a predicate or action (Maes 90). Since most
multi-robot controllers are extensions of behavior-based
techniques, they inherit the same issues from the basic
underlying architecture.

Symbolic Techniques
Traditional symbolic reasoning systems, on the other
hand, allow the manipulation of arbitrarily sophisticated
representations at the cost of increased computational
complexity. While that complexity need not always
involve exponential-time or undecidable computations, it
does generally involve highly serial computations
operating on a large database of logical assertions. In
principle, modifying such a system to track changes in the
environment would require recording dependencies
between stored assertions and their justifications such that
when the perceptual system added or retracted an
assertion, the reasoning system could enumerate and
update the set of existing assertions affected by the
change. This process is sufficiently complicated that we

know of no implemented physical robots that do it.
Instead, the symbolic system is generally equipped with a
set of “epistemic actions” that allow a programmer
designing the knowledge base to force the symbolic
system to update specific aspects of its knowledge base at
specific times. Any mistakes by the programmer will
lead to inconsistencies between the models of the
symbolic system and the other subsystems. While tiered
architectures combining symbolic and behavior-based
systems (Arkin and Balch 97, Firby et al. 98, Connell 92)
can mitigate the computational complexity issues by
offloading short-timescale interactions from the symbolic
system, they do not ultimately solve the problem of
keeping the many fragmentary models of the different
components in sync with one another and with the world.

These issues are exacerbated in cooperative activity.
Rather than one robot with one knowledge base, we now
have n robots with n knowledge bases to keep consistent
both with the world and with one another. Failure to
properly coordinate the knowledge bases will ultimately
result in failure to coordinate activity. Excellent work has
been done on communication protocols for insuring
consistency (Cohen and Levesque 91, Tambe 96).
However, it is telling that physically implemented multi-
robot systems almost always use purely behavior-based
architectures and/or shared, centrally controlled world
models created using an overhead camera (Stone and
Veloso 99).

HIVEMind

HIVEMind (Highly Interconnected Verbose Mind), is a
multi-robot control architecture that supports very
efficient sharing of symbolic information between team
members. Based on role-passing (Horswill 98), a variant
of deictic representation (Agre and Chapman 87),
HIVEMind can efficiently implement quantified
inference over unary predicates and provide hard real-
time guarantees for synchronization of knowledge bases
between team members and the world. Objects in a team
member’s working memory are bound to a small, fixed
set of roles such as agent, patient, source, destination, etc.
When a role is bound to an object, a tracker is
dynamically allocated to it and tagged with the name of
the role. Since the number of roles is relatively small, we
can represent the extensions of unary predicates as bit-
vectors, one bit per role.

This representation allows inference to be performed
using bit-parallel operations in a feed-forward network.
Alternatively, for commodity serial hardware, we can
represent a unary predicate extension using a single
machine word. Inference rules can then be compiled into
directly into straight-line machine code consisting only of
load, store, and bit-mask instructions (Horswill 98).
While more limited than a full logic-programming
system, it does allow us to express much of the kinds of

inference used on physical robots today. The inference
rules can be completely rerun on every cycle of the
system’s control loop, allowing the robots to respond to
contingencies as soon as they are sensed. The compiled
code is sufficiently efficient that inference is effectively
free – 1000 Horn rules of 5 conjuncts each can be
completely updated at 100Hz using less than 1% of a
current CPU.

In addition to allowing very fast inference, this
representation allows for very compact storage of a
robot’s current set of inferences. Unary predicates are
stored in a single machine word. Function values are
represented using small arrays indexed by role. For the
kinds of tasks currently implemented by multi-robot
teams, this representation is sufficiently compact to allow
all function and predicate values of a robot to fit into a
single UDP packet. Robots can therefore share
information by periodically broadcasting the entire
knowledge base, or at least all those predicates and
functions that might be relevant to other team members.

Knowledge-base broadcast is a simple communication
and coordination model that provides each robot with
transparent access to every other robot’s state, a kind of
“group mind”. It allows the team to efficiently maintain
a shared situational awareness and to provide hard real-
time response guarantees; when a team member detects a
contingency, other members are immediately informed
and respond in O(1) time without the need for negotiation
protocols. Moreover, since HIVEMind systems are based
on role-passing, multi-robot controllers implemented
using this architecture have greater representational
power and flexibility than behavior-based systems with
propositional representations.

Figure 1 shows a HIVEMind configuration for a two-
robot team. Each team member has its own inference
network. The network is driven both by its own sensory
system and by the sensory data of the other team
members. The entire HIVEMind can be considered a
single, parallel control network whose components
happen to be distributed between the different robot
bodies being controlled. Wires crossing between bodies
are simulated using the RF broadcast mechanism, so that

Sensory system

Sensory system

/n

/n

/n

/n

Robot 1

Robot 2

Inferences

Inferences

Figure 1 : Abstract view of HIVEMind

each member of the team is “connected” to every other
member in a web-like structure of virtual wires.

It may seem inefficient for each robot to have its own
separate copy of the inference network. However, to
have a single robot perform each inference and share the
results would require much more complicated
coordination protocols (Cohen and Levesque 91)
analogous to the multi-phase commit protocols used in
distributed database systems. Since communication
bandwidth is a scarce resource and inference in our
system is essentially free, it is redundant computation is
more efficient than additional communication.

Aggregation of Data In an n robot team, each robot’s
inference network has n distinct sets of inputs, one
generated internally, and the rest received from the
robot’s teammates. These distinct inputs are first fused
into a single set of inputs:

 K = β(k1, k2, …., kn)

where the ki are the tuples of inputs from each robot, K is
the final fused tuple, and β is some aggregation function
that performs the fusion. For example, if a particular
component of the input was a proposition, the
aggregation function might simply OR together the
corresponding components of the ki. Thus the robot
would believe the proposition iff some robot had
evidence for it. In more complicated cases, fuzzy logic or
Bayesian inference could be used. Real-valued data is
likely to require task-specific aggregation. For example,

� If the team is assigned to scout an area and report
the number of enemies observed, each team
member is likely to report a slightly different troop
strength., so averaging the different reports might
make sense.

� On the other hand, if the team is to converge on a
target, each robot will have a slightly different
estimate of both its position and the target’s
position. Rather than averaging, each robot should
then trust its own sensors unless the target is out of
sight..

Communication While the robots are conceptually
connected by wires, in actuality, they communicate by RF
broadcast. In our current implementation, each robot
broadcasts its sensory data and state estimates in a single
UDP packet at predefined intervals. Presently, broadcasts
are made at 1Hz. Slower rates could be used when
bandwidth or stealth are more critical.

Again, we expect that currently implementable robot
systems could store all the sensory inputs to the inference
system in a single UDP packet (1024 bytes). As robots

develop more complicated sensoria, it may be necessary
to use more complicated protocols, perhaps involving
multiple packets, or packets that only contain updates for
wires whose values have changed since the last
transmission. For the moment, however, these issues are
moot.

Given the current single-packet-protocol, the aggregate
bandwidth required for coordination is bounded by
1KB/robot/sec, or about 0.1% of a current RF LAN per
robot. Thus robot teams on the order of 100 robots
should be practical from a communication standpoint.
However, hardware failure limits most current robot
teams to less than 10 members, so scaling limits are
difficult to test empirically.

Figure 2 shows how aggregation is performed in the
actual system. As packets arrive from other robots, they
are unpacked into buffers for their respective robots,
replacing whatever data had been stored previously for
that robot. In parallel with this process, the main control
loop of the robot aggregates the most recent inputs from
each robot and reruns the inference and control rules on
the result. These rules enable and disable low-level
behaviors for sensory-motor control. Since the main
control loop is performing real-time control, it runs much
faster than the 1Hz update used for communication (10Hz
in our current implementation).

Preliminary Implementation

Overview
As a proof of concept system, we constructed a simple
robot team that performs a systematic search of a known
environment for an object. A human user is responsible
for entering the properties of the desired object to the
system. The user console appears as an extra robot to the
team. When the user inputs the color of the desired
object, this information is passed automatically to the
other robots. Team members then systematically explore
the environment until one of the members locates the

Current Perceptual Vector

.

.

.

.

.

.

Current Robot

Final Perceptual Vector

.

.

.

.

.

.

Inference Rules

Figure 2 : Implementat ion of HIVEMind Wires

Robot 2 Perceptual VectorRobot 2

Robot 3 Perceptual VectorRobot 3

β

object or all searchable space is exhausted. When the
object is found, all team members converge on its
location.

Hardware
The robotic bases used in this experiment are first
generation Real World Interface(RWI) Magellan bases.
The Magellan provides sonars, infrared sensors and bump
switches; a total of 16 each, arrayed around the circular
base. Vision is provided by a ProVideo CCD camera,
connected by a Nogatech USB video capture adaptor
cable to a laptop. The laptops are Dell Latitudes with
Pentium II 500Mhz processors, 384Mb of RAM and
11Gb hard drives. They run Windows98, and
communicate with the base through a serial cable.
Remote communication is provided by LinkSys WPC11
wireless Ethernet cards that feature an 11Mbps data
transfer rate under the IEEE 802.11b standard.

Perceptual Systems
Sensory and memory systems are divided into pools,
which can either be perceptual systems or passive
information stores, e.g. descriptions of objects. These
pools drive the inference network, which in turn drives
the low-level behaviors that actually control the robot.

Figure 3 shows a high-level view of the system. The code
was written in a combination of GRL (Horswill 99) and
Scheme, although low-level vision operators were written
in C++. In the following subsections, we will briefly
describe each of the pools.

Color Pool The color pool stores color coordinates of
different objects in a format suitable for use by the visual
tracking system. The color of a desired object can be
specified by binding a given color description in the pool
to the role of the object. Thus the user, would direct the
team to seek a green ball by binding the green color to
patient and then asserting goal(near(patient)).
The binding and goal are then automatically passed over
the network to the robots. The color pool presently
contains descriptions for red, green, and blue objects.

Tracker Pool The tracker pool consists of a set of color
blob trackers that can be allocated, and bound to a role.
The trackers can drive low-level behaviors with image-
plane coordinate of the objects they track. In addition,
they generate the low-level predicates see-object(X)
and near-object(X) for input to the inference
network.

Place pool The place pool is a probabilistic localization
system that uses a topological, i.e. landmark-based, map.
Roles can be bound to landmarks and the system can
determine the next appropriate waypoint in order to reach
a landmark specified by role. The place pool also records
the set of landmarks that have been visited with high
probability and can determine the closest unvisited
landmark. The current map contains 11 landmarks
distributed over the west wing of the 3rd floor of the
Computer Science Department building.

Communication

The task can be accomplished by sharing the role
bindings for each color, the bit-vector for the
goal(near(X)) predicate, the bit-vector for the see-
object(X) predicate, a location(X) function,
which is effectively a table of the two nearest landmarks,
if known, for each role X, and a bit-vector specifying the
set of landmarks that the robot has personally visited. All
of these are low-level outputs of the various pools, except
for the goal predicate which has to be stored in a separate
latch on the control console (see below).

Inference rules

The inference rules for this task are simple, in part
because the continual recomputation of inferences
alleviates the need for some error detection and recovery
logic that would otherwise be necessary. The rules in the
current system are:

For all objects X:

1. If near(X) is an unsatisfied goal and see-
object(X) is true, then approach(X).

2. If near(X) is an unsatisfied goal and location(X)
is known, and see-object(X) is false, then
goto(location(X)).

3. If near(X) is an unsatisfied goal and location(X)
is unknown, then goto(next-unsearched-
location).

Behaviors

There are five motor behaviors which are activated by the
rules as necessary.

Color Pool

Tracker Pool

Place Pool

Inference
Rules

Stop

Unwedge

Turn-to

Fol low corr idor

Figure 3 : High-level view of the bal l f inding system

Fol low object

Other robots

• Approach-object drives to an object specified by
role. It attempts to keep the object in the middle of
its visual image.

• Follow-corridor navigates the hallways. It tries to
remain centered in the middle of the corridor to
facilitate easy recognition of environmental
features.

• Unwedge activates when the robot becomes stuck
in some corner unexpectedly. It swivels the robot
in the direction in which it thinks has the greatest
open space so the robot can continue moving.

• Turn-to swivels the robot to face a new direction.
It is used when the robot arrives at a landmark and
needs to turn in a new direction to reach another
landmark.

Interface Console

The Command Console for the HIVEMind team is based
on the Cerebus project (Horswill et al 00). It provides a
rudimentary natural language interface for the human
user and allows commands such as “find green ball,”
“find red ball,” or “patrol corridor,” to be entered. The
console appears as another robot to other team member,
albeit one that is not doing any physical work. It reads
commands, parses them, and binds their component
nouns and verbs (e.g. the color of the object to search for)
to the appropriate roles (e.g. patient) and begins
broadcasting them to the rest of the team. It displays the
shared knowledge base broadcast by the team in windows
on the screen to provide status information to the human
commander. Using this interface, the human commander
can inject new information into the team, as well as
receive data about the current state of the “group mind”.

Results
We have tested the system with a three-member team
consisting of two robots and the command console. The
team was tested in the west wing of the 3rd floor of the
Computer Science Department building. The wing
consists of a network of six corridors spanning an area
approximately 6m×20m with an aggregate path length of
50m. The wing is represented by 12 landmarks in the
topological map showing the locations of features such as
corners and intersections. The robots drive at
approximately 1m/s on straightaways, although stopping
for ballistic turns at corners and intersections somewhat
reduces their mean velocity. Sensing, inference and
control decisions are each performed at 10Hz.

In the experiments, all team members were started from a
central point at the extreme East end of the wing. The
goal object, a green ball, was placed out of view, 15-20m
from the starting point. The object was always at least
two corridors and three landmarks away from the starting
point. When the command “find green” was entered on
the command console, the robots begin a systematic

search of the wing for the goal object. Unlike stochastic
search techniques such as foraging, the systematic search
guarantees that each landmark is searched at most once
and that all landmarks are guaranteed to be searched, if
necessary. Using a greedy algorithm for landmark
selection, the team was consistently able to find the
landmark within 30 seconds provided that there were no
catastrophic failures of the place recognition system. On
typical runs, the team found the object in approximately
20 seconds.

Figure 4 : Two robots leaving on their search task

Figure 5 : One member of the team finding the ball

The place recognition system is the weak point of the
current implementation. Minor errors are common and
occasional catastrophic failures can cause one of the team
members to think that it has searched the true location of
the goal when in fact it has not. While we are working on
improving the place recognition system, it should be
stressed that the actual control and coordination
architecture worked without error.

Conclusion

The HIVEMind architecture is an attempt to extend
parallel reactive inference to a multi-robot environment.
It allows behavior-based systems to abstract over both
objects and sensors, while remaining efficient enough in
both inference speed and bandwidth consumption to be
usable on physical robotic teams. HIVEMind provides
multi-robot system designers with more powerful
representations than behavior-based systems, and has a
simple, efficient model for group coordination. We
believe that the right set of representational choices can
allow the kinds of inference presently implemented on
robots to be cleanly grounded in sensor data and
reactively updated by a parallel inference network. By
continually sharing perceptual knowledge between
robots, coordination can be achieved for little or no
additional cost beyond the communication bandwidth
required to share the data. The effect is a kind of “group
mind” in which robots can treat one another as auxiliary
sensors and effectors. As a first step, we have
implemented a proof-of-concept system to validate the
architecture. The current system finds static objects in a
known environment. Our current goal is to extend the
system to find and trap evading targets such as other
robots. This is an especially interesting task because it
requires non-trivial spatial reasoning about containment
and visibility.

References

P.E. Agre and D. Chapman(1987) Pengi : An
Implementation of a Theory of Activity. In Proceedings of
the Sixth National Conference on Artificial Intelligence,
pp. 268-272. Seattle, Wa.

R.C. Arkin (1998). Behavior-Based Robotics. MIT
Press. Cambridge, MA.

R.C. Arkin and T.R. Balch(1997) Aura: principles and
practice in review. Journal of Experimental and
Theoretical Artificial Intelligence, 9(2).

T. Balch and R.C. Arkin(1998) Behavior-based formation
control for multirobot teams, IEEE Transactions on
Robotics and Automation, vol. 14, no. 6, pp. 926--939,
December 1998.

P. Bonasso, R.J. Firby, E. Gat, and D. Kortenkamp
(1997). Experiences with an Architecture for Intelligent
Reactive Agents. In Journal of Theoretical and
Experimental Artificial Intelligence, special issue on
software architectures for physical agents, Hexmoor,
Horswill and Kortenkamp, eds., 9:2-3. Taylor and
Francis, Ltd.

P.R. Cohen and H.J. Levesque (1991) Teamwork, Nous
35.

J.H. Connell(1992) SSS: A hybrid architecture applied to
robot navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA 92), pages 2719--2724, Nice, France, 1992. IEEE
Press, New York, NY.

R. J. Firby, P.N. Propopowicz, and M.J. Swain(1998),
The animate agent architecture, in Artificial Intelligence
and Mobile Robots: Case Studies of Successful Robot
Systems, eds., D. Kortenkamp, R.P. Bonasso, and R.
Murphy, AAA Press/The MIT Press.

D. Goldberg and M.J. Mataric(2000) Robust Behavior-
Based Control for Distributed Multi-Robot Collection
Tasks, USC Institute for Robotics and Intelligent Systems
Technical Report IRIS-00-387

I. Horswill(1998). Grounding Mundane Inference in
Perception. In Autonomous Robots, 5, pp. 63-77.

I. Horswill(1999). Functional programming of behavior-
based systems. In Proc. IEEE International Symposium
on Computational Intelligence in Robotics and
Automation

I. Horswill, R. Zubek, A. Khoo, C. Le, and S.
Nicholson(2000) The Cerebus Project. In Proceedings of
the 2000 AAAI Fall Symposium on Parallel Cognition
and Embodied Agents.

Maes, P. 1990. “Situated Agents Can Have Goals,”
Robotics and Autonomous Systems, Vol. 6, pp. 49-70.

L.E. Parker(1998) ALLIANCE: An Architecture for Fault
Tolerant Multirobot Cooperation, IEEE Transactions on
Robotics and Automation, Vol. 14, No. 2, April 1998.

P. Stone and M. Veloso (1999) Task Decomposition,
Dynamic Role Assignment, and Low-Bandwidth
Communication for Real-Time Strategic Teamwork
Artificial Intelligence (AIJ), volume 100, number 2, June
1999.

M. Tambe(1996) Teamwork in real-world, dynamic
environments. In Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS-96), Menlo
Park, California, December 1996. AAAI Press.

