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8
From Conceptual Analyzer to Direct
Memory Access Parsing : An
Overview

structures is neither unique to parsing (we are always remembering uses of
memory - that's why memory is dynamic), nor is it limited to those
structures that have typically been identified with "the meaning of a
sentence" . For example, we remember veiled implications, tones of voice,
initial misunderstandings, and so on. The only thing that separates these
items from more standard ideas of meaning is whether, when we remember
them, we include the memory structure for "speaker intended this ."

For example, our misunderstanding of a text may seem like it can't
possibly be the meaning of that text, but what about jokes? Suppose one of
our parsers only remembered what texts were about and it heard this story :

I just got back from a hunting expedition . The first night I shot two
bucks.
It was all the money I had .

When asked, our parser would paraphrase this as :

He just got back from a hunting expedition . The first night he spent two
dollars . It was all the money he had.

Christopher K. Riesbeck

INTRODUCTION-A REVISIONIST HISTORY OF PARSING

There is, I believe, a revolution happening in natural language processing
(NLP) system development in Artificial Intelligence (AI). The revolution is
a paradigm shift in our view of what mechanical language understanding is
all about . This shift is independent of the syntax versus semantics contro-
versy, but I believe it will lead evmrn*Rv to Modelsof pat** vdieTt the

t "Who's in charge : syntax or semantics?" wiil be moot.
What is this new view of parsing? It is this : a parser is a memory search '

process, pure and simple . It differs from other such processes only in its
emphasis on linguistic cues . The purpose of a parser is not to construct an
interpretation for a text, but to locate those existing memory structures to
which the text is referring . I call this "Direct Memory Access Parsing" or
DMAP.

Although there is a constructive aspect to parsing, namely the "remem-
bering" of the text and the references it makes, this construction of memory

We'd certainly consider a human who did this unintelligent!
In short, in direct m_ennrv access pamin. g- -the- traditional notion of

parsing as "constructing an interpretgtion" is rieplaced with _the more
gener ,non-parserspecific-process of "classf+ng and remembering an
episode," _i .e . tracing memory use . What sets parsing apart from other
processes is nottheconsiniction ofinterpretations, but the use of peculiarly
linguistic items to direct the use of memory structures .

Riesbeck and Martin (1985) describe a particular implementation of a
direct memory access parser. In this chapter, I'd like to trace the origins of
this view of parsing, and describe the current state of the art . The reader
should be warned that I am interpreting modern research in much the same
way that a literary critic interprets novels . Do not assume that the
researchers involved necessarily agree with the issues and imports I attribute
to their systems .

CONCEPTUAL ANALYSIS

Until recently, direct memory access parsing was not possible because there
weren't any suitable models of long-term memory to access . Instead, there
was "conceptual analysis." Spinoza (Schank et al ., 1970) and the MARGIE
parser (Riesbeck,1975) were the first in a series of parsers that attempted to
go directly from sentential input to conceptual representations, without
constructing an intermediate syntactic description of the sentence .

For example, a key difference between the MARGIE parser and
previous systems was the way it treated the following examples :
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John gave Mary book.
John gave Mary a kiss .
John kissed Mary.

"John gave Mary a book" was parsed as "John transferred a book from John
to Mary." "John gave Mary a kiss," however, despite its syntactic similarity,
was parsed as "John pressed his lips against Mary." This result was identical
to the parse produced for "John kissed Mary," and was the representation
needed by the MARGIE inference module . The theoretical demands of the
Conceptual Dependency representation scheme, and the needs of the
inference and generation modules, distinguished the development of the
MARGIE parser from systems that were being created to process English,
but which had no general follow-on-system to talk to .

Even at that time, the separation of the MARGIE parser from the
MARGIE inference module was a matter of convenience, not theory, since
the MARGIE parser often had to make inferences during parsing . The rule
of

	

for the divisism ofVAbor was*Wmyinfimmerulle'*K requfr-ed
midge of En" was the responsAility of the posix. The inference
module should be unaffected if the English parser were replaced by a
Chinese parser . Thus, for example, it was up to the inference module to
determine that "John picked up a stick and hit Mary," implied thatJohn hit
Mary with the stick, but it was up to the parser to decide that "John had an
apple" probably meant that "John ate an apple" .

The MARGIE parser was an example of an expectation-driven parser,
using "if--then" rules, called requests, to encode conceptual and syntactic
parsing knowledge . For example, "give" had requests that said

" The subject of the sentence is transferring something to someone .
" If a physical object follows, then that is the object being transferred .
" If a human follows, then that human is the recipient of the transfer .
" If an action follows, then the subject of the sentence is doing that action to
the recipient .

Later conceptual analyzers were ELI (Riesbeck & Schank, 1976), ELI-2
(Gershman, 1979), and CA (Birnbaum & Selfridge, 1981) . They extended
and changed the basic approach in many ways, including better control
structures, standardized request formats, and so on. They maintained the
basic ideas however . 'Me pami always produced a meaning r

	

-
tatdau, am a syntatiestructtire, byapplyingr

	

attached towandsfew
left to right in a sentence. The meaning representation was then passed to
inference modules, for language-independent processing.

	

_
Thegoal ofthe parser, as defined by these systems, was this : to get fzom

the words in a sentence asdirectly as possible to the meaning of the sentence,
with "ntean ng" defined as "whatever the inference processes need." The
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request format helped to achieve this goal by allowing processing rules to be
written that built and used conceptual structures as easily as other systems
built and used syntactic structures . Fig . 1 is a simple block diagram for these
`conceptual analyzers .

MEMORY-BASED CONCEPTUAL ANALYSIS

MARGIE, SAM (Schank & Abelson, 1977), PAM (Wilensky, 1978),
FRUMP (DeJong,1979), and POLITICS (Carbonell,1979) were all know-
ledge-applying programs . Mtat is, theywoodinputtextsbyapplying a
fixed art of knowledge structures. SAM knew about standardized event
sequences, such as gig to a restaurant or a newspaper account of a ear

ident, while PAM and POLITICS knew how to understood stories about
goals and plans, such as how to get money by asking someone or robbing a
bank.

inthey1

	

,vurviewofinference processes
ist have aknowk e

	

. theyhave a memory (Schank,1982) . We mean
two things by this. First, what people know is the result of experience .
Often, what you know about something is very intimately connected to your
experiences with it . . For example, when I think about hammers, I think
about particular hammers I have owned.

Second, whatpeople knowis dynamic, i.e . it changes withuse, whereas a

Fig. 1-Early conceptual analyzers.
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knowledge structure is static, like the information in an encylopedia . You
can use a knowledge structure - or have problems using it- as many times
as you want, and it will remain unchanged . Experiential knowledge,
however, changes as the set of experiences changes . Barring long-term
forgetting, I can't read the same story twice and understand it exactly the
same way both times . The second time I read it, I immediately say, "Hey,
I've read this before." For example, one restaurant story SAM didn't handle
was this :

A guy walks into a restaurant . He asked the waiter if they served crabs
there . . .

At this point in the processing, I wanted SAM to respond "I've heard that
one before," but, unfortunately, SAM had knowledge, rather than
memory, structures .
We began encoding knowledge in our programs in memory organization

packets (MOPS), which restructured and reorganized knowledge into more
"bite-size" chunks, amenable to recording experience and forminggenerali
zations. Several parsing programs were developed using MOPS, namely IPP
(Lebowitz,1980), BORIS (Dyer, 1983), and MOPTRANS (Lytinen,1984) .
IPP and BORIS built MOPS and stored them in memory . (MOPTRANS, a
machine translation system, had a static memory.)

All three parsers defined the goal of parsing as : find and instantiate
(make a copy of) applicable memory structures . Once a basic MOP frame
was chosen, requests filled in the slots . These requests were often attached
to the MOP structures, rather than to individual words. Since MOPs usually
encoded fairly general knowledge, they had to be specialized to apply to the
situation at hand. In MOPTRANS, for example, "Police captured . .."
would initially be interpreted as a generic GET-CONTROL MOP, but this
interpretation would be refined to ARREST because the policwere doing
the capturing . In IPP, a similar refinement process would occur in sentences
such as "Terrorists holding machine guns sprayed . . ." where the generic
"spray" would be understood as "shoot" in this context. In BORIS,
requests made explicit calls to the memory, e .g . a request might say "If a
specific MOP describing event already exists in memory, use it, otherwise
add this event to memory."

Fig . 2 shows the basic structure of these memory-based parsers .
IPP, BORIS,-and MOPTRANS are examples of what I call "build and

store" parsers. There is a separate parsing process in each case that is
responsible for building a memory structure and passing it on to a memory-
storage facility . Like the earlier conceptual analyzers, these parsers have
separately organized lexicons which contain all of the system's language-
processing information . This is unlike syntactically based systems, which
separate the rule base from the lexicon . The memory-based systems differ
from their predecessors in that they construct long-term memory structures,
rather than conceptual structures .

For example, given the sentence
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John went into a restaurant .

MOP filler
constraints

Fig. 2-Memory-based conceptual analyzers.

ELI would have generated something similar to

S (ACTOR (PERSON NAME (JOHN)))
(OBJECT (PERSON NAME (JOHN)))
(TO (INSIDE PART (BUILDING TYPE
(RESTAURANT)))))

which says that John moved himself into a restaurant building . (FTRANS is
the conceptual dependency primitive for physical motion.) A
module, such as SAM, would infer from this that John might be initiating the
restaurant script by going into the restaurant to get something to eat .

Given the same sentence, one of these memory-based parsers would
produce something like this :

(ENTER-SCENE (MOPRESTAURANT-DINE)
(ACTOR PERSON-32)

FROM CA TO DMAP 241

where ENTER-SCENE is the opening event in the memory structure
RESTAURANT-DINE, and PERSON-32 is the particular memory token
used to keep trackof the story character named John. In other words, much
of the work that used to be left for the reasoning module had become
integrated with the -parsing process . The information that going to a
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restaurant involves physical movement (PTRANS) was still there, but it was
stored in memory as part of the definition of the ENTER-SCENE, rash;r
than in the lexicon .

DIRECT MEMORY ACCESS PARSING
'Ibe memory-based conceptual analyzers represent a transitional state
between memorylcss conceptual - analyzers and direct memory access
parsers . Presented in the manner we have just used, it is clear what the next
stage of development is : integrate the separate lexicon into memory, and
make parsing purely a memory process . This is what I call "direct memory
access parsing."

I would like to survey several different efforts in this direction, most of
them very recent (Quillian,1969 ; Small etal., 1982; Hahn & Reimer,1983 ;
Granger et al., 1984 ; Waltz & Pollack, 1984; Channiak, unpublished.) My
view of these systems will be focusing on somewhat different aspects than
their authors intended . In particular, I'd like to draw out the particular
problem and solutions that those authors have come up with that are most
relevant to the goal . of totally integrating memory with parsing . I am not
claiming that such a goal is the primary interest of any of these other
researchers . In fact, many people are more interested in what I think is a side
issue, namely, how to speed up parsing with parallelism . Whileparallelism is
indeed a common feature, at least in principle, with these systems, it is not,
in my opinion, the important point . The real point is that parsing should be
viewed as just a memorysearch process, and linguistic knowledge, including
highly syntactic information, should be storedin memoryin exactly the same
way that other kinds of information are stored .

The teachable language comprehender
The first direct memory access parser is older than any system I have
discussed so far . It is M. Ross Quillian's teachable language comprehender,
also known as TLC (Quillian, 1969) . TLC's notion of semantic memory
(Quillian, 1968) had far-reaching effects in Al and psychology (see, for
example, Fahiman,1979; Collins & Quillian,1969), but its model ofparsing
has not been seriously pursued until recently .

In TLC, English words pointed directly to nodes, called units, in a
semantic memory. A unit had a pointer to a superset, plus zero or more
pointers to properties . A property had an attribute, a value, and zero or
more sub-properties .

Fig . 3 shows a simple example . The word "client" points to a unit that
says that a client is a PERSON, with one property . That property is
EMPLOY PROFESSIONAL, with one sub-proprerty, namely that the
professional is employed by the client .

When TLC read an English phrase, it placed markers on the units that
the words in the phrase referred to . For example, when it read "lawyer's
client", it put markers on LAWYER and CLIENT .

Then TLC spread the markers breadth-first from the marked units to
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DICTIONARY

Fig . 3-Tbe teachable language comprehender (after Quilh'an 1969, p . 462) .

their supersets andproperties, then to those items' supersets and properties,
and soon, until the markers met somewhere in memory . With "lawyer's
client,'. .CLIENT marked the property EMPLOY PROFESSIONAL, and
LAWYER marked the superset PROFESSIONAL, and TLC found the
intersection at EMPLOY.

An intersection was only a candidate connection. To determine if a
connection was actually expressed by the input, TLC used form tests. Form
tests were attached to memory units and looked for certain features in the
input . When a unit was a candidate connection, its form tests were applied to
the input . If the input passed any of the tests, then the connection was
accepted as a meaning of the input .

For example, EMPLOY had a form test that said that the word referring
to the property value must have an " 's" attached and be followed immedia-
tely by the word referring to the source word. In this case, "lawyer" referred
to PROFESSIONAL and "client" was the source of the markerthat went to
EMPLOY, so the form test checked for "lawyer's client" in the input.

There are many problems that have to be solved with this kind of
approach. One of the first is managing the intersection search process. For
example, consider the sentence "The photographer shoots the doctor" and
the related memory structure in Fig . 4 .

The problem is that there are four possible intersection points visible,
using just this bare fragment of memory (more would appear if we filled in
more memory):
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"The photographer shoots the doctor.'

(- (PHOTOGRAPH SUBJECTS . . .) . . .1

	

[- (CURE PATIENTS . . .) . . .1

_\_~ /Z
PERSON

Fig . 4-Too many intersections in TLC.

Photographers and doctors are both people .
" Photographers and doctors both do things to people .
" Photographers do things to people, and doctors are people .
" Doctors do things to people, and photographers are people .

Quillian notes that the first two kinds of intersections are unlikely to be
useful in comprehension. TLCavoids them by putting one kind of activation
marker on candidate word senses and their supersets, and another kind on
properties and their supersets, and then accepting only those intersections
where the two types of markers meet.

This leaves TLC then with two potential interpretations of "The photo-
grapher shoots the doctor." Either the photographer is photographing the
doctor, or the photographer is a patient of the doctor's . Form tests attached
to "PHOTOGRAPH" look for phrases, such as "X photographs (takes a
picture of) (shoots) . . . Y," which accepts the first interpretation . None of the
form tests attached to "CURE" ("X cures (heals) . . . Y," "Y visits (sees) . . .
X") work, so the second interpretation is rejected .

Quillian's made the following observations about TLC: TLC draws
information from its memory to produce a representation of a piece of input
text that is :

1 . Encoded in the regular memory format .

	

-
2. Much richer and less ambiguous than the input text itself.
3 . A highly intraconnected structure with the various concepts mentioned

in the text linked in ways supplied from a memory of facts about :the
world.

4 . Linked to the permanent memory by many pointers to established
concepts (although its creation in no way changes the permanent
memory, except for the addition of temporary tags used by the interac-
tion routines) (Quillian, 1969, p . 467) .

	

_
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These are all desirable features for any conceptual analyzer (with one
caveat), and yet they have not been true of any system since TLC, until
decently, because of the separation of the parsing process from memory
processes . If memory structures existed at all, they had only an indirect link
to the structures being produced by the analyzer, in that, after the parser
produced a form, the memory would match it against its stored forms .

" The one caveat is that Quillian's fourth comment, that long-term
memory is unaffected by parsing, is exactly what we don't want in a system
that remembers and leams .

DMAP: A DIRECT MEMORY ACCESS PARSER
Quillain's TLC model had many problems, of course, most of them
recognized at the time . Its linguistic knowledge was in its form tests, and its
form tests were simple string patterns. Its knowledge representation was
based on dictionary entries, with a strong English lexical bias . Its method of
concept finding by interaction search was not really well matched to the
needs of text understanding . It is the spirit of TLC, not the details, that is the
inspiration for much of the modem work on direct memory access parsing .

Before DMA parsing can even begin, there must, of course, be a
memory to access . A gory consists of one or more types of memory

ts," e-g. fraau units, conceptual dependency forms, or predicate
alculus formulas, interconnected by some kind of cross-referencingstew
1

	

. For example, we can fill the s

	

of frames with pointers to other
frames, or store forms in

	

r mination trees, or index formulas by their
constantparts (see (Chamiak etal . (1980) for a discussion ofthese options) .

Given a particular memory model, designing a DMA parser involves
figuring out how to store linguistic knowledge in the memory, and develop-
ing search processes to access this knowledge during the parsing process .

Aesthetically, it would be pleasing if we could store linguistic knowledge
in memory using exactly the same memory elements and interconnection
mechanisms used for other kinds of knowledge . For the moment, however,
the Yale direct memory access parser (DMAP) has taken a simpler
approach and represented linguistic knowledge with specialized data struc-
tures, called concept sequences, which are attached to MOPs and concep-
tual dependency action schemata.

For example, events involving transfers of information, such as "John
says he'll come," are instances of the MTRANS action schema, which has
the form "an actor transfers a mental object to a recipient," where the items
in italics are roles of the schema . One simple concept sequence attached to
the MTRANS schema is "actor MTRANS-WORD mobject." This
sequence says that one way in which a transfer of information event is
expressed is by saying who the actor is, followed by some word for
MTRANS, such as "say" or "tell", followed by what the information
(mental object or mobject) was . There are of course other sequences
attached to the MTRANS schema, and the notion of MTRANS word is too
broad, but this template is quite usable as it stands .



246

	

FROM CA TO DMAP

	

[Ch. 8

We are not claiming that parsing knowledge necessarily should be
different in kind from other kinds of knowledge. We just do not know
enough yet to find a good unified form for the two kinds of knowledge .

Attaching parsing knowledge to memory structure
Fig . 5 shows a figurative block diagram of the DMAP system . Since there is
only one module, the memory, Fig . 5 goes into that box a little deeper to
show language and conceptual hierarchies intertwined . This figure is
intended to express the basic idea that linguistic knowledge, such as the
lexical items "John" and "city", is attached to the hierarchically organized
conceptual nodes in memory . Thus, for example, "post office" isattached to
a node that is lower in the hierarchy than the node that "building" is
attached to .

John went
into a
restaurant .

MEMORY SEARCH PROCESSES

PTRANS-event
actor

	

went into

	

destination

Abstraction Link

Packaging Link

Fig. 5-Direct memory access parsing.

The concept sequences attached to these memory nodes are phrasal
patterns (Becker, 1975) . Sequences are attached to objects, events, states,

and so on. For example, attached to PTRANS-event, i.e . the abstraction of

all events involving PTRANS, are phrases used to express motion, suchras

that the actor "went" to or into some place .

Ch . 81

	

FROM CA TO DMAP

	

247

Concept sequences are made up of the following kinds of elements :

particular lexical items, such as "interest rates" attached to the concept
interest rates,

" lexical classes, semantically organized, such as MTRANS-WORD that
groups words that mean "transfer of information," and

" role names, such as actor and object, that allow the concept sequence to
refer to the fillers of the slots in the memory element to which the concept
sequence is attached .

Our memory has basic frame units for objects, like restaurants and Reagan,
and MOPS for events and state changes . There are two ward kinds of
yaks between MON. Abstraction links go from specialised nodes to more
general ones. For example, enter-scene has the abtraction PTRANS-event
and restaurant has the abstraction building . We assume that many concepts
have multiple abstractions and all our algorithms deal with that possibility .

_ The other kind of link is the packaging link. A r

	

together
other nom. With objects, packaging links reflect part relationships . For
example, the node for human packages body parts (not shown in Fig . 5) .
1ZVith MOPS, there are two kinds of packaging links . Fig . 5 shows the role
packaging link . A MOP event has actors and objects and locations and so on
which play different roles in the event . Enter-scene, for example, has role-
packaging links to the actor and the location entered . The other kind of
packaging link is the subscene link . A MOP event usually packages together
several sub-events into a temporal sequence. Fig . 5 does not show this (Fig . 6
does), but enter-scene would be a subscene of the restaurant MOP. Nor-
mally our figures will label role-packaging links with the role involved, but
will leave subscene links unlabelled .

_ . When a concept sequence attached to a MOP contains a role name, that
name refers to the role in the corresponding MOP. Thus, something like
"actor went to destination," attached to PTRANS-event would mean that
the MOP could be expressed as "the actor of the PTRANS went to the
destination of the PTRANS," where the actor and destination would be
filled in by phrases attached to the MOPS filling the actor and destination
roles of PTRANS-event.
A concept sequence might be stored in many places in the memory, but

in general it will be stored at the most abstract node possible, and be
inherited implicitly by all specializations of that node. Thus, because "actor
went into destination" is attached to PTRANS-event, it is inherited by enter-
scene . This inheritance is done by the particular memory search process used
in parsing, described in the next section .

Using parsing knowledge in DMAP
We store parsing knowledge in DMAP in much the same way that TLC did,
by attaching simple patterns to memory nodes. DMAP uses these patterns
very differently, however .

In TLC, markers were passed outward from referenced concepts until
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they intersected at some common point, whereupon form tests at that point
would be applied to see if a reasonable interpretation had been found.
Marker passing was a general search mechanism and the linguistic patterns
filtered out the desired results .

" In DMAP, the patterns control where markers are passed in the first
place . DMAP has two kinds of markers . Activation markers (A-markers)
are placed on memory nodes that have been seen or are abstractions o!
nodes that have been seen . Prediction markers (P-markers) are placed on
memory nodes that have been predicted or appear in concept sequences of
nodes that have been predicted . That is, putting an A-marker on a node puts
A-markers on its abstractions, while putting a P-marker on a node puts P-
markers on certain of its parts and role fillers .
Asin TLC, things happen only when markers meet markers. In DMAP,

when an A-marker is passed to a concept that already has a P-marker,
DMAP traces the P-marker back to its source, which will be some concept
sequence that referred to this concept . Let's call the concept that received
the A-marker the part-concept and call the source of the P-marker the
whole-concept. Two things now happen . First, the concept sequence and P-
marker on whole-concept are passed down the abstraction hierarchy to the
most specialized version of whole-concept that packages some abstraction
hierarchy to the most specialized version of whole-concept that packages
some abstraction of part-concept . This process is called "concept refine-
ment."Then the concept sequence is "bumped," i.e . a P-marker is passed to
the next element in the concept sequence . If everything in the concept
sequence has received an A-marker, then the concept to which the sequence
is attached gets an A-marker, which is then passed up the abstraction
hierarchy, and so on .

To see briefly how this works, assume we have the highly simplified
hierarchy shown in Fig . 6, which says that one kind of PTRANS-event is
travel, below which are the specializations vehicular travel, other agent
vehicular travel and air travel . Though this memory fragment is just a toy for
pedagogical purposes, already we can see various complexities creeping in .
Other agent vehicular travel, for example, has a second abstraction, other
agent service, which represents events where someone else does something
for you . This means that other agent vehicular travel inherits two subscenes
and two sets of role links, one set for the traveller and another set for what
the other agent does for the traveller(We ignore-and in fact do nothandle
wellin the currentimplementation--the problem ofconflicting role names,
such as the presence of actor in both inherited scenes .) These scenes in air
travel describe the pilot flying the plane and the passenger riding in the
plane.

Every specialization inherits the packaging links of its abstractions . All
the specializations of travel, for example, inherit the dest role with the filler
geographical location. These roles are accessible to the subscenes as well, so
that air-trip scene can refer to the destination of air travel .

Ofparticular interest are the concept sequences attached to the nodes in`
this memory fragment . PTRANS-event has the generic sequence "actor
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HUMAN

AIR TRAVEL

or PILOT-SCENE

PILOT

	

actor -flew' vehicle 'to' dust 1
["pi1oY]

	

'

	

AIR-TRIP SCENE
PASSENGER

	

actor
("passenger"]

(actor PTRANS-word dest ]
PTRANS-event

r
TRAVEL

OTHER AGENT
SERVICE .

	

VEHICULAR TRAVEL

OTHER AGENT
VEHICULAR TRAVEL

DRIVE-SCENE

	

RIDE-SCENE

labelled
actor

p

	

Role Link

unlabelled -p Subscene Link

10

	

Abstraction Link

Fig . 6-Air travel hierarchy with concept sequences .

LOCATION

t
GEOGRAPHICAL
LOCATION

(actor

	

'flew to-	dest

	

1

PTRANS-WORD dest." Suppose previous processing has predicted
(passed a P-marker to) PTRANS-event . Because of the attached concept
se_guence, PTRANS-event passes a P-marker through actor to human.

Now DMAP reads a sentence starting with "The passenger . . ." A-
markers spread up the activation hierarchy from passenger, eventually
reaching human. Most of the A-markers hit unmarked nodes, but human
has the P-marker from the concept sequence on PTRANS-event . Concept
refinement passes this sequence to the most specialized version of PTRANS-
event that packages some abstraction of passenger . In this case, there is a
specialization that packages passenger directly, namely air-trip scene.

.1 Now the concept sequence is bumped, which means P-markers are
passed to PTRANS-WORDS. Furthermore, since a P-marker has been
passed to air-trip scene, which has its own concept sequence, a P-marker is
passed to the lexical node "flew to." (The actor of air-trip scene is already
active and therefore the concept sequence is immediately bumped.)

Concept refinement has refined the predictions being made in two ways.
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First a more specific concept sequence has been added, looking for "flew to"
where before the system was predicting only generic PTRANS-words .
Second, the role filler predictions from the generic concept sequence are
now more specific . The dest of air-trip scene is geographical location, not any
location at all . The system is expecting a country or city name, not something
like "The passenger flew to the store ."

If the sentence was "The pilot flew . . .," then "pilot" and PTRANS-event
would have led to predictions on pilot-scene, and, instead of predicting . ' to",
the system would be looking for plane, the filler of vehicle of air travel (not
shown in Fig . 6) .

Further details of this parsing algorithm can be found in Riesbeck and
Martin 1985) . The actual domain of application has been un erstan ing
economic arguments . DMAP's memory processes search through a crude
but complex model of novice economic knowledge, identifying not only
what abstract causalities are being referred to, but also whether or not these
arguments are already present in memory . Currently, DMAP recognizes
several dozen texts . Some typical examples are the ones referred to in the
section called "Real life versus Al," and

Milton Friedman : Interest rates will rise as an inevitable consequence of
the monetary explosion .

The President says that if Americans are given a 25% across the board
tax cut they will suddenly become large savers .

What we think is very exciting' is that concept refinement is not limited to
generalized world knowledge. If we know about a particular trip our friend
John took to Detroit, then "John flew . . ." will refine from PTRANS-event to
the memory node we have for that trip, and the P-marker will pass through
dest to Detroit. This smooth integration of particular episodic knowledge
with parsing predictions is exactly what we want .

Ambiguity
Ambiguity, as in TLC, is a constant fact of life . Words have multiple senses,
and the concepts referred to by those senses have multiple abstractions, and
the abstractions appear in multiple packages. Linguistic choices, such as
where a prepositional phrase attaches, appear in the system in the form of
multiple concept activation, where one concept would be described by one
choice, and the other concept would be described by the other choice . What
decides which packages and concepts are correct?

In the conceptual analyzers, the decision was made in one of two ways . In
ELI and CA, whatever came first in the dictionary took priority . In BORIS
and IPP, the parser asked memory for a decision .

The first method was used most often, because the second method was
too difficult . Because the inference engine didn't know exactly what was
happening in the parser, it was hard to design good questions for the parser
to ask the inferencer that would give the inferencer enough information to
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make s reasonable decision . We explicitly rejected the alternative of having
the parser produce structures for all the ambiguous interpretations, and pass
the set of them to the inferencer for selection . It was, and remains, totally
implausible to us that a good model of parsing would have no better idea at
the end of a sentence of what the sentence was about than it had at the
beginning of the sentence .

With direct memory access parsing, the whole nature of the problem has
changed. There is no longer an issue of when the parser should talk to
memory, and what information it should pass, because there is no separation
between the two . In effect, the parser is "passing" all the interpretations to
memory, but this occurs not at sentence or clause boundary, but conti-
nuously throughout the parse .

Furthermore, the disambiguation problem in this situation is purely a
memory processing issue : given several packagings of some currently active
concepts, choose which packages are relevant . It is not really a language
issue at all .

In fact, DMAP, being strongly top-down, has more of a problem with
too few packages, rather than too many. As we said in our algorithm
description, a concept sequence attached to a package is not pursued unless
it has been predicted (passed a P-marker) . These initial high-level predic-
tions are just what we need, but where do they come from?

Real life versus AI
We have now come to, I think, the crucial point, and also to the point where
many of us will part company . As long as the memory that a DMA parser
accesses contains the standard knowledge structures of AI and computa-
tional linguistics, I do not believe that it can do any better than any other
parsing system . The secret is not in the algorithm a system uses, it is in what
the system knows is going on at the moment of the parse . "Who is talking
(writing) this?" "What do I know about them from before?" "What
activities are they engaged in ofwhich this speech (text) is a subpart?" "Why
should I care about what this person is saying to me?" A
uestions is, itern, the pri»mry goal of human understanders Getting the

meaning is secondary, often instrumental to the primary goal, but not always
essential .

Most people in AI would probably grant that the ultimate understanding
system, should be capable of answering the questions asked in the previous
paragraph, but that to get there, we have to take things one step at a time.
Grosz (1977) studies these questions by setting up the problem of a tutor
telling an assistant in another room how to put a complex object together .
The goals are well defined and the tutor can try matching the assistant's
questions and statements against a library of known scripts and plans .

I believe, however, that this still abstracts the language-processing task
too far from its everyday foundation . Most of the people I talk to are well
known to me. Well known means not only that I have met them before, but
that I know what they're up to when they start talking to me. One may be
arranging a time for a meeting that we've previously agreed to have, another
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may be checking to see if I've done what I said I would, another may be
complaining about some advice I gave the week before . All of these are on-
going long-term activities, which I quickly recognize as being relevant to the
current conversation . Of the people I talk to who are less familiar, many of
them are playing roles in very specific scripts, such as the waitresses in the
restaurant I go to several times a week for lunch, the tellers in my bank, the
receptionist at the doctor's office, and so on. Again, within a few words of
conversation, I have usually recognized some very particular fragment of a
script as being relevant .

Here is my rating of various language-processing tasks, from most
common/typical/concrete to most unusuaUatypical/abstract . I hear spoken
language from family, friends, coworkers, secretaries, waitresses, shop-
keepers, and other actors in social roles, television and radio announcers,
usually giving updates of on-going events, such as arms talks or hostage
situations, and acquaintances, old and new, at parties and other gatherings .
The texts I read, in order ofdecreasing frequency, are signs and signals, such
as stop signs and gas gauges, magazine and billboard advertisements, mail
(mostly junk), articles in newspapers, articles in magazines, fiction, and
technical articles in journals .

There is something in common between the speech I hear most often
from family and friends, and the texts I read most often in signs and
advertisements : both use language that is highly elliptical and presumes a
great deal of background information . This reliance of "you know what's
going on" is just as important in texts with a greater distance between
speaker/writer and hearer/reader . Consider, for example, one of the texts
that DMAP handles :

Q: Why are you so unimpressed with the recent improvements in the
inflation numbers?

A: You have to look at inflation numbers in a cyclical perspective .

DMAP understands that the "you" in the question is referring to the
interviewee, but that the "you" in the answer is referring to neither the
interviewer nor the interviewee, but to the "audience" . How does it do this,
particularly given the fact that the only inferencing capability DMAP has is
simple memory search?

	

,
The answer is that DMAP has a magazine interview MOP, which is a

specialization of interview, which is in turn a specialization of conversation.
A magazine interview involves one person asking questions of another for
the purpose of giving the other person a chance to present views to a general
audience . Lexical items, such as "Q :" and "A :", are part of the concept
sequences for the two sides of the interview, and the content of the
statements are specializations of, respectively, "question to speaker" and
"statement to audience ." Seeing strings like "Q:" and "A:" activate the
interview MOP, thereby bringing in the concept sequences for interviews,
which include different uses of "you," depending on who is talking . Most
TV-viewing American adults have become familiar with (i.e . formed MOPs
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for) uiany different kinds of interviews, such as the "promote your latest
movie" and the "defend your election platform ." Context and lexical cues
guide the memory search down to these highly specialized subMOPS, which
often have particular phrases and concept sequences attached .

Consider the difference between the use of "some people" when my wife
says "Some people came by to fix the TV," and when a politician says "Some
people feel that we can survive with a growing deficit." My wife means "a
group of people that I'm not going to specify further," but the politician
means "that group ofpeople who have recently publicly disagreed with me ."
That is, "some people" is not at all an indefinite reference when a politician
uses it . The DMAP model of understanding would handle this by attaching
the phrase "some people" to the appropriate filler in the memory structure
describing how a politician normally responds to opposition arguments
without naming names. Obviously, "some people" would appear in many
places in memory : This is why the memory search processes must keep
active the most specific memory structures it can, "lighting up", in effect, the
appropriate specialized uses of different phrases .

There's a good reason, of course, why AI has not dealt with understand-
ing texts with complex, multi-goaled, highly familiar contexts . It's very hard
to do. There are three major problems :

" knowing how to represent the necessary information,
de ling efficiently with large amounts of inferentially interrelated infor-
mation, and
integrating parsing knowledge with everything else .

We believe that the DMA approach answers the third problem in a way that
allows the parser to take full advantage of the information that an intelligent
system needs . As long as the answer to the first problem involves using a
packaging and abstraction hierarchy, markers can be passed to and from a
DMA parser in a well-defined manner . And the use of marker passing offers
the potential advantages of parallel processing to manage the large quanti-
ties of information involved .

OTHER APPROACHES
The connectionist/word expert system
lie original word expert parser (Small & Rieger, 1982) was a conceptual
analyzer, similar in some ways to the ELI system, but with a greater
emphasis on the disambiguation process . Word experts were (sometimes
large) programs attached to each word that communicated with other
experts during the parsing process in order to reach an agreement on the
meaning of the sentence as a whole. Small et al. (1982) recast the WEP
approach into the University of Rochester's connectionist paradigm (Feld-
man & Ballard, 1982) .

The connectionist framework does not allow structures like markers to
be passed between nodes . The basic mechanism is spreading activation
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through a graph with fixed connections . The meaning of a text is represented

by the cluster of nodes activated . Mutual inhibition as well as activation

plays an important role in the parsing process, and critical is the use of nodes

to represent concepts such as "the agent of the action PROPEL (or MOVE

or whatever) ."
For example, in parsing "A man threw up a ball," the eventual resolu-

tion of "threw up" as meaning "propel upwards" rather than "vomit" is

arrived at because "a ball" is more closely connected to "object of PRO-

PEL" than it is to "object ofVOMIT," and activating the former inhibits the

activation of the latter, which in turn makes the "PROPEL" node connected

to "threw up" more active than the "VOMIT" node.
Major problems yet to be solved with this and similar connectionist

systems include recognizing word order, keeping straight multiple occur-

rences of the same word or concept, and storing what has been read. It is also

the case that most of these systems have been used only in simple semantic

network systems, not in episodically based memories .

TOPIC
The TOPIC system (Hahn & Reimer, 1983) is also related to the word

expert model of parsing . Effectively, they have replaced Quillian's form
tests with word experts . They call their approach text parsing, and empha-

size the interaction between world knowledge and linguistic knowledge

during the parsing process . The following quote is indicative of their

spiritual ties to direct memory access parsing :

TOPIC parses text strings directly into knowledge structures

(semantic parsing) by skipping any kind of intermediate structure,

as might be provided by phrase structure trees whose nodes are

labelled with syntactic categories (NP, VP, PP, etc .) . [p . 3]

The TOPIC system has a hierarchically organized knowledge base of

information about microcomputers . The parsing process activates concepts

in this memory . A concept is activated when referred to by the text . That

activation is increased with subsequent references .
One problem to address is that raised by the text fragment " . . . provided

by micros . Nevertheless, these machines . . ." The word "machines" would

initially activate the general machine concept, but this needs to be corrected

to be a second activation of the micros concept . This is done by the word

expert for "this/these" which reassigns activation from more abstract to

more concrete nodes in the appropriate circumstances .

ATLAST
ATLAST (Granger et al. 1984) uses spreading activation in a memory

containing a blend of lexical, semantic, and pragmatic information . Three

processes are in control : the lexical capsulizer, the proposer, and the filter.

The capusulizer initiates concept activation as words are read and posts
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syntactic information . The proposer spreads activation from concept to
concept, effectively pursuing all possible inference paths . The filter prunes
these paths, using in part the syntactic information posted by the capsulizer .
An example text is : '

The CIA called in an inspector to check for bugs . The secretaries
had reported seeing roaches .

In accordance with the lexical access data of Swinney and Hakes (1976)
(which has inspired a fair amount of recent AI research into lexical
disambiguation), the ambiguity of "bugs" is first available, then resolved,
but incorrectly, then re-solved . The mechanism for doing this in ATLAST is
called conditional retention . Preceding text will select one meaning of an
ambiguous word, but, as long as there is potentially relevant text following,
the other meanings are not actively suppressed .

Massively parallel parsing
Waltz and Pollack present a spreading activation, lateral inhibition model of
lexical disambiguation (Waltz & Pollack, 1984) . Syntactic, semantic and
pragmatic information is represented in the same network, so that in parsing
"John shot some bucks, the . .throw off meaning of "bucks� is connected
to the,verb usage of the word, and hence inhibited by "some" which favors
the noun usage in "some bucks."

The single-semantic-process theory of parsing
Finally, there is the very recent single-semantic-process model (Charniak,
unpublished), which explicitly pays homage to TLC. Chamiak's model uses
the "dumb" marker passing technique explored by Hirst and Charniak
(1982) to propose limited chains of possible inferences to an abductive
understanding system . That is, the primary problem Charniak is trying to
solve is the unification of forms as "John picked up a menu" with the
relevant line in the "go to restaurant" frame . This involves making abduc-
tive assumptions, such as that the menu John picked up is the one belonging
to the restaurant he just went into, and that the event itself is unifiable with
the event predicted by the restaurant frame.

Charniak's memory model, based on FRAIL, a frame-based represen-
tation language (Charniak et al., 1983), has the standard abstraction and
packaging hierarchies. The key idea is that finding potential forms to unify
with an input can be done using a cross between spreading activation and
marker passing . Of central interest to Charniak is the potential this model
has to carry on syntactic and semantic processing autonomously but
interactively .

Discrete markers, as in DMAP, rather than levels of activations, are
passed up and down the two hierarchies, but how far they are passed is
controlled by a "zorch" level . Each marker starts with a full amount of
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zorch . When a marker passes through a particular node, its zorch is reduced
by the number of links from that node . When a marker's zorch level falls
below a certain threshold, the marker is passed no further .

One of the main effects of zorch is to stop markers from passing through
very general concepts . For example, the animal concept has so many links to
kinds of animals that any marker reaching animal goes no further, because
its zorch is reduced well below threshold . This is Charniak's solution to the
people problem in TLC's "the photographer shot the doctor," discussed
earlier .

Comparison
DMAP, the connectionist WEP, and ATLAST are close in terms of the
content and form of the memories being searched, since they have a
common origin in conceptual dependency representation theory (Schank,
1975) . Otherwise, DMAP, TLC, and Charniak's parser have the most in
common, since they both use marker-passing, while the connectionist
systems use spreading activation . A node in a marker-passing parser is either
active or not, whereas the spreading activation parsers have nodes with
degrees of activation . Furthermore, DMAP and Charniak's parser both pass
"structured" markers . More than just distinct tags, structured markers
contain pointers to their origins . When a marker from one node reaches
another node, it is easy to return to the source node. Many other marker-
passing models and all the spreading activation connectionist models expli-
citly forbid this kind of structure passing, as being neuroscientifically
unsound . Hence, both DMAP and Charniak's parser must be viewed as
algorithmic descriptions that are several levels of abstraction above the
brain hardware level .

SUMMARY
None of the systems that we have looked at is complete, nor are they all
consistent with each other . But they do share the following basic theme :
understanding of language is a kind of memory search process . They each
offer some method for going as directly as possible from lexical input to
concepts in memory . Once initial concepts have been found, they each offer
some method for connecting these concepts to larger ones, still in memory .
Highly language-specific information is still used, but it is stored in memory,
rather than in a separate lexicon .

In several cases, the development of these systems is motivated by a
desire to be neuroscientifically plausible, or to take advantage of low-level
parallel hardware . But the real pay-off, I believe, is that these systems have
broken down the boundaries between parsing and memory-based inferenc-
ing, opening the door to language-understanding systems with greater
flexibility and power than ever before .
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