
Companion Cognitive Systems: Design Goals and Some Lessons Learned

Ken Forbus, Matt Klenk, Tom Hinrichs

Qualitative Reasoning Group

Northwestern University

2133 Sheridan Rd, Evanston IL 60208

{forbus, m-klenk, t-hinrichs}@northwestern.edu

Abstract

Companion Cognitive Systems is a cognitive architecture
inspired by natural intelligent systems. In this paper, we
describe seven design goals of Companions, relate them to
properties of human reasoning, and discuss their
implications. We present our experiences in developing and
experimenting with Companions thus far, and the challenges
that remain.

Introduction

Naturally intelligent systems are organisms. This
observation is obvious, but surprisingly, it does not seem to
play a central role in most current cognitive architectures.
Perhaps even more importantly, all natural intelligent
systems we know of are very social organisms. Indeed,
many speculate that social behavior, not manipulation or
tool-making, has been the major driving force in the
evolution of intelligence [Tomasello, 1999]. The
Companion cognitive architecture has, as a fundamental
goal, understanding how to build intelligent systems that
are social beings. It can be considered as the first attempt
to create a Vygotskian [Vygotsky, 1962] cognitive
architecture.
 This is clearly a very different point in the space of
possible cognitive architectures, compared to skill-oriented
architectures such as ACT-R [Anderson & Lebiere, 1998],
SOAR [Laird, 2008], PolyScheme [Cassimatis, 2006],
Icarus [Langley & Choi, 2005], and others. Another
significant difference is that we have been motivated by
the growing body of evidence that analogical processing is
a core operation of human cognition [Gentner, 2003].
Gentner and her colleagues have been amassing evidence
that structure-mapping operations occur everywhere from
medium-level vision up through conceptual change
[Forbus, 2001]. Companions takes analogical processing,
as defined by Gentner’s [1983] structure-mapping theory,
as fundamental to its operation.
 This paper summarizes the current state of our work on
Companions in two ways. First, we describe seven key

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

features of our current design: (1) analogical processing,
(2) extensive conceptual knowledge, (3) flexible reasoning,
(4) coarse-grained distributed implementation, (5)
ubiquitous learning at multiple levels, (6) long-lived
continuous operation, and (7) natural interaction. Every
implemented cognitive architecture has design decisions
that are based on theoretical bets and empirical evidence,
and others that are based on engineering concerns. We
tease apart these concerns for each of these major choices,
and indicate where we have a solid foundation and where
things are very much in flux. Second, we summarize a
number of recent experiments with Companions and some
of the lessons learned from them. We conclude with some
next steps and open questions.

Central Design Features

The Centrality of Analogy

A central hypothesis of Companions is that that analogical
processing is central to human reasoning and learning
[Gentner, 2003]. This is quite a different choice than most
cognitive architectures, where analogy is at best relegated
to a side role. We discuss the three major processes in
turn, focusing on how each is used in the architecture.
 Analogical matching is the first operation. The
traditional hallmark of analogical matching are distant,
cross-domain mappings, like understanding that heat is like
water. While cross-domain mappings are indeed
important, they are far from the whole story. For example,
when you learn that you can start a car by using a key, for
instance, you tend to assume that you can start another car
by also using a key. These mundane pieces of everyday
reasoning appear to use the same mechanism – a within-
domain analogy, in this case, from one car to another.
Structure-mapping theory postulates that analogy and
similarity are based upon structural alignment between
representations. This structural alignment is also used for
comparison, to understand similarities and differences
between two things.
 Our model of analogical matching is the Structure-
Mapping Engine (SME) [Falkenhainer et al., 1989]. It
takes as input two structured representations (base and
target) plus a (possibly empty) set of constraints on the
match. It produces one or more mappings, each of which

has three parts. The correspondences indicate what items
in the base go with what items in the target. The structural
evaluation score provides an estimate of match quality.
The candidate inferences are conjectures about the target,
constructed by projecting facts from the base that are only
partially mapped. Exploiting analogies is central to
Companions reasoning. This is a powerful mechanism for
two reasons. First, it can exploit example-specific
explanations in new reasoning. Such examples abound in
natural communication (e.g., examples in textbooks and
fables). Analogical reasoning in the “inner loop” means
that one can apply these particular lessons to a range of
new situations, without attempting to induce a general rule
immediately. Second, it provides an alternative to fine-
grained chaining, a process which can easily explode.
Importing a whole relational structure is like striding
through an inference space with seven-league boots.
 Similarity-based retrieval, which finds potentially useful
prior experiences, is the second analogical process.
Psychological evidence has consistently shown that human
similarity-based retrieval is sensitive to surface
information, not just deep relational structure. This makes
sense if one considers that most analogies made in an
organism’s daily life are within-domain comparisons.
Cross-domain retrievals will be relatively rare, unless there
is heavy relational encoding, thereby making more overlap
with situations that, on the surface, seem quite different.
Again, this is consistent with findings that domain experts
tend to have more relational retrievals [Ross, 1989].
 Our model of similarity-based retrieval is MAC/FAC
[Forbus et al., 1994]. MAC/FAC takes as input a probe
and a case library. It returns one or more cases from the
library that (approximately) best match the probe. In
Companions, the probe is typically the contents of working
memory. A comparison with standard CBR retrieval
systems provides a useful contrast. The majority of CBR
systems today use feature vector representations, which
means that they cannot represent plans, explanations,
arguments, or other important aspects of human conceptual
structure. Some relational CBR systems still exist, but
these rely on hand-coded indexing schemes, which are
carefully crafted for specific domains and tasks.
MAC/FAC uses relational representations, but does not
require any hand-indexing. In Companions, the
combination of analogical retrieval and matching has
provided a simple but very powerful learning mechanism:
Learning by accumulating examples.
 The third analogical operation is generalization. People
are conservative learners, in that they rarely construct an
accurate general model with one example. Unlike
explanation-based learning [Ellman, 1989], people often
don’t have complete and correct theories of the domains
they deal with, so such caution is wise. On the other hand,
they demonstrably learn much faster than today’s statistical
learning systems do [Wahlster, 2000]. We believe that
analogical generalization happens in two circumstances.
First, when very similar situations are compared, it appears
that generalizations can form spontaneously. Second,

generalizations are formed when the organism is trying to
characterize a category. For example, in language
learning, the use of the same word for two objects invites
their comparison [Namy & Gentner, 2002], and during
conceptual change, one might be trying to understand, for
instance, the distinction between floating and sinking
[Friedman & Forbus, 2008].
 Our model of generalization is SEQL [Kuehne et al.,
2000]. SEQL takes as input a stream of examples. It
maintains two lists, a list of generalizations and a list of
exemplars. Given a new example, if it is sufficiently
similar to one of the generalizations, as measured by
SME’s structural evaluation score being over a threshold, it
is assimilated into it. If not assimilated into an existing
generalization, it is compared with each example in the
exemplar list, and if similar enough to one of them, they
form a new generalization. Otherwise, the new example is
added to the exemplar list. The assimilation process
merges the corresponding facts together, and maintains
probabilities for each fact in the generalization based on
frequency of occurrence. In other research, we have shown
that SEQL can be used to generate probabilistic rules
[Halstead & Forbus, 2007] and to model the construction
of causal knowledge during conceptual change [Friedman
& Forbus, 2008].
 Unlike the other two processes, SEQL is only now being
integrated into Companions. We plan on using it in two
ways: (1) The generalizations can be added to case
libraries, and used in analogical reasoning just as examples
are. (2) Construct probabilistic rules for encoding that are
used in new situations. We believe that these additions
will significantly enhance the power of the architecture.

Extensive Conceptual Knowledge

A hallmark of natural intelligent systems (e.g., humans) is
that they know a lot. Consequently, a Companion is not an
empty architectural shell nor a special-purpose problem-
solver, but a general knowledge-rich agent that can acquire
or learn domain knowledge by building on an extensive
pre-existing ontology. The symbolic, relational structures
required for expressing explanations, arguments, and plans
are a key component of human mental life. We use the
contents of the ResearchCyc knowledge base1 as the
starting point for the ontology. This enables a Companion
to construct representations for many different domains
(e.g. military planning, physics problems, and computer
games).
 One of the methodological problems that has vexed
cognitive modelers is that, given the state of the art, it is
simply impossible to psychologically vet anything like a
large-scale knowledge representation system. One
approach to that is to avoid modeling conceptual
knowledge altogether. To us, that approach throws out the
baby with the bathwater. Our approach is to treat

1
 www.research.cyc.com, for a historical overview, see

[Lenat, 1995].

ResearchCyc as an engineering approximation for human
conceptual knowledge. Our experience to date is that it is
quite satisfactory for that purpose.
 While analogical reasoning is central to Companions,
other kinds of reasoning, especially logical inference, are
required. For example, logical inference is often used in
checking the consistency and/or plausibility of candidate
inferences, combining the results of multiple analogical
inferences, bridging between queries and what is available
from an analogy, and in dynamic case construction. These
more limited roles for logical reasoning put less stress on it
than an architecture that was completely rule-based, but
many of the same problems of doing logical inference at
scale still arise.
 Large knowledge bases (KBs) present a pair of
challenges for reasoning. (1) Large KBs are never
complete or consistent. This, too, is a property of human
knowledge. It is well documented in the mental models
literature [Gentner & Stevens, 1983] that novices typically
have multiple inconsistent models of a domain, for
example. Furthermore, any well-trained scientist or
engineer has multiple inconsistent models of the same
phenomena, each useful under different circumstances
(e.g., Newtonian versus relativistic dynamics). We have
found that treating the microtheory structure of the KB as a
specification of a logical environment for reasoning to be a
workable approach to this problem [Lenat, 1995]. (2)
Brute-force problem-solving methods suffer from
prohibitively large search spaces as the number of facts
and rules grows. Consequently, reflective control over
reasoning becomes increasingly important. Companions
address this in three ways. First, we use the usual resource
limitations on search depth and elapsed time. Second, we
do partitioned reasoning: We are never reasoning with the
entire knowledge base, only a subset of relevant axioms as
determined by the current logical environment. Third, we
have a layered reasoning architecture that makes high-level
reasoning decisions reflectively. In other words, logical
reasoning is kept tightly constrained, sacrificing
completeness for efficiency.

Flexible Federated Reasoning

A notable characteristic of human reasoning is what Simon
referred to as bounded rationality [Simon, 83]. Models of
reasoning cannot escape from the limited resources
available to the human mind. Such bounded rationality is
implicit in the design of FIRE, the Fast (or Federated)
Integrated Reasoning Engine, which is the core inference
engine of a Companion. FIRE is built on top of a Logic-
based Truth Maintenance System (LTMS) which serves as
a working memory cache and provides an audit trail for
justifying and explaining inferences [Forbus & de Kleer,
1993]. Inference in FIRE is controlled by stratifying
operations into fast low-level retrieval and local operations,
constrained backchaining queries, and reflective queries
that invoke And-Or problem-solving and HTN planning.
All of these operations contain resource limits, ensuring
that the Companion is responsive to user’s requests.

 FIRE achieves flexibility through federated operation.
Rather than supporting arbitrary escapes to code in the
middle of rules, it permits reasoning predicates to be
defined procedurally ("outsourced") so that external
algorithms, accessors and packages can be invoked. The
answers of such external operations are packaged into
declarative assertions that are fully justified in the LTMS,
making these external systems transparent to the
knowledge level aspects of the system. For example,
analogical matching and retrieval are implemented as
outsourced predicates, as are many spatial reasoning
operations.
 We are not making strong specific psychological claims
about either an LTMS or the particular other reasoning
mechanisms used in FIRE. That people are capable of
some degree of reasoning than can be expressed via logic,
that we have some ability to attribute reasons for our
beliefs, and that we have some ways of generating plans
and solving complex problems do seem to be
psychologically plausible assumptions. The specific
mechanisms we are using in this part of the system are
more a function of engineering issues and convenience
than theoretical commitments. The drawback, of course, is
that this architecture cannot be used for generating low-
level predictions about, for example, the exact timing of
inference steps. On the other hand, our unit of modeling
remains focused at conceptual reasoning and learning, and
we do believe that these mechanisms are sufficient for
modeling at that level.

Coarse-Grained Parallelism

Another design goal of Companions is to emulate the
parallelism that is evident in human and animal behavior.
Beyond simple multi-tasking, a large body of work in
psychodynamics and personality theory suggests that the
mind contains drives, emotions and instincts that conflict
and compete for resources and attention [Rietman, 1963].
Such processes become increasingly important as we
model bounded rationality in interactive systems, where
inference, memory access, and communication with the
user are time-limited resources.
 Companions are implemented as distributed systems that
allocate individual nodes of a cluster computer to semi-
independent, asynchronous processes (agents). We use a
small number of such agents, making this an example of
coarse-grained parallelism. Agents communicate
internally using KQML [Labrou et al., 1997] with
callbacks to support asynchronous queries and
subscriptions to events. This interrupt-style invocation
enables more bottom-up and heterogeneous control
strategies that will allow us to experiment with some of the
sorts of non-rational processes mentioned above.
 A common criticism of coarse-grained parallelism is that
fine-grain parallelism almost always yields greater
efficiency. While possibly accurate, this misses a critical
point. Fine-grained parallelism is almost always applied to
SIMD-type problems, where computations are
homogeneous and repetitive. This is largely because it is

prohibitive to manually program vast numbers of
independent agents. Coarse-grained parallelism allows a
another sort of model, where sub-processes fundamentally
different making them more independent and active.
 Companions make use of a number of sub-processes.
For example, human memory is often proactive, suggesting
similar episodes and concepts that may be relevant. In
Companions, the Analogical Tickler is an agent that
effectively watches the state of working memory and
continually retrieves cases to present to the user and the
Session Reasoner (the agent responsible for domain
reasoning). The Tickler operates on a subscription basis,
so that a reasoner can request examples for, e.g., case-
based reasoning. Another example of how we use coarse-
grained parallelism is the Executive agent. The Executive
is responsible for prioritizing work on the Companion’s
goals. For example, in learning to play games, it keeps an
eye on the Session Reasoner, and “pulls the plug” if its
learning does not seem to be converging.
 Coarse-grained parallelism is also used in other
architectures, such as PolyScheme [Cassimatis, 2006]. In
PolyScheme, different reasoning mechanisms are invoked
in parallel and race to produce an answer. By contrast, in a
Companion, agents are functionally differentiated and
dedicated to different tasks.

Ubiquitous Learning

People learn continually under all sorts of situations.
Computers, however, typically learn only when directed to,
and allocate all their resources to the task. This tends to be
incompatible with highly interactive systems.
 Companions address this in two ways: 1) compute-
intensive learning tasks are off-loaded to background tasks
on dedicated nodes, and 2) learning is focused via explicit
learning goals that are constructed on the fly, prioritized,
scheduled, and reasoned about. It is the job of the
Executive agent to decide which learning goals should be
pursued and how. We have used learning goals to drive
learning in game domains, where plans were available to
drive experimentation. We are in the process of adapting
this approach to more general tasks, where the learning
strategies might entail searching the KB for possible
examples and counter-examples, or in some cases, simply
asking the user.

Extended Lifetime

Natural intelligent systems exist continuously over their
entire lifetime. They are not rebooted or shut down.
Although people may sleep at night, they do not forget
everything in the morning and their minds continue to
operate in some fashion even when asleep. Consequently,
a goal for Companions is to support extended interactive
sessions and continuous operation between sessions.
 Increasing the duration of sessions runs into the problem
of hard resource limits on agents. It is not uncommon for
the LTMS cache to fill up with facts that are no longer
useful, until it eventually runs out of heap space and

crashes the agent. To ameliorate this, Companions have
the ability to query their own available heap, the number of
TMS nodes allocated, and the number of reified analogical
matches. An agent can choose to clear its cache and
invoke garbage collection, but we do not yet have a good
theory of when that is appropriate. More difficult is the
problem of recognizing when an agent is about to crash
and hot-swapping a fresh agent in its place. Again, while
the low level actions are implemented, we are still working
out strategies for when this should happen, ideally based
on the system monitoring its own performance. These
problems are very similar to the goals of IBM's autonomic
computing initiative [Klephart & Chess, 2003].
 One of the key benefits of supporting extended lifetimes
is that a Companion can pursue compute-intensive learning
tasks between sessions, and thereby apply learning to a
greater variety of problems than would be possible with
only online learning. We often refer to this as "homework"
between sessions.
 A second anticipated benefit is that as a Companion is
applied to different domains over time, it will be able to
apply analogy across domains to reuse strategies and build
new abstractions. We have performed some initial
experiments with cross-domain analogies but it is not yet a
robust capability.
 A third benefit of an extended lifetime is that it enables
the incremental construction of user and self-models. This
is part of the ubiquitous learning goal, but it is only
possible if a Companion remembers the context of prior
sessions as well as the domain-specific problem solving.
So far, Companions have built up case libraries of domain-
specific episodes, in particular traces of problem solving
and execution in game domains such as FreeCiv and
General Game Playing. As we begin to interact more via
language, we expect to retain and learn more from
linguistic interaction, possibly including, for example,
resolutions of ambiguous parses. Self models may include,
among other things, histories of resource usage to facilitate
predicting when an agent should be restarted or hot-
swapped.

Natural interaction modalities

Natural intelligent systems are able to interact robustly
over a broad range of situations. Indeed, such interactions
are crucial for learning in many domains. Our goal is for
Companions to learn in Vygotskian fashion, incidentally as
apprentices to their human partners. In addition to this
lofty goal, there are also some quite practical reasons why
natural interaction is crucial for a knowledge-rich agent.
The ResearchCyc KB already has over 50,000 collections
and several million facts in it. It would not surprise us for
this number to double or triple as we learn how to achieve
ubiquitous learning and extended lifetime in Companions.
Even in a static knowledge base, knowledge engineers will
define their own concepts if they cannot quickly find what
they are looking for in the ontology [Cohen et al., 1999].
When a significant fraction of what the system knows is
automatically learned, manual inspection of internal

representations will be hopeless as the only way of
interacting. Thus supporting natural interaction is both
essential given our theoretical commitments, and a
practical matter as well.
 We are currently experimenting with two modalities:
natural language input and sketch-based interaction. A
dedicated agent is under development to coordinate
interaction with the user. It invokes natural language
parsing and semantic interpretation to translate English
sentences into queries, statements, and commands2. The
goal is to support learning through natural language
tutoring, by, in effect, inverting the methods used in ICAI
systems [Stevens et al., 1977][Kim & Gil, 2003].
Conceptual gaps or inconsistencies revealed during
tutoring spawn learning goals that can be passed to the
Executive for asynchronous or offline processing. Sketch-
based interaction is supported by agents that encapsulate
NuSketch applications and translate visual depictions into
predicate calculus representations [Forbus et al., 2004].
Sketch interaction has been deployed in some early work
on Tactical Decision Games and on mechanical
comprehension tests [Klenk et al., 2005]. In the latter
work, the Companion would interact with the user by
drawing on a sketch to explain its reasoning.

Experience with Companion Systems

Over the last few years, we have worked with Companions
in a variety of different domains, including interactive
games and question answering tasks in more content-
focused domains.

AP Physics

We have applied Companions to the domain of Advanced
Placement Physics tests. The AP Physics exam tests the
ability of high-school students to solve physics problems.
In collaboration with Cycorp and the Educational Testing
Service (ETS), which administers the AP Physics exam,
we evaluated a Companion’s ability to solve problems of
the style that would be found on the AP Physics exam.
The Companion learned by accumulating examples and
used these examples to make modeling decisions about
new problems via analogy. For example, the Companion
started out with basic algebra solving and problem
decomposition skills, but zero knowledge of the equations
of physics. All equations used in solving problems were
found via analogies with worked solutions it had been
given after prior exams, which were at the level of what
might be found in a textbook. To address the ability to
transfer knowledge from these examples to new situations,
the evaluation centered around six systematic variations of
problems, or transfer levels. These ranged from changing

2
 We are using the EA NLU system [Kuehne & Forbus,

2004] as the starting point.

numerical parameters but not qualitative outcomes to
requiring the composition of aspects of multiple examples.
 In an external evaluation carried out by ETS, a
Companion exhibited an average of 63.8% improvement in
initial performance across all six transfer levels [Klenk &
Forbus, 2007]. Interestingly, the sources of the problem-
solving failures were primarily due to representation errors
and some domain-specific strategies, not in our use of
analogy. To verify this, we repeated the experiment after
fixing these problems, and the Companion achieved an
average of 98.5% improvement due to transfer.
 Our experience in AP Physics problem-solving
reinforces a number of our design decisions. First, the AP
Physics problems are described in everyday terms
requiring a large ontology. The 460 predicate calculus
problem representations used in the evaluation included
108 conceptual types and 103 unique relations. Second,
the Companion used analogy to make all of the decisions
about which equations to use and what assumptions to
make during each problem-solving episode. The
Companion’s strong performance demonstrates that
analogy can play a central role in a complex reasoning task
such as physics problem-solving.

FreeCiv and General Game Playing

Using Companions to learn to play turn-based strategy
games poses somewhat different challenges than taking
tests. First, these domains require interleaving planning
and action in a simulated environment. Second, games
typically require reasoning with incomplete information.
The Companion must make decisions, take actions, and
evaluate outcomes. These factors led to the approach of
representing explicit learning goals and having the agent
formulate experiments to try in the simulated environment.
 FreeCiv3 is an open source turn-based strategy game
modeled after Sid Meier’s series of CivilizationTM games.
In the context of the DARPA Transfer Learning program, a
Companion used analogy, experimentation, and qualitative
modeling to improve performance in optimizing food
production [Hinrichs et al., 2007]. The Companion uses
analogy to suggest worker allocations based upon
successful previous cases. When this fails, the Companion
uses experimentation to bootstrap the case library ensuring
a variety of cases to reason from. The qualitative model
allows the Companion to determine how the changes
caused by an action affect the Companion’s goals. This
credit assignment is used to label precedents created by
experimentation for future analogical reasoning episodes.
 General Game Playing (GGP) [Genesereth & Love,
2005] is a framework for describing simple games
declaratively such that the rules and premises of games can
be easily modified to exercise flexible reasoning and
transfer of learning. We applied Companions to the task of
transfer learning strategies for winning 2D board games in
GGP. This continued the learning goal approach that

3
 www.freeciv.com

began with the FreeCiv work, but relied even more heavily
on the analogy mechanisms in order to map across
increasingly distant base-target pairs. Coupled with the
experimentation strategy, we were able to learn new HTN
plans for games that were structurally different from games
learned previously.
 Our work in these domains provides evidence for the
importance of the design decisions presented in this
outline. First, Companions reasoning in these domains
exhibited the beginnings of ubiquitous learning. Driving
experimentation via learning goals proved to be an
effective method for learning about these domains. In the
future, we plan on making this more reflective,
empowering the Companion to spawn new agents with
specific learning goals. Also, analogy was central to
reasoning about these domains. Companions used analogy
to suggest individual actions in new situations, find
commonalities between domains, and transfer entire plans.

Challenges

Our development of Companions has frequently run into
challenges two types: engineering and evaluation. From an
engineering standpoint, achieving these design features in
Companions poses a number of difficulties. One challenge
concerns adapting Companions to new domains. While the
underlying KB allows representations for a wide range of
domains quickly, there is still the problem of interfacing
the Companion with its environment. In the game playing
domain, it was necessary to build agents to interface
between the Companion and the game programs.
 Another engineering challenge concerns the size of the
knowledge base. While our design decisions seek to
mitigate this, there are still important engineering decisions
concerning efficiency and coordination between the agents.
To address efficiency concerns, the FIRE reasoning engine
has recently been revised with a new backend knowledge
base, built on the Franz AllegroCache4 persistent object
store. As agents within the Companion learn, it is
necessary that the changes to the individual knowledge
bases are synchronized across the system. We use a
journaling mechanism, in which KB changes are stored
and shared with the other agents.
 Evaluation of intelligent architectures is difficult. In
fact, it has recently received increased attention from AI
researchers [Kaminka & Burghart 2007]. A major
frustration we have had is that the metrics adopted for
evaluating learning, a hallmark of intelligent systems, has
tended to favor batch over interactive operation. This is a
major problem because three of the design features, natural
interaction, extended lifetime, and ubiquitous learning, are
important in interactive systems. It is fundamentally
difficult to evaluate interactive systems, and this has
hindered progress on many of the more interesting aspects
of Companions. We suspect that the way around this is to

4
 http://www.franz.com/products/allegrocache/

focus on measuring relative rates of learning, rather than
on absolute measures.

Discussion

While the Companions architecture is a work in progress,
we have already had a number of successes. First, we have
used Companions for reasoning in a wide variety of
domains: everyday physical reasoning, tactical decision
games, Freeciv city planning, AP Physics problem-solving
and general game learning. Second, Companions have
been run, interacted with, and evaluated externally by two
collaborators: ETS and the Naval Research Laboratory
(NRL). Our experiences reinforce our commitment to the
design decisions that are shaping Companions: (1) the
centrality of analogy, (2) extensive conceptual knowledge,
(3) flexible federated reasoning, (4) coarse-grained
parallelism, (5) ubiquitous learning, (6) extended lifetime,
and (7) natural interaction modalities. As this article
illustrates, human behavior suggests many frontiers on
which to push artificial intelligence models. Companions
is an attempt to explore parts of that space that we think are
essential to achieving human-level artificial intelligence,
but have not been explored much yet.

Acknowledgements

This work has been supported by the Defense Advanced
Research Projects Agency under an IPTO seedling and the
Transfer Learning Program, and by the Office of Naval
Research, under the Intelligent Systems and Cognitive
Science Programs.

References

Anderson & Lebiere (1998). The Atomic Components of
Thought. Erlbaum.

Cassimatis, N. 2006. A Cognitive Substrate for Human-
Level Intelligence. AI Magazine, vol. 27(2):45-56.

Cohen, P., V. Chaudrhi, A. Pease, and R. Schrag, 1999.
Does Prior Knowledge Facilitate the Development of
Knowledge-based Systems? Proceedings of the 16th
National Conference on Artificial Intelligence.

Ellman, T., 1989. Explanation-based learning: a survey of
programs and perspectives. ACM Computing Surveys
(CSUR). 21(2).

Falkenhainer, B., Forbus, K., and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithm and Examples.
Artificial Intelligence 41(1):1-63.

Forbus, K. (2001). Exploring analogy in the large. In
Gentner, D., Holyoak, K., and Kokinov, B. (Eds.) Analogy:
Perspectives from Cognitive Science. MIT Press.

Forbus, K. and de Kleer, J. 1993. Building Problem
Solvers. MIT Press.

Forbus, K., Gentner, D., and Law, K. (1994). MAC/FAC:
A model of similarity-based retrieval. Cognitive Science,
19, 141-205.

Friedman, S., and Forbus, K. 2008. Learning Causal
Models via Progressive Alignment & Qualitative
Modeling: A Simulation. In the Proceedings of CogSci-08.
Washington, D.C.

Genesereth, M., and Love, M. 2005. General game
playing: Overview of the AAAI competition. AI Magazine,
26(2)

Gentner, D. 1983. Structure-Mapping: A theoretical
framework for analogy, Cognitive Science 7(2):155-170.

Gentner, D. and Stevens, A. 1983. Mental Models.
Erlbaum.

Gentner, D. 2003. Why we’re so smart. In Language in
Mind (Gentner, D. and Goldin-Meadow, S., eds) MIT
Press

Halstead, D. and Forbus, K. 2007. Some Effects of a
Reduced Relational Vocabulary on the Whodunit Problem.
Proceedings of IJCAI-2007, Hyderabad, India.

Hinrichs, T. and Forbus, K. 2007. Analogical Learning in a
Turn-Based Strategy Game. Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence,
853-858.

Kaminka, G. and Burghart, C. (Eds.) 2007. Evaluating
Architectures for Intelligence. AAAI Fall Symposium

Kephart, J. and Chess, D. 2003. The Vision of Autonomic
Computing. IEEE Computer Magazine, January: 41- 50.

Kim, J. and Gil, Y. 2003. Proactive acquisition from
tutoring and learning principles. Proceeding of AIEd2003,
Sidney, Australia

Klenk, M., Forbus, K., Tomai, E., Kim, H., and
Kyckelhahn, B. 2005. Solving Everyday Physical
Reasoning Problems by Analogy using Sketches.
Proceedings of 20th National Conference on Artificial
Intelligence, Pittsburgh, PA.

Klenk, M. and Forbus, K. 2007. Measuring the level of
transfer learning by an AP Physics problem-solver.
Proceedings of AAAI-07: Twenty-Second Conference on
Artificial Intelligence, Vancouver, BC.

Kuehne, S. and Forbus, K. 2004. Capturing QP-relevant
information from natural language text. Proceedings of
QR2004.

Kuehne, S., Forbus, K., Gentner, D. and Quinn, B. 2000.
SEQL: Category learning as progressive abstraction using
structure mapping. Proceedings of Annual Conference of
the Cognitive Science Society.

Labrou, Y. and Finin, T. 1997. A proposal for a new
KQML specification. Technical Report TR CS-97-03,
University of Maryland Baltimore County.

Laird, J. 2008. Extending the Soar Cognitive Architecture.
Artificial General Intelligence Conference, Memphis, TN.

Langley, P. and Choi, D. (2005) A unified cognitive
architecture for physical agents. Proceedings of AAAI05.

Lenat, D. 1995. CYC: A large-scale investment in
knowledge infrastructure. Communications of the ACM
38(11):33–38.

Namy, L., and Gentner, D. 2002. Making a silk purse out
of two sow’s ears: Young children’s use of comparison in
category learning. Journal of Experimental
Psychology:General 131(1):5-15

Rietman, W. 1963. Personality as a Problem-Solving
Coalition. In Computer Simulation of Personality
(Tomkins and Messick, eds.). John Wiley & Sons.

Ross, B. 1989. Distinguishing types of superficial
similarities: Different effects on the access and use of
earlier examples. Journal of Experimental Psychology:
Learning, Memory, and Cognition. 15(3),456-468.

Simon, H. 1983. Reason in Human Affairs, Stanford
University Press.

Stevens, A. and Collins, A. 1977. The Goal Structure of a
Socratic Tutor. In Proceedings of the ACM National
Conference. pp .256-263.

Tomasello, M. (1999). The Cultural Origins of Human
Cognition. Harvard University Press.

Vygotsky, L. (1962) Thought and Language. MIT Press

Wahlster, W. 2000. Verbmobil: Foundations of Speech-to-
Speech Translation. Springer.

