
Grounding Inference in Distributed Multi-Robot Environments

Aaron Khoo and Ian Horswill

Computer Science Department, Northwestern University
1890 Maple Avenue
Evanston, IL 60201

{khoo, ian}@cs.northwestern.edu
Fax : (847) 491-5258

Keywords : Autonomous Mobile Robots, Multi-Robot Teams , Behavior-based control

Abstract
Systems embedded in a dynamic environment face the problem of grounding the inference
used in their reasoning system to actual physical objects. Traditional symbolic reasoning
systems are typically built on a transaction model of computation, which complicates the
process of synchronizing their world models with changes in the environment. While some
progress has been made grounding inference in tiered architectures for the single robot case,
physical multi-robot systems invariably utilize purely behavior-based control techniques. We
believe this is due to the complexities of synchronizing multiple distributed knowledge
databases located on wireless platforms in real time. In this paper, we describe an inference
grounding and coordination mechanism for small cooperative robot teams based on an
extension of tagged behavior-based systems. Tagged behavior-based systems support a large
subset of classical AI architectures while allowing object representations to remain
distributed across multiple sensory and representational modalities. They provide a novel
representation based on bit-vectors that allow team members to share intentional, attentional
and sensory information using relatively low-bandwidth connections. We illustrate our
approach on two problems involving systematic spatial search.

Introduction
Autonomous robots that reside in a complex, dynamic environment face the issue of
anchoring the abstract representations they use to actual physical objects. The world
around the robot continually changes, and its sensory systems must track those changes. In
turn, its modeling systems must track the sensory data, and its control systems must be
ready to alter plans and actions to suit the changing model.

Traditional symbolic reasoning systems are typically built on a transaction-oriented model
of computation. Knowledge about the world, or the “world model”, is stored in a database
of assertions in some logical language, indexed perhaps by predicate name [21].
Populating this database from a dynamic environment is a non-trivial issue; see [14] for an
exposition on the difficulties involved. Changes in the environment occur often, so the
database must also be updated fairly frequently, or risk the reasoning system operating on
stale data. Additionally, assertions in the database can be dependent on other assertions.
For example, the assertion that an area is safe could depend on the assertion that the robot
does not currently observe any predators in the area. If the latter assertion is withdrawn,
then the former must be too. Hence, each update from the perceptual systems can trigger a
cascade of further transactions, resulting in additional load on the knowledgebase
subsystem.

 2

Although some recent work has been done towards the development of a formal
framework for anchoring [8,9], most implemented physical systems instead equip the
symbolic system with a set of domain-dependent epistemic actions that fire task-specific
perceptual operators to update specific parts of the knowledgebase. The programmer
designing the knowledgebase is responsible for ensuring that the proper updates are done,
i.e. the right epistemic actions are fired at the appropriate times. This alleviates some of the
difficulties of getting information into the knowledgebase in a timely manner. However,
any mistakes by the programmer will lead to inconsistencies between the knowledgebase
used by the symbolic system and the external environment. Tiered architectures, such as
[1,5,7], that combine symbolic and behavior-based systems inherit these model coherency
issues, because their symbolic layer still relies on a database-driven world model for its
reasoning process.

Keeping the knowledgebase synchronized with the external environment becomes even
more difficult in cooperative activity. In this analysis we assume a team model where
members are fully autonomous entities with independent decision making ability.
Furthermore, team members may lose sight of each other during execution, so coordination
has to be achieved through explicit communication. Under these constraints, rather than
one robot with a single knowledgebase, we now have n robots with n knowledgebases to
keep consistent both with the world and with one another. Failure to properly coordinate
the knowledgebases will ultimately lead to system delusion [13], i.e. the databases are now
inconsistent, and there is no obvious way to repair them, resulting in failure to coordinate
activity. There has been some excellent work done on coordination protocols for
cooperative agents [6,22]. However, an analysis of asynchronous peer-to-peer replicated
databases by Gray et al. [12] suggests a potential problem :

A conflict occurs when two different databases attempt to update the same object, or race
to install their updates at other databases. Whenever conflicts occur, the replication
mechanism must detect this and somehow reconcile the two transactions so that their
updates are not lost. Under the following simple assumptions --

• The databases are updated through lazy group replication, i.e. the originating
database updates its entries, and then propagates the update to other replicas
asynchronously.

• Each node updates any other database location with equal probability
• All nodes impose an equal load on the system
• There are a fixed number of objects per transaction

Gray et al. were able to show that the conflict rate per second is approximately :

TPS2 * Actions3 * Action_time * nodes3
2 * DB_Size

where TPS is the number of transactions per second initiated by each node, Actions is the
number of locations updated per transaction, Action_time is the time required to complete
an update, DB_size is the number of distinct entries in the database and nodes is the

 3

number of nodes (which, in our case, is equivalent to the number of robots) in the system.
The critical point here is that the number of conflicts encountered by the system increases
with the third power of the number of nodes or robots. As Gray et al. point out, “having
the reconciliation rate rise by a factor of a thousand when the system scales up by a factor
of ten is frightening”. While the two models are not exactly analogous, there is sufficient
overlap between the problem of synchronizing different knowledgebases and the issue of
distributed database replication to elicit concern.

Furthermore, note that message propagation times are not presently part of the conflict
model as presented above. If message delays were added to the model, then each
transaction would last longer, hold more resources and generate more conflicts. Moreover,
mobile robots necessarily communicate via wireless links, which are well-known to have
higher error rates [10,24], and hence higher message delays, than their wired counterparts.
This analysis suggests that we could potentially face serious scalability issues for any
physical multi-robot system with a database-driven knowledge model. The work necessary
to reconcile the conflicts that could arise as team members tried to communicate
knowledge to other members could eventually overwhelm the robots, or leave them badly
out of synch.

We feel that these knowledgebase synchronization issues has led to a paucity of physical
multi-robot systems utilizing symbolic reasoners. Instead, most existing multi-robot
controllers implemented on physical systems focus on extending traditional behavior-
based techniques [1] to a team environment (For example see [4,11,20]). Traditional
behavior-based systems obey circuit semantics [19], which means their control programs
are generally implemented as feed-forward circuits. This allows rapid response to changes
in the environment due to tight sensor-actuator integration, and also simplifies the
communication structure necessary to maintain coordination between team members.
Essentially communication in behavior-based multi-robot controllers is reduced to virtual
wires connecting the appropriate circuitry on one team member to another’s (see figure 1).
The wires carry relevant information from a robot to its counterparts. Conversely, each
robot views its teammates simply as additional sensory input, and integrates the incoming
information as appropriate. Conveniently, virtual wires can be simulated on physical
robots using a broadcast communication mechanism such as UDP.

However, this convenience is not without cost. The strengths of the behavior-based
approach are also its weakness. Circuit semantics impose a propositional representation on
the reasoning system, i.e. representations without predicate/argument structure.
Propositional representation makes most reasoning and planning tasks both difficult and
clumsy since they require redundant copies of the system for each possible argument to a
predicate or action [18]. Since most multi-robot controllers are extensions of behavior-
based techniques, they inherit the same issues from the basic underlying architecture.

We should point out that there are some multi-robot systems [23] that utilize a traditional
symbolic reasoner by relying on a shared, centrally controller world model. In this case,
reasoning is performed at a central server location where the master knowledgebase is
located, and then actions are transmitted to the individual robots. Little, if any, reasoning is
done on the client side. In this paper, however, we are only considering multi-robot

 4

systems where the team members are independent of a central reasoner, i.e. each robot
maintains its own reasoning system.

HIVEMind
While designing our current multi-robot control architecture, we wanted to utilize as many
useful features of traditional symbolic AI systems as possible on our robots. Specifically,
we would like to have the ability to utilize predicate/argument structure in our
representations. However, we also wanted to avoid importing the model coherence and
database synchronization issues that symbolic systems encounter. That is, the symbols
utilized in our inference rules should be tightly anchored to updates from the sensory
systems as well as incoming information from other team members.

Our efforts in this direction have resulted in HIVEMind (Highly Interconnected Verbose
Mind), a multi-robot control architecture that supports very efficient sharing of symbolic
information between team members. The HIVEMind architecture is built on role-passing
[14], a type of tagged behavior-based system [17]. Role-passing provides the developer
with a limited set of domain-independent indexical variables (called roles) such as agent,
patient, source, destination, etc. When a role is bound to an object, a tracker is
dynamically allocated to it and tagged with the name of the role. Since the number of roles
is relatively small, we can represent the extensions of unary predicates as bit-vectors, with
one bit representing each role. This representation allows inference to be performed using
bit-parallel operations in a feed-forward network.

Alternatively, for commodity serial hardware, we can represent a unary predicate
extension using a single machine word. Inference rules can then be compiled directly into
straight-line machine code consisting only of load, store, and bit-mask instructions [14].

 5

While more limited than a full logic-programming system, it does allow us to express
much of the kinds of inference used on physical robots today. The inference rules can be
completely rerun on every cycle of the system’s control loop, allowing the robots to
respond to contingencies as soon as they are sensed. The compiled code is sufficiently
efficient that inference is effectively free – 1000 Horn clauses of 5 conjuncts each can be
completely updated at 100Hz using less than 1% of a current CPU. In short, role-passing
affords us the ability to implement traditional inference rules using circuit semantics.

In addition to allowing very fast inference, this representation allows for very compact
storage of a robot’s current set of inferences. Unary predicates are stored in one machine
word. Function values are represented using small arrays indexed by role. This
compactness, combined with the circuit semantic nature of role-passing, allows us to take
full advantage of simplified communication mechanism described previously, i.e. virtual
wires connecting team members. In fact, for the kinds of tasks currently implemented by
multi-robot teams, the representation we use is sufficiently compact to allow all function
and predicate values of a robot to fit into a single UDP packet. Robots can therefore share
information by periodically broadcasting their entire knowledge base, or at least all those
predicates and functions that might be relevant to other team members.

Knowledge-based broadcast is a simple communication and coordination model that
provides each robot with transparent access to every other robot’s state, establishing a kind
of “group mind”. It allows the team to efficiently maintain a shared situational awareness
and to provide hard real-time response guarantees; when a team member detects a
contingency, other members are immediately informed and respond in O(1) time without
the need for negotiation protocols. Moreover, since HIVEMind systems are based on role-
passing, multi-robot controllers implemented using this architecture have greater
representational power and flexibility than pure behavior-based systems with propositional
representations. That is, our communication is not based on passing propositional values
such as see-blue-object or see-red-object, but rather predicates such as see-
object(X). Furthermore, since all relevant team knowledge is continuously being
rebroadcast, each member’s knowledgebase converges to the same state within O(1) time
of joining the Hivemind. This means that team members can be brought online and
integrated into the Hivemind very easily, allowing us to add or subtract team members
dynamically. This also implies that, should communication fail for some time, the team
would very rapidly return to a common state when it is restored.

Figure 2 shows an abstract HIVEMind configuration for a two-robot team. Each team
member has its own inference network. The network is driven both by its own sensory
system and by the incoming data from the other team members. Outputs from the current
robot’s sensory systems and inference rules are fed into aggregation functions on other
team members. The output from those aggregation functions is then fed into the inference
rules which drive the motor behaviors.

 6

The aggregation functions are used to combine information from teammates and sensors
into a single coherent output for the inference rules to reason over. In an n robot team, each
robot’s inference network has n distinct sets of inputs, one generated internally, and the
rest received from the robot’s teammates. These distinct inputs are first fused into a single
set of inputs:

 K = β(k1, k2, …., kn)

where the ki are the tuples of inputs from each robot, K is the final fused tuple, and β is
some aggregation function that performs the fusion. For example, if a particular
component of the input was a proposition, the aggregation function might simply OR
together the corresponding components of the ki. Thus the robot would believe the
proposition if and only if some robot had evidence for it. In more complicated cases, fuzzy
logic or Bayesian inference could be used. Real-valued data is likely to require task-
specific aggregation. For example,

 The team is assigned to scout an area and report the number of enemies observed.
Each team member has a slightly different count of enemy troops. In this case, the
best solution is probably to average the disparate counts.

 The task is “converge on the target”. Each robot’s sensors report a slightly different
position for the target. In this situation, it appears to make sense that each team
member rely on its own sensor values to track the target and only rely on other robots
when the robot’s own sensors are unable to track the target, e.g. the target is out of
sight.

Figure 3 shows how aggregation is performed in the actual system. As packets arrive on
from other robots, they are unpacked into buffers for their respective robots, replacing
whatever data had been stored previously for that robot. In parallel with this process, the
main control loop of the robot aggregates the inputs from each robot and reruns the
inference rules on the result. These inference rules then enable and disable low-level
behaviors for sensory-motor control. Since the main control loop is performing real-time

 7

control, it runs much faster than the 1Hz update used for communication (10Hz in our
current implementation).

The entire HIVEMind can be considered a single, parallel control network whose
components happen to be distributed between the different robot bodies being controlled.
Wires crossing between bodies are simulated using the RF broadcast mechanism, so that
each member of the team is “connected” to every other member in a web-like structure of
virtual wires. In our current implementation, each robot broadcasts its sensory data and
state estimates in a single UDP packet at predefined intervals. Presently, broadcasts are
made every second. Faster or slower rates could be used when latency is more or less
critical. However, 1Hz has worked well for our applications. To reiterate, we expect that
currently implementable robot systems could store all the sensory inputs to the inference
system in a single UDP packet (1024 bytes). As robots develop more complicated
sensoria, it may be necessary to use more complicated protocols, perhaps involving
multiple packets, or packets that only contain updates for wires whose values have
changed since the last transmission. For the moment, however, these issues are moot.

Given the current single-packet-protocol, the aggregate bandwidth required for
coordination is bounded by 1KB/robot/sec, or about 0.1% of a current RF LAN per robot.
Thus robot teams on the order of 100 robots should be practical from a communication
standpoint. However, hardware failure limits most current robot teams to less than 10
members, so scaling limits are difficult to test empirically.

It may seem inefficient for each robot to have its own separate copy of the inference
network. However, to have a single robot perform each inference and share the results

 8

would require much more complicated coordination protocols [6] analogous to the multi-
phase commit protocols used in distributed database systems. Since communication
bandwidth is a scarce resource and inference in our system is essentially free, it is more
efficient for HIVEMind robots to perform redundant computation.

Implementation

Overview
We have implemented the HIVEMind system on a robot team that performs two tasks :

• Find Object
The team systematically searches for a brightly colored object in a known
environment. Team members explore the environment in a systematic manner until
one of the team members locates the object or all searchable space is exhausted.
When the object is found, all team members converge on its location.

• Town Crier
This task involves making announcements in the same known environment. The
team cooperatively travels to each landmark on a map and makes an announcement
at every landmark.

In both cases a human user is responsible for indicating the current task to perform and
supplying any required parameters for that task, e.g. the properties of the object to be
found in the former task. The human interacts with the team through a user console, which
appears as an additional, albeit non-performing, member of the team. When user input is
entered into the console, that information is passed through the virtual wires to all team
members. We have tested both tasks with a two robot team. The code for this system was
written in a combination of GRL [15] and Scheme, although low-level vision operators
were written in C++.

Hardware
The robotic bases used in this experiment are first generation Real World Interface(RWI)
Magellan bases. The Magellan provides sonars, infrared sensors and bump switches; a total
of 16 each, arrayed around the circular base. Vision is provided by a ProVideo CCD
camera, connected by a Nogatech USB video capture adaptor cable to a laptop. The
laptops are Dell Latitudes with Pentium II 500Mhz processors, 384Mb of RAM and 11Gb
hard drives. They run Windows98, and communicate with the base through a serial cable.
Remote communication is provided by Lucent Orinoco Silver wireless Ethernet cards that
feature an 11Mbps data transfer rate under the IEEE 802.11b standard.

User Console
The Command Console for the HIVEMind team is based on the Cerebus project [16]. It
provides a natural language interface for the human user and allows commands such as
‘find green ball’ or ‘announce “talk at 7!”’ to be entered. The task is bound to the
activity role, and any arguments are bound to other appropriate roles, e.g. green
would be bound to object in the former example. The current bindings are represented
in alist form and transmitted on a virtual wire to all members to the team. The console
appears as another robot to other team members, albeit one that is not doing any physical

 9

work. The user console also provides status information in the form of display windows
based on the broadcast knowledge it is receiving from other team members. Using this
interface, the human commander can inject new information into the team, as well as
receive data about the current state of the “group mind”.

Perceptual Systems
The sensory and memory systems are divided into “pools”, which are useful abstractions
for grouping perceptual systems or descriptions of objects. Note that we do not make any
unique claims about pools; they are simply convenient abstractions for implementing role-
passing. The pools drive the inference rule network, which in turn drives the low-level
behaviors that actually control the robot. Figure 4 shows a high-level view of the system.
The action pool stores a set of reified user-defined plans that can be bound to roles at
runtime. These plans can then be run by calling the role to which they are bound. For
example, the find plan is bound to the role activity when the user enters “find green
ball” at the console. The binding is passed via virtual wire to the individual team members.
So, when the control system calls activity, it would run the find plan. There are
currently two plans in the action pool : find and announce.

The color pool stores color coordinates of different objects in a format suitable for use by
the visual tracking system. The color of a desired object can be specified by binding a
given color description in the pool to the role of the object. For example, when the user
directs the team to seek a green ball, the term green is bound to an appropriate role. The
bindings are then automatically passed over the network to the robots. The color pool
presently contains descriptions for red, green, and blue objects, and is only used for the
find object task.

The tracker pool consists of a set of color blob trackers that can be allocated and bound to
a role. The trackers can drive low-level behaviors with image-plane coordinate of the
objects they track. In addition, they generate the low-level predicates see-object(X)

 10

and near-object(X) for input to the inference network. The trackers are used only in
the find object task.

The place pool is a probabilistic localization system that uses a topological, i.e. landmark-
based, map. Roles can be bound to landmarks and the system can determine the next
appropriate waypoint in order to reach a landmark specified by role. The place pool also
records the set of landmarks that have been visited with high probability and can determine
the closest unvisited landmark. The current map contains 11 landmarks distributed over
the west wing of the 3rd floor of the Northwestern Computer Science Department.

Communication
Both tasks require communication of the following :

• The current role bindings, including bindings for the current activity or task, and
any bindings for pertinent arguments

• A bit-vector specifying the set of landmarks that the robot has personally visited
• The bit vector for the see-object(X) predicate
• An array representing the location(X) function, which give the two nearest

landmarks, if known, for any role X

All of these are low-level outputs of the various pools, except for the current role bindings,
which has to be stored on a separate latch on the user console. When the team is
performing the town-crier task, the latter two communication structures, i.e. see-
object(X) and location(X), are not utilized for reasoning.

Inference Rules
The inference rules for both taks are fairly simple. This is partly due to the continual
recomputation of inferences, which alleviates the need for some error detection and
recovery logic that would otherwise be necessary. The inference rules for the find object
task are :

1. If see-object(X) is true, then goto(X).
2. If location(X) is known, and see-object(X) is false, then

goto(location(X)).
3. If location(X) is unknown, and see-object(X) is false, then

goto(next-unsearched-location()).

The inference rules for the town-crier task are :

1. If at-landmark(X) and not-announced-at(X), then speak-
string().

2. If true, then goto(next-unsearched-location()).

The function next-unsearched-location() returns the current location if there
are no new locations to travel to. Goto() is a polymorphic action keyed by the type of the
argument passed to it. If the argument is bound to a location, then the robot will navigate
to that landmark. If the argument is bound to a color in the color pool, then the robot

 11

approaches the largest object matching that color in its view. Goto() activates the four
behaviors described below as necessary to accomplish its current task.

Behaviors
There are four motor behaviors that drive the robot :

• Approach drives to an object specified by role. It attempts to keep the object in the
middle of its visual image.

• Turn-to swivels the robot to face a new direction. It is used when the robot arrives at
a landmark and needs to turn in a new direction to reach another landmark.

• Unwedge activates when the robot becomes stuck in some corner unexpectedly. It
swivels the robot in the direction in which it thinks has the greatest open space so the
robot can continue moving.

• Follow-corridor navigates the hallways. It tries to remain centered in the middle of
the corridor to facilitate easy recognition of environmental features.

The behaviors are arbitrated strictly through a priority stack. Behaviors that are higher on
the stack have higher priority, and, if active, will be chosen to run over those of lower
priority. Since HIVEMind always ensures that all team members are up-to-date on the
current situation, each robot always knows the appropriate behavior to activate for the
current situation and no conflict between team members arises.

Results
We have tested the system with a three-member team consisting of two robots and the
command console. The team was tested in the west wing of the 3rd floor of the Computer
Science Department building. The wing consists of a network of six corridors spanning an
area approximately 6mx20m with an aggregate path length of 50m. The network of
corridors is represented by 12 landmarks in the topological map showing the locations of
features such as corners and intersections. The robots drive at approximately 1m/s on
straightaways, although stopping for ballistic turns at corners and intersections somewhat
reduces their mean velocity. Sensing, inference and control decisions are each performed
at 10Hz.

 12

In the find object experiments, all team members were started from a central point at the
extreme east end of the wing. The goal object, a green ball, was placed out of view, 15-
20m from the starting point. The object was always at least two corridors and three
landmarks away from the starting point. When the command “find green” was entered on
the command console, the robots begin a systematic search of the wing for the goal object.
Unlike stochastic search techniques such as foraging, the systematic search guarantees that
each landmark is searched at most once and that all landmarks are guaranteed to be
searched, if necessary. Using a greedy algorithm for landmark selection, the team was
consistently able to find the landmark within 30 seconds provided that there were no
catastrophic failures of the place recognition system. On typical runs, the team found the
object in approximately 20 seconds.

For the town-crier task, team members were again started from a central point at the
extreme east end of the wing. The objective was for the robots to go through each
landmark at least once, making the announcement at each landmark that the robots passed
through. If a robot had already spoken at a particular landmark, then no further
announcement should be made there, since we do not wish to inundate any nearby offices
with multiple announcements. Again, barring any catastrophic failures of the place
recognition system, the team was able to complete the task successfully.

The place recognition system is the weak point of the current implementation. Minor errors
are common and occasional catastrophic failures can cause one of the team members to
think that it has traversed its intended destination when in fact it has not. While we are
working on improving the place recognition system, it should be stressed that the actual
control and coordination architecture worked without error.

Conclusions
Grounding inference is a complex but unavoidable issue for systems embodied physically.
Traditional symbolic reasoning systems face the issue of maintaining a world model that is
coherent with the dynamic world. This issue is exacerbated in multi-robot systems, as we

 13

now have n knowledgebases to synchronize with each other as well as the external
environment. The multi-robot case shares some similarity to the problem of replicating n
distributed databases; a problem which others have shown to very challenging, since the
number of conflicts during attempted updates rises with the third power of the number of
participating robots. We offer an alternative architecture that supports the useful features
of a traditional symbolic reasoning system, in particular the ability to utilize
predicate/argument structure, while avoiding the model coherence and database
synchronization issues that traditional symbolic and tiered systems encounter.

The HIVEMind architecture allows behavior-based systems to abstract over both objects
and sensors, while providing an anchoring approach that is efficient enough in both
inference speed and bandwidth consumption to be usable on physical robotic teams. It
presents multi-robot system designers with more powerful representations than behavior-
based systems, and has a simple, efficient model for group coordination that consumes
very little bandwidth while allowing team members to react to opportunities or
contingencies within O(1) time. We believe that the right set of representational choices
can allow the kinds of inference presently implemented on robots to be cleanly grounded
in sensor data and reactively updated by a parallel inference network. By continually
sharing perceptual knowledge between robots, coordination can be achieved for little or no
additional cost beyond the communication bandwidth required to share the data. The
effect is a kind of “group mind” in which robots can treat one another as auxiliary sensors
and effectors. We have currently implemented two tasks utilizing HIVEMind : one that
finds object, and another that makes announcements. Our current goal is to implement a
system which finds and traps evading targets such as other robots. This is an especially
interesting task because it requires non-trivial spatial reasoning about containment and
visibility.

References
1. P.E. Agre and D. Chapman. Pengi : An Implementation of a Theory of Activity. In

Proceedings of the Sixth National Conference on Artificial Intelligence, pp. 268-
272. Seattle, Wa., 1987

2. R.C. Arkin. Behavior-Based Robotics. MIT Press. Cambridge, MA. 1998
3. R.C. Arkin and T.R. Balch. Aura: principles and practice in review. Journal of

Experimental and Theoretical Artificial Intelligence, 9(2), 1997
4. T. Balch and R.C. Arkin. Behavior-based formation control for multirobot teams,

IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926--939,
December 1998.

5. P. Bonasso, R.J. Firby, E. Gat, and D. Kortenkamp. Experiences with an
Architecture for Intelligent Reactive Agents. In Journal of Theoretical and
Experimental Artificial Intelligence, special issue on software architectures for
physical agents, Hexmoor, Horswill and Kortenkamp, eds., 9:2-3, 1997. Taylor and
Francis, Ltd.

6. P.R. Cohen and H.J. Levesque. Teamwork, Nous, Special Issue on Cognitive
Science and AI, 25, 4, 1991, pp. 487-512

 14

7. J.H. Connell. SSS: A hybrid architecture applied to robot navigation. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 92), pages 2719-2724, Nice, France, 1992. IEEE Press, New York, NY.

8. S. Coradeschi and A. Saffiotti. Anchoring Symbols to Sensor Data: preliminary
report, Proceedings of the 17th AAAI Conference, pp. 129-135. Austin, Texas,
July 2000.

9. S. Coradeschi and A. Saffiotti. Perceptual Anchoring of Symbols for Action.
Proceedings of the 17th IJCAI Conference, pp. 407-412. Seattle, WA, 2001.

10. D. Eckhardt, P. Steenkiste. Measurement and Analysis of the Error Characteristics
of an In-Building Wireless Network. In Proceedings of the ACM SIGCOMM ‘96,
pp. 243-254, August 1996.

11. D. Goldberg and M.J. Mataric. Robust Behavior-Based Control for Distributed
Multi-Robot Collection Tasks, USC Institute for Robotics and Intelligent Systems
Technical Report IRIS-00-387, 2000

12. J. Gray, P. Helland, P. O’Neil and D. Shasha. The Dangers of Replication and a
Solution, Sigmod, 1996

13. J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques, Morgan
Kaufmann, San Francisco, 1993.

14. I. Horswill. Grounding Mundane Inference in Perception. In Autonomous Robots,
5, pp. 63-77, 1998.

15. I. Horswill. Functional programming of behavior-based systems. In Proc. IEEE
International Symposium on Computational Intelligence in Robotics and
Automation 1999.

16. I. Horswill, R. Zubek, A. Khoo, C. Le, and S. Nicholson(2000) The Cerebus
Project. In the AAAI Fall Symposium on Parallel Cognition and Embodied Agents,
2000

17. I. Horswill. Tagged Behavior-based Architectures: Integrating Cognition with
Embodied Activity, IEEE Intelligent Systems, September/October 2001, pp 30-38.
IEEE Computer Society, NY.

18. P. Maes. Situated Agents Can Have Goals. Robotics and Autonomous Systems,
Vol. 6, pp. 49-70.

19. N. Nilsson Toward Agent Programs with Circuit Semantics, Technical Report
STAN-CS-92-1412, Stanford University Computer Science Department, 1992.

20. L.E. Parker ALLIANCE: An Architecture for Fault Tolerant Multirobot
Cooperation, IEEE Transactions on Robotics and Automation, Vol. 14, No. 2,
April 1998.

21. S. Russell, and P. Norvig. Artificial Intelligence : A Modern Approach. Prentice
Hall, 1995.

22. M. Tambe. Teamwork in real-world, dynamic environments. In Proceedings of the
Second International Conference on Multi-Agent Systems (ICMAS-96), Menlo
Park, California, December 1996. AAAI Press.

23. M. Veloso, M. Bowling, S. Achim, K. Han, and P. Stone. The CMUnited-98
Champion Small Robot Team. "RoboCup-98: Robot Soccer World Cup II," M.
Asada and H. Kitano (eds.), 1999. Springer Verlag, Berlin.

24. G. Xylomenos and G.C. Polyzos. Internet Protocol Performance over Networks
with Wireless Links. IEEE Network 13, 1999. pp. 55–63

