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Abstract 

Companion Cognitive Systems is a cognitive architecture 
inspired by natural intelligent systems.  In this paper, we 
describe seven design goals of Companions, relate them to 
properties of human reasoning, and discuss their 
implications.  We present our experiences in developing and 
experimenting with Companions thus far, and the challenges 
that remain. 

Introduction   

Naturally intelligent systems are organisms.  This 
observation is obvious, but surprisingly, it does not seem to 
play a central role in most current cognitive architectures.  
Perhaps even more importantly, all natural intelligent 
systems we know of are very social organisms.  Indeed, 
many speculate that social behavior, not manipulation or 
tool-making, has been the major driving force in the 
evolution of intelligence [Tomasello, 1999].  The 
Companion cognitive architecture has, as a fundamental 
goal, understanding how to build intelligent systems that 
are social beings.  It can be considered as the first attempt 
to create a Vygotskian [Vygotsky, 1962] cognitive 
architecture.    
 This is clearly a very different point in the space of 
possible cognitive architectures, compared to skill-oriented 
architectures such as ACT-R [Anderson & Lebiere, 1998], 
SOAR [Laird, 2008], PolyScheme [Cassimatis, 2006], 
Icarus [Langley & Choi, 2005], and others.  Another 
significant difference is that we have been motivated by 
the growing body of evidence that analogical processing is 
a core operation of human cognition [Gentner, 2003].  
Gentner and her colleagues have been amassing evidence 
that structure-mapping operations occur everywhere from 
medium-level vision up through conceptual change 
[Forbus, 2001].  Companions takes analogical processing, 
as defined by Gentner’s [1983] structure-mapping theory, 
as fundamental to its operation.   
 This paper summarizes the current state of our work on 
Companions in two ways.  First, we describe seven key 

                                     
Copyright © 2008, Association for the Advancement of Artificial 

Intelligence (www.aaai.org). All rights reserved. 

 

features of our current design: (1) analogical processing, 
(2) extensive conceptual knowledge, (3) flexible reasoning, 
(4) coarse-grained distributed implementation, (5) 
ubiquitous learning at multiple levels, (6) long-lived 
continuous operation, and (7) natural interaction.  Every 
implemented cognitive architecture has design decisions 
that are based on theoretical bets and empirical evidence, 
and others that are based on engineering concerns.  We 
tease apart these concerns for each of these major choices, 
and indicate where we have a solid foundation and where 
things are very much in flux.  Second, we summarize a 
number of recent experiments with Companions and some 
of the lessons learned from them.  We conclude with some 
next steps and open questions.   

Central Design Features 

The Centrality of Analogy 

A central hypothesis of Companions is that that analogical 
processing is central to human reasoning and learning 
[Gentner, 2003].  This is quite a different choice than most 
cognitive architectures, where analogy is at best relegated 
to a side role.  We discuss the three major processes in 
turn, focusing on how each is used in the architecture. 
 Analogical matching is the first operation.  The 
traditional hallmark of analogical matching are distant, 
cross-domain mappings, like understanding that heat is like 
water.  While cross-domain mappings are indeed 
important, they are far from the whole story.  For example, 
when you learn that you can start a car by using a key, for 
instance, you tend to assume that you can start another car 
by also using a key.  These mundane pieces of everyday 
reasoning appear to use the same mechanism – a within-
domain analogy, in this case, from one car to another.  
Structure-mapping theory postulates that analogy and 
similarity are based upon structural alignment between 
representations.  This structural alignment is also used for 
comparison, to understand similarities and differences 
between two things.   
 Our model of analogical matching is the Structure-
Mapping Engine (SME) [Falkenhainer et al., 1989].  It 
takes as input two structured representations (base and  
target) plus a (possibly empty) set of constraints on the 
match.  It produces one or more mappings, each of which 



has three parts.  The correspondences indicate what items 
in the base go with what items in the target.  The structural 
evaluation score provides an estimate of match quality.  
The candidate inferences are conjectures about the target, 
constructed by projecting facts from the base that are only 
partially mapped.  Exploiting analogies is central to 
Companions reasoning.  This is a powerful mechanism for 
two reasons.  First, it can exploit example-specific 
explanations in new reasoning.  Such examples abound in 
natural communication (e.g., examples in textbooks and 
fables).  Analogical reasoning in the “inner loop” means 
that one can apply these particular lessons to a range of 
new situations, without attempting to induce a general rule 
immediately.  Second, it provides an alternative to fine-
grained chaining, a process which can easily explode.  
Importing a whole relational structure is like striding 
through an inference space with seven-league boots.
 Similarity-based retrieval, which finds potentially useful 
prior experiences, is the second analogical process.  
Psychological evidence has consistently shown that human 
similarity-based retrieval is sensitive to surface 
information, not just deep relational structure.  This makes 
sense if one considers that most analogies made in an 
organism’s daily life are within-domain comparisons.  
Cross-domain retrievals will be relatively rare, unless there 
is heavy relational encoding, thereby making more overlap 
with situations that, on the surface, seem quite different. 
Again, this is consistent with findings that domain experts 
tend to have more relational retrievals [Ross, 1989].   
 Our model of similarity-based retrieval is MAC/FAC 
[Forbus et al., 1994].  MAC/FAC takes as input a probe 
and a case library.  It returns one or more cases from the 
library that (approximately) best match the probe.  In 
Companions, the probe is typically the contents of working 
memory.  A comparison with standard CBR retrieval 
systems provides a useful contrast.  The majority of CBR 
systems today use feature vector representations, which 
means that they cannot represent plans, explanations, 
arguments, or other important aspects of human conceptual 
structure.  Some relational CBR systems still exist, but 
these rely on hand-coded indexing schemes, which are 
carefully crafted for specific domains and tasks.  
MAC/FAC uses relational representations, but does not 
require any hand-indexing.  In Companions, the 
combination of analogical retrieval and matching has 
provided a simple but very powerful learning mechanism: 
Learning by accumulating examples.  
 The third analogical operation is generalization.  People 
are conservative learners, in that they rarely construct an 
accurate general model with one example.  Unlike 
explanation-based learning [Ellman, 1989], people often 
don’t have complete and correct theories of the domains 
they deal with, so such caution is wise.  On the other hand, 
they demonstrably learn much faster than today’s statistical 
learning systems do [Wahlster, 2000].  We believe that 
analogical generalization happens in two circumstances.  
First, when very similar situations are compared, it appears 
that generalizations can form spontaneously.  Second, 

generalizations are formed when the organism is trying to 
characterize a category.   For example, in language 
learning, the use of the same word for two objects invites 
their comparison [Namy & Gentner, 2002], and during 
conceptual change, one might be trying to understand, for 
instance, the distinction between floating and sinking 
[Friedman & Forbus, 2008].   
 Our model of generalization is SEQL [Kuehne et al., 
2000].  SEQL takes as input a stream of examples.  It 
maintains two lists, a list of generalizations and a list of 
exemplars.  Given a new example, if it is sufficiently 
similar to one of the generalizations, as measured by 
SME’s structural evaluation score being over a threshold, it 
is assimilated into it.  If not assimilated into an existing 
generalization, it is compared with each example in the 
exemplar list, and if similar enough to one of them, they 
form a new generalization.  Otherwise, the new example is 
added to the exemplar list.  The assimilation process 
merges the corresponding facts together, and maintains 
probabilities for each fact in the generalization based on 
frequency of occurrence.  In other research, we have shown 
that SEQL can be used to generate probabilistic rules 
[Halstead & Forbus, 2007] and to model the construction 
of causal knowledge during conceptual change [Friedman 
& Forbus, 2008]. 
 Unlike the other two processes, SEQL is only now being 
integrated into Companions.  We plan on using it in two 
ways: (1) The generalizations can be added to case 
libraries, and used in analogical reasoning just as examples 
are.  (2) Construct probabilistic rules for encoding that are 
used in new situations.  We believe that these additions 
will significantly enhance the power of the architecture. 

Extensive Conceptual Knowledge 

A hallmark of natural intelligent systems (e.g., humans) is 
that they know a lot.  Consequently, a Companion is not an 
empty architectural shell nor a special-purpose problem-
solver, but a general knowledge-rich agent that can acquire 
or learn domain knowledge by building on an extensive 
pre-existing ontology.  The symbolic, relational structures 
required for expressing explanations, arguments, and plans 
are a key component of human mental life.  We use the 
contents of the ResearchCyc knowledge base1 as the 
starting point for the ontology.  This enables a Companion 
to construct representations for many different domains 
(e.g. military planning, physics problems, and computer 
games).   
 One of the methodological problems that has vexed 
cognitive modelers is that, given the state of the art, it is 
simply impossible to psychologically vet anything like a 
large-scale knowledge representation system.  One 
approach to that is to avoid modeling conceptual 
knowledge altogether.  To us, that approach throws out the 
baby with the bathwater.  Our approach is to treat 
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ResearchCyc as an engineering approximation for human 
conceptual knowledge.  Our experience to date is that it is 
quite satisfactory for that purpose. 
 While analogical reasoning is central to Companions, 
other kinds of reasoning, especially logical inference, are 
required.  For example, logical inference is often used in 
checking the consistency and/or plausibility of candidate 
inferences, combining the results of multiple analogical 
inferences, bridging between queries and what is available 
from an analogy, and in dynamic case construction.  These 
more limited roles for logical reasoning put less stress on it 
than an architecture that was completely rule-based, but 
many of the same problems of doing logical inference at 
scale still arise. 
 Large knowledge bases (KBs) present a pair of 
challenges for reasoning. (1) Large KBs are never 
complete or consistent.  This, too, is a property of human 
knowledge.  It is well documented in the mental models 
literature [Gentner & Stevens, 1983] that novices typically 
have multiple inconsistent models of a domain, for 
example.  Furthermore, any well-trained scientist or 
engineer has multiple inconsistent models of the same 
phenomena, each useful under different circumstances 
(e.g., Newtonian versus relativistic dynamics).  We have 
found that treating the microtheory structure of the KB as a 
specification of a logical environment for reasoning to be a 
workable approach to this problem [Lenat, 1995].  (2) 
Brute-force problem-solving methods suffer from 
prohibitively large search spaces as the number of facts 
and rules grows.  Consequently, reflective control over 
reasoning becomes increasingly important.  Companions 
address this in three ways.  First, we use the usual resource 
limitations on search depth and elapsed time.  Second, we 
do partitioned reasoning: We are never reasoning with the 
entire knowledge base, only a subset of relevant axioms as 
determined by the current logical environment.  Third, we 
have a layered reasoning architecture that makes high-level 
reasoning decisions reflectively.  In other words, logical 
reasoning is kept tightly constrained, sacrificing 
completeness for efficiency. 

Flexible Federated Reasoning 

A notable characteristic of human reasoning is what Simon 
referred to as bounded rationality [Simon, 83].  Models of 
reasoning cannot escape from the limited resources 
available to the human mind.  Such bounded rationality is 
implicit in the design of FIRE, the Fast (or Federated) 
Integrated Reasoning Engine, which is the core inference 
engine of a Companion.  FIRE is built on top of a Logic-
based Truth Maintenance System (LTMS) which serves as 
a working memory cache and provides an audit trail for 
justifying and explaining inferences [Forbus & de Kleer, 
1993].  Inference in FIRE is controlled by stratifying 
operations into fast low-level retrieval and local operations, 
constrained backchaining queries, and reflective queries 
that invoke And-Or problem-solving and HTN planning.  
All of these operations contain resource limits, ensuring 
that the Companion is responsive to user’s requests. 

 FIRE achieves flexibility through federated operation.  
Rather than supporting arbitrary escapes to code in the 
middle of rules, it permits reasoning predicates to be 
defined procedurally ("outsourced") so that external 
algorithms, accessors and packages can be invoked.  The 
answers of such external operations are packaged into 
declarative assertions that are fully justified in the LTMS, 
making these external systems transparent to the 
knowledge level aspects of the system.  For example, 
analogical matching and retrieval are implemented as 
outsourced predicates, as are many spatial reasoning 
operations. 
 We are not making strong specific psychological claims 
about either an LTMS or the particular other reasoning 
mechanisms used in FIRE.  That people are capable of 
some degree of reasoning than can be expressed via logic, 
that we have some ability to attribute reasons for our 
beliefs, and that we have some ways of generating plans 
and solving complex problems do seem to be 
psychologically plausible assumptions.  The specific 
mechanisms we are using in this part of the system are 
more a function of engineering issues and convenience 
than theoretical commitments.  The drawback, of course, is 
that this architecture cannot be used for generating low-
level predictions about, for example, the exact timing of 
inference steps.  On the other hand, our unit of modeling 
remains focused at conceptual reasoning and learning, and 
we do believe that these mechanisms are sufficient for 
modeling at that level. 

Coarse-Grained Parallelism 

Another design goal of Companions is to emulate the 
parallelism that is evident in human and animal behavior.  
Beyond simple multi-tasking, a large body of work in 
psychodynamics and personality theory suggests that the 
mind contains drives, emotions and instincts that conflict 
and compete for resources and attention [Rietman, 1963].  
Such processes become increasingly important as we 
model bounded rationality in interactive systems, where 
inference, memory access, and communication with the 
user are time-limited resources. 
 Companions are implemented as distributed systems that 
allocate individual nodes of a cluster computer to semi-
independent, asynchronous processes (agents).  We use a 
small number of such agents, making this an example of 
coarse-grained parallelism.  Agents communicate 
internally using KQML [Labrou et al., 1997] with 
callbacks to support asynchronous queries and 
subscriptions to events.  This interrupt-style invocation 
enables more bottom-up and heterogeneous control 
strategies that will allow us to experiment with some of the 
sorts of non-rational processes mentioned above. 
 A common criticism of coarse-grained parallelism is that 
fine-grain parallelism almost always yields greater 
efficiency.  While possibly accurate, this misses a critical 
point.  Fine-grained parallelism is almost always applied to 
SIMD-type problems, where computations are 
homogeneous and repetitive.  This is largely because it is 



prohibitive to manually program vast numbers of 
independent agents.  Coarse-grained parallelism allows a 
another sort of model, where sub-processes fundamentally 
different making them more independent and active. 
 Companions make use of a number of sub-processes.  
For example, human memory is often proactive, suggesting 
similar episodes and concepts that may be relevant.  In 
Companions, the Analogical Tickler is an agent that 
effectively watches the state of working memory and 
continually retrieves cases to present to the user and the 
Session Reasoner (the agent responsible for domain 
reasoning).  The Tickler operates on a subscription basis, 
so that a reasoner can request examples for, e.g., case-
based reasoning.  Another example of how we use coarse-
grained parallelism is the Executive agent.  The Executive 
is responsible for prioritizing work on the Companion’s 
goals.  For example, in learning to play games, it keeps an 
eye on the Session Reasoner, and “pulls the plug” if its 
learning does not seem to be converging.   
 Coarse-grained parallelism is also used in other 
architectures, such as PolyScheme [Cassimatis, 2006].  In 
PolyScheme, different reasoning mechanisms are invoked 
in parallel and race to produce an answer.  By contrast, in a 
Companion, agents are functionally differentiated and 
dedicated to different tasks. 

Ubiquitous Learning 

People learn continually under all sorts of situations.  
Computers, however, typically learn only when directed to, 
and allocate all their resources to the task.  This tends to be 
incompatible with highly interactive systems.   
 Companions address this in two ways: 1) compute-
intensive learning tasks are off-loaded to background tasks 
on dedicated nodes, and 2) learning is focused via explicit 
learning goals that are constructed on the fly, prioritized, 
scheduled, and reasoned about.  It is the job of the 
Executive agent to decide which learning goals should be 
pursued and how.  We have used learning goals to drive 
learning in game domains, where plans were available to 
drive experimentation.  We are in the process of adapting 
this approach to more general tasks, where the learning 
strategies might entail searching the KB for possible 
examples and counter-examples, or in some cases, simply 
asking the user. 

Extended Lifetime 

Natural intelligent systems exist continuously over their 
entire lifetime.  They are not rebooted or shut down.  
Although people may sleep at night, they do not forget 
everything in the morning and their minds continue to 
operate in some fashion even when asleep.  Consequently, 
a goal for Companions is to support extended interactive 
sessions and continuous operation between sessions. 
 Increasing the duration of sessions runs into the problem 
of hard resource limits on agents. It is not uncommon for 
the LTMS cache to fill up with facts that are no longer 
useful, until it eventually runs out of heap space and 

crashes the agent.  To ameliorate this, Companions have 
the ability to query their own available heap, the number of 
TMS nodes allocated, and the number of reified analogical 
matches.  An agent can choose to clear its cache and 
invoke garbage collection, but we do not yet have a good 
theory of when that is appropriate.  More difficult is the 
problem of recognizing when an agent is about to crash 
and hot-swapping a fresh agent in its place.  Again, while 
the low level actions are implemented, we are still working 
out strategies for when this should happen, ideally based 
on the system monitoring its own performance.  These 
problems are very similar to the goals of IBM's autonomic 
computing initiative [Klephart & Chess, 2003]. 
 One of the key benefits of supporting extended lifetimes 
is that a Companion can pursue compute-intensive learning 
tasks between sessions, and thereby apply learning to a 
greater variety of problems than would be possible with 
only online learning.  We often refer to this as "homework" 
between sessions. 
 A second anticipated benefit is that as a Companion is 
applied to different domains over time, it will be able to 
apply analogy across domains to reuse strategies and build 
new abstractions.  We have performed some initial 
experiments with cross-domain analogies but it is not yet a 
robust capability. 
 A third benefit of an extended lifetime is that it enables 
the incremental construction of user and self-models.  This 
is part of the ubiquitous learning goal, but it is only 
possible if a Companion remembers the context of prior 
sessions as well as the domain-specific problem solving.  
So far, Companions have built up case libraries of domain-
specific episodes, in particular traces of problem solving 
and execution in game domains such as FreeCiv and 
General Game Playing.  As we begin to interact more via 
language, we expect to retain and learn more from 
linguistic interaction, possibly including, for example, 
resolutions of ambiguous parses.  Self models may include, 
among other things, histories of resource usage to facilitate 
predicting when an agent should be restarted or hot-
swapped.   

Natural interaction modalities 

Natural intelligent systems are able to interact robustly 
over a broad range of situations.  Indeed, such interactions 
are crucial for learning in many domains.  Our goal is for 
Companions to learn in Vygotskian fashion, incidentally as 
apprentices to their human partners.  In addition to this 
lofty goal, there are also some quite practical reasons why 
natural interaction is crucial for a knowledge-rich agent.  
The ResearchCyc KB already has over 50,000 collections 
and several million facts in it.  It would not surprise us for 
this number to double or triple as we learn how to achieve 
ubiquitous learning and extended lifetime in Companions.  
Even in a static knowledge base, knowledge engineers will 
define their own concepts if they cannot quickly find what 
they are looking for in the ontology [Cohen et al., 1999].  
When a significant fraction of what the system knows is 
automatically learned, manual inspection of internal 



representations will be hopeless as the only way of 
interacting.  Thus supporting natural interaction is both 
essential given our theoretical commitments, and a 
practical matter as well. 
 We are currently experimenting with two modalities: 
natural language input and sketch-based interaction.  A 
dedicated agent is under development to coordinate 
interaction with the user.  It invokes natural language 
parsing and semantic interpretation to translate English 
sentences into queries, statements, and commands2.  The 
goal is to support learning through natural language 
tutoring, by, in effect, inverting the methods used in ICAI 
systems [Stevens et al., 1977][Kim & Gil, 2003].  
Conceptual gaps or inconsistencies revealed during 
tutoring spawn learning goals that can be passed to the 
Executive for asynchronous or offline processing.  Sketch-
based interaction is supported by agents that encapsulate 
NuSketch applications and translate visual depictions into 
predicate calculus representations [Forbus et al., 2004].  
Sketch interaction has been deployed in some early work 
on Tactical Decision Games and on mechanical 
comprehension tests [Klenk et al., 2005].  In the latter 
work, the Companion would interact with the user by 
drawing on a sketch to explain its reasoning. 

Experience with Companion Systems 

Over the last few years, we have worked with Companions 
in a variety of different domains, including interactive 
games and question answering tasks in more content-
focused domains.   

AP Physics 

We have applied Companions to the domain of Advanced 
Placement Physics tests.  The AP Physics exam tests the 
ability of high-school students to solve physics problems.  
In collaboration with Cycorp and the Educational Testing 
Service (ETS), which administers the AP Physics exam, 
we evaluated a Companion’s ability to solve problems of 
the style that would be found on the AP Physics exam.  
The Companion learned by accumulating examples and 
used these examples to make modeling decisions about 
new problems via analogy.  For example, the Companion 
started out with basic algebra solving and problem 
decomposition skills, but zero knowledge of the equations 
of physics.  All equations used in solving problems were 
found via analogies with worked solutions it had been 
given after prior exams, which were at the level of what 
might be found in a textbook.  To address the ability to 
transfer knowledge from these examples to new situations, 
the evaluation centered around six systematic variations of 
problems, or transfer levels.  These ranged from changing 
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numerical parameters but not qualitative outcomes to 
requiring the composition of aspects of multiple examples. 
 In an external evaluation carried out by ETS, a 
Companion exhibited an average of 63.8% improvement in 
initial performance across all six transfer levels [Klenk & 
Forbus, 2007].  Interestingly, the sources of the problem-
solving failures were primarily due to representation errors 
and some domain-specific strategies, not in our use of 
analogy.  To verify this, we repeated the experiment after 
fixing these problems, and the Companion achieved an 
average of 98.5% improvement due to transfer. 
 Our experience in AP Physics problem-solving 
reinforces a number of our design decisions.  First, the AP 
Physics problems are described in everyday terms 
requiring a large ontology.  The 460 predicate calculus 
problem representations used in the evaluation included 
108 conceptual types and 103 unique relations.  Second, 
the Companion used analogy to make all of the decisions 
about which equations to use and what assumptions to 
make during each problem-solving episode.  The 
Companion’s strong performance demonstrates that 
analogy can play a central role in a complex reasoning task 
such as physics problem-solving. 

FreeCiv and General Game Playing 

Using Companions to learn to play turn-based strategy 
games poses somewhat different challenges than taking 
tests.  First, these domains require interleaving planning 
and action in a simulated environment.  Second, games 
typically require reasoning with incomplete information.  
The Companion must make decisions, take actions, and 
evaluate outcomes.   These factors led to the approach of 
representing explicit learning goals and having the agent 
formulate experiments to try in the simulated environment. 
 FreeCiv3 is an open source turn-based strategy game 
modeled after Sid Meier’s series of CivilizationTM games.  
In the context of the DARPA Transfer Learning program, a 
Companion used analogy, experimentation, and qualitative 
modeling to improve performance in optimizing food 
production [Hinrichs et al., 2007].  The Companion uses 
analogy to suggest worker allocations based upon 
successful previous cases.  When this fails, the Companion 
uses experimentation to bootstrap the case library ensuring 
a variety of cases to reason from.  The qualitative model 
allows the Companion to determine how the changes 
caused by an action affect the Companion’s goals.  This 
credit assignment is used to label precedents created by 
experimentation for future analogical reasoning episodes. 
 General Game Playing (GGP) [Genesereth & Love, 
2005] is a framework for describing simple games 
declaratively such that the rules and premises of games can 
be easily modified to exercise flexible reasoning and 
transfer of learning.  We applied Companions to the task of 
transfer learning strategies for winning 2D board games in 
GGP.  This continued the learning goal approach that 
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began with the FreeCiv work, but relied even more heavily 
on the analogy mechanisms in order to map across 
increasingly distant base-target pairs.  Coupled with the 
experimentation strategy, we were able to learn new HTN 
plans for games that were structurally different from games 
learned previously. 
 Our work in these domains provides evidence for the 
importance of the design decisions presented in this 
outline.  First, Companions reasoning in these domains 
exhibited the beginnings of ubiquitous learning.  Driving 
experimentation via learning goals proved to be an 
effective method for learning about these domains.  In the 
future, we plan on making this more reflective, 
empowering the Companion to spawn new agents with 
specific learning goals.  Also, analogy was central to 
reasoning about these domains.  Companions used analogy 
to suggest individual actions in new situations, find 
commonalities between domains, and transfer entire plans. 

Challenges 

Our development of Companions has frequently run into 
challenges two types: engineering and evaluation.  From an 
engineering standpoint, achieving these design features in 
Companions poses a number of difficulties.  One challenge 
concerns adapting Companions to new domains.  While the 
underlying KB allows representations for a wide range of 
domains quickly, there is still the problem of interfacing 
the Companion with its environment.  In the game playing 
domain, it was necessary to build agents to interface 
between the Companion and the game programs. 
 Another engineering challenge concerns the size of the 
knowledge base.  While our design decisions seek to 
mitigate this, there are still important engineering decisions 
concerning efficiency and coordination between the agents.  
To address efficiency concerns, the FIRE reasoning engine 
has recently been revised with a new backend knowledge 
base, built on the Franz AllegroCache4 persistent object 
store.  As agents within the Companion learn, it is 
necessary that the changes to the individual knowledge 
bases are synchronized across the system.  We use a 
journaling mechanism, in which KB changes are stored 
and shared with the other agents. 
 Evaluation of intelligent architectures is difficult.  In 
fact, it has recently received increased attention from AI 
researchers [Kaminka & Burghart 2007].  A major 
frustration we have had is that the metrics adopted for 
evaluating learning, a hallmark of intelligent systems, has 
tended to favor batch over interactive operation.  This is a 
major problem because three of the design features, natural 
interaction, extended lifetime, and ubiquitous learning, are 
important in interactive systems.  It is fundamentally 
difficult to evaluate interactive systems, and this has 
hindered progress on many of the more interesting aspects 
of Companions.  We suspect that the way around this is to 
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focus on measuring relative rates of learning, rather than 
on absolute measures. 
 

Discussion 

While the Companions architecture is a work in progress, 
we have already had a number of successes.  First, we have 
used Companions for reasoning in a wide variety of 
domains: everyday physical reasoning, tactical decision 
games, Freeciv city planning, AP Physics problem-solving 
and general game learning.  Second, Companions have 
been run, interacted with, and evaluated externally by two 
collaborators: ETS and the Naval Research Laboratory 
(NRL).  Our experiences reinforce our commitment to the 
design decisions that are shaping Companions: (1) the 
centrality of analogy, (2) extensive conceptual knowledge, 
(3) flexible federated reasoning, (4) coarse-grained 
parallelism, (5) ubiquitous learning, (6) extended lifetime, 
and (7) natural interaction modalities.  As this article 
illustrates, human behavior suggests many frontiers on 
which to push artificial intelligence models.  Companions 
is an attempt to explore parts of that space that we think are 
essential to achieving human-level artificial intelligence, 
but have not been explored much yet.   
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