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Abstract 

Analogical reasoning has long been seen as a powerful way 

of extending the reach of ones knowledge.  One product of 

analogical reasoning is analogical learning in which the result 

of the comparison increases our understanding of some 

domain.  This work describes a method for learning new 

domain theories by analogy.  We use analogies between pairs 

of problems and worked solutions to create a domain 

mapping between a familiar and a new domain.  This 

mapping allows us to initialize the new domain.  After this 

initialization, another analogy is made between the domain 

theories themselves providing additional conjectures about 

the new domain.  An experiment is described where the 

system learns to solve rotational kinematics problems by 

analogy with translational kinematics problems, 

outperforming a version of the system that is incrementally 

given the correct domain theory. 
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Introduction 

Psychologists and cognitive scientists have long 
hypothesized that cross-domain analogy is a core aspect of 
human cognition.  It has been studied in the context of the 
ability to adapt to new domains quickly (Collins & Gentner 
1987, Gentner 2003), its usefulness in producing paradigm 
shifts in scientific thought (Gentner et al. 1997; Holyoak & 
Thagard 1989, Falkenhainer 1988), and also its lasting 
effects on future reasoning in the new domain (Rand et al. 
1989).  In order to exploit cross domain analogies, there 
must be a known base domain theory and a mapping 
between the objects and relationships in the two domains.  
This work assumes we have been told the base domain and 
provides a method for learning the domain mapping through 
analogies between explanations.  This domain mapping 
drives an analogy between the known and unknown domain 
theories providing inferences in the new domain theory.  
This paper presents a system which uses computational 
models of analogy and similarity based retrieval to learn 
new domain theories. 
 We begin by discussing the representations, the domains, 
and rule based problem solver which we use to evaluate our 
theory.  Then we describe the structure mapping theory of 
analogy and similarity and our computational models used 
in this work.  Next, we explain how these computational 
models can be used to learn new domain theories via 
analogy.  After walking through an example, we describe an 
experiment in which the system learns to solve rotational 
kinematics problems by analogy with translational 
kinematics problems, outperforming a version of the system 
that is incrementally given the correct domain theory.  We 

close with a discussion of related work and our plans for the 
future. 

Representations and Problem Solving 

Representing physics problems requires a broad background 
of everyday knowledge, including the object and event types 
found in such problems.  We use the ResearchCyc
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knowledge base contents, augmented with our own 
extensions.  Our extensions concern QP theory (Forbus 
1984) and problem-solving strategies, and are small 
compared to the 30,000+ concepts and 8,000+ predicates 
already defined in the KB.  Thus, objects, relations, and 
events that appear in physics problems such as “rotor”, 
“car”, and “driving” are already defined in the ontology for 
us, rather than being created specifically for this project. 

Example Problem and Worked Solution 

All problems and worked solutions used in this work were 
taken from the same physics textbook (Giancoli 1991).  We 
represent the problems and worked solutions from the 
textbook as cases of predicate calculus facts.  Consider the 
problem of “How long does it take a car to travel 30m if it 
accelerates from rest at a rate of 2 m/s

2
?” (Example 2-6, p. 

26).  This problem is represented in our system as a case of 
10 facts, a subset of which appears in Figure 1. 

 

Figure 1: Problem 2-6 Representation (partial) 

Worked solutions are represented at the level of explained 
examples found in textbooks, which is more abstract than a 
proof or problem-solving trace.  The worked solutions, like 
the problems themselves, are represented in a general way 
not in the internal language of the problem solver.  For 
example, the worked solution for problem 2-6 consisted of 
four steps:  
1. Categorize the problem as a constant acceleration linear 

mechanics problem 
2. Instantiate the distance by velocity time equation (d = 

vit + .5at
2
) 

3. Because the car is stationary at the start of the event 
infer that its velocity is zero (vi = 0 m/s) 
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(isa Car-2-6 Automobile) 

(isa Acc-2-6 TransportWithMotorizedLandVehicle) 

(objectStationary (StartFn Acc-2-6) Car-2-6) 

(primaryObjectMoving Acc-2-6 Car-2-6) 

(valueOf  

  ((QPQuantityFn Distance) Car-2-6 Acc-2-6) 

  (Meter 30)) 



4. Solve the equation for t (t = 5.8s) 
Figure 2 shows how step three is represented. 

Domain Theories for Problem Solving 

Our domain theories consist of encapsulated histories 
(Forbus 1984) representing equations.  We use encapsulated 
histories because they permit constraints to be placed on 
time itself, which is necessary for representing equations.  
Equations like the velocity/time law above involve events 
and their durations (e.g., translational motion under constant 
acceleration). 

Figure 3 illustrates the encapsulated history representing 
the equation of velocity as a function of time (vf=vi+at). 
There are two participants, theObject and theEvent, which 
must satisfy their type constraints, the abstractions 
PointMass and Constant1DAccelerationEvent 
respectively.  Furthermore, the conditions of the 
encapsulated history must be satisfied in order to instantiate 
it and conclude its consequences. In this case, it is necessary 
that theObject be the object moving in theEvent. The 
compound form shown in Figure 3 is automatically 
translated into a set of predicate calculus facts. 

 

Figure 3: Example Encapsulated History 

Learning the encapsulated histories of a new domain via 
analogy in terms of participants, conditions and 
consequences is the goal for this work.  To evaluate the 
accuracy of learned abstract knowledge, it must be able to 
solve problems.  The physics problems in this work all ask 
for the values of specific quantities.  Our system uses rule-
based reasoning for modeling decisions and instantiates 
encapsulated histories, representing equations, from its 
domain theory to solve for the quantity asked for in the 
problem. 

Structure-mapping and Analogy 

We use Gentner’s (1983) structure-mapping theory, which 

postulates that analogy and similarity are based on structural 

alignment between two representations (the base and target) 

to find the maximal structurally consistent match between 

them. The Structure Matching Engine (SME) simulates the 

process of analogical matching between a base and target 

(Falkenhainer et al. 1989).  The output of this process is one 

or more mappings.  A mapping is a set of correspondences 

representing a construal of what items (entities and 

expressions) in the base go with what items in the target.  

Mappings include a structural evaluation score indicating 

the strength of the match, and candidate inferences which 

are conjectures about the target using expressions from the 

base which, while unmapped in their entirety, have 

subcomponents that participate in the mapping’s 

correspondences.  SME operates in polynomial time, using a 

greedy algorithm (Forbus & Oblinger 1990). 
 MAC/FAC (Forbus et. al. 1994) models similarity-based 

retrieval.  The inputs are a case, the probe, and a library of 
cases.  The first stage (MAC) uses a computationally cheap, 
non-structural matcher to filter candidates from a pool of 
memory items, returning up to three if they are very close.  
The second stage (FAC) uses SME to compare the cases 
returned by MAC to the probe and returns the best candidate 
(or candidates, if they are very similar).  Both SME and 
MAC/FAC have been used as performance systems in a 
variety of domains and as cognitive models to account for 
numerous psychological results (Forbus 2001). 

Different domains are often represented using different 
predicates, especially when they are first being learned and 
underlying commonalities with previous knowledge have 
yet to be found.  Minimal ascension (Falkenhainer 1988) is 
one method for matching non-identical predicates.  If two 
predicates are part of a larger aligned structure and share a 
close common ancestor in the taxonomic hierarchy, as 
defined by the ResearchCyc ontology, then SME can 
include them in the mapping.  Figure 4 demonstrates an 
example in which the solution steps.  The objects, events, 
and steps of the worked solutions are already in 
correspondence allowing primaryObjectMoving and 
objectRotating to map to each other based upon minimal 
ascension due to both of them being children of 
objectMoving in the Cyc ontology. 

 

Figure 4: Minimal ascension maps 

primaryObjectMoving to objectRotating 

Analogical Learning of Domain Theories 

Our system learns a domain theory by using multiple 
analogies.  Learning is invoked after failing to solve a 
problem.  The system is given the worked solution for that 

Base Expression: 
(stepUses Gia-2-6-WS-Step-2 

  (primaryObjectMoving Acc-2-6 Car-2-6)) 

Target Expression: 
(stepUses Gia-8-5-WS-Step-2 

  (objectRotating Acc-8-5 Rotor-8-5)) 

 

(def-encapsulated-history 

 VelocityByTime-1DConstantAcceleration 

 :participants  

 ((theObject :type PointMass) 

(theEvent :type Constant1DAccelerationEvent)) 

 :conditions 

((primaryObjectMoving theEvent theObject)) 

 :consequences 

((equationFor VelocityByTime 

  (mathEquals  

     (AtFn (Speed theObject)(EndFn theEvent))  

     (PlusFn (AtFn (Speed theObject) 

        (StartFn theEvent)) 

      (TimesFn (AtFn (Acceleration theObject)       

(isa Gia-2-7-Step-3 WorkedSolutionStep) 
(hasSteps Gia-2-7-WS Gia-2-7-Step-3) 
(priorStep Gia-2-7-Step-3 Gia-2-7-Step-2) 
(stepType Gia-2-7-Step-3 AssumingValue) 
(stepUses Gia-2-6-WS-Step-3 
 (objectStationary (StartFn Acc-2-6) Car-2-6)) 
(stepResult Gia-2-6-WS-Step-3 
 (valueOf 
  (AtFn ((QPQuantityFn Speed) Car-2-6) 
        (StartFn Acc-2-6)) 
  (MetersPerSecond 0))) 

 

Figure 2: Problem 2-6 worked solution step 3 



problem, as a student would find in a textbook.  It uses this 
worked solution to create conjectures about knowledge in 
the new domain, using the algorithm outlined in Figure 5.  
The case library contains a set of worked solutions from the 
known domain.  First, the worked solution for the failed 
problem is used as a probe to MAC/FAC, to retrieve an 
analogous worked solution from memory.  A comparison is 
made using SME, with the retrieved worked solution 
constituting the base and the worked solution for the failed 
problem as the target.  The mappings SME produces are 
then combined to create a domain mapping.  The reason for 
combining multiple mappings is that each mapping may 
only cover some aspects of the worked solutions.  The best 
mapping is used as a starting point, with correspondences 
drawn from the others included only if they do not violate 
the one-to-one constraint. 
 When the system gets the first problem in a new domain, 

its theory for that domain is empty.  The domain mapping is 
used to initialize the new domain theory.  For each 
encapsulated history from the base domain theory 
mentioned in the domain mapping, the system attempts to 
create an encapsulated history in the target domain.  We 
currently require that every concept in the base encapsulated 
history is mentioned in the domain mapping, i.e., there are 
no analogy skolems where we must postulate a new 
predicate or category of entity. 
The system also extends a partially learned, or just 

initialized, domain theory with another analogy.  This time 
between the base and target domain theories themselves 
with the domain mapping acting as required correspondence 
constraints, ensuring that the overall domain theory is 
consistent.  The resulting candidate inferences include 
conjectures about encapsulated histories in the new domain 
theory. 
 While powerful, analogies are not guaranteed to be 

sound.  Consequently, we verify the newly proposed domain 
knowledge by trying again to solve the problem whose 
failure motivated the learning.  If this problem is solved 
correctly, our system assumes that the new domain theory 
constructs are correct.  Otherwise, it deletes both the new 

domain theory constructs and the domain mapping, and tries 
one more time, considering the next best worked solution 
retrieved from memory.  Next, we walk through an example 
of how encapsulated histories can be inferred in the domain 
of rotational mechanics. 

Example 

To better understand this algorithm, we describe how the 
system learns after failing to solve problem ‘a’ from Figure 
6.  Using the worked solution for this problem (a collection 
of 65 facts of the form in Figure 2), the system retrieves an 
analog from its memory using MAC/FAC, in this case the 
analogous worked solution retrieved is for the problem 
discussed previously “How long does it take a car to travel 
30m if it accelerates from rest at a rate of 2 m/s

2
?”.  Now the 

system generates the analogy between the retrieved worked 
solution and the worked solution to problem ‘a’.  In this 
case, the mathematical relationships are isomorphic, d = vit 
+ .5at

2 
and θ=ωit + .5αt

2
, which places the quantities 

between the domains into correspondence.  It should be 
noted that SME handles partial matches allowing for the 
correspondences to be created even when the problems 
being compared are not completely analogous.  The minimal 
ascension example from Figure 4 is also part of this 
mapping.  Next, the correspondences of this mapping are 
extracted to create the domain-mapping, a subset of which 
appears in Table 1. 
 Once the domain mapping has been made, the system 
attempts to initialize the target domain theory.  This is done 
by searching the domain mapping for encapsulated histories, 
in this example DistanceByVelocityTime-

1DConstantAcceleration is an encapsulated history in the 
base domain.  For each fact in the base domain theory 
mentioning DistanceByVelocityTime-

1DConstantAcceleration we substitute subexpressions 
based upon the domain mapping.  Now we have a target 
domain theory based directly the worked solution 
comparison. 
 Next, we attempt to extend this domain theory with a 
comparison between the base and target domain theories 
with the domain mapping acting as required correspondence 
constraints.  We use the 41 facts of the linear mechanics 
encapsulated histories as the base, the 6 facts of the just 

Figure 5: Analogical domain learning 

 

1. Retrieve analog using the target worked solution as a 

probe in MAC/FAC 

2. Use SME to crate a match between the analog and 

worked solution 

3. Retrieve correspondences from resulting mappings 

4. Create domain mapping by selecting correspondences in 

the base element appears in the base theory 

5. Initialize target domain theory using these 

correspondences 

6. Use SME to create an analogy between the base and 

target domain theories constrained by the domain 

mapping 

7. Transfer domain theory using candidate inferences 

8. Verify learned domain theory by retrying the failed 

problem 

9. If failure, go once more to step 1, else accept new domain 

knowledge as correct. 

Figure 6: Evaluation Questions 

 

a) Through how many turns does a centrifuge rotor make 

when accelerating from rest to 20,000 rpm in 5 min? 

Assume constant angular acceleration 

b) A phonograph turntable reaches its rated speed of 33 

rpm after making 2.5 revolutions, what is its angular 

acceleration? 

c) Through how many turns does a centrifuge rotor make 

when accelerating from rest to 10,000 rpm in 270 

Seconds? Assume constant angular acceleration 

d) An automobile engine slows down from 3600 rpm to 

1000 rpm in 5 seconds, how many radians does the 

engine turn in this time? 

e) A centrifuge rotor is accelerated from rest to 20,000 

rpm in 5 min, what is the averaged angular 

acceleration? 



initialized rotational mechanics domain theory as the target 
and we constrain the match by setting up required 
correspondences between the elements of the domain 
mapping.  Now the shared structure between the quantities 
and conditions will produce candidate inferences involving 
the facts of the other encapsulated histories in the linear 
mechanics, base, domain theory.  For example, the 
candidate inference shown in Figure 7 postulates that there 
is an encapsulated history based upon VelocityByTime-
1DConstantAcceleration, an encapsulated history from the 
base domain that did not have a corresponding entity in the 
mapping, that has the operating condition of its object 
rotating during its event.  The system then creates entities 
for all the analogy skolems, i.e. turning (SkolemFn 

VelocityByTime-1DConstantAcceleration) into EHType-
1523, and assumes these facts into the rotational mechanics 
domain theory.  

 Finally, we need to verify that the learned knowledge is 
accurate.  This is done by attempting to solve problem ‘a’ 
again.  Since the worked solution contains the answer, we 
can compare our computed answer against it.  If they match, 
then we infer that the learned knowledge is correct.  If the 
system gets the problem wrong, then we clear out the 
inferred encapsulated histories in the rotational mechanics 
domain theory and the entire process repeats one more time.  
One aspect of our future work is to better diagnose faults in 
our domain theories and domain mappings which we hope 
to incrementally improve overtime. 

Experimental Results 

To examine how well this analogical learning method 
works, we need a baseline.  Our baseline spoon-fed system 
consists of the exact same problem-solver, but with 
analogical learning turned off.  Instead, when the spoon-fed 
system receives a problem it cannot solve, it is given not 
just a worked solution, but whatever general encapsulated 
histories are needed to solve that specific target domain 
problem. 

Method 

Both systems begin with a linear kinematics domain theory, 
two worked solutions of linear kinematics problems, and 
hard-coded rules for problem-solving strategies and making 
modeling decisions.  The systems are then tested on a serie 
of rotational mechanics problems.  The testing materials are 
5 problems, listed in Figure 7, and worked solutions.  
Learning curves were created by running 120 trials 
representing every possible ordering of the test materials.  In 
each trial, after each problem, the system was given either 
the worked solution or encapsulated histories for that 
problem, depending on the condition.  After each trial, the 
system’s knowledge was reset. 

Results 

 

Figure 8: Experiment Results 

Figure 8 compares the learning curves for the analogy and 
baseline conditions.  After studying just one worked 
solution, the analogy system was able to solve next problem 
correctly 80 percent of time.  Furthermore, the analogy 
system has perfect performance after working on any two 
test problems.  The baseline system’s ceiling was at 80 
percent, and after one problem it was only able to get the 
next problem correct 45 percent of the time. 
 Further analysis of these results details the strength of the 

analogy approach.  The baseline system failed to score 
above 80 percent of any of the conditions. The baseline 
system was unable to solve problem ‘b’ from Figure 6 
regardless of what problems it has already seen, because 
none of the other problems use the same equation.  The 
analogy system performed quite well, only in one situation 
did the analogical domain transfer fail to learn the whole 
rotational kinematics domain after seeing just one worked 
solution. This occurred when problem ‘b’ was the first 
problem. Problem ‘b’ makes no mention of a time quantity 
preventing a correspondence to be created for it.  While a 
time quantity exists in both of these domains, it does not 
necessarily mean they should be aligned.  The strength of 
the analogical approach is that transfer is guided by 
structural similarity. This is critical for broader application 
of this theory.  For example, in linear and rotational 
dynamics, both domain theories have a mass quantity, but 

Rotational Kinematics Learning Curves
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Table 1: Domain Mapping 

Base Item Target Item 

PointMass RigidObject 

ConstantLinear-

AccelerationEvent 

ConstantRotational-

AccelerationEvent 

primaryObjectMoving objectRotating 

Acceleration AngularAcceleration 

Speed RateOfRotation 

DistanceTravelled AngularDistTravelled 

Time-Quantity Time-Quantity 

DistanceByVelocityTime-

1DConstantAcceleration 

DistanceTime-

Rotational 

Figure 7: Analogical Domain Learning 

 

(qpConditionOfType 

 (AnalogySkolemFn 

VelocityByTime-1DConstantAcceleration) 

 (objectRotating :theEvent :theObject)) 



transfer is only possible when a domain mapping is made 
between mass, in linear dynamics, and moment of inertia, in 
rotational dynamics. (e.g. F=ma and T=Iα)  

Related Work 

Falkenhainer’s (1988) PHINEAS is the closest system to 
our own in addressing these problems.  PHINEAS which 
used comparisons of (simulated) behavior to create an initial 
cross-domain mapping that was subsequently used to create 
a partial theory for the new domain.   It differs, however, in 
several significant ways: (1) We use analogies between 
problem explanations to drive the process, (2) We are 
learning quantitative, rather than qualitative, domain 
theories, which requires very different verification work, 
and (3) We are using a more psychologically plausible 
retrieval mechanism.  Holyoak and Thagard's (1989) PI 
model uses a pragmatic theory of analogy to model solve 
variations of the radiation problems through schema 
induction.  Our model of cross-domain analogy requires 
analogies between domain theories that are isolated from 
problem solving episodes, which PI does not allow.  Other 
analogical problem solving systems have focused on using 
previous experiences to guide future problem solving. 
Examples include Veloso and Carbonell's (1993) 
Derivational Analogy, van Lehn’s (1993) Cascade system 
and Ouyang and Forbus’s (2006) APSS system.  Our work 
differs by focusing on learning abstract domain knowledge, 
as opposed to search control knowledge. 

Discussion 

We have shown that a domain theory for solving physics 
problems can be learned via cross-domain analogies.  Our 
experiment shows furthermore that such analogical learning 
can be very efficient, when the two domains are sufficiently 
similar.  The process of constructing domain mappings by 
exploiting similarities in worked solutions, and using that 
mapping to import theories from one domain to another, is, 
we believe, a general and powerful process. 

There are several directions we intend to pursue next. 
First, we have only tested this method with encapsulated 
histories, so we want to extend it to handle other types of 
domain knowledge such as model fragments and modeling 
knowledge.  Second, we plan to integrate this algorithm into 
our Companion-based learning system (2007), which 
utilized within-domain analogical problem solving so that 
we can combine both methods of analogical learning.  A 
central goal to the Companions project (Forbus & Hinrichs 
2006) is to build a reasoning and learning agent that can 
operate for weeks and months at a time.  Therefore, we plan 
to implement model-based diagnostic strategies to debug 
our analogically-derived domain theories, similar to the 
strategies used by de Koning et al. (2000) to diagnose 
misconceptions in student models.  Finally, we plan to 
explore a broader range of domain pairs, including domains 
which are quite distant such as those found in system 
dynamics (Olsen 1966). 
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