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Abstract 
Systems embedded in a dynamic environment face the problem of grounding the inference 
used in their reasoning system to actual physical objects. Traditional symbolic reasoning 
systems are typically built on a transaction model of computation, which complicates the 
process of synchronizing their world models with changes in the environment. While some 
progress has been made grounding inference in tiered architectures for the single robot case, 
physical multi-robot systems invariably utilize purely behavior-based control techniques. We 
believe this is due to the complexities of synchronizing multiple distributed knowledge 
databases located on wireless platforms in real time. In this paper, we describe an inference 
grounding and coordination mechanism for small cooperative robot teams based on an 
extension of tagged behavior-based systems. Tagged behavior-based systems support a large 
subset of classical AI architectures while allowing object representations to remain 
distributed across multiple sensory and representational modalities. They provide a novel 
representation based on bit-vectors that allow team members to share intentional, attentional 
and sensory information using relatively low-bandwidth connections. We illustrate our 
approach on two problems involving systematic spatial search. 

Introduction
Autonomous robots that reside in a complex, dynamic environment face the issue of 
anchoring the abstract representations they use to actual physical objects. The world 
around the robot continually changes, and its sensory systems must track those changes. In 
turn, its modeling systems must track the sensory data, and its control systems must be 
ready to alter plans and actions to suit the changing model. 
 
Traditional symbolic reasoning systems are typically built on a transaction-oriented model 
of computation. Knowledge about the world, or the “world model”, is stored in a database 
of assertions in some logical language, indexed perhaps by predicate name [21]. 
Populating this database from a dynamic environment is a non-trivial issue; see [14] for an 
exposition on the difficulties involved. Changes in the environment occur often, so the 
database must also be updated fairly frequently, or risk the reasoning system operating on 
stale data. Additionally, assertions in the database can be dependent on other assertions. 
For example, the assertion that an area is safe could depend on the assertion that the robot 
does not currently observe any predators in the area. If the latter assertion is withdrawn, 
then the former must be too. Hence, each update from the perceptual systems can trigger a 
cascade of further transactions, resulting in additional load on the knowledgebase 
subsystem.  
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Although some recent work has been done towards the development of a formal 
framework for anchoring [8,9], most implemented physical systems instead equip the 
symbolic system with a set of domain-dependent epistemic actions that fire task-specific 
perceptual operators to update specific parts of the knowledgebase. The programmer 
designing the knowledgebase is responsible for ensuring that the proper updates are done, 
i.e. the right epistemic actions are fired at the appropriate times. This alleviates some of the 
difficulties of getting information into the knowledgebase in a timely manner. However, 
any mistakes by the programmer will lead to inconsistencies between the knowledgebase 
used by the symbolic system and the external environment. Tiered architectures, such as 
[1,5,7], that combine symbolic and behavior-based systems inherit these model coherency 
issues, because their symbolic layer still relies on a database-driven world model for its 
reasoning process.  
 
Keeping the knowledgebase synchronized with the external environment becomes even 
more difficult in cooperative activity. In this analysis we assume a team model where 
members are fully autonomous entities with independent decision making ability. 
Furthermore, team members may lose sight of each other during execution, so coordination 
has to be achieved through explicit communication. Under these constraints, rather than 
one robot with a single knowledgebase, we now have n robots with n knowledgebases to 
keep consistent both with the world and with one another. Failure to properly coordinate 
the knowledgebases will ultimately lead to system delusion [13], i.e. the databases are now 
inconsistent, and there is no obvious way to repair them, resulting in failure to coordinate 
activity. There has been some excellent work done on coordination protocols for 
cooperative agents [6,22]. However, an analysis of asynchronous peer-to-peer replicated 
databases by Gray et al. [12] suggests a potential problem :  
 
A conflict occurs when two different databases attempt to update the same object, or race 
to install their updates at other databases. Whenever conflicts occur, the replication 
mechanism must detect this and somehow reconcile the two transactions so that their 
updates are not lost. Under the following simple assumptions -- 
 

•  The databases are updated through lazy group replication, i.e. the originating 
database updates its entries, and then propagates the update to other replicas 
asynchronously. 

•  Each node updates any other database location with equal probability 
•  All nodes impose an equal load on the system 
•  There are a fixed number of objects per transaction 

 
Gray et al. were able to show that the conflict rate per second is approximately : 
 

TPS2 * Actions3 * Action_time * nodes3 
2 * DB_Size 

 
where TPS is the number of transactions per second initiated by each node, Actions is the 
number of locations updated per transaction, Action_time is the time required to complete 
an update, DB_size is the number of distinct entries in the database and nodes is the 
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number of nodes (which, in our case, is equivalent to the number of robots) in the system. 
The critical point here is that the number of conflicts encountered by the system increases 
with the third power of the number of nodes or robots.  As Gray et al. point out, “having 
the reconciliation rate rise by a factor of a thousand when the system scales up by a factor 
of ten is frightening”. While the two models are not exactly analogous, there is sufficient 
overlap between the problem of synchronizing different knowledgebases and the issue of 
distributed database replication to elicit concern.  
 
Furthermore, note that message propagation times are not presently part of the conflict 
model as presented above. If message delays were added to the model, then each 
transaction would last longer, hold more resources and generate more conflicts. Moreover, 
mobile robots necessarily communicate via wireless links, which are well-known to have 
higher error rates [10,24], and hence higher message delays, than their wired counterparts. 
This analysis suggests that we could potentially face serious scalability issues for any 
physical multi-robot system with a database-driven knowledge model. The work necessary 
to reconcile the conflicts that could arise as team members tried to communicate 
knowledge to other members could eventually overwhelm the robots, or leave them badly 
out of synch.  
 
We feel that these knowledgebase synchronization issues has led to a paucity of physical 
multi-robot systems utilizing symbolic reasoners. Instead, most existing multi-robot 
controllers implemented on physical systems focus on extending traditional behavior-
based techniques [1] to a team environment (For example see [4,11,20]). Traditional 
behavior-based systems obey circuit semantics [19], which means their control programs 
are generally implemented as feed-forward circuits. This allows rapid response to changes 
in the environment due to tight sensor-actuator integration, and also simplifies the 
communication structure necessary to maintain coordination between team members. 
Essentially communication in behavior-based multi-robot controllers is reduced to virtual 
wires connecting the appropriate circuitry on one team member to another’s (see figure 1). 
The wires carry relevant information from a robot to its counterparts. Conversely, each 
robot views its teammates simply as additional sensory input, and integrates the incoming 
information as appropriate. Conveniently, virtual wires can be simulated on physical 
robots using a broadcast communication mechanism such as UDP.  
 
However, this convenience is not without cost. The strengths of the behavior-based 
approach are also its weakness. Circuit semantics impose a propositional representation on 
the reasoning system, i.e. representations without predicate/argument structure.  
Propositional representation makes most reasoning and planning tasks both difficult and 
clumsy since they require redundant copies of the system for each possible argument to a 
predicate or action [18]. Since most multi-robot controllers are extensions of behavior-
based techniques, they inherit the same issues from the basic underlying architecture. 
 
We should point out that there are some multi-robot systems [23] that utilize a traditional 
symbolic reasoner by relying on a shared, centrally controller world model. In this case, 
reasoning is performed at a central server location where the master knowledgebase is 
located, and then actions are transmitted to the individual robots. Little, if any, reasoning is 
done on the client side. In this paper, however, we are only considering multi-robot 
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systems where the team members are independent of a central reasoner, i.e. each robot 
maintains its own reasoning system. 
 

HIVEMind 
While designing our current multi-robot control architecture, we wanted to utilize as many 
useful features of traditional symbolic AI systems as possible on our robots. Specifically, 
we would like to have the ability to utilize predicate/argument structure in our 
representations. However, we also wanted to avoid importing the model coherence and 
database synchronization issues that symbolic systems encounter. That is, the symbols 
utilized in our inference rules should be tightly anchored to updates from the sensory 
systems as well as incoming information from other team members. 
 
Our efforts in this direction have resulted in HIVEMind (Highly Interconnected Verbose 
Mind), a multi-robot control architecture that supports very efficient sharing of symbolic 
information between team members. The HIVEMind architecture is built on role-passing 
[14], a type of tagged behavior-based system [17]. Role-passing provides the developer 
with a limited set of domain-independent indexical variables (called roles) such as agent, 
patient, source, destination, etc.  When a role is bound to an object, a tracker is 
dynamically allocated to it and tagged with the name of the role. Since the number of roles 
is relatively small, we can represent the extensions of unary predicates as bit-vectors, with 
one bit representing each role. This representation allows inference to be performed using 
bit-parallel operations in a feed-forward network.   
 
Alternatively, for commodity serial hardware, we can represent a unary predicate 
extension using a single machine word. Inference rules can then be compiled directly into 
straight-line machine code consisting only of load, store, and bit-mask instructions [14]. 
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While more limited than a full logic-programming system, it does allow us to express 
much of the kinds of inference used on physical robots today. The inference rules can be 
completely rerun on every cycle of the system’s control loop, allowing the robots to 
respond to contingencies as soon as they are sensed. The compiled code is sufficiently 
efficient that inference is effectively free – 1000 Horn clauses of 5 conjuncts each can be 
completely updated at 100Hz using less than 1% of a current CPU. In short, role-passing 
affords us the ability to implement traditional inference rules using circuit semantics.  
 
In addition to allowing very fast inference, this representation allows for very compact 
storage of a robot’s current set of inferences. Unary predicates are stored in one machine 
word. Function values are represented using small arrays indexed by role. This 
compactness, combined with the circuit semantic nature of role-passing, allows us to take 
full advantage of simplified communication mechanism described previously, i.e. virtual 
wires connecting team members. In fact, for the kinds of tasks currently implemented by 
multi-robot teams, the representation we use is sufficiently compact to allow all function 
and predicate values of a robot to fit into a single UDP packet. Robots can therefore share 
information by periodically broadcasting their entire knowledge base, or at least all those 
predicates and functions that might be relevant to other team members. 
 
Knowledge-based broadcast is a simple communication and coordination model that 
provides each robot with transparent access to every other robot’s state, establishing a kind 
of “group mind”. It allows the team to efficiently maintain a shared situational awareness 
and to provide hard real-time response guarantees; when a team member detects a 
contingency, other members are immediately informed and respond in O(1) time without 
the need for negotiation protocols. Moreover, since HIVEMind systems are based on role-
passing, multi-robot controllers implemented using this architecture have greater 
representational power and flexibility than pure behavior-based systems with propositional 
representations. That is, our communication is not based on passing propositional values 
such as see-blue-object or see-red-object, but rather predicates such as see-
object(X). Furthermore, since all relevant team knowledge is continuously being 
rebroadcast, each member’s knowledgebase converges to the same state within O(1) time 
of joining the Hivemind. This means that team members can be brought online and 
integrated into the Hivemind very easily, allowing us to add or subtract team members 
dynamically. This also implies that, should communication fail for some time, the team 
would very rapidly return to a common state when it is restored. 
 
Figure 2 shows an abstract HIVEMind configuration for a two-robot team.  Each team 
member has its own inference network. The network is driven both by its own sensory 
system and by the incoming data from the other team members. Outputs from the current 
robot’s sensory systems and inference rules are fed into aggregation functions on other 
team members. The output from those aggregation functions is then fed into the inference 
rules which drive the motor behaviors.  
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The aggregation functions are used to combine information from teammates and sensors 
into a single coherent output for the inference rules to reason over. In an n robot team, each 
robot’s inference network has n distinct sets of inputs, one generated internally, and the 
rest received from the robot’s teammates.  These distinct inputs are first fused into a single 
set of inputs: 
 
 K = β(k1, k2, …., kn) 
 
where the ki are the tuples of inputs from each robot, K is the final fused tuple, and β is 
some aggregation function that performs the fusion.  For example, if a particular 
component of the input was a proposition, the aggregation function might simply OR 
together the corresponding components of the ki.  Thus the robot would believe the 
proposition if and only if some robot had evidence for it.  In more complicated cases, fuzzy 
logic or Bayesian inference could be used.  Real-valued data is likely to require task-
specific aggregation.  For example, 

 The team is assigned to scout an area and report the number of enemies observed. 
Each team member has a slightly different count of enemy troops. In this case, the 
best solution is probably to average the disparate counts. 

 The task is “converge on the target”. Each robot’s sensors report a slightly different 
position for the target. In this situation, it appears to make sense that each team 
member rely on its own sensor values to track the target and only rely on other robots 
when the robot’s own sensors are unable to track the target, e.g. the target is out of 
sight. 

 
Figure 3 shows how aggregation is performed in the actual system.  As packets arrive on 
from other robots, they are unpacked into buffers for their respective robots, replacing 
whatever data had been stored previously for that robot.  In parallel with this process, the 
main control loop of the robot aggregates the inputs from each robot and reruns the 
inference rules on the result.  These inference rules then enable and disable low-level 
behaviors for sensory-motor control.  Since the main control loop is performing real-time 



 7

control, it runs much faster than the 1Hz update used for communication (10Hz in our 
current implementation). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The entire HIVEMind can be considered a single, parallel control network whose 
components happen to be distributed between the different robot bodies being controlled.  
Wires crossing between bodies are simulated using the RF broadcast mechanism, so that 
each member of the team is “connected” to every other member in a web-like structure of 
virtual wires. In our current implementation, each robot broadcasts its sensory data and 
state estimates in a single UDP packet at predefined intervals. Presently, broadcasts are 
made every second.  Faster or slower rates could be used when latency is more or less 
critical. However, 1Hz has worked well for our applications. To reiterate, we expect that 
currently implementable robot systems could store all the sensory inputs to the inference 
system in a single UDP packet (1024 bytes).  As robots develop more complicated 
sensoria, it may be necessary to use more complicated protocols, perhaps involving 
multiple packets, or packets that only contain updates for wires whose values have 
changed since the last transmission.  For the moment, however, these issues are moot. 
 
Given the current single-packet-protocol, the aggregate bandwidth required for 
coordination is bounded by 1KB/robot/sec, or about 0.1% of a current RF LAN per robot.  
Thus robot teams on the order of 100 robots should be practical from a communication 
standpoint.  However, hardware failure limits most current robot teams to less than 10 
members, so scaling limits are difficult to test empirically. 
 
It may seem inefficient for each robot to have its own separate copy of the inference 
network.  However, to have a single robot perform each inference and share the results 
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would require much more complicated coordination protocols [6] analogous to the multi-
phase commit protocols used in distributed database systems.  Since communication 
bandwidth is a scarce resource and inference in our system is essentially free, it is more 
efficient for HIVEMind robots to perform redundant computation. 

Implementation 

Overview 
We have implemented the HIVEMind system on a robot team that performs two tasks : 

•  Find Object 
The team systematically searches for a brightly colored object in a known 
environment. Team members explore the environment in a systematic manner until 
one of the team members locates the object or all searchable space is exhausted. 
When the object is found, all team members converge on its location. 

•  Town Crier 
This task involves making announcements in the same known environment. The 
team cooperatively travels to each landmark on a map and makes an announcement 
at every landmark.  

 
In both cases a human user is responsible for indicating the current task to perform and 
supplying any required parameters for that task, e.g. the properties of the object to be 
found in the former task. The human interacts with the team through a user console, which 
appears as an additional, albeit non-performing, member of the team. When user input is 
entered into the console, that information is passed through the virtual wires to all team 
members. We have tested both tasks with a two robot team. The code for this system was 
written in a combination of GRL [15] and Scheme, although low-level vision operators 
were written in C++. 

Hardware 
The robotic bases used in this experiment are first generation Real World Interface(RWI) 
Magellan bases. The Magellan provides sonars, infrared sensors and bump switches; a total 
of 16 each, arrayed around the circular base. Vision is provided by a ProVideo CCD 
camera, connected by a Nogatech USB video capture adaptor cable to a laptop. The 
laptops are Dell Latitudes with Pentium II 500Mhz processors, 384Mb of RAM and 11Gb 
hard drives. They run Windows98, and communicate with the base through a serial cable. 
Remote communication is provided by Lucent Orinoco Silver wireless Ethernet cards that 
feature an 11Mbps data transfer rate under the IEEE 802.11b standard. 

User Console 
The Command Console for the HIVEMind team is based on the Cerebus project [16]. It 
provides a natural language interface for the human user and allows commands such as 
‘find green ball’ or ‘announce “talk at 7!”’ to be entered. The task is bound to the 
activity role, and any arguments are bound to other appropriate roles, e.g. green 
would be bound to object in the former example. The current bindings are represented 
in alist form and transmitted on a virtual wire to all members to the team. The console 
appears as another robot to other team members, albeit one that is not doing any physical 
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work. The user console also provides status information in the form of display windows 
based on the broadcast knowledge it is receiving from other team members. Using this 
interface, the human commander can inject new information into the team, as well as 
receive data about the current state of the “group mind”.  

Perceptual Systems 
The sensory and memory systems are divided into “pools”, which are useful abstractions 
for grouping perceptual systems or descriptions of objects. Note that we do not make any 
unique claims about pools; they are simply convenient abstractions for implementing role-
passing. The pools drive the inference rule network, which in turn drives the low-level 
behaviors that actually control the robot. Figure 4 shows a high-level view of the system.  
The action pool stores a set of reified user-defined plans that can be bound to roles at 
runtime. These plans can then be run by calling the role to which they are bound. For 
example, the find plan is bound to the role activity when the user enters “find green 
ball” at the console. The binding is passed via virtual wire to the individual team members. 
So, when the control system calls activity, it would run the find plan. There are 
currently two plans in the action pool : find and announce. 
 
The color pool stores color coordinates of different objects in a format suitable for use by 
the visual tracking system.  The color of a desired object can be specified by binding a 
given color description in the pool to the role of the object.  For example, when the user 
directs the team to seek a green ball, the term green is bound to an appropriate role. The 
bindings are then automatically passed over the network to the robots.  The color pool 
presently contains descriptions for red, green, and blue objects, and is only used for the 
find object task.  
 
The tracker pool consists of a set of color blob trackers that can be allocated and bound to 
a role. The trackers can drive low-level behaviors with image-plane coordinate of the 
objects they track.  In addition, they generate the low-level predicates see-object(X) 
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and near-object(X) for input to the inference network. The trackers are used only in 
the find object task.  
 
The place pool is a probabilistic localization system that uses a topological, i.e. landmark-
based, map.  Roles can be bound to landmarks and the system can determine the next 
appropriate waypoint in order to reach a landmark specified by role.  The place pool also 
records the set of landmarks that have been visited with high probability and can determine 
the closest unvisited landmark.  The current map contains 11 landmarks distributed over 
the west wing of the 3rd floor of the Northwestern Computer Science Department. 

Communication 
Both tasks require communication of the following : 

•  The current role bindings, including bindings for the current activity or task, and 
any bindings for pertinent arguments 

•  A bit-vector specifying the set of landmarks that the robot has personally visited 
•  The bit vector for the see-object(X) predicate 
•  An array representing the location(X) function, which give the two nearest 

landmarks, if known, for any role X 
 
All of these are low-level outputs of the various pools, except for the current role bindings, 
which has to be stored on a separate latch on the user console. When the team is 
performing the town-crier task, the latter two communication structures, i.e. see-
object(X) and location(X), are not utilized for reasoning.  

Inference Rules 
The inference rules for both taks are fairly simple. This is partly due to the continual 
recomputation of inferences, which alleviates the need for some error detection and 
recovery logic that would otherwise be necessary.  The inference rules for the find object 
task are : 
 

1. If see-object(X) is true, then goto(X).
2. If location(X) is known, and see-object(X) is false, then 

goto(location(X)).
3. If location(X) is unknown, and see-object(X) is false, then 

goto(next-unsearched-location()).
 
The inference rules for the town-crier task are : 

1. If at-landmark(X) and not-announced-at(X), then speak-
string(). 

2. If true, then goto(next-unsearched-location()). 

The function next-unsearched-location() returns the current location if there 
are no new locations to travel to. Goto() is a polymorphic action keyed by the type of the 
argument passed to it. If the argument is bound to a location, then the robot will navigate 
to that landmark. If the argument is bound to a color in the color pool, then the robot 
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approaches the largest object matching that color in its view. Goto() activates the four 
behaviors described below as necessary to accomplish its current task. 

Behaviors 
There are four motor behaviors that drive the robot : 

•  Approach drives to an object specified by role. It attempts to keep the object in the 
middle of its visual image. 

•  Turn-to swivels the robot to face a new direction. It is used when the robot arrives at 
a landmark and needs to turn in a new direction to reach another landmark. 

•  Unwedge activates when the robot becomes stuck in some corner unexpectedly. It 
swivels the robot in the direction in which it thinks has the greatest open space so the 
robot can continue moving. 

•  Follow-corridor navigates the hallways. It tries to remain centered in the middle of 
the corridor to facilitate easy recognition of environmental features. 

 
The behaviors are arbitrated strictly through a priority stack. Behaviors that are higher on 
the stack have higher priority, and, if active, will be chosen to run over those of lower 
priority. Since HIVEMind always ensures that all team members are up-to-date on the 
current situation, each robot always knows the appropriate behavior to activate for the 
current situation and no conflict between team members arises. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
We have tested the system with a three-member team consisting of two robots and the 
command console. The team was tested in the west wing of the 3rd floor of the Computer 
Science Department building. The wing consists of a network of six corridors spanning an 
area approximately 6mx20m with an aggregate path length of 50m. The network of 
corridors is represented by 12 landmarks in the topological map showing the locations of 
features such as corners and intersections. The robots drive at approximately 1m/s on 
straightaways, although stopping for ballistic turns at corners and intersections somewhat 
reduces their mean velocity. Sensing, inference and control decisions are each performed 
at 10Hz.  



 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the find object experiments, all team members were started from a central point at the 
extreme east end of the wing. The goal object, a green ball, was placed out of view, 15-
20m from the starting point. The object was always at least two corridors and three 
landmarks away from the starting point. When the command “find green” was entered on 
the command console, the robots begin a systematic search of the wing for the goal object. 
Unlike stochastic search techniques such as foraging, the systematic search guarantees that 
each landmark is searched at most once and that all landmarks are guaranteed to be 
searched, if necessary. Using a greedy algorithm for landmark selection, the team was 
consistently able to find the landmark within 30 seconds provided that there were no 
catastrophic failures of the place recognition system. On typical runs, the team found the 
object in approximately 20 seconds.  
 
For the town-crier task, team members were again started from a central point at the 
extreme east end of the wing. The objective was for the robots to go through each 
landmark at least once, making the announcement at each landmark that the robots passed 
through. If a robot had already spoken at a particular landmark, then no further 
announcement should be made there, since we do not wish to inundate any nearby offices 
with multiple announcements. Again, barring any catastrophic failures of the place 
recognition system, the team was able to complete the task successfully.  
 
The place recognition system is the weak point of the current implementation. Minor errors 
are common and occasional catastrophic failures can cause one of the team members to 
think that it has traversed its intended destination when in fact it has not. While we are 
working on improving the place recognition system, it should be stressed that the actual 
control and coordination architecture worked without error.  

Conclusions 
Grounding inference is a complex but unavoidable issue for systems embodied physically. 
Traditional symbolic reasoning systems face the issue of maintaining a world model that is 
coherent with the dynamic world. This issue is exacerbated in multi-robot systems, as we 
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now have n knowledgebases to synchronize with each other as well as the external 
environment. The multi-robot case shares some similarity to the problem of replicating n 
distributed databases; a problem which others have shown to very challenging, since the 
number of conflicts during attempted updates rises with the third power of the number of 
participating robots. We offer an alternative architecture that supports the useful features 
of a traditional symbolic reasoning system, in particular the ability to utilize 
predicate/argument structure, while avoiding the model coherence and database 
synchronization issues that traditional symbolic and tiered systems encounter.  
 
The HIVEMind architecture allows behavior-based systems to abstract over both objects 
and sensors, while providing an anchoring approach that is efficient enough in both 
inference speed and bandwidth consumption to be usable on physical robotic teams. It 
presents multi-robot system designers with more powerful representations than behavior-
based systems, and has a simple, efficient model for group coordination that consumes 
very little bandwidth while allowing team members to react to opportunities or 
contingencies within O(1) time. We believe that the right set of representational choices 
can allow the kinds of inference presently implemented on robots to be cleanly grounded 
in sensor data and reactively updated by a parallel inference network. By continually 
sharing perceptual knowledge between robots, coordination can be achieved for little or no 
additional cost beyond the communication bandwidth required to share the data.  The 
effect is a kind of “group mind” in which robots can treat one another as auxiliary sensors 
and effectors. We have currently implemented two tasks utilizing HIVEMind : one that 
finds object, and another that makes announcements. Our current goal is to implement a 
system which finds and traps evading targets such as other robots.  This is an especially 
interesting task because it requires non-trivial spatial reasoning about containment and 
visibility. 
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