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THE SECOND NAIVE PHYSICS MANIFESTO

Patrick J. Hayes

@. PREFACE

Five years ago I wrote a paper, "The Naive Physics Manifesto"™,
complaining about AI's emphasis on toy worlds and urgirng the
field to put away childish things by building large-scale
formalisations, suggesting in particular that a suitable initial
project would be a formalisation of our knowledge of the everyday
physical world: of naive physics (NP). At that time, I felt
rather alone in making such a suggestion (which is why the paper
had such a proselytizing tone) and quite optimistic that success
in even this ambitious a project could be achieved in a
reasonable time scale. As this volume testifies, both feelings
are no longer appropriate. There is a lot of work going on, and
there is more to be done than I had forseen. A whole layer of
professionalism has emerged, for example, in the business of
finding out just what people's intuitive ideas are about such
matters as falling rocks or evaporating liquids, a matter I had
relegated to disciplined introspection. 1In 1978, I predicted
that the overall task was an order of magnitude (but not ten
orders of magnitude) more difficult than any that had been under-
taken so far. I now think that two or three orders of magnitude
is a better estimate. It's still not impossible, though.

My o©0ld paper now seems dated and, in places,
inappropriately naive on some deep issues. The following is a
revised version which attempts to correct some of these

shortcomings,and repeats the points which need repeating because



nobody seems to have taken any notice of them.

1f, dear reader, you have seen the original, please under-
stand that this is a revised version of that, not a sequel to it.
And since several years have passed, some of the passion of the

original may have gone, being replaced (I hope) with more careful

discussion.

1. INTRODUCTION

Artificial Intelligence is full of 'toy problems': small,
artificial axiomatisations or puzzles designed to exercise the
talents of various problem-solving programs or representational
languages or systems. The subject badly needs some non-toy
worlds to experiment with. In other areas of Cognitive Science,
also, there is a need to consider the organization of knowledge
on a larger scale than is currently done, if only because
guantitatively different mental models may well be qualitatively
different.

In this document I propose the construction of a
formalisation of a sizable portion of common-sense knowledge
about the everyday physical world: about objects, shape, space,
movement, substances (solids and liquids), time, etc. Such a
formalisation could, for example, be a collection of assertions
in a first-order 1logical formalism, or a collection of KRL
units, or a microplanner program, or one of a number of other
things, or even a mixture of several. It should have the
following characteristics.

(1) Breadth. It should cover the whole range of everyday

physical phenomena: not just the blocks world, for example.



Since in some important sense the world (even the everyday world)
is infinitely rich in possible phenomena, this will never be
perfect. Nevertheless, we should try to fill in all the major
holes, or at least identify them.

It should be reasonably detailed. For example, such aspects
of a block in a block-world as shape, material, weight, rigidity
and surface texture should be available as concepts in a blocks-
wu%d description, as well as support relationships.

'(ii] Density. The ratio of facts to concepts needs to be
fairly high. Put another way: the units have to have lots of
slots., Low-density formalisations are in some sense trivial:
they fail to say enough about the concepts they mention to pin
down the meaning of their symbols at all precisely. Sometimes,
for special purposes, as for example in foundational studies,
this can be an advantage: but not for us.

(iii) Uniformity. There should be a common formal framework

(language, system, etc.) for the whole formalisation, so that the
inferential connections between the different parts (axioms,
frames,...) can be clearly seen, and divisions into
subformalisations are not prejudged by deciding to use one
formalism for one area and a different one for a different area.
I (still) believe that a formalisation of naive physics with
these properties can be constructed within a reasonable time-
scale. The reasons for such optimism are explained later. It is
important however to clearly distinguish this proposal from some
others with which it may be confused, because some of these seem

to be far less tractable.



2. WHAT THE PROPOSAL ISN'T

(a) It is not proposed to make a computer program which can
'use' the formalism in some sense. For example, a problem-
solving program, or a natural language comprehension system
with the representatinn-as target. It is tempting to make such
demonstrations from time to time. (They impress people; and it
is satisfying to have actually made something which work, like
building model railways; and one's students can get Ph.D.'s that
way.) But they divert attention from the main goal. In fact, I
believe they have several more dangerous effects. 1k .is
perilously easy to conclude that, because one has a program which
works (in some sense), its representation of its knowledge must
be more or less correct (in some sense). MNow this is true, in
some sense. But a representation may be adequate to support a
limited kind of inference, and completely unable to be extended
to support a slightly more general kind of behavior. It may be
wholly limited by scale factors, and therefore tell us nothing
about thinking about realistically complicated worlds. Images as
internal pictures and the STRIPS representation of actions by add
and delete lists are two good examples. I suspect that the use
of state variables to represent time is another. Such
representational devices are traps, tempting the unwary into dead
ends where they struggle to overcome insurmountable difficulties,
difficulties generated by the representation itself. I now
believe, although I know this view is very controversial, that
the famous frame problem is such a difficulty: an apparently

deep problem which is largely artifact.



I emphasize this point because there is still a prevailing
attitude in AI that research which does not result fairly quickly
in a working program of some kind is somehow useless or, at
least, highly suspicious. Of course implementability is the
ultimate test of the validity of ideas in AI, and I do not mean
to argue against this. But we must not be too hasty.

This is no more than a reiteration of John McCarthy's
emphasis, since the inception of AI as a subject, on the import-
ance of representational issues (McCarthy 1957, McCarthy & Hayes
1969). 1In 1969, McCarthy proposed the "Missouri Program", which
would make no inferences of its own but be willing to check
proposed arguments submitted to it: a proof checker for common
sense. Those who find it repugnant to be told to ignore
programming considerations may find it more congenial to be urged
to imagine the project of building a proof checker for naive
physics.

(b) It is not proposed to develop a new formalism or
language to write down all this knowIedge in. In fact, I propose
(as my friends will have already guessed) that first-order logic
is a suitable basic vehicle for representation. However, let me
at once qualify this.

I have no particular brief for the usual syntax of first-
order logic. Personally I find it agreeable: but if someone
likes to write at all out in KRL, or semantic networks of one

sort or another, or OMEGA, or KRYPTON, or what have you; well,

that's fine. The important point is that one knows what at

means: that the formalism has a clear interpretation (I avoid

the word 's*m*nt*cs' deliberately). At the level of interpreta-



tion, there is little to choose between any of these, and most
are strictly weaker than predicate calculus, which also has the
advantage of a clear, explicit model theory, and a well-
understood proof theory.

I have pointed out elsewhere (Hayes 1977, 1978) that
virtually all known representational schemes are equivalent to
first-order logic (with one or two notable exceptions, primarily
to do with nonmonotonic reasoning). This is still true in 1983,
but I should perhaps emphasise that care is needed in making
comparisons. First, in claiming equivalence, one is speaking of.
representational (expressive) power, not computational
efficiency. Given a simple "dumb" interpreter (i.e. a "uniform"
theorem-prover), these may be at odds with one another. The
moral is that simple, dumb interpreters are a bad idea, and
interpreters should be sensitive to 'control' information, meta-.
information about the inferential process itself. This idea
brings its own representational problems. I am not arguing that
these should be ignored. On the contrary, they raise some of the
most important questions in AI. But until we have some idea of
the sorts of inferences we might want to control, speculation on
the matter is premature. Second, in making comparisons between
systems one must exercise care. Many "computational" systems
have invisible, buried, assumptions about their domain, not ex-
plicitly documented in publications, which must be rendered
explicit in a logical axiomatization.l Third, the use of logic
imposes almost no restrictions on the kinds of thing about which

we wish to speak: segquences of actions or views of a room or



plans or goals, etc,, are all perfectly fine candidates. One
must not let lack of imagination in axiomatising lead one to
conclude that logical formalisms are weaker than some of the more
superficially baroque systems which AI has devised. (In
particular, first-order logic can be taken to quantify over some
properties, functions and relations and still be essentially
first-order., What makes it higher-order is when its gquantifiers
have to range over Ellz properties, functions and relations, a
condition which cannot be enforced without something like a rule
of * -abstraction or a comprehension schema.)

Finally, let me emphasize that idiosyncratic notations may
sometimes be useful for idiosyncratic subtheories. For example,
in sketching an axiomatic theory of fluids (this volume) I found
it useful to think of the possible physical states of fluids as
being essentially states of a finite-state machine. This
summarizes a whole lot of lengthy, and rather clumsy, first-order
axioms into one neat diagram. Still, it means the same as the
axioms: first-order logic is still, as it were, the reference
language., It is essential that there be some standard reference
language in this way, so that the different parts of the
formalism can be related to one another.

(c) It is not proposed to find a philosophically exciting
reduction of all ordinary concepts to some special collection of
concepts (such as sets, or Goodmanesque "individuals", or space-
time points, or gqualia.) Maybe some such reduction will
eventually turn out to be possible. I think it extremely
unlikely and not especially desirable, but whether or not it is,

is not the present issue. First we need to formalise the naive



worldview, using whatever concepts seem best suited to that
purpose -- thousands or tens of thousands of them if necessary.
Afterwards we can try to impose some a priori ontological scheme
upon it. But until we have the basic theory articulated, we
don't know what our subject matter is.

Now, this is not to say that we should not exercise some
care in avoiding unnecessary proliferation of axioms, or some
aesthetic sensibility in designing axioms to give clean proofs
and to interact as elegantly as possible. But these are matters

of general scientific style, not ends in themselves.



3. THEORIES, TOKENS AND CLOSURE

Let us imagine that a NP formalisation exists. It consists
of a large number of assertions (or: frames, scripts, networks,
etc.) involving a large number of relation, function and constant
symbols (cr: frame headers, slot names, node and arc lzbels,
etc.. From now on I will not bother to reemphasise these obvious
parallels). For neutral words, let us call these formal symbols
tokens, and the collection of axioms the theory (in the sense of
'formal theory' in logic, not 'scientific theory' in history of
science).

The success of a NP theory is measured by the extent to
which it provides a vocabulary of tokens which allow a wide range
of intuitive concepts to be expressed, and to which it then
supports conclusions mirroring those which we find correct or
reasonable, People know, for example, that 1f a stone is re-
leased, it falls with increasing speed until it hits something,
and there is then an impact, which can cause damage if the
velocity is high. The theory should provide tokens allowing one
to express the concept of releasing a stone in space. And it
should then be possible to infer from the theory that it will
fall, etc.,: so there must be tokens enabling one to express
ideas of velocity, direction, impact, and so on. BAnd then these
same tokens must be usable in describing other kinds of circum-
stance, and the theory draw the appropriate conclusions there,
and so on. We want the overall pattern of conseguences produced

by the theory to correspond reasonably faithfully to our own
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intuition in both breadth and detail. Given the hypothesis that
our own intuition is itself realised as a theory of this kind
inside our heads, the NP theory we construct will then be
equipotent with this inner theory.

More subtle tests than mere matching against intuition might
be.applied to an NP theory. Consegquences which are very obvious
should have shorter derivations then those which regquire some
thought, perhaps. 1If in proving p from g the theory must make
use of some concept token, perhaps psychologists can devise an
experiment in which the "activation™ of that concept can be
tested for, while people are deciding whether or not g, given p.
Pylyshyn ( 1979) discusses ways in which intermediate
psychological states might be investigated: I will not discuss
them further here, but focﬁs instead on questions connected with
getting a theory constructed in the first place.

The practical task of building such a theory begins with
some 'target' concepts and desired inferences. Take the familiar
example of formalising a world of cubical wooden blocks on a flat
table, with the goal of being able to reason about processes of
piling these into vertical stacks and rearranging such piles by
moving blocks from place to place: the familiar "blocks world".
Notice that we have put quite a constraint on what inferences we
are interested in. An actual tabletop of blocks admits of many
more interesting and complicated activities; building walls and
pyramids, pushing blocks around horizontally, juggling, etc., but
we deliberately exclude such matters from consideration for now.

I will go through this toy world in detail, in order to

illustrate some general points. It is not intended as a serious
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exercise in Naive Physics. First, we obviously need the concept
of block (a predicate Block(b)), and there will be several states
of the little universe as things are moved, so we also need that
concept (State(s)). A block will be on some other block or on
the table in every state (On(b,c,s), and the name table): four

tokens so far, and now we can write some axioms, such as:

#
(i) V’E-E State(s) & Block(b): T
(Je. Block(c) & On(b,c,s)) \/ On(b,table,s)

(We could have done it differently: for example, a function
below(b,s) instead of the relationm On, so that On(b,c,s)
translates into below(b,s) = c. Or a function above(b,s), with
the obvious meaning, and a constant, air, so that above(b,s) =
air corresponds to:“Tagy on(c,b,s), and being careful never to
apply above to the table. We could, have decided not to use
states at all, but to have thought of each block as having a
temporal history. No doubt other variations are possible, 1In
the future, I will -- to save paper and to improve readability --
omit such antecedents as Block(b) and State(s) from formulae. It
is straightforward to enrich the logic to a many-sorted logic in
which this omission is syntactically normal. The concepts are
there, though, and need inferential machinery of one kind or
another, so they should be shown in the "reference language™.)
Now, to describe change we need the idea of a state-
transition. There are several ways to do this. We could have a

relation Next(s,t) between states, for example, or a function

next(s), corresponding to the intuitive feeling that one moment
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follows another, and there is always a unique next thing that
will in fact happen (que sera, sera). Or we might say that,
since we are talking about actions, and there are usually several
things one might do in a given situation, so there are several
different next-states. - This leads to McCarthy's idea -- now
standard -- of actions as state-to-state functions. We might
have actions pickup(b,s) and putdown(b,s), for example. The
result of picking up b is a state in which b is no longer on

anything but rather is held in the hand:

(ii) Held(b,pickup(b))

(iii) Held(b,s) 2 \Jx .7 on(b,x,s)

We must now modify (i) by adding Held(b,s) as a third
possibility. The result of putdowning on b is that whatever is
held gets to rest on b; provided of course there is nothing there

already. To make this neater, let's define Clear:
(iv) Clear(x,s) ~. Vc-"l On(c,x,s) \/ x=table
Then we can say:

(v) Held(b,s) & Clear(g,s) = On(b,c,putdoun(c,s))

(This still doesn't explain what putdown(c,s) is like if nothing
is Held in s. We might decide there are two sorts of states.,
those in which the hand is holding something and those in which
it is empty, and insist that putdown applies only to the former.

Or we might just say that: 't

(vi) [\in. THeld{E,E]} =) putdown(c,s) = s )
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We can now begin to see how the desired kinds of conclusion
might follow. If we know that A is on C on the table and B is on
the table and A and C are clear, then we can infer from (ii) that
after a suitable pickup, A is held. Unfortumnately, we can't
conclude that B is still clear: C may have jumped onto it, as
fgf as our axioms are concerned. (Consider a world of jumping
hlﬁcks, or stackable frogs, in which every time one is lifted,
thé ane-beneath hops onto a different block. This is a possible
world, and all five of the axioms are true in it. So, nothing
that they say rules this possibility out.) This is a tiny
illustration of the notorious frame problem (McCarthy & Hayes
1969). We need to say that during a pickup of a block b, no
other On relations change.

Now, for the first time, we don't need to introduce any new
tokens. We have a rich enough vocabulary at hand to state our

axiom:

(vii) on(bsc,s) = Y. on(b,c.pickup(d,s))y bea

Here, is exclusive-or, so that if b is not 4, then On(b,c)
must still be true in pickup(d,s); and we are sure that
'TrEEfE'EfEiCk“EfErE]] under any circumstances. Notice that the
block picked up might itself carry others, and they go right
along with it.

Given (vii), we can quickly conclude that B is still clear
and still on the table), so we can now putdown onto it and have
a state in which A is on B -- no longer clear, by (iv) -- and C
is clear...well, not quite, since putting down might yet disturb

things. But we can fix this with an even simpler frame axiom:
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(viii) on(b,c,s)"_ On(b,c,putdown(d,s))

and we can now discuss states reached by picking up and puttiné
down things all over the place, as we desired. Given a
sufficiently complete description of a layout of blocks, and a
goal of some other configuration, then if there is a sequence of
block movements which get us from the former to the latter, then
this theory will show that there is.

For some time now we have not needed to introduce any other
tokens. We can do the changes by adding or modifying axioms,
working entirely in the given vocabulary. This collection of

tokens: (block, table, state, on, held, pickup, putdown), is

enough to work with. Alternative worlds can be constructed
within it. It is a large enough collection to support axioms
describing general properties of the universe we have in mind;
and descriptions of particular worlds in enough detail to allow
the sorts of conclusion we wanted to be inferred. No subset will
do the job, as we have seen: 3> but this is just enough to let us
say what needs saying. We have reached what might be called a

conceptual closure. This phenomenon is familiar to anyone who

has tried to axiomatise or formalise some area. Having chosen
one's concepts to start on, one quickly needs to introduce tokens
for others ﬁne had not contemplated, and the axioms which pin
down their meanings introduce others, and so on: until one finds
suddenly there are enough tokens around that it is easy to say
enough "about" them all: enough, that is, to enable the

inferences one had had in mind all along to be made.
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This sort of ciosure is by no means trivial. Suppose we
had tried to use next(s), following the idea that world-states
are, after all, linearly ordered; then it becomes quite hard to
achieve. We can say that a block may stay where it is, or become

picked up:

(ix) On(b,c,s) & Vz-‘rﬂe_lélir&}- =

and we can insist that only one is held at once:
(x) Held(b,s) & Held(c,s) O b=c
But putting down is more difficult. If we say

(xi) Held(b,s) & Clear{E,E}:)D_n{b,c,next{s}]

then the held block has been put down into every clear space.
We want to say that the held block is put down in one of

the potential putdown sites:

(xii) Heldtg,g}:) .:ig. Clear(c,s) & On(b,c,next(s))

— o — —

But we now have no way of inferring that the held block can
actually be placed in any particular clear place. This axiom is
cu&;istent with a world in which blocks can be placed only on the
taﬁle, for example, or in which blocks are always released from
onrhigh and falleth gently upon some random stack or other.
There is no way within this vocabulary to describe one possible
fﬁture state's properties as distinct from those of a different

possible future state., We have no way of stating the properties

we pneed: closure eludes us. It can be achieved, but only by
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bringing possible futures in by the back door.

Our theory, though closed, is by no means perfect. As
stated, it can support all the inferences we had in mind.
Unfortunately, it can also support some others which we didn't
have in mind. For example, nothing in the axioms so far prevents
two successive pickups, giving a handful of blocks (or, somewhat
less plausibly, a handful of towers of blocks). This would be
fine, except that (v) has it that anything held is deposited by a
putdown, thus leaving several blocks on one: but they were
supposed to be all the same size. The neatest way to fix this is

to modify (ii), say as follows:

(xiii) (VE-‘T Held(x,s)) O Held(b,pickup(b,s))

We can also insist that only single blocks are picked up by
adding Clear(b,s) as another antecedent condition. Again: if a
block is Clear, then we can pick it up -- its still Clear -- and
put it down on itself: there's nothing in (v) to prevent this.
(Consider a zero-gravity world in which blocks can be released in
space, and they then just hang there: and say that in this case
the block is On itself. Clearly all the axioms are satisfied in
this world too.) So to rule this out we need another axiom, and
to modify (v) slightly. Finding other such bugs is left as an
exercise for the reader.

It is important to bear such negative properties of a
formalisation in mind even though they make the formaliser's life

more complex. It is easy to overlook them.
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4. MEANINGS, THEORIES AND MODEL THEORY

In developing this toy theory I have several times used an
example world to show that something we wanted to follow didn't,
or that something we didn't want to be true might be. This
ability to interpret our axioms in a possible world, see what
they say and whether it is true or not, is so useful that 1
cagnot imagine proceeding without it. But it is only possible if
there is an idea of a model of the formal language in which the
thénry is written: a systematic notion of what a possible world
is and how the tokens of the theory can be mapped into entities
(or structures or values or whatever) in such worlds. We have to
be able to imagine what our tokens might mean.

Now this semantic metatheory may be relatively informal, but
the more exactly it is defined, the more useful it will be as a
tool for the theory-builder. The main attraction of formal
logics as representational languages is that they have very
precise model theories, and the main attraction of first-order
logic is that it s model theory is so simple, so widely
applicable, and yet so powerful.

A first-order model is a set of entities and suitable
maépings from tokens to functions and relations, of appropriate
arity, over it 4 Any collection of things will do: for example,
for our blocks world, I could take the collection of papers on my
desk, and interpret On to be the relation which holds between two
pieces of paper when one partially or wholly overlaps the other,
and pickup to be the action of picking up, and so on. (In fact,

this isn't a model, because my desk is too crowded: axiom (v) is
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false. But it would be if I tidied my desk up.)

This is very satisfying, since we have found a model which
is very close to the original intuition. But there are other
models. Consider a table and a single block and the two states,
one -- call it A -- with the block on the table, and the other --
call it B -- with the block held above the table. Let pickup and
putdown denote the functions (A - B,B + B) and (B - A,A + A)
respectively, let Held be true just of the block in state B, and
let On be true just of the block and the table in state A. All
the axioms are true, so this is a possible world. This one is
much simpler than my desk, and its existence shows that the
axioms really say rather less than one might have thought they
did: specifically, they say nothing about how many blocks or
states there are, or about the direction of time's arrow.

One can find other very simple models, for example models
made of dots being moved on a screen -- so the theory says
nothing about the 3-dimensionality of the world.

This illustrates how the existence of a model theory for our
formal language is not just a methodological convenience. It
tells us what our formalisations mean and hence, what they don't
mean. We may think that we have captured some concept in a
theory, but unless the theory is sufficiently rich to guarantee
that all its models reveal the kind of structure we had in mind,

then we are deluded: a token of a theory means no more than it

means in the simplest model of the theory.

Returning to methodology for a moment, a crucial property of
this way of characterising meaning is that it transcends

syntactic and operational variations. A given theory might be
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realised operationally in innumerable ways. Even ignoring
heuristic 'control' issues, - we have such variations as natural
deduction rules, or semantic tableaux or Hilbert-style
axiomatisations. We can make the theory look like a semantic
network or a collection of frames or MOPS or any one of
innumerable other variations. None of these variations will give
the theory an ounce more expressive power. None of them could
ever make good a representational inadequacy of the theory. It
is easy to lose sight of this basic and uncomfortable truth.
Thinking model-theoretically helps us to keep it in mind.

It also gives us a powerful theoretical toel. I mentioned
earlier that defined concept tokens, such as Clear, added no real
expressiveness to a theory. This seems kind of intuitive once it
is pointed out, but it has a quite conclusive model-theoretic
statement (Beth's definability theorem) which completely
settles the matter, and frees up time for more productive
discussions.

An objection to the idea of models goes as follows. Any
particular formalisation or implementation consists entirely of
the expressions and the inference rules or procedures which
manipulate them, The idea of a model, and the mappings which
relate expressions to denotations, etc., are just metatheorists
ideas, imposed from without. But we could have a different model
theory for the same formal language, and declare that this seman-
tic theory assigned meanings to the furmai symbols. (E.g., see D.
Israel, this volume.,) And who is to say which of the many

possible semantic theories is the right one?
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But the relationship between a model theory and the (purely
formal) inference rules or procedures attached to the formal
language is not arbitrary in this way. Each model theory
sanctions certain inferences (the ones that preserve truth in
those models) and not others. And, sometimes, we also get the
converse, viz., iIf some assertion is time in all those models,
then the rules will indeed eventually declare it so. This .is the
content of the completeness theorem for a formal language. We
should treasure completeness theorems: they are rare and
beautiful things. Without them, we have no good justification
for our claims that we know how our theories say what we claim
they say about the worlds we want them to describe. To emphasise
this, consider enriching the formal language by introducing a new
kind of symbol, say a quantifier M which I claim means 'most' so
that MxP(x) means P is true of most things. 1I can easily give a
model theory: MxP(x) is true in a model just when P is true of
more than half the universe (with a little more subtlety for
infinite domains, but let that pass). I can claim this, but the
claim is premature until I can describe some mechanism of
inference which captures that interpretation, generating all the
inferences which it justifies and none which it refutes. And
this might be difficult. For some model theories we know it is
impossible.

A model theory can determine the actual meaning of the
logical symbols of the formal language, but it does not determine
the actual meaning of the tokens. The only way to do that is by
restricting the set of possible models of the theroy, for example

by adding axioms. All we can say of a token is that in this model
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it means this, in that one it means that. There is no single
'meaning' of a formal token (unless there is only a single
model): we cannot point to something and say, that is the
meaning.

We might restate the goal of building a formal theory as
being that of ensuring that all the models of the theory are
recognisable as the kind of possible world we were trying to
describe, so that in each one, each token denotes what it should.
But this notion of meaning raises a wellknnwﬁ philosophical
spectre, a second objection to a model-theoretic view of
meaning. For no model theory can specify what kinds of entity
constitute the universes of its models. It refers only to the
presence of functions and relations defined over a set, not to
what the set is a set of. And we could always make our universes
out of entirely unsuitable things, in particular the tokens
themselves.

Suppose we have a 'suitable' model of a theory. Make a
ghost model as follows. Let each name denote itself. Every
token which should denote an oéﬂration on things, interpret it
rather as an operation on the names of things, whose result is
the expression which would have referred to the thing got by
performing the operation on the things named, so that for
example a unary function symbol f denotes the function on
E;pressinns which takes the expression 'e' to the expression
'f(e)', 'g(h(a))' to "f(g(h(a)))', and so on. And interpret each
relation symbol as that relation on expressions which is true

when the relation is true of the thing named by the expressions
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in the 'suitable' model: so that P denotes the predicate which
is true of the symbol 'a' just if 'P(a)' is true in the first
model. 1In general, whenever you need to decide a question of
fact, go and check in the 'suitable' model to see what its facts
are, and use those,

. There is one of these ghostly (Herbrand) models for every
model, and it makes exactly the same axioms true. So there could
be no way of adding axioms (or frames or scripts or demons or
MOPS or anything else, just to re-emphasize the point) which
could ensure that all a theory is talking about might not be its
own symbols.

This is an important point, considered as a criticism of a
theory of meaning. 1Indeed, no formal operations, no matter how
complex, can ever ensure that tokens denote any particular kinds
of entity. There are, I think, three ways in which tokens can be
attached to their denotations more rigidly (so to speak). One;
if the token is itself in a metatheory of some internal part
of the theory, then the connection can simply be directly made by
internal, formal, manipulations. Formally, these are "reflection
principles™, or rules of translation between a language and its
metalanguage.

Two; if the theory is in a creature with a body -- a robot,
like us -- then some of the tokens can be attached to sensory and
motor systems so that the truth of some propositions containing
them is kept in correspondence to the way the real world actually
is. These tokens -- they might include the concept of vertical
connected to the inner ear, and those of a whole intricate theory

of lighting and surfaces and geometry and texture and movement
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connected with visual perception, and a whole other collection
associated with proprioceptive awareness of the body's position
in space -- have a special status. We might say that the body's
sensorimotor apparatus was the model theory of this part of the
internal formalisation.

Three, tokens could be attached to the world thkrough
language. Again, let the theory be built into a physical
computer, one without senses, but with a natural-language
comprehension and production system. The tokens of the internql
theory are now related to English words in the way we expect, so
that the deep semantic meaning of a sentence is a collection of
axiomatic statements in the formalism. Such a system could talk
about things to other language-users and could come to learn
facts about an external world by communicating with them.
Assuming that their beliefs and conversations really were about
things -- that they managed to actually refer to external
entities -- then I think we would have no reason to refuse the
same honor to the conversing system.

These matters require and deserve fuller discussion
elsewhere. But I suggest that for the purposes of developing a
naive physics, this whole issue can be safely ignored. We can
take out a promissory loan on real meanings. One way or another,
parts of our growing formalisation will have eventually to be
attached to external worlds through senses or language or maybe
some other way, and ghost models will be excluded. We must go
ahead trying to formalise our intuitive world; paying attention

indeed to the complexity and structural suitability of our
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models, but not worrying about what sort of stuff they are made
from.

We have then to be ready to repay the loan, by looking out
for areas of axiomatisation where the tokens might be attachable
to perceptual or motor or linguistic systems. For example, ideas
connected with time must make Qome contact with our internal

'clocks' of various sorts. Much of our inituitive knowledge of

force and movement comes from what it feels like when we push,
pull, 1lift and move. Much of our knowledge of 3-space is

connected with how things look; and so on.
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5. DISCOVERING INTUITIONS AND BUILDING THEORIES

We have been assuming all along that we are able to
interpret tokens of the theory in intuitive terms. But this
assumes that we can identify our own intuitive concepts
sufficiently clearly to assign them to tokens. In practice,
building axiomatic theories is in large part an exploration and
clarification of our own intuitions. Just as professional
grammarians tend to acquire an astonishingly acute sense of
exactly which syntactic constructions are acceptable to a native
speaker, so naive physicists will need to develop an acute sense
of intuitive reasonableness of descriptions of the everyday
physical world. It is not at all an easy thing to do.

Consider the earlier toy blocks-world example. It might be
argued that here is a small theory with complete conceptual
closure. But it is closed only with respect to the very limited
range of inferences we required initially; this is exactly what
makes it a toy theory. Try to expand it to deal with our own
ideas of putting things on things. We have the token On: what
exactly did that mean? It had a component of pure geometry,
referring to the spatial arrangement of the blocks. It also
seemed to have some idea of support contained within it: if a is
on B, then B is holding A up; B is the reason why A isn't
falling, it is bearing A's weight. Now these are very different
ideas. For example, the geometric On is asymmetrical (nmothing is
on anything which is on it -- although it doesn't seem that this

should be an axiom so much as a consequence of some more basic
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spatial theory), but the support On can be, e.g., two long blocks
leaning on one another. They come together here in that the
geometric On implies the support On, because blocks are rigid and
strong, so they will bear weight without deforming or breaking.
And this is because the stuff they are made of has these
properties. To emphasize the separateness of these two ideas,
imagine the alternative possible world with no gravity. The
geometry is unchanged, but the 'support' idea is absent. 5o they
must have distinct subtheories.

Both concepts are linked to clusters of others which we have
not yet begun to formalize. The experience of doing so may well
sharpen our sense of what the concept is, perhaps separating it
out further into several slightly (or very) different ideas, each
requiring its own axiomatic connections to the rest of the
theory.

We have taken a proposed concept and seen it as a blend of
two distinct components. As well as this analytic "division" of
concepts there is what we might call a process of "broadening®;
extending the range of a concept, trying it out in other areas
where it seems natural. For example, imagine four blocks
arranged in a compact square on the table, with adjacent faces in
contact (the very fact that you can do that says a lot about the
richness of the spatial-geometry part of our internal theories)
and place a fifth block neatly on top, in the center. What is
this block on? We might say on each of the other blocks, but
this is a very different notion (e.g. pick up one of the lower
blocks). Perhaps it is on the set of the four blocks ... but #

set hardly seems the kind of thing that can bear weight, and
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anyway only some sets will work. Perhaps we should abandon the
notion of on altogether in this case in favor of some other, more
subtle, relationship between the blocks. But it seems intuitively
clear that the top block is on something, in much the same way
tﬁat it could be on one block. The only reasonable conclusion,
I Eelieve, is that the fifth block is indeed on a (single) thing,
wh;ch is made up of the four other blocks. By arranging them
thﬁs in a compact square, one has created a new object; we might
call it a platform. (If someone points to it and asks; what is
that?, the question is quite intelligible: there is some thing
there. One might of course answer: nothing, its just four
blocks.) So blocks can be on other things than blocks and
tables. Its the same concept, but using it in a different
situation forces a reevalation of what can be said about it.
We need to be able to state some criterion of put-on-ability,
which seems to be having a firm horizontal surface. But now we
have a new concept, that of a surface. This requires more axioms
to relate it to existing concepts, and these in turn introduce
other concepts (edge, side of a surface, direction, adjacency,
contact, the object-surface relation, etc.: see 'liquids', this
volume, for a first attempt at such a list) and these require
more axioms, each typically introducing other concepts, and so
on. Conceptual closure becomes much harder to achieve: perhaps
impossible to achieve completely.

This is what typically happens when one extends the scope of a
concept. Closure is fragile, sensitive to the demands placed on

the theory. Toy theories achieve it only by having very



W r— e —

-

28

restricted demands placed on them. 1In developing naive physics
we expect far more of the theory, forcing it to be larger and
making closure more remote. There is a constant tension between
wanting a closed theory and wanting to pin down the meanings of
tokens as precisely as we can: between closure and breadth. |

| This example illustrates an important and basic fact about
the enterprise of knowledge representation. We want breadth and
density: but you can't have the density without the breadth. 1If
we want the theory to say a lot about a concept, the only way to
do so is to relate that concept to many others. If there are
many axioms in the theory which contain a certain token, there

must ipso facto be many other tokens to which it is axiomatically

related. It is exactly this, being tightly caught in a dense web
of inferential connections to other parts of the theory, which
gives a token meaning, by cutting out unwanted implausible
models. And this is what we want, since the goal of the
axiomatising enterprise 1is to produce a theory from which we
can rapidly draw the many conclusions corresponding to our
intuitions, and this inferential richness goes along with model-
theoretic constraint.

It is easy to find other things wrong with the toy blocks
world: it was always just a toy, in any case, and we will now
abandon it. But its limitations illustrate a serious general
problem of how to get naive physics done.

A completed theory would be huge (a guess: between 164 and
155 tokens). It would be conceptually clnsed,5 but it seems
overwhelmingly likely that no reasonably sized subtheory of it

will be. Such a subtheory would be completely isolated from the
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rest of the theory: the meanings of its tokens would not be
affected by the way in which the other axioms imposed
interpretations on the rest of the tokens.

It seems much more likely (it is in any case the most
conservative assumptinn]'that the whole theory is bound together,
so that the meaning of any token depends on all of the rest of
the theory. But then how can we judge the correctness or
suitability of part of such a theory? Since at any intermediate
stage of theory construction there will be tokens not yet
axiomatised, the process of formalising those concepts may force
changes in their correspondence to intuition and these changes
might require our earlier partial theories to be rewritten. The
toy blocks world's concepts came apart and its axioms became
inappropriate to thenew meanings, when we divided it into
separate geometric and physical components, for example. Anyone
who has tried to expand the scope of an existing representation
will recognize the problem, but the methodology being urged here
seems. to preclude all the usual solutions.

One response is to proceed by enlarging the toy problems.
On this approach we will work on progressively more ambitious
subtheories, but always with a clear boundary on the kinds of
inferences which the theory is expected to support. This
approach is however very dangerous, since it can get caught in
conceptual traps, as noted earlier. A technique might work well
in a limited domain, and be applicable - with increasing
difficulty - to a wider and wider range of ﬁhenonena, but be

ultimately wrong. It is perilously easy to go on putting off
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consideration of the examples which clearly demonstrate its
futility: one always plans to get to those later. Our toy blocks
world embodies several such errors, notably the use of state -
state functions to denote actions (completely unusable when
several things are happening at once: see Section 6 below).

Another response is to search for a small kernel theory of
basic concepts, to which all others can be reduced by suitable
definitions. Put another way: suppose we had a finished naive
physics and eliminated all tokens which were explicitly defined
in terms of others (as clear was in the blocks world), kept on
doing this to the limit, and looked at what was left. This
reduced theory must be conceptually closed, since the original
one was: call it the kernel. Now, perhaps this is a smallish
theory ( less than a thousand tokens) so that to get it all done
would be a feasible project. Filling in the rest can then be
done piecemeal as needed, since adding definitions of new tokens
does not affect the meanings of the old tokens; there can be no
forced revision of the kernel axiomatization. This is the
"semantic primitives" idea exemplified in the work of R. Schank
and Y. Wilks.

It is worth pointing out that such a small kernel theory
supporting a much larger theory by means of mere definitions does
exist. It is axiomatic set theory, and it supports virtually the
whole of pure mathematics. We have had 60 years to get used to
the idea, but it is incredible that such an audacious program
should have so nearly succeeded: a tiny theory (2 tokens and
perhaps 8 axioms: details vary) enables one to define a large

number of mathematical concepts, and then provides enough
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inferential power that the properties of these things follows
from their definitions. The induction principle for the
integers, for example, is not an axiom, but a theorem whose truth
can be established within set theory.

Maybe such a small kernel can be found for our conceptual
theory, but I very much doubt it., It seems a priori implausible
that our knowledge of the rich variety of the everyday world

a4

could be merely a collection of lemmas to some small set of
cn;cepts, And there is a more technical objection, borne out by
experience with schemes of scientific primitives. To pin down a
concept exactly requires a rich theory and hence a large theory:
exactness entails density which entails breadth, as we noted
earlier. It follows that a small theory which is conceptually
closed and yet has a wide scope cannot be detailed. The concepts
it discusses must be at a high level of generality not very
tightly constrained by the theory. But then, if all else we
have are definitions, we will never be able to get at the
details. As Wilks (197) says, no representation in terms of
primitives can be expected to be able to distinguish between
hammers, mallets and axes. But we must, somehow.

A third response, less idealistic but I think inevitable, is
tﬂfaccept the problem as real and find ways to live with it. We
mugt build theories which are only partially closed. Some tokens
will not yet have their meanings axiomatically specified: they
will represent Airections for future investigation. We will,
indeed, always be in danger of having later theory construction

come back and force an alteration in our present work, perhaps
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scrapping it entirely. The best we can hope for is to develop a
good sense of style and scope in choosing groups of concepts and
in formulating their subtheories.

Breadth seems to be crucial. If a concept makes intuitive
sense in a wide variety of circumstances, but its candidate
theory somehow presuppﬁses a more limited framework, then
something is wrong. Either the concept has several parts or
cases, one of which is provisionally captured by the theory: or,
more likely, the theory is limited by some inappropriate
restriction (e.g. that blocks can be put only on other blocks)
and needs to be recast in different terms. Applying this breadth
criterion as a heuristic gquide when building theories is what
most clearly distinguishes this from the toy-worlds approach.
Sometimes one has to accept a limitation for no better reason
than that one can see no way to make progress without it, but
this is to be resisted, rather than taken as a guiding
principle.ﬁ

So far, I have assumed that concepts have been initially
identified by no more than careful introspection. Other more
objective and disciplined ways are also available. Detailed
examination of the meanings of English spatial prepositions
(Herskowitz 198...) provides many clues. Driving introspection
deeper by sensitive interviews (Gentner 1983) can uncover the
outlines of whole inner theories. Showing subjects simplified
physical situations (or tricking them with excruciatingly
realistic ones: Howard) and finding their intuitive predictions

can clearly reveal centrally important concepts (such as

"impetus" (McCluckey 1983)).
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Many parts of the psychological and linguistic literature
are ripe with clues. But one has to exercise great care. It is
very difficult to make a direct connection between any aspect of
overt behavior and any small part of the conceptual theory, if
the present account is anything like correct. Single concepts
wgll not usually emerge ss English words, for example. HNatural
l;nguage is for communication, the internal language of thought
is for thinking - in our model, inference-making in a highly
parallel computer. These are vastly different requirements and
so the languages can be expected to be very different. A
communication language must be compact (since it has to be
encoded as a time sequence, and time is short) but it can afford
to be highly context sensitive in the way it encodes meaning
(since the recipient is a powerful processor and shares a great
deal of the context): neither applies to the internal language.

A word like "in" seems to expand into a whole complex of
ideas when examined in detail: we must attempt to build a
coherent formal theory of these before making judgements about
the appropriateness or otherwise of the expansion, since tokens
in isolation are meaningless (and they can seem to be meaningful:

sée McDermott 198),
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6. CLUSTERS

Concepts will not be evenly spread throughout a theory.
Some groups of concept-tokens will have many tight axiomatic
connections within the group, relatively few outside. Think of
a graph with tokens as nodes, linked by an arc if there is an
axiom containing both of them: call it the axiom-concept (a-c)
graph. Then this graph, while connected, will have some areas
more densely connected than others. Call such a collection a
cluster. Our job as theory-builders is made easier if we can
identify clusters: these are as close as one can get to isolated
subtheories.

Identifying clusters is both one of the most important and
one of the most difficult methodological tasks in developing a
naive physics. 1 think that several serious mistakes have been
made in the past here. For example, causality is, I now tend to
think, not a cluster: there is no usefui, more-or-less self-
contained theory of causality. 'Causality' is a word for what
happens when other things happen, and what happens, depends on
circumstances. If there is liquid around, for example, things
will often happen very differently from when everything is nice
and dry. What happens with liguids, however, is part of the
liguids cluster, not part of some theory of 'what-happens-when'.
This is not to say that the concept of causality is useless, but
that it is an umbrella term for a large variety of particular
relationships, each of which has its own detailed cluster of
supporting theory, and its meaning is parasitic on theirs. If

all you know is that A caused B, about all you can conclude is
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that A was before B.

Mistakes like this are hard to overcome, since a large
conceptual structure can be entered anywhere. The symptom of
having got it wrong is that it seems hard to say anything very
useful about the concepts one has proposed (because one has
enﬁgred the graph at a locally sparse place, rather than
soﬁﬁwhere in a cluster). But this can also be because of having
chdsen one's concepts badly, lack of imagination, or any of
several other reasons. It is easier, fortunately, to recognise
when one is in a cluster: assertions suggest themselves faster
than one can write them down.

A good strategy seems to be to work on clusters more or
less independently at first: the meaning of the tokens in a
cluster is more tightly constrained by the structure of a cluster
than by the links to other clusters. It seems reasonable
therefore to introduce concepts, which occur definitively in some
other cluster, fairly freely, assuming that their meaning is, or
will be, reasonably tightly specified by that other cluster. For
example, in considering liquids, I needed to be able to talk
about volumetric shape: assuming - and, I now claim, reasonably
- that a shape cluster would specify these for me. Of course,
their occurrence in the liquids cluster does alter their meaning:
our.concept of a horizontal surface would hardly be complete if
we  had never seen a large, still body of water - but the
assumption of a fairly autonomous theory of shape still seems
reasonable, at least as a working hypothesis.

The rest of this section discusses some likely clusters and
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some of the difficulties and issues which arise in formalizing

them.

(a) Places and Positions

Consider the following collection of words: inside,
outside, door, portal, .window, gate, way in, way out, wall,
boundary, container, obstacle, barrier, way past, way through,
at, in.

I think these words hint at a cluster of related concepts
which are of fundamental importance to naive physics. This
cluster concerns the dividing up of 3-space in pieces which have
physical boundaries, and the ways in which these pieces of space
can be connected to one another; and how objects, people, events,
and liquids can get from one such place to another.

Thgre are several reasons why I think this cluster is
important. One is merely that it seems so, introspectively.
Another is that these ideas, especially the idea of a way through
and the things that can go wrong with it, seem widespread themes
in folklore and legend, and support many common analogies.
Another is that these ideas have cropped up fairly fregquently in
looking at other clusters, especially liquids and histories (see
below). Another is that they are at the root of some important
mathematics, viz. homotopy theory and homology theory. But the

main reason is that containment limits causality. One of the

main reasons for being in a room is to isolate oneself from
causal influences which are operating outside, or to prevent
those inside the room from leaking out (respectively: to get out
of the rain, to discuss a conspiracy). A good grasp of what kind

of barriers are effective against what kinds of influence seem to
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be a centrally useful talent needed to be able to solve the
'frame problem'.

There is another, closely related idea which could be called
aposition (although the meanings of the English words "place'
and 'position' do not exéctly coincide with the two concepts I am
téying to distinguish). A position is a point within a space
d%fined by some coordinate frame for that space. This need not
nécessarily be a Cartesian frame (in fact, it is rarely so), just
some way of referring to parts of the space (such as the back,
center and front of a stage, or a hotel rﬂﬁm numbering system).
A position is a place you can be at; a place is a place you can
be in. Places always have boundaries, positions usually do not.
[aithaugh the boundary may not be marked by a physical barrier,
it is there, and there is a clear notion of crossing it and
getting into the place. Territorial animals have the same idea.)
A position in a space is essentially pointlike in that space's
coordinate system (i.e. it has no internal structure), but it may
itself be a place, in which case its interior is a new space with
its own coordinate system defining positions within it. The
internal coordinate system need have no relation to the external
one, even when there is no physical boundary. For example, one
can be iﬂ a corner of a room, a place whose orientation is
radially outwards, but the room's natural coordinate system might
be in terms of a back and a front, left and right.

A room in an apartment in an apartment building is a place
which is a position in the interior of a place which is a

position in the interior of a place. To be in the kitchen is to
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be at a position in the apartment (so answers the question:
where are you?), and to be in the city is to be at a position in
the state or country (so also answers the question, iE the space
being discussed is this larger one). This mutual nesting of
places and positions can get very deep.? Notice that if one
place is inside another then it must be a position within the
latter. (After all, it must be somewhere, right?)

To get in or out of a place is to follow a path which must
intersect the boundary. (This is the basic properties of
boundaries). A path must consist of empty space, so if anything
can get in or out, then there must be a part of the boundary of a:
place which is not solid: the door or portal, the way in or out.
It follows that a way to prevent entry or exit is to ensure that
there are no holes in the boundary of a place.

(b) Spaces and Objects

Places and positions are concerned with space in the large,
space to be in. But there is also a collection of concepts to do
with local small-scale space, the space between and around solid
objects. The two interact, if only in that suitable solid
arrangements can define places, by being a boundary. But there
seem to be some concepts and difficulties special to the small
scale.

For naive physics, vertical gravity is a constant fact of
life, so vertical dimensions should be treated differently from
horizontal dimensions: ‘'tall' and 'long' are different concepts.
An object's shape is also often described differently (width and
length; or depth - from the wall - and width or length along the

wall: width if one thinks of the object as being put against the
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wail, length if one thinks of it as running along the wall). 1
suspect - the details have not been worked out - that these
differing collections of concepts arise from the reconciliation
of various coordinate systems. A wall, for example, defines a
natural coordinate systeﬁ with a semi-axis along its normal.

. An important aspect is the relationship of surfaces to
sufids and edges to surfaces. The different names available for
spécial cases indicates the richness of this cluster: top,
bottom, side, rim, edge, lip, front, back, outline, end. Roget's
Thesaurus (class two, section two) supplies hundreds more.
Again, these are not invariant under change of orientation,
especially with respect to the gravity vertical. Such boundary
concepts are also crucial in describing the shape of space, and
are the basis of homology theory and differential gecometry.
Thére is an obvious connection to the notion of place, in that
places have boundaries. LetZ\ be the function which defines the
boundary of any piece of space: then<CEp is the boundary of the
boundary of p. If there is a gap in the boundary, thenzﬁ?p is
the outline of that gap (the door frame, for example). Homology
theory takes it as axiomatic thatzﬁg=ﬁ, and studies the algebraic
properties of triangulations which divide space into discrete
pieces.

Oneconcept which I currently find especially vexing is that
of touching. Intuitively, it seems quite clear. Two bodies can
touch, and when they do, there is no space between them: this
could even be a definition of touching. It is also clear that

they do not (usually) merge together or become attached or
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unified into on object: each retains the integrity of its
bounding surface. And it also seems intuitively clear that the
surface of a solid object is part of the object: the surface of

a ballbearing is a steel surface, for example. And, finally, the

local space we inhabit does seem to be a pseudo metric space (in
the technical sense), i.e. there is a (fairly) clear notion of
distance between two points. Unfortunately, taken together,
these intuitions are incompatible with the basic assumptions of
topology , and it is hard to imagine a more general theory of
spatial relationships. Briefly, the argument goes: a
pseudometric space ié normal, which is to say that if two closed
sets of points are disjoint, then there are disjoint open sets
each containing one of them. (Intuitively, two closed sets cannot
touch without having some points shared between them.) But if
objects contain their surfaces, then they are closed sets: so
they can never tauch.8

My treatment of surfaces and contact in "liquids" escapes
this problem by saying that when objects touch there is an
infinitesimally thin layer of space (the "directed surface")
between them. This works up to a point, but seems unintuitive
and in any case does not address the basic issue, which is that
our intuitive local space is, indeed, probably not a topological
space.

It is certainly not three-dimensional Cartesian space, which
contains such wildly implausible objects as space-filling curves
and the Alexander Horned Sphere. Many mathematical intuitions at
the basis of geometry and real analysis (from which topology is

an abstraction) seem to be at odds with the way we think about
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everyday space. The idea of a point is itself one which people
with no mathematical training seem to find difficult, or even
incaherent.9 As with many of the pathological constructions, the
difficulty seems to arise from taking reasonable intuitions to
unreasonable lengths by introducing infinite limits of one kind
nri?nather (infinitely small spots, or infinitely thin iines;
surfaces which have no thickness at all, yet are actually there,
etc; see (h) below). Intuitive space has a definite "grain" to

it: when distances get too small, they cease to exist. It is a

tolerance space (Zeeman 1962, Poston 1971, Roberts 197@) rather

‘than a topological space.

All of this intricacy came from taking the idea of
“"touching" seriously, and illustrates again the way in which
trying to capture one concept with some breadth of application
can force major changes to large parts of the growing theory.

(c) Qualities, gquantities and measurements

Many everyday things have some properties which are more
intrinsic than others, and might be called the possession of
certain gualities. Objects have sizes, weights, colors; spaces
have volumes; some objects have heights, others lengths. All of
these qualities seem to exist independently of the entities which
possess them. We can discuss heights, colors or smells as things

in their own right: they form guality spaces. The set of

possible heights is a quality space, as is the set of possible
flavors.
There does seem to be a general theory of quality spaces.

It always makes sense to consider the extent to which two



gualities are alike: the degree of similarity between them.
(Even when the answer is trivial, the question is never
incoherent.) Thus there seems to always be a notion of
"distance" defined on a quality space. Similarly, all quality
spaces seem to have a tolerance. If two qualities are very
similar, they become indistinguishable. (This may be the basic
structure, as every tolerance defines a natural notion of
distance between gualities to the smallest number of steps by
which one quality can be transformed into the other, each step
being '"invisible' under the tolerance. Poston (1972) develops
this idea very thoroughly.) Many quality spaces are dense, in
the sense that given any two distinct qualities there is a third
somewhere between them. (Colors are dense, but smells and
flavors aren't, I think.) Some spaces (colors, notably) seem to
be structured in terms of a subset of prototype qualities, the
others being defined by their distances from the prototypes.
Some seem to be naturally n-dimensional, for some small n: other
not.

Some guality spaces can be measured; i.e. there are

functions (usually more than one) from them to a measuring scale,

a linearly ordered set of some kind (e.g. the positive integers,
the rational unit interval, the set {small, smallish, medium,
tallish, tall}). Such measure functions (feet, meters) induce an
order structure on the gquality space (but it may not be a strict
linear order). We can use this apparatus to talk about

gquantities: heights and distances are guantities, colors and
smells aren't. We can write for example:

meters (height(Bill)) =
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feet (height(Bill)) = 5.9
roughly (height(Bill)) = tallish
Notice that we can discuss heights directly, for example by

writing

height (Bill) > ‘height (Fred)
where the ordering relation > is that which is induced bv the
measuring functions feet and meters. (If we used the similar
relation induced by the measuring function roughly, then the
above would say something like: Bill is clearly taller than
Fred.) One remark which may be apposite here is this. It is
often argued that 'common sense' requires a different, fuzzy
logic. The examples which are cited to support this view
invariably involve fuzzy measuring scales or measure spaces.
This, I believe, is where fuzziness may have a place: but that
is no argument for fuzzy truth-values.

(d) Change, time and histories

The now classical approach to describing time and change,
invented first by J. McCarthy (1957), uses the idea of a state or
situation (or: world-state, time-instant, temporally possible
world,...). This is a snapshot of the whole universe at a given
moment. Actions and events are then functions from state to
state. This framework of ideas is used even by many who deny
that their formalism contains state variables, and has been
deliberately incorporated into several AI programming languages
and representational systems. We used it.in the toy blocks world
earlier. But a slightly broader view condems it.

Consider the following example (which Rod Burstall showed me
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many years ago, but I decided to put off until later). Two
people agree to meet again in a week. Then they part, and one
goes to London, while the other flies to San Francisco. They
both lead eventful weeks, each independently of the other, and
duly meet as arranged. 1In order to describe this using world-.
states, we have to say Qhat each of them is at just before and:
just after each noteworthy event involving the other, for each
world-state encompasses them both, being a state of the whole
world. But this is clearly silly.

All we need to know about the other persons history is that
at the time of their appointment it is contained in the same
ﬁlace as the first persons, and this can be established by its
own train of reasoning. When their histories intersect, indeed,
then the interactions between them need to be taken into account
in an adequate description; but not until then.

There are other problems with the "situations" ontology (it
is very hard to give a reasonable account of continuous
processes, for example: see Allen 1983 for some more), but this
alone is enough to indicate that it is not a suitable foundation
for a theory with any breadth.

Events happen in time, but also in space - they have a where
as well as a when. They are four-dimensional spatiotemporal
entities. So are objects, which have a position and shape and
composition at a given time or period, which may differ at other
times, and have timporal as well as spatial boundaries. All of
which suggests that a basic ontological primitive shouls be a
piece of spacetime with natural boundaries, both temporal and

spatial. I will call these things histories. All the spatial
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concepts previously introduced can now be seen as instantaneous
spatial cross-sections of histories. Thus, a place is a place-
history at a time, and an object in a situationm is that
situations intersection with that objects history. Histories
begin and end: the event of putting four blocks together in a
square is the beginning of the history of a platform, and the end
of that platform is when and where they are separated from one
another. Situations themselves, perhaps now better referred to
as time-instants, are themselves histories, although of a very
speéial kind, being spatially unbounded and having temporal
boundaries defined by the events between which they are fitted,l?
At the other extreme, spatial features which are permanent -
notably, permanent places - are histories which are temporally
unbounded but spatially restricted. Most objects in the common
sense world fit between these extreems. Examples include the
inside of a room during a meeting, Lyndon Jochnson while he was
president (this is an episode in the longer history of the man),
Lac Lemaﬁ (a permanent history) and the trajectory of USair
flight 130 from Washington to Rochester last Wednesday. This
last is an example of a history which is more complicated in
shape than just the direct algebraic product of a spatial object
and a time-period. The projection of a trajectory onto the
spatial reference frame is a path (e.g. an air traffic corridor),
but 'the plane was only in a bit of it at each moment: its
history slopes in spacetime.

The situations-actions language can be translated uniformly

into a language which talks of histories, by replacing
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R{ol;.c.,00,5)
by
R(a(ol,;s),;...,a(on,s))

where a is the function which intersects a history and a time-
instant, yielding a purely spatial object. But it is often more
natural to describe histories and their relationships in other
ways. "Liquids", this volume, employs the histories ontology to
describe an aspect of the world which I do not think could
possibly be adequately approached using the situations ontology.

There are several kinds of history, and one does not expect
that there will be a very rich theory of histories in general.
Such as it is, it seems to be concerned with the relationships
between histories and their boundaries, a sort of naive geometry
of spacetime. Consider for example a stationary object being hit
by a moving one and moving itself as a result. There are at
least three histories involved in describing this: two
successive episodes of the first object and one - that before the
collision - of the second object. Call them Al, A2 and B. The
temporal boundary between Al and A2 is a purely spatial entity
which itself has a spatial boundary (the surface of the object-
at-that-moment: notice that this is the same as the surface-of-
the-object at that moment) which is in contact with the
(isotemporal) surface of the last moment of B. Something
evidently crossed that boundary ("impetus" (McCloskey 1983),
probably) and put the first object into ﬁ different state: for
if nothing had, then there would be no difference between Al and
A2. The event - itself a tiny history - which took place at the

point of contact consisted of some kind of transfer between A and
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B, and so we must have involved their boundaries, and this is the
only place in spacetime where their boundaries intersect.

This vignette of analysis and the "liquids" axiomatisation
both illustrate a style of axiomatic description in which
histories are classified into types and the kinds of relationship
they can have with one another are defined by the nature of their
boundary surfaces. Reasoning about the dynamics resembles a
process of fitting together a jigsaw of historical pieces in an
attempt to fill out spacetime, invoking interface properties of
spatial and temporal boundaries at every stage. This appears to
be a powerful and general technique, perhaps in part because it
adapts so readily to constraint-propagatiobn methods. Forbus
(1983) uses a similar idea by partitioning space, as does Allen
(1982) by classifying kiﬁas of temporal interval. It depends on

the use of taxonomies, i.e. listings of all the possible kinds of

history of a certain type (all ths kinds of falling history, or
all the kinds of timeinterval, or all the ways in which a thing

can be suppurted.ll

(e) Energy, effort and motion

There seems to be a significant distinction between events
which can "just"™ happen, and those which regquire some effort or
expenditure of energy to keep them going. The difference between
falling and being thrown lies almost exactly in this, as far as I
can tell. One importance of the distinction lies in the fact
that if no effort is expended, then the second kind of history is
ruled out, which eliminates a whole class of possibilities from

consideration.
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This notion of energy is not the physicists one: it is
notoriously not conserved, for example (as in hitting ones head
against a brick wall, or becoming exhausted by holding a heavy
weight). Since real physics has taken the original term away
from ordinary language, there are a number of informal terms in
use: "oomph"™, and the German "schwung".

Typically, sources of schwung are of finite capacity and
become exhausted in time, although may be self-replenishing.
Also typically, schwung can exert force and thereby produce
motion (or perhaps one should say rather that it can become
motion, and pushing is giving the schwung = force = impetus to
the object, c.f. the brief example given earlier).

McClosky, op. cit., has demonstrated convincingly what
anyone who has talked to children knows, that naive physics is
pre-Galilean. 1 can still remember the intellectual shock of
being taught Newtonian laws of motion at thé age of 1l. How
could something be moving if there were no forces acting on it:
but yet, the argument was compelling: for if a surface was
completely frictionless then nothing would stop a sliding object.
My internal theory had a contradiction at its wvery center, the
realization of which was acutely distressing. Another very
convincing intuition is that heavies objects fall faster than
light anes,lz and that released slingshots travel radially
outwards.

I believe there are actually two ways of conceptualising
motion, which may be analogous to the distinction between

large scale space and local metric space: as a displacement or as
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a trajectory. A displacement is a change of position, and
requires constant effort to maintain: when the effort stops, the
motion stops. They are changes of position, having no dynamic or
geometric properties. In real-physics terms, they are dominated
by friction. Trajectories are the motions of things with
impetus. They are smooth motions along paths with a definite
sha?e, and they keep going until they are stopped (when there may
weﬁl be an impact, in which some or all of the schwung is
transferred to other things). Displacement motion is Greek,
tra?ectﬂry motion is Galilean. Concepts such as going, coming,
arriving, leaving, to, from, are connected with the former,
concepts such as aiming, impact, speed (a gquantity space),
towards, away from, are connected with the latter. Displacements
are really mere transitions from their beginnings to their
endings, whereas trajectories have a definite shape, and can be
extrapolated in space ant time. 8peed is crucial. Walkings are
displacements, but runnings have some of the gquality of
trajectories, and skiings are definitely trajectories. That
position changes during the history is true of both kinds of
movement, of course: if all we know is that Harry went to the

L 2]
store, it may have been either kind of motion.

(f) Composites and pieces of stuff

Physical objects have many properties and relationships,
many of them concerned with external attributes of the object
such as shape or position. One category, however, concerns how
objects are composed, what they are made of. As far as I can

judge, all naive-physical objects are either a single piece of
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homogenous stuff, or are made up as a composite out of parts
which are themselves objecgs. The essence of a composite is that
its component parts are themselves objects, and that it can
(conceptually if not in prq;tice} be taken apart and reassembled,
being then the same object. Examples of composites include a
car, a cup of coffee, a house, four bricks making a platform.
Examples of homogenous objects are a bronze statue, a plank of
wood, the Mississippi, a brick. Homogenous objects have no
parts, and can only be taken apart by being broken or divided in
some way, resulting in pieces. Unlike parts, pieces have no
independent status as objects in their own right, and the object
has no natural internal boundaries which separate them: it
comprises a single piece of stuff.

The physical characteristics of a composite depend on those
of its parts, but also on the way in which they are arranged.
There is a whole collection of concepts which have to do with
putting parts together into assemblies: ways of attaching,
strength and stability of connections, kinds of relative movement
which are possile, how shapes can fit together, adhesive or
frictional or lubricated relations between surfaces, etc.: one
could put the whole of mechanical engineering in here. Centrally
for the theory of composites is that this is all it depends on,
so that if a composite is taken apart and reassembled so as to
restore all the internal relations exactly, then it will behave
in exactly the same way. And it will be the same object.
Indeed, parts can be replaced with others - a new engine in a car
- and the composite still be considered the same nbject.13 A

composite is more than the set of its parts. If we have a kit of
i
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parts for a model airplane, then after assembly all the parts are
still there, but the aircraft exists as well as the parts, with
its own unique properties. (Notice that the kit then no longer
exists. It was also a composite, but of a different kind: not
an assembly.)

% A homogenous object comprises a single piece of stufr, but
isﬁnot the same thing as the piece of stuff, since the criteria
hyﬁwhich we individuate objects are different from those for
pieces., 1If a statue is melted, the resulting pool is the same
piece of (the same) stuff, but a very different object. In fact,
the statue is gone forever. Even if the same metal is used in
the same mold, the result is a new object. This contrasts
sharply with the norm for composites, in which the set of parts
is otherwise analogous to the piece of stuff. Pieces of some
homogencus objects can be replaced by more of the same stuff and
the object retain its identity. This is most obvious for liquid
objects such as rivers, but applies also to solid objects, to a
more limited extent. If a statue is broken and repaired, its the
same statue (compare reassembling a car), although it has
ingisibly changed, and may now be a composite of the pieces of
it; former self (contrast reassembling a car).l4 But a piece of
stuff is the piece it is, and cannot be added to or subtracted
from without becoming a different piece.

Some of the properties of a homogenous object are properties
of the object gquua object (size, shape), others are properties of
the piece of stuff it comprises (amount of stuff:13 compare

number of parts in a composite; color, surface hardness,
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rigidity). So long as the object remains the same piece, these
both remain unchanged, but when they come apart, some properties
can change. Many rivers change color with the seasons: topping
up a cup of coffee increases the amount of coffee in the (same)
cup: freezing water produces an ice cube.

This last illustrates the distinction between stuffs and
physical states (solid, 1liquid, paste, powder, jelly - a
preliminary attempt at a complete list produced over a hundred
distinctions, Cunningham 1988). Many stuffs can be put into a
different physical state (by heating, cooking, grinding,
squeezing, drying, etc.), and much of manufacturing depends on
using such transitions to manipulate the object/piece
distinction. An example is provided by casting. Take many small
pieces of copper and heat them in a crucible. When the copper
melts, each piece becomes liquid. Ligquids can have no shape, so
the copper objects which were the pieces cease to exist. Liguid
objects in the same space merge together, so a new, ligquid copper
object 1is produced. Now put this stuff into a mold - liquids
take the shape of their containers, so the piece of copper now
has this shape - and let it cool. Now it is a solid piece of
copper and still an exact fit to the mold, so its shape is that
of the mold. A new object has been created: an axehead, say.
It may have seemed almost like a miracle four thousand years ago.

The parallel distinctions between an object and the piece of
stuff which it is, and between a composite and the collection of
parts which make it up, make it easy to see why a theory might
fail to understand conservation of amount or number during

manipulations which change the shape or physical layout of an



53

object or group: for amount is a property of the piece (or
collection), not the object. I1f that concept is not available,
there is no special reason why amount should be preserved, and
many examples where it clearly isn't: rivers can get bigger and
cause floods, for Examplé. But when the concept is available and
is used properly, conservation of amounts is very obvious, since
am;unt of stuff in a piece is a property of the piece: and it is
the very same piece after the transformation as before: nothing
about it has changed. An ontological shift such as this may
prgvide a convincing amount of the well known phenomenon, first
noted by Piaget, of children's sudden acquistion of the "concept"
of conservation. Notice however that conservation is not a

concept, but a theorem.

(g) Individuation

Establishing criteria for individuation must be done not
only for objects but also for spaces, times, histories,
guantitites and any other kind of individual in our conceptual
universe. When do we ascribe the status of being an individual
thing to a piece of the world, since even the purely physical
world can be carved up into pieces in arbitralily many ways? I
do not think there is a single neat answer, and there need not
be: every kind of thing can have its own kind of reason fax
being a thing. But there do seem to be some general criteria.

We cut up spacetime into pieces so as to (1) keep important
interactions as localized as possible: places are pieces of
habitable space which are insulated from one another (by distance

or by barriers); objects have a complete bounding surface which
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separates them from the rest of the world, and (2) to make the
interactions as describable as possible. A square of blocks is a
platform -, a composite object - if we plan to stand something on
it; for in that case we need its top surface to describe the on
relation, so we need the object whose surface this is.

Solid objects have a shape (perhaps one that can change
within some constraints, like that of an animal) and, while
composites can have pieces replaced and retain their integrity,
they tend to stay fairly stable. Liquid objects, on the other
hand, are defined by their solid containers, and may be in a
state of continual overhaul, like a river. The full story is
more complex,however, since if the river dries up and refills it
is the same river, while if I drink all my coffee, I go to get
another cup. (I do not yet understand these distinctions, and
would welcome comments.)

The difference between an object and the piece of stuff
which it comprises, discussed above, seems to run through many
parts of naive physics, and perhaps all of common sense
reasoning. The general phenomenon is that one history is an
episode of two different histories, each corresponding to a
different way of identifying an individual. "Liquids", this
volume, describes a particularly intricate example: pouring one
glass of water into another.

An important general point is that we do not want anything
like universal individualhood. Common sense is prolix - many
kinds of entity - but also very conservative - very few entities
of each type. This contrasts with more "universal" schemes such

as nominalism, in which any piece of spacetime can be an
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individual, allowing such things as the sphere of radius 2¢
meters centered on my left thumbnail now, during the month of
August 1980 (say). pevotees of higher-order logic as a
representational vehicle should realize that when one gquantifies
over all properties, this similarly means all (describable)
prcgerties, such as being further north than the oldest plumber
hnrﬁ in Philadelphia. Axiomatic theories must be very careful of
comprehension axioms and schemes which guarantee the existence of
entities: they should always state the relationship of the new
thiﬁg_to the other things on whose existence it was predicated.
‘Thus we can speak of the space between two walls or behind a
door, the falling history which is just after and beneath the
moment and place where the object loses its support, and so on.
In each case the relations which define the existence of the new
entity also attach its boundaries to existing objects.

The use of public global metric coordinate frames restores
unrestricted comprehension by the back door, for by using these
we can describe the "undescribable"™ entities: any piece of 3-
space, such as an air traffic corridor. The resulting
ontological freedom and uniformity may be why coordinate systems
are so essential in (real) science.

(h) A sense of scale

We seem to be remarkably good at imagining big and small
things. One can imagine oneself inside a dolls house, or cupping
the galaxy in ones hands. It is as though all our spatial
intuitions have a free size parameter, which, while having a

normal everyday default setting, can be adjusted so as to bring
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other things into their range. The incredible shrinking woman
had the misfortune to have her actual size controlled by it. We
sophisticated adults know this is impossible, but the idea
certainly makes conceptual sense, which it would not if things
and spaces had fixed sizes in our conceptual world.

This sliding sizescale seems to be one of the sources of the-
intuition of continuity in the physical world, and of such
geometric abstractions as points and lines. A dot, no matter how
small, does have a size (or we wouldn't be able to see it, for
example). Imagine it blown up, or eguivalently oneself shrunk teo
match, and it would become an area, a place to be in. Then that
space has tiny dots in it, being just like ordinary space. These
are invisible in real space, or course, but they are certainly
there, for how could it be otherwise? Just turn up the
magnification and one would see them. And it must be like that
all the way down, since one could always keep on turning the
magnification up. That second-level dots are invisible in real.
life is shown from the observation that real dots are invisible
from the next level up, achieved by looking at something from a
long way away, so that it becomes small. Since - a basic’
assumption about scalechange - it doesn't really matter which
level one is at, the interlevel relationships must be transparent
to shrinking and expansion as well. Mathematical points are now
infinitely small dots, which are things that would appear dotlike
at all levels. They aren't real physicél things, because any
real thing has a size and so would eventually stop looking like a
dot, but points always resist magnification. (The stars are

examples from real life, in fact.)
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7. GETTING IT DONE

One objection to the naive physics proposal is that it is
impossibly ambitious:r that we don't know enough about
formalisations to embark on such a large representational task;
that it would take centuries, etc. Ultimately the only answer to
suéh objections is make the attempt and succeed, so all I can do
here is to convey my reasons for feeling optimistic. There are
five.

The first is based on my experiences in tackling the
'liquids' problem, which I had long believed was one of the most
difficult problems in representation theory. The idea of
gquantifying over pieces of space (defined by physical boundaries)
rather than pieces of liquid, enabled the major problems to be
solved quite gquickly, to my surprise. The key was finding the
correct way of individuating a liquid object: the criterion by
which one could refer to such a thing. I believe a similar
concern for individuating criteria may well lead to progress in
other clusters as well.

The second reason for optimism is the idea of histories
outlined earlier. I believe that formalisations of the physical
world have been hampered for years by an inadequate ontology for
change and action and that histories begin to provide a way round
tﬁis major obstacle. -

The third reason is based on the no-programming
methodology already discussed. To put it bluntly: hardly

anybody has tried to build a large, epistemologically adeqguate
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formalisation. We may find that, when we are freed from the
necessity to implement performance programs, it is easier than we
think.

The fourth reason is that, as the papers in this volume
and (Gentner and Stevens 1983) attest, physical intuitions seem
to be relatively accessibleby such techniques as in-depth
interviewing. This was surprising (to me) and encouraging. S
common view in AI is that, while expertise is 'surface' knowledge
and can be extracted by the expert system builders fairly easily,
common sense knowledge is 'deeper', more firmly buried in native
machinery, and that to extract it would be much more difficult if
not impossible. But it seems not: basic physical intuitions are
near the 'surface'. 1©

The fifth reason is that there is an obvious methodology for
getting it done, and this methodology has, in recent years,
proved very successful in a number of areas.

Within AI, it has come to be called 'knowledge engineering',

but essentially the same technique is used by linguists. It
works as follows. 1In consultation with an ‘expert' (i.e. a human
being whose head contains knowledge: one knows it does because
he is able to do the task one is interested in), one builds a
preliminary formalisation, based upon his introspective account
of what the knowledge in his head is. This formalisation then
performs in a particular way, and its performance is compared
with that of the expert. Typically it performs rather badly.
The expert, observing this performance of the formalisation in

detail, is often able to pinpoint more exactly the inadequacies
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in his first introspective account, and can offer a more detailed
and corrected version. This is formalised, criticised and
corrected: and so on. Typically, the expert, continually
confronted with the formal consequencies of his introspections,
becomes better at detailed introspection as time goes by.

In 'knowledge engineering', the expert is a specialist of
some kind, and the formalisation is, typically a collection of
condition-action rules which can be run on a suitable
interpreter: a very modular program, in a sense. In
linguistics, the formalisation is a grammar of some sort which
assigns syntactic structures to sentences, and the expert is a
native speaker. In both areas, the technique has proven
extremely successful.

1 believe this process of formalisation, confrontation
against intuition, and correction, can also be used to develop
naive physics. Here is a domain in which we are all experts, in
the required sense. The performance of a formalisation is, here,
the pattern of inferences which it supports. Performance is
adequate when the 'experts' agree that all and only the
immediate, plausible consequences follow from the axioms of the

fcrmalisatian.l?

It seems to be sound to have several 'expertg'
involved, as it is easy to miss some obvious distinctions when
working alone.

The sheer size of a plausible formalisation should give one
pause, however. To even write down ten thousand axioms is not a
light task. This can only be a group effort.

The ideal way to make progress is to have a committee. Each

member is assigned what seems to be a cluster, and has to try to
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formalise it. They tell one another what they require from the
other clusters: thus the 'histories' cluster will need some
'shape' concepts, and the 'assemblies' cluster will need some
'histories' concepts, and son on. Fairly frequently, the
fragmentary formalisations are put together at a group meeting,
criticised by other members (in their common sense ‘expert'
role), and tested for adequacy. I will anticipate that some
clusters will dissolve, and new ones will emerge, during these
assembly meetings.

Initially, theformalisations need tobe little more than
carefully-worded English sentences. One can make considerable
progress on ontological issues, for example, without actually
formalising anything, just by being very careful what you say.
The "mental modelling" field is at this stage now. But soon it
will be necessary to formalise these insights and unify them into
the common framework of a broad theory, and this is a new kind of
task. It is here that the importance of a common reference
language becomes clear, for it is only through this that the
minitheories can be related to one another. It seems that this
could be a real problem, because everybody has their own favorite
notation. Many people find frame-like notations agreeable:
others like semantic networks, etc. There is no reason why
these, or even more exotic formalisms, should not be used: the
only important requirement ié that the inferential relationships
between the various formalisms should be made explicit. In
practice, this means that they should all be translatable into

predicate calculus: but this is no problem, since they all are.
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All of the suggestions and assumptions I have made are as
conservative and minimal as possible. PFirst-order logic is a
very simple, basic vanilla flavoured language. Other more
structured ideas (procedural representations, frames, p-prims
(Disessa 1983), conceptual entities (Greeno 1983), scripts,...)
make stronger assumptions about the representational language.
It is pessimistic to assume that the a-c graph is connected, and
that there is no small collection of primitive concepts. Maybe
such special properties of the internal cognitive structure will

emerge: but we should discover them, not assume them.
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8. WHY IT NEEDS TO BE DONE.

In the earlier version of this paper I argued at length that
tackling a largescale project such as this is essential for
longterm progress in artificial intelligence. I will briefly
review those arguments here, before turning to other reasons why
largéscale formalization of "mental models"™ (Gentner and Stevens
1983) is of basic importance to other parts of cognitive science.

For AI there are three arguments: the importance of scale
effects, the need to develop techniques of inference control, and
the motivation of adequate representational languages.

AI has the aim of constructing working systems. This might
be taken as the defining methodology of the field, in fact, in
constrast to cognitive psychology. But there is a real danger
in applying this criterion too early and too rigorously, so that
a doctoral thesis must demonstrate a working program in order to
be acceptable. Several areas of AI have outgrown this state, but
work on knowledge representation is only just beginning to. As I
have argued earlier, scale limitations mean that no matter how
many short forays into small areas we make, we will never get an
adequate formalization of commonsense knowledge. We have to take
density seriously, and density requires breadth.

That weak, general techniques of controlling inference are
inadequate to cope with the combinatorially explosive search
spaces defined by largescale assertional databases is now a
matter for the textbooks. The moral is that the inferences-
makers need to be informed about what they are doing; they need

a theory of control. I will not belabour this point here, but
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note that the really large spaces which broad, dense
formalizations yield may need qualitatively different
metatheories of control, or other search processes entirely. 1
believe that the study of inferential control (which subsumes
mﬁny questions of system architecture generally) is one of the

most important facing AI at present. But until we have some

dense theories to experiment on, we won't know what the real

problems are. Many of the current ideas on controlling deductive

search may be useful only on relatively sparse spaces;
contariwise, richly connected spaces may present new
opportunities for effective strategies (the widespread use of
relaxation, for example, may become newly effective). It would
be interesting to find out, but something like naive physics has
to be done first, otherwise our control theories will be little
more than formalizations of the weak, general heuristics we
already have.l8

I will bet that there are more representational languages,
systems and formalisms developed by Al workers in the last ten
years than there are theories to express in them. This is partly
because of the pressure to implement already mentioned, but is
also due to a widespread feeling that the real scientific
problems are concerned with how to represent knowledge rather
than with what the knowledge is. When inadequacies arise in
formalizations, the usual response is to attribute the cause less
to the formalization than to a limitation of the language which
was used to express it.l? Many major recent efforts in the

development of special knowledge representation languages are
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concerned with issues which have to do with the structure of the
theories which are to be expressed in them. KLONE, for example
appears to be a complex notation for describing
inferrelatinnships between concepts in a theory, including those
between a concept and its constituent parts. The scientific
guestions of interest are to do with these relationships, not the
idiosyncrasies of any particular notation for recording them.
But all of this could be carried out in first order logic. The
KLONE authors attribute considerable importance to the
distinction between the structure of individual concepts on the
one hand and the relationships between concepts on the other. In
our terms this amounts to an extra layer of structural
distinctions added on top of the simple axiomatic theory.
Whether or not the distinction is worthwhile, it should not
obscure the need to construct the underlying theory itself
first,20

Progress in building nontrivially large axiomatizations of
commonsense knowledge is also of importance to other fields than
AI. Any theorising about cognition has to take into account the
structure of the internal theories which - if the whole
computational view of mind is anything like correct - support it.
If this is taken seriously, then large parts of cognitive and
developmental psychology and psycholinguistics must refer to
internal conceptual structures. This is a truism of cognitive
science by now, but what is less widely ﬁppreciated is the need
to be sensitive to the details of these inner theories. Much
work concerns itself with broad hypotheses about the functional

architecture of cognitive structure, without paying attention to
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the detailed inferences which constitute the internal activities
of the system. Some work assumes very simple internal theories,
exﬁressed in terms of "schemata"™, for example, or as an
associative network of concept-nodes. But we know that internal
theories, if they exist at all, must be extremely large and
complex; and we know that we do not yet have any very reliable
ideas about their structure, still less about their dynamics.
Under these circumstances it seems risky at best to attempt to
relate observable behaviour to general hypotheses about cognitive
structuie. Word meanings in psycholinguistic theorising, for
example, often seem to be regarded as atomic éntities related by
some kind of association. But, as much AI work on language
understanding even in restricted domains has shown, words must
map into internal concepts in very complex and idiosyncratic
ways, and the concepts themselves must be embedded in a network
of internal theory, even to make possible such elementary
op?ratinns as pronoun disambiguation or the interpretation of
indirect speech acts.

The medieval alchemists had much empirical knowledge, and
very grandiose but simple theories, and some success in relating
the two together. Their view of the world attempted to make
direct connections between philosophical and religious ideas and
the colors and textures of the substances in their retorts.
Modern chemistry began when the search for the Philosophers Stone
was abandoned for the more modest goal of understanding the
details of what was happening in the retorts. Cognitive Science

is sometimes reminiscent of alchemy. We should, perhaps, give up
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the attempt to make grand, simple theories of the mind, and
concentrate instead on the details of what must be in the heads
of thinkers discovering it will be a long haul, no doubt, hu;
when we know what it is that people know, we can begin to make
realistic theories about how they work. Because they work

largely by using this knowledge.
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9. IS THIS SCIENCE?

The earlier manifesto ended on a note of exquisite
methodological nicety, i.e. whether this activity could really be

considered scientific. This second manifesto will end on a

different note. Doing this job is necessary, important,

difficult and fun. Is it really scientific? Who cares?
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FOOTNOTES

This touches on a basic terminological ambiguity. Shall we
regard an axiom as a statement in a logic; or as a new rule
to be added to the logic, so that the logic is somehow made
stronger but the axiomatisation is not enlarged? One always
has the option: the second route tends to lead to less
expressive but operationally more efficient systems, since a
rule can often be neatly characterised as an axiom with a
restriction imposed on its use, so that less can be inferred
from it. I think we should take our axioms unrestricted for
a while, until we can see more realistically what sorts of
restriction we shall have to impose on their inferential
behavior to achieve practical systems.

There are two versions, in fact: "all nameable", which you
get with the rule or schema, and "all", which can't be
enforced by any schema or rule or computational device of
any kind, since the set of ﬁhenrems is then not recursively
enumerable. If anyone claims to have implemented a reason-
ing system which can handle full higher order reasoning, he
is wrong.

I omitted clear deliberately. It hﬁs an explicit definition
and could be eliminated entirely at no real cost of
expressive power. Having that token makes axioms more com-

pact and deductions shorter, but it does not enable us to
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say anything new, since we could have replaced it everywhere
else by its definition and gotten an eguivalent set of
axioms. Definitions don't add to the expressive power of a
theory.

This is usually presented, in textbooks of elementary logic,
in a rather formal, mathematical way: and this fact may have
given rise to the curious but widespread delusion that a
first-order model is merely another formal description of
the world, just like the axiomatisation of which it is a
model; and that the Tarskian truth-recursion is a kind of
translation from one formal system to another (e.g. Wilks,
1977). This is quite wrong. For a start, the relationship
between an axiomatisation and its models (or, dually,
between a model and the set of axiomatisations which are
true of it) is quite different from a translation. It is
many-many rather than one-one, for example. Moreover, it
has the algebraic character called a Galois connection,
which is to say, roughly, that as the axiomatisation is
increased in size (as axioms are added), the collection of
models - possible states of affairs - decreases in size., It
is quite possible for a large, complex axiomatisation to
have small, simple models, and vice versa. In particular,
a model can always be gratuitously complex (e.g. contain
entities which aren't mentioned at all in the
axiomatisation). But the deeper mistake in this way of
thinking is to confuse a formal description of a model -

found in the textbooks which are a mathematical approach to
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the metatheory of logic developing with the actual model.
This is like confusing a mathematical description of Sydney
Harbour Bridge in a textbook of structural engineering with
the actual bridge. A Tarskian model can be a piece of
reality. If I have a blocks-world axiomatisation which has
three block-tokens, 'A', 'B', and 'C' and if I have a
(real, physical) table in front of me, with three (real,
physical) wooden blocks on it, then the set of those three
blocks can be the set of entities of a model of the
axiomatisation (provided, that is, that I can go on to
interpret the relations and functions of the axiomatisation
as physical operations on the wooden blocks, or whatever, in
such a way that the assertions made by the axiomatisation
about the wooden blocks, when so interpreted, are in fact
true). There is nothing in the model theory of first-order
logic which a priori prevents the real world being a model
of an axiom system.

In fact, it wouldn't really. To really capture the nﬂtian
of 'above', it is probably not enough to stay even within
naive physics: one would have to go into the various
analogies to do with interpersonal status for example.
(Judge's seats are raised: Heaven is high, Hell is low: to
express submission, lower yourself, etc.) Only a very broad
theory can muster the power [Eiﬂ the Galois connection of
model theory) to so constrain the meaning of the token
‘above' that it fits to our concept this exactly. (Imagine
a world in which the 'status' analogy was reversed, so that

to be below someone was to be dominant and/or superior to
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them. That would be a possilbe model of naive physics, but
not of the larger theory of common sense: and it would be a
very different world from ours.)

Although perhaps one could 'not fight too hard. It is
quite plausible that we might have several minitheories in
our heads for some concepts. Perhaps we use one, over-
simplified but useful, theory a general utility version and
also special-purpose theories to handle idiosyncratic cases
(such as porous solids in a theory of ligquids). Or, more
interestingly, a more sophisticated theory which can handle
a very wide range of phenomena but is only invoked when
needed (such as an atomic theory to explain porosity, c.f.
Lucretius).

Perhaps arbitarily or perhaps only seven plus or minus two.
It may be felt that this concern with mathematical
technicalities is out of place in judging the appropriatenen
of an axiomatization, since people don't think about
mathematics in everyday affairs. This reaction is
inappropriate, however. We are judging the goodness of fit
between a formal theory and intuitive reasoning. Intuition
seems quite clear on all these matters of touching, which,
when formalized, easily yield consequences which are the
formal translates of very unintuitive ideas. That the
formal derivation uses mathematical ideas is irrelevant to
the failure of the match between theory and intuition.

And speaking as someone with mathematical training, I

think this consists in large part of becoming able to simply
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ignore the clash with raw intuition, rather than reconcile
it. A point has position but no extent. How many are there
in a one-inch square, then? Such gquestions have no answer,
and the training enables one to face this situation with
equinamity. If points really were common-sense dots, there
would have to be an answer.

I1f times passing is represented by a measuring scale, then
we might say that time-instants formed a quantity space with
the measure function defined by a clock. On this account,
the division of the conceptual time into discrete situations
could be seen as the structuring of the past induced by the
clock from the scale. This is how we make appointments to
meet: they depend on there being a public clock and
associated measuring scale.

I think there are six. It can be resting on something which
is bearing its weight; hanging from something; attached to
something; floating on liquid; floating in the air - if it
weighs nothing, and then only for a while - or flying, which
takes continual effort.

Galileo's own argument why not is beautiful. Consider, he
says, a stone cracked in half, falling alongside an
identical one not split. Let the two halves separate just
slightly. Will the split stone then suddenly decelerate?
Surely not. If so, let the two halves just drift together
and momentarily reunite: will it thén accelerate? I tried
Lhis argument out on an intelligent ten year old, but he was
unconvinced, arguing that the two halves would drift apart

vertically, one falling faster than the other, even though
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they were identical. Why? - because two things never fell
at exactly the same rate. Exasperated by this extraordinary
obtuseness, my colleagues and I improvised a demonstration
using two pennies. Within the limits of experimental error
we could achieve at the dinner table, the child was right.

Borderline cases suggest themselves. If one simultaneously
replaces everything but the body shell of a car, is it the
same car? I think one can say yes, or could alternatively
claim that this was a new car: but in that case, the body

has been taken from the original car.

Primitive atomic theory could be summarized as the idea that
homogenous objects are really composites of atoms, and only
atoms are truly homogenous (Lucretius). This explains why
the recast statue is a new object: the interatomic
relationships have changed. If one could get each atom back
in the right place, it would be the same statue.

Amount is a more basic idea than mass or volume. It takes
considerable education to learn to distinguish these.
Probably this whole depth metaphor is a mistake, like every
other simple metaphor of the mind.

In fact, this is a weak notion of adequacy: the stronger
notion would be that the derivations of the plausible
consequences were also plausible. Attempting to use this
stronger notion gives rise to severe methodological
problems, since it requires one to have '2nd-order'
introspections. Linguistics has an exactly analogous notion

of strong adequacy for a grammatical theory, and suffers
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exactly similar methodological difficulties.

The felt need for a nontrivially complex axiomatisation to
try out search heuristics on was my original motivation for
embarking on this whole enterprise.

This may be connected with the fact that in Computer Science
generally, development of programming languages is a
respectable academic concern, while the development of
particular programs isn't. After all, who knows what a

language might be used for, especially ageneral-purpose

language? And knowledge representation systems are almost
invariably proud of their generality. This attitude is
especially easy to comprehend when the Krep language is
considered a species of programming language itself, which
was a widespread confusion for several years.

The deliberate eschewal of control ( = computational )
issues in the naive physics proposal represents a very

conservative approach to questions of such structuring.

First order logic makes very weak assumptions about the
structure of theories couched in it, almost the weakest
possible. They can be summarised as: the universe consists
of individual entities, with relations between them.
Nothing is said about the nature of the entities. (An
attempt to find an area where this "discreteness"
assumptions breaks down was what led me to the liquids
formalisation, and individualisation assumption was,
unexpectedly, crucial to its success.) It makes no

assumptions whatever about control. Any insight into theory
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structure which is obtainable within naive physics must be
readily transferable to more elaborate notations or systems
of representation, therefore. It seems wisest, at thié
early stage in the development of large "knowledge bases",
to be as conservative as possible. One might think that
attempting to use firstorder logic as a representational
vehicle would be doomed to failure by its expressive
inadequacy. 1In fact, however, the limitations seem to be on

our ability to think of things to say in it.
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