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ABSTHRACT

Huilders of expert rale-Based systems atirilnie e impressive peefomanee of i progrems g the
covpies of knowledge they embuody: a lurge network of facts i poutiehe Drvendtl of scope, amd o forg
arrery of infermal judgmental edes (hevristies) wiaeh geeidde the systenn toward plasible s i
follow gl aoway frown implansibie ones, Yer what is the e af Bererianes™ Wt v il seaarge o
their power? How do they wrigingie wod coolpe By exeminiong twa coase sigdies, Bie A8 and 10RO
programs, we are led fo some tentative ypotheses: Henristios are comprded Busdsohe, and deaw e
purwer frown the variows Kinds oof reguilerrivy eenad continuity e Bee waarld . they rie theeagle sy aliza

tiews, generalization, aed —surprisingly offen-—analogy. Forty years ago, Polva introdused $eseetios
as a separable field worthy of study. Ty, we are finally alde o oy o the K of o T

iersive experiments which make sich sty possibde

1. Overview

The impressive performance of expert knowledge-bised systems [1. 5, 8] leids
us to consider anew the field of Hewrerics: the study of the informal, judg
mental ‘rules of thumb’ which underlic such programs. To understand the
successes of the expert systems, and perhaps ultimately 1o improve such resulis
Heuretics asks What is the source of power of heuristios”? Similarly. with an eyve
toward understanding, facilitating, and perhaps ulimanely  automaning the
construction of expert systems, Heureties asks How de new henristics arngiate!
Experiments with the am and evmisko programs provide some initial answers,
and some concrete methodological suggestions about how 1o e about getting
better answers,
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1.1. What is the source of power of heuristics?

By examining the situations in which heuristics fail (in Section 23 Hin;lj L) I] we
are led (in Section 3.2) to hypothesize that the undcriymrg source of heuristics
power is a kind of two-dimensional camr'n‘m'ry. Ifa heur[su‘c H w_ars {or wnu!d
have been) useful in situation 5, then it is likely that heur_lslm similar to H W|||.
be useful in sitwations similar to S. In other t_l-'ords, if we cu‘uld somehow
actually compute upnnmerNEss[Aclgan,Suuannnll; 1,.:1';-“[ function would be
i in both variables, and would vary very s :
mnﬂlll'llul?:.:l:il :I:]xercisc {Section 3.3) is to consider th:: grn?h of APPROPRIATENESS
values for a fixed action, varying over the situ'fulons in which it might Il_w
applied. The language of graphs of functions is then at our dzs;f»c;;ﬂ!. an
attractive metaphor within which to discuss s.mfh processes as specia izing a
heuristic, using multiple heuristics, and measuring atiributes of a heuristic's
u- "
chi;ﬂ:j:;t the world isn't s0 accomodating. TherF are many possible
measures of arPPROPRIATENESs (efficiency, Ilnw _duwn-:-;ldc nsk.l Fumplellmn-
sibility), and many dimensions along Whiﬂl‘ll SITI.IH!IUII'IS can vary l;dlﬂlcli.llt)r, [nm.g‘
importance, subject matter). Cumpuundlrlg this is thE. nﬂnlmeazty o |hq{
Situation space along most of these dimensions. Thus the ‘zero-th order theory
espoused in the last two paragraphs is merely a metaphor. :

Yet it is too attractive, too close to what human experts ac!‘ually .dﬂ' Lo reject
out of hand. It can be extended into a “first order theory™: It is frequently
useful to behave as though the zero-th order lh_eur_'.r were true, i.c., to beh:!vc
as though aprrOPRIATENESS(Action,Situation) um_stsl and is cuullrnuousl. tTﬁ give
an example: the current situation may appear similar 10 ones in which it was
cost-effective to skip to the Conclusions Section of the paper; even though you
can't be sure that's an appropriate action to take now, it may be Ius:.:ful for you
to behave as though the world is that continuous, Fu Llilkﬂ Ili‘mt acllmn anyway. If
you do so, you're following a heuristic. That heyqstlc guld?ncells mll}.' us.. good
as the generalization process you used in decnd!ng llwlsuuatmn "::":IS similar
(e.g., would you apply it to all a.rti::]es',"._ln all uruclgs wrltlt'.l? by X7). .

As the world changes, a heuristic which was valid and vseful may become
invalid. Perhaps X's writing style has impm\fﬂll. I.“ the extremle. case of a
rapidly changing environment, the mean useﬂlﬂ lifetime of a heuristic u-my. be
too small 1o make it worth relying on. Consider, I'm: e:lta_mple, the prices of
stocks on the New York exchange, or the locations of ml:lhlwd_uul molecules in y
gas in a Aask. There, conrinuity is not at issue, but velatility is. ) _

There is a difference between these last two :xamplels though; we can recond
the stock prices, but it is impossible to record the positions of all the moleculey
i ask of vapor. <
i ':3: Phd:: I:wc lli-nree considerations—continuity, stability, and n!asu_:rvah:llty_
determining which domains may adequately be modelled as heuristic searches,
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Observability: If data cannot be gathered,

heuristics cannot be formed and
evaluated.

Continuity: If the environment changes abruptly, the heuristics miy never be
valid.

Stability: If the changes are continuous bul ripidd, the heuristics may have
too short a lifetime before becoming useless—ar worse than useless,

Al the present time, the most const raining of these requirements is ohyer-
vability. Very few fields admit automatic data acquisition. One might build o
program which proposed Promising new experiments to perform in molecular
biology, but it is beyond the capabilities of present technology 1o automate the
carrying out of those experiments to see the results. The most observable ficlds

I are those which can be completely formalized within the machine: nuitheni-
tics, programming, and games. But the behavior of » running program can also

1 be recorded and inspected by the program, in particular a0 progrim which

! employs heuristics might monitor its own performance; therelore, we mav add

| Heuretics to that list of observable fields. EURISRG (Section 4) s such

| program, and from it we have begun to learn more about Heuretics

I.2. How do new heuristics originate?

Empirical results from am (Section 2) suggest that new heuristics arise from
three sources:

Specialization of existing, more gencral hearistics, This often las the Torm of
adapting, binding, matching « template 10 observed data, prowlducing o mory
specialized, more efficient ofspring. Compiting and structired PR Y e
Iwo compuler science analogues of this process.
specialization occurs is when an exceplion 1o a general heuristic is noted. and 3
more specialized, higher-precedence heuristic is Fosrmu e, Oebegme andd
type-checking are the computer science analogues of such accommodation

Generalization of existing, more specialized heuristivs. An extreme bt
common—form of this is absiraction from observed dati In such o cose, the
heuristic is a prediction about APPROPRIATENESS{ACHON Situation] for o whole
| domain of situations and actions, based on having actually seen ane or more
telements of that domain, Other types of generalization are also useful: Ofien, o
powerful new theorem or technigue will be proven for some domain (S FRTRITHIE
then be a useful heuristic 1o apply it outside [ s well.
of some infinite series were successfully puessed
dilferentiable; once the serie
simpler.

A second wav in which

For instimee, the values
at by pretemding they were
5" value is conjectured, preing s made much

| Analogy to existing heuristics and to past, successiul acts of creating new
heuristics, It is a remarkable thing that analogy works, a sign of an even deeper
kind of continuity than was sought in 1.1. Even though two domains iy
appear disparate, analogous heuristics may be equally powerful in coping with
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hem (e.g.. Laok for examples of concept C before you iry io :_Jr_allJr:rcu.:yI::rm.r_e::a
: t::'r ! Cl'jg“ExTen if the heuristics for the two domains scem disparate, the pa h‘.\
ah'uh wére followed in getting the powerful heuristics of the ﬁe:lll_d may be
1l-'r If;Inr (e.g.. Examine successful and unsuccexsfu! uf!m_up:s al fing mi; profs,
mm; gn].bf-h;r;“” new hewristics) any features that dlscrn:-mlmle .bgrweeu_ ‘":m } .
r”/:"I:J'«-'hi-:ll of these three is most efficacious? Under What?mriil;llmblﬂncm |_Em: '&.ll.l.
indic [ surelics
indicated or contraindicated’ ese are Hew
these three methods indica k : s
u:; stions, and best answered by performing experiments. Reﬁlfllls [_rgmlsu-.h
- Ezrime;ns on am and eunisko are presented in Section 4, and surprisingly (1
ex {
usf!ead us to favor analogy over the other two methods.

1.3. Other Heuretics issues

One Heuretics guestion which will not be udc.irﬁl:-??:‘ ltu.n:::; |I:uﬁf:::"r.-.“t|;l
impact of an individual hfur:'s:ic: upon a :.'e:mhl.‘ I .: u::.. i o N
covered elsewhere, both qualitatively and qumll!ldllhw.: :!f_,m:' . Milsson,
and others. See, for example, [6] and the references he ci ks .
Another issue given only brief l::unsldernllt.'m. is How I.'.Suﬂlems dpier Ih;
several hewristics be combined? Results from building expert I}I'_ucial A; L e
conclusion that the details of the control sllructure are nu"cDM .:I;m _viuw,__'ht
baum is wont to say, “In the knowledge Illes_ the pnwcr_es_ e
heuristics as production rules, and Ihenr this issue trm:!l:unl :mlve,d‘ ! nf:,k,-,.,
should run the rules? This problem can itself be DRCH TRl ViES Y Frraty ih{»n unﬁ
the interpreter a production system, and so on ad m)‘rmrmt;r, ; .ge oo
tries to find such strategic rules there are few to be had, and even fewer

noticeable impact. See, for example, [4].

1.4. Heuretics as a field of knowledge

We spoke earlier of Heuretics as a jﬁt‘!fd aj_’ qualwm;‘ge. Foly::sc:u(:n?l::u::ju :;
study of heuristics as a separale scientific discipline ml']ty y:i hg t,lc“de i
its origins back to Liebnitz, Descartes, and .EIE;: ?I?Ec;whi.;h G lght
Pospelov and Pushkin tried to define thf: ﬁ:lcll as 't e. 'S:EIL|iun5 o ek
laws governing the design of new actions in new i uulx e S
designation of ‘field of knowledge', Heuretics must Lu[mpr_lt:ed (e A o
well agreed-upon objects of study, some motivation lor 5 }rd L..um,u -“_-L-:.:“i
some central questions about the na!ure of such objects, and s accep

l“ﬂnhﬂdi';f_::: ":}3 si:ﬁ:i!:nirt: 005: g:ﬁ:::m;;‘:urislics. Our initial definition of a
ht:un'::[ic i:: u- piece of knowledge capa{!:.'e of suggem’ng pl.':? usible :Irﬂ:u:;: .I'Iu ;r‘;:.‘li.,.
or implaisible ones to aveid. In Section 2.2 it h.ecum:.a.fﬂ:]?zr{.num? ) :h:
insufficient; for a body of heuristics o l'!e. effective (use ul for gﬂ I.:- i“_-:! i
than merely for rationalizing in hlpdsnghl} each _!1;:ur|rsucl mu‘-": ;‘ i

situation or context in which its actions are especially appropriate or inap-

]
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propriate. In other words, heuristics must have both an if- and o then-part. ‘The
theory developed in Section 4 extends this definition: a heuristic s SeUnas
bundle of attributes (and corresponding values) which includes many kinds of
conditions (if- parts), many kinds of actions (than-parts), and also severa]
nonexecutable attributes such as its worth,
Section 4.2 presents a principled method for automa iwcally generating all the
possible ‘legal’ attributes that a heuristic might possess. As of this writing,
over one hundred distinet attributes of
useful (1o the running of Eurisko).
plentiful, complex, and interrelated
this field.

What is the motivation for studying heuris
2.1: (1) The recent successes with heurist
o investigate their apparent source of power, heurnistics. (2) One of the
bottlenecks in construcling  such  systems
heuristics from human experts, and tha
program whose field of expertise is itself the formulation, discovery, extraction,
modification, ete. of heuristics. In order W build such o program. a betier
understanding of heuristics is NECESSAry,

We have already presented some of the major hewreties guestions: what is the
source of a heuristic’s power? the origin of
impact of a heuristic on a search? the interactions heiween
toward the same ends? the useful attributes of o heuristic?

Finally, there must be a methodology Tor answering such questions, an
accepted experimental procedure. This paper proposes to use the standuard
empirical inquiry paradigm which dominates Al reseurch: test hypatheses
about heuristics by constructing—and studying—compurer programs such
am and EuRisKo, programs whic
For twenty years afier Polya's

origin, and AVCTage runming tinwe

a heuristic have proven themselves
The objects of study theuristios)
vin short, there s o richness of

ire
slructure toy

ies? Two are detailed in Section
e rule based exper systems drive us
njor
i extracting domann-dependen

could be partially automated by

new heuristics? the yuantitative
heuristics working

il
h use heuristics and which try o lind new ones
pPlea to investigate Heuretics, we facked the
ability to automatically manipulate symbols with cnough facility 10 construc)
large heuristic search programs. For the nexi twenty years, we Licked (he
representational know-how and, frankly. the necessary number of machine
cyeles, to carry out the second-order investigations: what happens as heuristics
are added, changed, removed. As these impediments crumble, we can design

concrete experiments, we can build methodology for tacking the various
Heuretics questions.

L5. Heuristics about Heuristics

As with any field of human endeavor, Heuretics is
informal judgmental knowledpe— These puide (he
heuretician in extracting heuristics from experts, in deciding when the CxIslg
corpus of heuristics needs 1o he aupmented,

decumulating o corpus aof
hewristics about heuristios,

in represcning heuristics within
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knowledge bases, in evaluating the 1_-vurth of a .h{:.unstlw'_ url lr(gtl.:::t:::::::ﬁ:
program built around a large collection of heurstic rules, ete. amy
arill;sf;l;]eb:]:::;t if asked initially to state his informal judgnlwntal rules,
usually either denies their existence or p:‘luwilis[ L“u:;{h!;:]E:Li:'l::g;Zhn:q (:::dr:.n
»5 the knowledge engineer typically overc ? dong
quﬂj:rc:j:Lnsd operation ;gnumiunud by lhc_nfxpcrt probably has x::r.:s ::z:::;:::
peculiar to it. Each pair of domain entities mHjT‘hH\-'f‘: U:ﬂ' or o h m:. :
about such combinations. Therefore, one “:‘ri?;:?:‘ :l::t:::m; I;:" ar:m ::L
TN i i 0 eration, or pair of same, . . an
;?:Eh::]n:;ll‘:nll}?::;;u! ruzprulus of thurr_lh ‘I'ur dtalingl \'.:'1[11 hthult hn:m:n-l.t'rr
combination of entities." This technique is |t:54=]|‘ a hn‘:urlsnc al;ut c:Jlu: .L:
Here is another one: It is rarely cost-::ﬁeclwe to carry [:ﬁ.llf ! a In_ax n:-l,“_ f
procedure for the co-occurrence of all triples (or larger sets) of domain objects
andluﬁ;rr::ill:?&.ntw examples of a domain concepl can I:n? a straightforward
prf)c:«lcﬂs, bt l;:i:al.'mg new instances of thlu use of a heuristic Jrs l:-'l'ten Tul{':h mlnr;
timeconsuming—each usage of a heuristic ullcn_ dm{“m:bh,l ? :;r:,ddu;n.“:m.
investigation of many new domain concepts. The ""F:“:';IP : -II\i' ng: iu.nm Lj_,h IE, a
domain concept for a while that later turnls {.J"" 1o be a ‘blind alley” is much lew
serious than having and using a bad hﬂurl?u: for a \_v-'hlll:. : ; I
(3) If the representation (vocabulary) .|s._wcil Sllll!‘.‘d 1'.9 ‘: € con -Et‘ll l:i _| "
heuristic, then it is possible for the htunstllu to h:I: concise I}f r?prfhnfn;{r. ._'“_“*
efficiently used. In the extreme case, a h:eurlsuf might S-I'mg‘fdmy I:'Ik cl F_B
in  “Children CanBeTrainedLike Chickens" and “Chi r::n. ||_e. 0 ,;;
Chickens”. Such compaction obviously depcnd_*. upon the pfal::pqur re. ..m-,.,?
being defined. If the vocabulary of relations is large and we _+.|Iu.s:_r.|:dm,|‘n3,
heuristics can be represented Iersei?. _[n cases where one heunft:;: l?.t use .\,”;
frequently, or where several heuristics could all hﬂhcm!;!:_ac ed, it is won
defining one or more new relations R o Sh.m.mn the eubm ics. P
Just as the study of computational |1I'igl.|-l5t1+’.‘?:: had to be groun ed in p..;..
cular languages during its maturation, so Heuretics has I:ad ta.:-jr:m;::\ !_;r::ulnn ,_.:
in particular task domains. Ew:ntualllf the theory of Drl:.l gr‘i_nr I'I'I:j. i
itsell above the details of any individual language, l}mpg .E-W.“ ic Il_.,lldmln:n
are still used to illustrate the various theorems and relationships. Ana ogoushy .

"To provide an argument for heuristic (1) above. it is worth mrnl:lunlllng li::t lll'u: I:u:l:ur::.“:.j;;
drew a blank when composing this subsection of the paper, ip-m:l.hcla y wi “| rLEf .nml mlhl
examples of heunistics for heurstics. The problem vanished after I1st|nlgh.5rver:5£”“n_\;_ andnlh:
such heunstics could fulfill (at the end of the ﬁﬁ.: .pa.rngraph Df_ I-Hh::mtim hl:_“mlm e
considering each role in tum: introspecing on he!.m:sucs for extracting s 'smj . L l;
deciding whether 1o try 1o get new heuristics, hcl.l-ll'l.illci It:ir replrr:?cnl:ll;: B-I : e e ;::’!‘-ﬂ‘m
ele. Since the development of EURISKD, 25 Id?l.tlul‘lil heunstics aboul heuristics ¢
produced by hand, and EURISKO itsell has synthesized over M)
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we aim toward eventually studying Heuretics in o domain-independent fashion,

but of necessity must Eround our examples—and our 1es PROErms=-in parti-
cular domains,

2. amt: The Origin of New Concepts and Conjectures

This section of the paper is a briel detour, a demonsi
facts and conjectures can he discovered by emph wing a bady of heuristics for
guidance. Sections 3 and 4 return 10 the “main line' by respectively considering

the two primary Heuretjcs questions: the source of 4 heurisiic's power and the
origin of new heuristics,

ration that new domuin

2.1. Molivation

Heuretics is important for both theoretical  and
Zavalashina said in [15] “one of the b
heuristic programming, for an increase 1 the range of problems with which it
can deal, is investigition of (he qualitative structure of heuristic
informal’ components™, The subsequent successes of [rrog
bullt upon a large core of domain knowledge—both Guers heuristics
reinforce this argument for the importance ol heuristic reisnng s g
phenomenon worthy of study. Acrtificial lntelligence s comstantly seckmp and
developing new “power sources® to guide and constrain search. heuristics are
one of the most ubicuitous and potent sources ol power,
study for that reason alone.

Mare pragmatically, one current bortlencck
systems s the problem of Knowledge acquisition: ertracting knowledpe from o
human expert and representing it for the progrim. The expent most com.
municale nol merely the “facts’ of his lield. by ilsor the hewristios: the
mformal judgmental rules which guide him in rapid decisic wi-nvatking, These ape
rarely thought abour cancretely by the exper,
field’s journal articles, texthooks, or
automatically discovering domain knowl
prodlem,

pracucial  reasons. A
asic conditions for furiler evolution of

AChivity, it
s fen, see |1 3])

and merit Turther

o constracting Lige evpen

and almost never appear m his
UIIVLETSIY  Courses Technigues o

edge could alleviate his CALTICLION

Can this be done? Since knowledge comprises ol Lavts
yuestion divides into two Parts: can new domain concepls
discovered (addressed in Sections 2.2 and 2.3), and
be discovered (addressed in Sections 3 and d4)*

Is automated knowledge acquisition cosi elfective” Consider the
hwman expert, Having him or her rediscover the knowledge of their ficly
seems at first glance hardly the typical pedagogical practice. Thar's certainly
true for the facts of the field, which are readily presented in 1exs Yol
practitioners of many ficlds become experts on Iy alter o period of apprentice-
ship 1o a master, » Irying period during which they must induce the hetraiios of

andd hevristios, (e
and relationships be
can new domain heursiics

kg of 4




196 [3.B. LEKAT
their craft from examples. Witness the crucial role of the internship of medical
doctors, counselors, artists, graduate students, and many others.

2.2. The process of discovery

“How was X discovered?” When confronted with such a question. the
philosopher or scientist will often retreat behind the mystique of the all-secing
I's: Hlumination, Intuition, and Incubation. A different approach would be 10
provide a rationalization, a scenario in which a researcher cheeds reasonably
from one siep to the next, and ultimately synthesizes the discovery X. In order
for the scenario to be convincing, each step the researcher Fa.kes must be
justified as a plausible one. Such justifications are provided by citing fl_ﬂfrmin.
more or less general rules of thumb, judgmental guides to what is and is not an
appropriate action in some situation. s , .
For example, consider heuristic H1, shown in Fig. 1. It says that il a function
[ takes a pair of A's as arguments, then it’s often worth the time and energy 1
define g(x) = f(x, x), that is, to see what happens when ['s arguments cm.._.;,‘d.u
If f is multiplication, this new function turns out lo be squaring; if f is addition,
g is doubling. 1f f is union or intersection, g is the identity function; if f i
subtraction or exclusive-or, g is identically zero. Thus we see how two useful
concepts (squaring, doubling) and four fundamcnlall conjectures might he
discovered by a researcher employing this simple heuristic. Application of |
is not limited 1o mathematics of course, one can think of Compile(x.x) ie.,
optimizing compilers written inefficiently in tlle_lgnguagc they CU|'|1FI|.'|]-_‘_1 and
then processed by themselves); Kill(x,x) (i.e., suicide); PUHI]I:T[X,J;}I{]_;:__ sell.
awareness); and even Apply(x,x) (i.e., the activity we are now engaging in).

Hl: WiH:AxA—B,
then define g A - 8 as g(x) = f{x.x)

H2: if f:A— B, and there is some extremal subsst b of B,
then define and study ("(b)

Fic. 1. Two heuristie rules which lead 1o useful concepts and conjectures,

Elsewhere [10)], we describe the use for heuristic H2 (see Fig. 1), which s
to investigate the inverse image of known extrema. IF [ is Intersection. H2 says
it's worth considering pairs of sets which map into extremal kinds of sets. Well,
what's an extremal kind of set? Perhaps we already know aboul extremely
small sets, such as the empty set. Then the heuristic would cause us to define
the relationship of two sets having empty intersection—i.e., disjointness. If f
Employed-as, then the above heuristic says it's worth defining, naming. and
studying the group of people with no jobs (zero is an extremely small number
of jobs to hold), the group of people who hold down more than one job (lwo
an extremcly large number of jobs to hold). If [ is Divisors-of, then the
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heuristic would suggest defining the set of numbers with no divisors, the set of
numbers with one divisor, with two divisors, and with three divisors, The third
of these four sets is the concept of prime numbers. Other heuristics might then
cause us to gather data, to do that by dumping cach number from | o LN
into the appropriate sei(s), to reject the first two sets as too small. 1o notice tha
every number in the fourth set is (surprisingly) a perfect square, 1o take their
square roots, and finally 1o notice that they then comede precisely with the
third set of numbers, Mow that we have the definiion of primes, and we have
found a surprising conjecture involving them, we shall say that we have
discovered them. Mote that we are nowhere near a proof of that conjecture,

Of course the above instances of discoveries are really just redicnons. W
can be said to have reduced the problem “How nught Squaring be dis
covered?” to the somewhat simpler problem “How might Multiplication he
discovered?" by citing H 1. Similarly, we reduced the problem of discovering
Primes to the problem of discovering Divisors-of by citing 52 Such reductions
could be continued, reducing the discovery of Divisors-of o that ol Muli-
plication, thence to Addition or Cartesian-product, and so forth, Eventually,
we are down all the way to our conceptual primitives to concepls su basic tan
we feel it makes no sense to speak of discovering them (see Fig. 7).

FRIMES
I
|

v
DIVISORS-O
|
|

W
HIMES
At
F IR
¢ !
& ;!
MLS CAMTESLAS RO |
|
W W
Fig. 2. Reducing each concept’s discovery 1o that of a sl oo, Maote thar ooligpbcainon can b

discovered il the researcher knows either addition of numbers o Cartesin produces ol wers

Why, then, is the act of creation so cherished? I some sipnilicant discoyerivs
are merely one or two “heuristic applications’ away from known concepts. why
are even one-step discoveries worth communicating and getting excited about”
The answer is that the discoverer is moving upwards in the tree. not downe
wards. He is not rationalizing, in hindsight, how a given discovery might have
been made; rather, he is groping outward into the unknown for some new
concept which seems to be useful or interesting. The downward, analytic scarch
is much more constrained than the upward, synthetic one. Discoverers move
upwards; colonizers (axiomatizers and pedagopucs) move downwards, Fven in
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Fic. 3. The more explosive upward search for new concepts. Most heuristics apply in several
situations, often in more than one way (such as H2 applying 1o Divisors-of ). Some concepts (such
as multiplication and exponentiation) are reached from several paths.

the limited simation depicted in Fig. 3, the researcher might apply the
‘Repeat’ heuristic 1o multiplication, and go oll along the vector containing
squaring, exponentiation, hyper-exponentiation, ete. Or he might apply H2 1o
Divisors-of in several ways, for example looking at numbers with very many
divisors.

Once a discovery has been made, it is much easier to rationalize ut in
hindsight, to find some path downward from it to known concepts, than it wis
to make that discovery initially. That is the explanation of the phenomenon
we've all experienced after working for a long time on a problem, the [eeling
“Why didn’t I solve that sooner?”"” When the reporter is other than ourselves.
the feeling is more like **1 could have done that, that wasn't so difficult!” Iy s
the phenomenon of wondering how a magic trick ever fooled us, after we're
told how it was performed. It enables us to follow mathematical proofs with
false sense of confidence, being quite unable to prove similar theorems. It is the
reason why we can use Polya's heuristics [14] to parse a discovery, to explain a
plausible route to it, yet feel very little guidance from them when faced with a
new problem and a blank piece of paper.

There still is that profusion of wpward arrows to contend with. One of the
triumphs of ai has been finding the means to muffle a combinatorial explosion
of arrows: one must add some heuristic guidance criteria. That is, add some

H3: it the range of one operalion has a large intersection with the domain of a

second, and they both have high worth, and sither there is a conjecture

connectling them or the range of the second operation has a large inter-
section with the domain of the first,

then compose them and study the resull.
H4: Compose two operalions and sludy the resull.

Fici, 4. Comtingent beunistic rule and an explosive onc.
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additional knowledge to indicate which directions are expected 1o be the most
promising ones 1o follow, in any situation. So by o henristic, Trom now on, we
shall mean a contingent picce of guiding knowledge, such as H3 i Fig, 4,
rather than an unconstrained Polya-esque maxim like H4. The former is a
heuristic, the latter is an explosive.

2.3 am: A computer program that discovers mathematical concepts and
conjeciures

There is a partial theory of intelligence here, which claims that discovery can
be adequately guided by a large collection of such heuristic rules, In particular,
mathematical discovery may be so guided. To rest this hypothesis, we designed
and constructed am, a Lise program whose task was o explore clementary linte
sel theory: gathering empirical data, noticing reguliarivies in them. wd delinimg
new concepts, asm s deseribed at length elsewhere [Y) amd a0 overs briel
recapitulation here should sullice.

am began with 115 set theory concepts, including static structures (sets, bugs,
lists) and active operations (union, composition. canonize) For cach concept
we supplied very little information besides its delinition
contained 243 heuristic rules for proposing plavsible new concepis, for illing
data about concepts, and for evaluating concepts Tor Sinterestingness” Anwnge
them were H1, H2, and H3.

Each concept was represented as a frame-like dita structure, wsing the
property list feature of vse. Fig. 5 illustrantes o typical mathematical Tuncion
{composition), and Fig. 6 illustrates a typical mathematical object (primes),
These show very extensively feshed-out conceprs: the knowledee fnitially
provided to am about Composition was merely its defininion (Statement and
Coded-Statement), Is-a, View, and Origin slots. The other slots of Compuose-
and all the slots of Primes—were subsequently filled in by as,

During the course of its longest run {one PDP KI1-10cpu hour), as delined
two hundred new concepts, about hall of which were judged o be reasanable
leg.. well known to humans already, or some interesting regularity involving
them found by am). am noticed hundreds of simple relationships involving the
old and new concepts, most of which were trivial. It synthesized concepts from
sel theory (disjointness, de Morgan's laws), stumbled across natural numbers,
rapidly found arithmetic and redeveloped elementary divisibality theory, and
then began to bog down in advanced number theory (alter hnding the fun-
damental theorem of arithmetic, Goldbach's conjecture. and a conjeciure
about highly composite numbers first found carlier in this century by the
seli-taught Indian mathematician Ramanujon),

The total number of *micro-discoveries’ am made is roughly (300 old and new
concepts) % (10 new slots filled in for cach) = (10 catnes Tor cach sl
000, Each ‘discovery' involved relying on (exceuting) 20-30 heunstes: the
typical heuristic was used inan integral way in the nuakiog of <even il Boodaed

Adldinonallyv. axa
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MNAME: o paise
ABBREVIATION: - o -
STATEMENT (= DEFINITION) ) _
English: Compose two functions F oand G oo g new one ol
LISP: & (F.GHY .. <en sssculable LSP pedicale testng that FIGL) - ba) heies
DOMATN: F, G are functons
IF-potentially-relevant; F, G are functions
IF-truly-relevant; Domain of F oond Range of G hine some inlerscenion
IF-resources-availuble: ot least 2 cpu seconds, ot least 2000 cells
THE>-udd-task-to-agenda:  Fill in entrics for some shiis of FoG
IHE-conjecture:  Properties of F hold for FuG
Propertics of G hold fur Fol
FHEN-muodilv-shas:  Record FoGoas an example of Composs
THE-princueuser:  Eaghshi Compuse)
THE-define-new-concepts; same Foli )
ORIGI Compese F.Go
WORTH: Avermget Worthi(F L. Wortlhl G
DEF™: Appendd e G el
Avpropuetime: Plust Avgeopulb L Avgoput i)
IF-potenually =rele: T -poacotially -rebe(G)
IF-truly-relevant:  TF-truly=relevant G
CODELFSTATEMENT (= ALGORITHM)
CODEL-IF-PART: MFGY . den sosewtable LUSP predicale carpng aul Be 3 IF e
CODEL: THES-PART: MAFCib ... <an eseculsble LESP funchan dewyg e 5 THEN actuns «
CODFIEF-THES-PARTS:  MFG) ... s coscatenabon of the mcuing lwo s
COMPIFD-CORDEDF-THEN-PARTS. <0 commleg wevmon of e precedug s
SPECIALLA A TH0SS: Compositon-al-biections, Compuositnan-ol-F-witheisell
GEER AL A 110%5  Combine-concepts,  Seguentinlcwecote. Combing
funcuions )
Immeduite-Generahisations:  Combine- lunclions
1547 Functon, Detenminstic-op, Matheop, Op, Math-ooncept, A thing
EXAMPLES
Good-Fruamples: Compose Count and  Divisors
Bud-Framples: Compuose Count and Count
COMNIFCIURES: Composing B oand F s sometimes very good and usually b
ANALOGIES:  Sequence, Append
WORTH: T

ORIGIN:  Specialization of Append-concepts with shol = Delinition
Defined-using: Specialize Creation-date: 114775 (AR ES
HISTORY: -
S GoodFuamples: 14 M HadExamples: 9

NBadConpectures; 1
NHadTusksAdded: M
AvplistCells; 1e]

SOoedConpectures: 2
SGood Lasks-added: 57
AvpCpuTime: 14 seconds

Fici, 5. Frame-hke representation for a mathematical function from as. I is composed of st
but attributevalue poirs. After each attribute or slon (often heavily hyphenated) s o colon ang
then o list of the entries or values for that attribute of the Compose concept.

different discoveries. Thus the set of heuristics is not merely ‘unwound 1o
produce the discoveries. In almost all cases, the discoveries made were up-
expected (by both program and author), and often were concepis and con-
jectures unknown to the author. Since amM’s heuristics did lead o its discoveries.
they must in some sense be an encoding for them, but they were nm
conscious or (even in hindsight) obvious encoding.

am's basic control structure was simple: select some slot of some concep,
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NAME: Primes
STATEMENT
English:  Mumbers wil twar divisaes
LISP: & {m) (Apply* [Lisp-Stavemnsnl Doub et

(Apply* {Comp s lad-Came - D0 Then Uowisars -0 ] wpp
SPECIALLAATIONS: Odd-prames. Somallsprimics, 1 primes
GENERALISATIONS: Positive numbeers
15-A° Class-of-numbers
EXAMPLES:
Extreme-ens: 2,3
FExtreme-non-exs: 1]
Fypical-exs: 3 T0L1TLIT. 0%
Py pical-nom-exs: 34, 1K)
CONIFCTURES:
Good-comjecs; Unigue Gwtownation,  Formulafordieag
Goud-conjec-units: Times, Dinisors-of, Exponentine, Soncwith-3-dios, Sguanng
AMNALOGIES. Simple Creups
WORTH:  Buo
ORIGIN:  Applicaton of 2 w0 Divesasol
Prefimed-usimg: Lhsisons-of
HISTORY:
SCuoodbBvmples: S0
Mo Conngectunes: 1

TR T TTRTTE T PRI Tl L R P o
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Fio. 6. Frome-like representation for s st ssthematical cincept from s

and work to fill in entries for il. Since am began with over [0 concepts, and
each had about 20 slots o 6l in (Examples. Generulizations, Conjeciures,
Analogies, etc.), there were about 2000 small tasks for s to perorm, mtally.
This number grew with time, because new concepts would usually be delined
long before 20 slots were filled in on old ones. Each task was placed on an
agenda, with symbolic reasons justifying why it should be atended o, Those
tasks having several good reasons would eventually percolate o the top of the
agenda and be worked on. To accomplish the selected task, anm locited relevan
heuristics and obeyed them. They in turn caused entries 1o be filled in on
hitherto blank slots, defined entirely new concepts. and proposcd new tasks 10
be added to the agenda.

Let us briefly illustrate the three types of actions initiated by heunstios. Coe
task am worked on was “Fill in Examples of Sct-Eguality”. One selevini

o hewristic, HS (see Fig. 7) said to look at the domain of Set-Eguality (which was
. pairs of sets), look at the Sets concept, look at its Examples slot, pick

(randomly) a pair of sets from there, and feed them as the mput 10 the
definition of Set-Equality, thereby producing an output of cither T (true) or
NIL (false). By this method a few examples of Sei-Equality were found. b

+ hundreds of non-examples were rejected in the process—afier all. very few

random sets are equal to cach other, This illustrates how a few entrics for the
Examples slot of Sei-equality were recorded.

Another heuristic, H6, reacted to the rarity of the Sei-Equality predicae
returning Tt it added a new task 1w the agenda, nomely “Fill in Generalizations
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HS5: if task is to find Examples(f), I Is-a Pred, and Deln(f) axists,
then apply Defn{f) 1o random entries on Examples(Domain(f))

Ha6: it a few Examples(x) are found, but over 90% ar&_Nun-auamplas,
then (someday) define and sludy various Generalizalions ol x

if task is to generalize /, f Is-a Op of any kind, and one Dein(f) has two
or more conjoined recursive calls on |, '
then deline a new Op similar to / but with one conjunct excised

HT:

Fic. 7. Once a task is selected, heuristics find new entries for a given !Iu_! of a given concept
propose new plausible tasks for the agenda, and synthesize whole new promising concepis,

of Set-Equality”. This is the second kind of activity which we said heuristics
m:ﬂ';:llml;- task eventually ran, it caused heuristics 1o ﬁrelwhirh {iful_'l.l}s:d
whole new concepts—predicates similar to Sel-Etllllillllb' but with a f_.iel_muuu:
that was slightly laxer than Set-Equality's. For instance, one llwurnsnc Tk
above) accessed a recursive definition of Set-Equality, saw |h_a| it recurred in
both the CAR and CDR direction, and eliminated one dlrl‘fllﬂll of recursion,
thereby producing two new, weaker predicates (Lise functions which would
return T whenever Set-Equality did, and perhaps more frequently as well), Cne
of these two predicates turned out to be Same-First-Element-As, and the other
turned out to be quite powerful, namely Snm&Leng,h-As. g

There is one more issue about am that should be discussed in this paper: _huu.
it was able to efficiently restrict its attention to a small set of potentially
relevant heuristics at all times, Consider for a momenll the am heuristic lhqt
says "if a composition fog preserves most of Ih_lL‘ properties that f had ll'u:n. i's
more interesting”. That's useful when evaluating the worth of a composition.
but of course is of no help when trying to find examples of Sets. We associated
that heuristic with the Composition concept, the most gl:m:rul_ concept fuor
which it was relevant. Another am heuristic says “if the domain and range
of an operation coincide, then it's more interesting”, _T_hul one was I_ncku.d m
the Operation conceptl. But note that since Compositions are !:'j.'lt:l:.'lul. k'."d'“ ol
Operations, the heuristic should apply to them as well. The ggneral principle at
work here is the following: If a heuristic is relevant 1o C'. then it's also Irf'l.ffl'“r“‘ fir
all specializations of C. Examining the am representation .fnr Composition (Fig
5), we see a frame-like data structure (schema, pmpclrly list) one of \u:hu.w slus,
is Is-a, and one of the entries therein is Operation. ThIE_ 15 AM'S way of
recording the fact that Composition is an instance of Operation. The obvious
algorithm, then, when dealing with some specific concepl C, is to follow |s-a
and Generalization links upward, gathering heuristics tacked onto any concep
encountered along the way (see Fig. 8). In general, this means that as's
atiention is restricted to log(n) heuristics, rather than n. am can completely
ignore all the rest, and need only evaluate the if parts of these login)

e ——— e e
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potentially relevant ones. In other words, the Generalizaton/Specinlization
hierarchy of concepts has induced a similar powerful structuring upon the se
of heuristics. The power of this technique is dimmed somewhat by the uneyual
distribution of heuristics in the Generalization/Specialization tree: lirge
number of heuristics clustered near the few lopmost {very gener

As am forayed into number theory, it had only heuristics from set theory 1o
guide it. For instance, when dealing with prime pairs (iwin primes), there were
no specilic heuristics relevant o them: they were defined in terms of i,
which were defined in terms of divisors-of, which was defined in twrms ol
multiplication, which was defined in terms of addition. which wits delined in
terms of set-union, which (finally!) had a few attached heuristios Hoevinise 1
lacked number-theory heuristics, embodying what we would call commuon-senae
about arithmetic, am’s fraction of useless definitions shot wiy up: Numbers
which are both odd and even: Prime triples: The conjecture that there s only
one prime triple (3,5,7) but without understanding why: ere. It was unespecied
and gratifying that am should discover numbers and arithime e ar all, But i was
disappointing to see the program begin to thrash, When a few dozen oo HICC S
from plane geometry were added to anm. the same type of thrashing soon
occurred; the addition of specific geometry heurnistics delayed this collapee

There are two relevant conclusions from the an research: () I bs possibale for
a body of heuristics 1o elfectively guide a program in seiarching for new
concepts and conjectures involving them. (i) As new domains of kinow ledpe
emerge, the old corpus of heuristics may not be adequante o serve as a guide
those new domains; rather, new specific heuristics are NECessiry

One feature of Heuretics' being a “field of knowledee” s that there cin
be—nay, must be—hypotheses about heuristics. experiments o test them our,

al ) comeepis
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and eventually a developing theory of heuristics. Toward that end, we can
begin collecting elements of such a theory based on our experiences with au.
See Fig. 9. One remark, besides the two mentioned in the last paragraph, is
that heuristics can be used both to suggest promising actions and to discourage
poor ones. am's search space is never explicitly described; there is no clear
notion of a set of legal operators which defines some immense space of
syntactic mathematical concepts and conjectures, etc. Any such attempt would
probably produce a search space of such size as to be useless (100™ in an's
domain of elementary finite set theory, where definitions were about twenny
nontrivial words long, and there were about 100 concepts to choose from 1o (il
each of those blanks). Rather, am's set of heuristics implicitly defines its search
space. If you remove a heuristic from am, it has less to do; this is exactly the
opposite of the case with most heuristic search programs, where heuristics ure
used exclusively to prune away implausible paths. The fraction of the legal
concepts that would rank as interesting, recognizable, or important is negligi-
ble; contrast that with the almost 50% hit rate of concepts proposed by aw's
heuristics,

(I} A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY

() A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW
HEURISTICS FOR IT ARE CONCOMITTANTLY DEVELOPED

(Il) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS
OR AS IMPLAUSIBLE MOVE ELIMINATORS

{IV) THE GENERALIZATION/SPECIALIZATION HIERARCHY OF
COMCEPTS INDUCES A SIMILAR STRUCTURE UPON THE SET OF
HEURISTICS

Fic. 9. Elements of a theory of heuristics, learned from work on AM.

The final remark noted in Fig. 9 is that the heuristics can be organized into
hierarchy, induced by the Generalization/Specialization hierarchy between
domain concepts (like Fig. 8). In other words, each heuristic has a domain of
relevance: the most general concept to which it's relevant and all the speci.
alizations of that concept. This organization enables the interpreter, through
simple inheritance, to focus on the log of the number of all heuristics in the
system, rather than that entire set of heuristics, at each moment. This may n
matter much for systems with a dozen or two rules, but is currently becoming
crucial as we build systems with on the order of a thousand rules.

2.4. Controlling the use of heuristic knowledge

There is an implied ‘control structure’ for the processes of using and acquiring
knowledge (solving and proposing problems, using and discovering heuristics,
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choosing and changing representations, ete.) In et s o nontrivial assumption
that a single comtrol loop is powerful cnough 1o manige both types of
processes. Our experiences with expert systems in the past 5] hawve taughit us
repeatedly that the power lies in the knowledge, mor in the inference g,

What is that topmost control loap? 1l assumes that there is o large corpus ol
heuristics for choosing (and shifting between) representations. From time 1o
time, some of these heuristics evaluate how well the current repPrCseEalon s e
performing (e.g., is there now some operation which s prerlormed  very
frequently, but which is notoriously slow in the current representanion”). A
any moment, if the representations used seem (o be performing sub-optimally,
some atiention will be focused on the problem of shifting 10 wiher ones,
maintaining the same knowledge simultancously in multiple representitions,
devising whole new systems of representation. cte. Similarly. we assume there
are several heuristics which monitor the adequacy of the existing stock of
heuristics, and as need arises formulate (and eventually work on and solve)
tusks of the form “Diagonalization is uscd heavily, but has oo heuristics
associated with it; so try 1o find some new specific heuristics for dealing with
Diagonalization™. A typical heuristic rule Tor working on such i tisk gl sy
“To tind heuristics specific to C try to analogize heuristios specilic 1o Conce s
which were discovered the same way that C was discovered’

It is assumed that these representation heuristics and heunstic heuristicos
have run for a while, and the system is in a kind of cquilibrivm. The
representations employed are well suited 1o the tasks being performed. and the
heuristics being followed serve as quite effective puides for pliusible mowe
generation’ and “implausible move elimination.” The system now prrosceeds for o
while along its object-level pursuits, whatever they may be (proving theorems
in plane geometry, discovering new concepls in programming. cie ). Coracdually,
the object level evolves: new concepts are uncovered and Tocused UM, T
laboratory techniques are discovered, long-standing apen questions are ans-
wered, ete. As this occurs, the old representations Tor knowledee, and the old
set_of guiding heuristics, become less ideal. less elfective This i turm s
detected by some of the heuristic heuristics discussed in the Lt paraeriaph
They cause the system to attempt to recover ils couthbrm, o spend some
time searching for new representations and new heuristios o deal ellectivels
once again with the objects and operations a1 the object level we Fig. 1y

S0 new concepls, conjectures, theorems, cte, cmeree all the tme . as ey are
mvestigated, some turm out 1o be uselul and some tarm out 6o by dead-ends:
using a fixed set of guiding heuristics. the rate at which useful new discon eries
are made will decline gradually over time: eventually i’ worth pausing i the
search for domain-specific knowledge, and turing instead 10 the problem af
finding new heuristics (perhaps by abstracting recent expericnees in the task
domain). The discoverer later returns to his original task. armed with new and
hopefully more powerful heunistics. He keeps his eve on the new ones iy
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[m-m new rupﬂmnllli;r:'

lAuqmrﬂ the reprasentalion

Define and study heuristics

Define and study domain concepls

Fic. W0, Implicd control structure of discovery systems. As sctivities ol one level :.Il.zl.'.',l..‘h.“c i elicu .
the system is forced 1o spend a little time at the next higher level before procecding

to gain enough experience with them to evaluate just how useful they really
are. )

This cycle of looking for domain concepls, uccaslumla.lly punctuated by an
effort to find new heuristics, continues until, gradually, it b{:n:um_us harder and
harder to find new heuristics. At that point it becomes worthwhile to look for
new and different representations for knowledge. _ .

The top-level control structure is thuslhummsmuc: dl:ll:clmpsll, “.m,j correcting
for any inappropriateness of representations r:_mploycd or heuristics employed
For these purposes, we hypothesize that it suffices to have [anld use) a corpus ol
heuristics for guidance. Of course that top level loop could itself be implicitly
defined by a set of heuristic rules, and we would expect such rules to change
from time to time, albeit very slowly. If, for example, no new concepts of
operations were defined at the object level for a long period of time, llflt.‘n the
need for close monitoring of the adequacy of the representations being

would evaporate.
E“}I:llii:_lcndlsm??lmcla-lfeu:islics are in no way distinguished frnlmlubjurl-heun\-
tics. For example, the very general recursive rule “To specialize a l:l}rl?]pl._'\
construct, find the component using the most resources, and replace it by
several alternate specializations” applies to specializing laboratory pnn:udyu--.,
mathematical functions, heuristics (including itself!), and representational

schemes,

3. The Source of Heuristics' Power

3.1. am's need to acquire new heuristics

am was armed with a powerful set of heuristics and concepts for its initial
domain (finite set theory), and it progressed as best it could without ever
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abstracting its experiences into new heuristics. Earlier we claimed that the
thrashing which ultimately ensued was due 1o the absence of such o wnpaledd bits
of hindsight. By examining that claim more carcfully, we hope 1o justily the
necessity of periodic learning of new heunistics, at least for open-ended
domains such as empirical scientific theory formation.

During the period in which am defines its first 200 concepts (beyond the 115
it began with), 125 are judged 1o be ‘acceptable” (i.e., well-known mathematicul
concepts which humans have given names o, and about which am linds some
nontrivial conjectures). This *hit rate’ of 62.5% falls off rapidly, however, if the
program continues to run. OF the next 300 concepts am delines, only twenty-
nine (less than 10% ) satisly the above criterion for meaninglulness,

By adding heuristics manually, this degradation can be delayed. For exam-
ple, after the 200th new concept is defined, the human observer notes i all
of the conjectures involving Primes and Addinon have wrmed out 1w be
useless; indeed, most of them have turned out o be Talse, Forming this inta a
heuristic, and supplying it 10 am, causes many pour paths o be avoided. When
am is restarted, the same 29 useful concepts emerge at the expense of 260 poor
ones, rather than 271,

An experiment was performed in which, instead of the speailic heunstic
mentioned in the last paragraph. the new heuristic added by the user is the
following more general one: “conjectures involving € and | are more likely 1o
be wseful if £ has some relationship to the terms ou of which € wis defined ™
In particular, conjectures involving Primes and Multiplication (or Division) are
more likely to be valuable than conjectures invalving Primes with Adidition,
Subtraction, Composition, or Printing. Adding this heansie 1o a0 prevents
many blind alleys from being explored, ot the expense of o few genuine
conjectures being missed. 27 of the useful convepts are found. sl vtly 2200 al
the poor ones,

Just by adding this one heuristic, am's hit rte rises from 9% 1o 1%, We
conclude that augmenting am by a few tens of new hewristios (bised on s
experiences in working with concepts 1-300) would be necessary il i were o
maintain its initial high 62.5% hit rate while developing the nest few hundred
concepts. More generally, we conclude that periodic learmmg of new heuristics
15 necessary 1o sustain high performance at the tish of developing o scieniilic
theory. Heuristics formed during the mitial theory formation expericnces are
potent guides 1o subsequent attempts (o extend it theory

3.2, The zero-th order theory of heuristics

Heuristics are compiled hindsight; they are judgmental rules which. if onls
we'd had them earlier, would have enabled us 10 reach our present state o
achievement more rapidly. Why, then, is there any reason to rely on such rules
to guide future behavior? It must be because of continuity i the world: Rules
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which were useful will continue to be useful. Rules useful in situation 5§ will be
useful in situations similar to 5. OFf course the actions taken in the future will be
slightly different than the ones taken in the past, and there must be a
presumption that small differences along that dimension also are tolerable.

The basic Oth order theory, the central assumption underlying heuristics,
appears to be the following: "Appﬂﬂpnm-rENEss[Aclian,Siluatiml}_is continuous
and time-invariant.” That is, apPROPRIATENESS, viewed as a function of actions
and of situations, is a continuous function of both variables. Moreover, of all
the features of the situation which might be relevant, time is (we assume) far
from the most critical variable (Fig. 11).

Oth: APPROPRIATENESS(Action,Sltuation) is a continuous time-lnvariant func-
tion '
Corollary 1: Analogize:

it action A is appropriale in situation S,
Then A is appropriate in most siluations which are very similar o 5.

Corollary 2: Salisfice:

If action A is appropriate in situation 5,
Then so are mast aclions which are very similar to A.

Corollary 3: Remeamber: e
if action A would have been appropriate in the past siluation S,
Then the rule “If similar to 5, then try A" may be useful in the future

Frai, 11, The Central Assumption underlying heuristics, and three special cuses,

Of course we can't compute the arPrOPRIATENESS function precisely; we can'y
even sample more than a few variables from Actions and Situations. Nevertheless.
this abstraction implies several interesting corollaries, and serves as a theoretical
base which can be examined, criticized, and (in Section 3.3) improved. Indeed,
simply by considering Appropriateness as a function, we open up the possibilities
of visualizing graphs of it, a technique which proves to be a useful metaphor
below,

Corollary 1. For a given action, its approprigteness is a continuous function of
the sitwation,

Heuristics specily which actions are appropriate (or inappropriate) in a given
situation. One corollary of the central assumption is that if the situation changes
only slightly. then the judgment of which actions are appropriate also changes
only slightly. Thus compiled hindsight is useful, because even though the world
changes. what was useful in situation X will be useful again sometime in situations
similar to X.

Corollary | says, in effect, that if the current task appears o be similar 1o
one you've seen elsewhere, then many of the features of the task environmen
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will probably be very similar as well: e, the kinds of conjectures which migin
be found, the solvability and dilficulty anucipated with o sk, the wature ol
blind alleys in which one might be trapped, etc. may all be the same as they
were in thal earlier case. For instance, suppose that a certin theorem, LT,
was useful in proving a result in number theory, Now another wsk appears,
again proving some number theory resull. Because the tasks are somilar,
Corollary 1 suggests that UFT be used to try to prove this new result, Corollary
| is the basic justification for using analogy as a reasoning mechanism. A
sentiment similar to this was voiced by Poincaré during the last century: The
whole idea of analogy is thar “Effecis’, viewed as a function of sitmaon, s o
continuons function. Corollary | is the basis for coploying “gencralization ol
stimuli’ as a mechanism for coping with the world,

Corvollary 2. For o given Stheabion, appropeicbeness iy o coirtieitons foictienn of
acticons.

This means that if a particular action was very uselul (o harmbul) in some
situation, it's likely that any very similar action would have b sioilae
consequences. Corollary 2 justilies the use of mesact reasoming, of allocatinge
resources toward finding an approximate answer. of sutislicing

Corollary 3. It is cosi-effective to fornr g o sitcionfaction aides whieh
wetild have helped in the pasi.

The “time-invariant” condition in the statement of the Central Assunaption
{the zero-th order theory) means that the world docsn’t change muoch over
time, and is the foundation for the unlity of semery. Tnoa workd changing
radically enough, rapidly enough, memory would be aowseless ol consader the
plight of an individual atom in a gas. Corollary 3 therefore states that the world
15 assumed to be a stable, nonvolatile place, that any rule which we bnow [via
hindsight) would have been useful o obey in the past. will probably be ol ose
in the future. We are presumed to be inhabiting o world mowlich Moy s
Frame Problem really is a problem., where most valid assermons remaim vilid as
situations evolve,

Il the Central Assumption holds, then the ideal interpreter Tor euristics is
the one shown in Fig. 12, Note that this s very sionilar (oo pare productnon
system interpreter. In any given situation, some rules will be expected o be
relevant (because they were truly relevant in situations very sunlar o the
present one). One or mare of them are chosen and applicd {obeyved. evaluaed,
executed, fired, erc.). This action will change the situation, amd the evele begins
anew. OF course one can replace the “locate relevant heuristies” subtask by o
copy of this whole diagram: that is, it can be performed wnder the pundinee ol
a body of heuristics speciully suited to the sk of findiog hevursnes. Silarly .



210 DB LENAT

MNew  Situation

7 -+ 1)
! 5\
'] h
Changes W the sitwation j"
(hopefully for the bewer) @ ¢ Locate relevant heunstics
(hopefully gquickly) /
i !
N !
b - /!

Apply chosen heuristic(s)
Fra, 12, The tth order interpreter for a body of heurnistic rules.

the task of selecting which rule(s) to fire, and in what order, and with how
much of cach resource available, can also be implemented as an entire heurishie
rule system procedure, Eumisko has this self-representing architecture, and
overcomes the apparent inefliciencies by employing software caching (compil.
ing the rule sets).
By examining the loop in Fig. 12 we can quickly ‘read ofl’ the possible bugs in
heuristics, the list of ways in which a heuristic can be ‘bad”:
- It might not be interpretable at all.
- It might be interpretable but it might never even be potentially relevant,
- It might be potentially relevant but its if- part might never be satisfied,
- It might trigger, but never be the rule actually selected for execution (firing)
- 1t might fire. but its then- part might not produce any cffect on the situation.
- It might produce a bad effect on the situation.
- It might produce a good effect, but take so long that it's not cost-eifective,
This is reminiscent of John Seely Brown's and Kurt VanLehn's [2] work on a
generative theory of bugs, and is meant to be, Perhaps by viewing heuristics as
performers, this approach can lead to an effective method for diagnosing buggy
heuristics, hence improving or eliminating them.

3.3, The power of each individual heuristic

What is the nature of a single heuristic, the source of ils power? One win
of interpreting Corollary 1, above, is that each heuristic has its own particular
domain of relevance, outside of which it is useless or perhaps worse than
useless. Consider the following very special situation: you are asked to guess
whether a conjecture is true or false, What heuristics are useful in guiding vou
1o a decision rapidly? If the conjecture is in the field of plane geometry, one
very powerful technique is to draw a diagram; see heuristic rule HE in Fig. 13

But if the conjecture is in the field of point-set topology, or real analysis, Hx
is a terrible heuristic which will often lead you into error. For instance, if the
conjecture mentions a function, then any diagram you draw will probably
portray a function which is everywhere infinitely differentiable, even if such s
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H&: Il you are guessing Ihe truth of a conjecture
then draw a diagram and see il it holds in that analogic model

HY:; it one quaniily is spoken of as a funclion of another,
then graph il, and visually inspect the graph

Fic. 13, Two general heuristics Tur using analogic muodels

never stated in the conjecture’s premises, As a resull. many properiics will hold
in your diagram that can never be proven from the comjecture’s prennses, The
appropriate technique in topuology or analysis is 1o pull out your book of 1101
favorite counterexamples, and see whether any of them violate the conjecture,
If it passes all of them, then you may guess s probubly true,

This example dramatizes the idea that the power or unility of & heurnsiw
changes from domain to domain. Thus, as we move Trom one domain 1o
another, the set of hewristics which we should use Tor guidanee changes. Aans
of them have higher or lower utility, some entirely new heuristics nay exist,
and some of the old ones may be actually deteimenrad 10 Tollowed e the new
domain. For instance, the “if object s falling then carch it rule s uselul for
most situations, but cach year many people are burned necdlesshy when they
try to catch falling clothes irons and soldering irons

According to the fundamental assumption of heuristics (the th-order theery
of Fig. 11), the power of a heuristic is o continuous Tunction of the task ol s
being applied to. But consider HY, above, one of the most powertul heurnsties
for theory formation. Let's follow its advice in our present situation, that of
grappling with the development of the theory of heuristies. 'Y says 1o take
heuristic Hy, and plot the graph of its power as a lunction ol Gsk domamn. e
imagine graphing the wtility of applying H as a function of situatmn

H W if you are stlumped for a solution,
then ask a human expert lor the answer

HI11: If you are stlumped for a solution,
then do a realtime simulation 1o oblain an approxXmale answer

H1l: i you are stumped for a solution,
then axiomalize the problem and apply the Resolution method

Fici., 14, Three techoigues with very difleremt domons of apphicalubin

Suppose our problem is o process a knowledge Base about et carmers,
answering  database gueries from nonexperts. Some ol the (alben mere
extreme) hewristics available are listed in Fig. 14 Consder dreawing the graph
of power vs, situation for H 10, the heuristic which advocates querying o human
expert when you're stuck. The task or situation axis (v-axis) will be arcmnged by
the ditficulty of the problem being worked on, and the power or utiling s
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(y-axis) will correspond to the difference between _lhc time required to get an
answer from the human expert and the time required 1o gel an answer using
other methods (resolution theorem proving, simulation, exhaustive search. etc.)
See Fig. 15 for a glimpse of what such a graph reveals. In the case of very
trivial problems, it is not worth bothering the user—it would lu:_ better for the
program to work on its own for a fraction of a second and derive the answer
itself, via a few database lookups and some simple inference. Thus the leflimos
portion of the graph is below zero—the utility of employing the "ask an expent’
heurislic on a trivial problem is negative. For problems somewhat more
difficult, asking an appropriate expert might very well be the most cost-effective
method of obtaining a solution. H 10 becomes a reasonable rule to follow. Soin
the middle, the graph of the heuristic’s utility rises to a high value. For veny
difficult problems, superhuman amounts of computation may be required, and
a detailed simulation may far surpass the ability of any human to provide an
answer. Thus the utility declines and becomes negative. If the problem i
extraordinarily difficuli, then it may be insoluble no matter what methods are
tired, and therefore using this heuristic is no worse than using any others—so
the utility eventually rises again to zero.

TASK [HEE WL TY - .

* -

FAAMFTEy CETOETNF =

Fig. 15 The graph of the wiility of H I *Ask an expert’. For very eosy (E) problems, w's
wasteful strategy. For medium (M) problems it's good. For hard (H) problems, the expert woan
know, but a simulation might have worked. For impossibly (1) ditficult problems. no hewnisie 1
much worse than any other, so the utility of "Ask an expert’ nises asymplotically toward zero

What happens when we graph H12, the heuristic advocating resolution
theorem proving? That is wasteful for very easy problems, soluble by database
lookup, not too bad a technique for easy (E) problems, progressively worse for
middling (M) and hard (H) problems, and no worse than anything elsc for
impossibly difficult (1) ones. In short, we get a curve similar to that of Fig. 15,
but skewed further to the left. Similarly, H11 yields a graph like Fig. 15 b
skewed to the right.

As a second example, consider H8, the heuristic that advised drawing &
diagram 1o help guess the truth of a conjecture. This time, the y-axis (utility.
approprialeness. power) can correspond to the chance of such a technigue
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yielding the right answer. The task or situation axis can correspond 1o the
ordering of domains of mathematics i curriculi; thus we wse set theory Lo
define arithmetic, so set theory is located 1o the left of anthmete on this axis
(see Fig. 16). In the case of logic, very few diagrams of any use can be drivwn,
so the heuristic is a slight waste of time. In set theory, Venn diagrams may be
useful for easy problems, but otherwise tend o clunter up the situation rathes
than relieving it. In geometry, however, diagrams are in their glory; Gelernter s
geomelry theorem prover demonstrated vividly the power of drawing even o
single diagram for a problem. Advancing o wpology and real analysis, the
situation reverses, and diagrams which appear 1o capture the situation are in
fact often misleading. Diagrams are gradually rehabilitated in the etherial
heights of category theory, though even there they play only an ausilliary role,
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The diagrium above resembles the potential well around o parnele, and Lor
that reason a heuristic such as “Assume that two point masses repel cach
other”™ would have a wtility graph simlar to Figo 160 Namely, o Far distimees,
gravity makes thal statement slightly wrong. As the objects pet closer. the
statement is more and more wrong, until they are so close than nuclei
interaction forces overbalance gravitational ones, At nuelear distinees, i-'s o
fine heuristic 1o employ. Analogues of this in various situations abound (e
“Avoid getting oo close in personal relationships™)

As a fourth example. consider the wsk of planming Tor company conng o
your house 1o visit. There are many subtasks 1o schedule: shopping lor food
planning menus, cleaning, cooking, tulking, cte. There are several heunsics
(planning techniques) you might apply 1o deal with the problem: Pert charts.
MNoah-like symbolic evalvations, dymamic replanning. counterplanmng. setting
up of agendas, etc. Each of these methods has some situations i which o
works, some in which it fails. and some o which it can’t even be tned . Fan
instance, Pert charts demand a Tull knowledge of dependencics. aond the
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absence of “cycles” among such dependencies. If the dependencies are no
known, the method is not directly applicable; if the dependencies change over
time, the Pert charts will be worse than useless. Thus the graph of the utility of
the Pert chart method would peak in a certain region, become negative further
out, and eventually become zero (as the task got far away from planning).

In general, then, graphing the utility or power of a heuristic Hy as a function
of task domain, if it can be done at all, produces a curve or histogram
resembling that of Fig. 16. Typically, there is some range of tasks for which the
heuristic has positive value. Outside of this, it is often counterproductive 1o use
the heuristic. For tasks sufficiently far away, the utility approaches zero,
because the heuristic is never even considered potentially relevant, hence never
fires. E.g., recall H6, which said in effect: "if a predicate rarely returns True,
then (someday) define new generalizations of it™. This heunistic is useful in ser
theory, worse than useless in number theory, and useless in domains where
‘predicate’ is undefined.

Sometimes, one (or both) sides of the negative region simply keep petting
more negative (as in Fig. 15) rather than reapproaching zero. Sometimes one
side drops precisely to zero and stays there (e.g., if the heuristic has a very crisp
condition under which it is applicable, then considering using it anywhere else
has zero utility because the heuristic will never ‘fire’). OF course the shape of
the curve depends on how the tasks are ordered on the x-axis, and on what the
utility measure is along the y-axis. Indeed, as we have mentioned, the whaole
nation of graphing this function is primarily a metaphorical device to aid us in
further thinking about the theory of heuristics.

If we specialize the then- part of a heuristic, it will typically have higher
utility but only be relevant over a narrower domain (see Fig. 17). Motice the
area under the curve appears to remain roughly constant; this is a geometric
interpretation of the tradeoff between generality and power of heuristic rules.
Since the graphs are metaphorical, this notion of conservation of area under 4
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Fic, 17, The change in power when a hewristic (=) has its then-part specialized (+)
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curve is likewise a “Uth-order” idealization. 1t is also worth noticing that the new
specialized heuristic may have negative utility in regions where the old general
one was still positive, and it will be meaningless over a larger region as well
Consider for example the case where “Generalize o predicate™ is specialized
into “Generalize a predicate by eliminating one conjunet from its definition™.
The latter is more powerful, but only applics 10 predicaes delined con-
junctively; eurisko found a domain where this heuristic has negative worth
(namely, sitvations in which the if- parts of heuristics are heing modificd. sce
H 17 in Fig. 23},

By examining Fig. 17, it is possible to generate a list of possible bugs that
may occur when the actions (then- part) of @ heuristic are specilized. Firsi. the
domain of the new one may be so narfrow that it is merely a spike. a delia
function. This is what happens when a general heuristic is replaced by a tabile
of specific values. Another bug is if the domain is not narcowed at all: in such o
case, one of the heuristics is probably completely dominated by the other. A
third type of bug appears when the new heunistic has no preater power than
the old one did. For example, “Smack a vu-graph projector o a0 makes noise™
has much narrower domain, but no higher utility, than the more puieral
heuristic “Smack a device if it's acting up”. Thus, the arca under the curve s
greatly diminished, but no benelit accrues,

While the last paragraph warned of some extreme bad cises of specializing
the then- part of a heuristic, there are some extreme pood cases which
frequently occur. The utility (power) axis may have some absolute desirable
point along it (e.p., some puarantee of correctness or ellicieney ), and Ty
specializing the heuristic it may exceed that threshold (albeit over o nirrow
range of tasks). In such a case, the way we gualitatively value that heuristic
may alter; eg., we may term it Culgorithmic' or Creal-time’. One wav Lo
rephrase this is to say that algorithms are merely heuristics which are so
powerful that guarantees can be made about their use. Conversely. one can iy
to apply an algorithm outside its region of applicability, in which case the result
may be useful and that algorithm is then being used as a heunistic. The laer s
requently done in mathematics (e.g.. pretending one can dilferentiaie 2
complicated expression, to aid in guessing its value), Another pathalogically
extreme specialization of o heuristic is turning it into one which applivs only on
a set of measure zero. This is not necessarily a bad thing: tables of values oo
have their uses,

Specializing the if- part of a heuristic rule results in its laving o smalles
region of non-zero utility. That s, it triggers less frequently. As Fig, 18 shows
this is like placing a filter or window along the v-axis, outside of which the
power curve will be absolutely zero. In the best of cases, this removes the
negative-utility regions of the curve, and leaves the positive regions untouched.
For example, we might preface the “Draw a diug
premise clause, “If you are asked 1o test a geometry conjecture”

i heuristie with o new
s will
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FiG. 18 The graph of a heuristic’s power, alter its il- part has been optimally specialized,

cause us to use the rule only in geometry situations, a domain where we know
it has high utility.

By examining Fig. 18, we can generate a list of possible bugs arising from
specializing the conditions (if- part) of a heuristic rule. The new window may he
narrowed 1o a spike, thus preventing the rule from almost ever firing. There
may be no narrowing whatsoever: in that case, it typically would add a linle 1
the time required to test the if- part of the rule, while not raising the power ai
all. Of course the most serious error is if it clips away some—or alll=—of the
positive region. Thus, we would not want to replace a general diagram-drawing
recommendation with one which advised us to do so only for real analysis
conjectures. Empirical results from experiments on specializing and generaliz-
ing heuristics are presented in Section 4.1

What are the implications of this simple ‘theory of heuristics'? One effect is
to determine in what order heuristics should be chosen for execution; this i
discussed 1wo paragraphs down. A second effect is to indicate some very useful
slots that each heuristic can and should have, attributes of a heuristic that can
be of crucial importance: the peak power of the rule, its average power. the
sizes of the positive and negative regions (both projections along the task axis
(x-axis) and the areas under the curves), the steepness with which the power
curve approaches the x-axis, etc. Let us take the last attribute to illustrate,
Why is it useful to know how steeply the power curve approaches Ulility = 0
(the x-axis)? If this is very steep, then it is worth investing a great amount of
resources determining whether the rule is truly relevant in any situation (for i
it is slightly irrelevant, then it may have a huge negative elfect if used)
Conversely, if the slope is very gentle, then very little harm will result from
slightly-inappropriate applications of the rule, hence not much time need ever
be spent worrying about whether or not it's truly relevant to the situation
hand.

The whole process of drawing the power curves for heuristics is still con-
jectural. While a few such graphs have been sketched, there is no algorithm for
plotting them, no library of thousands of catalogued and plotted heuristics, nn
even any agreement on what the various power and task axes should bhe
Nevertheless, it has already proven to be a useful metaphor, and has suggested

THE NATURE OF HEURISTICS 21

some important properties of heuristics which should be esumaned (such as the
just-mentioned downside risk of applying a heuristic in a slightly inappropriate
situation). It is a qualitative, empirical theory [12]. and predicts the form that a
quantitative theory might assume,

How should heuristics be chosen for execution” In any given situation, we
will be at a point along the x-axis, and can draw a vertical line (in coase of
multi-dimensional task axes, we can imagine o hyperplane). Any heuristics
which have positive power (utility) along that line are then uselul ones 1 apply
(according to our theory of heunstics), and the ones with high power should be
applied before the ones with low power. OF course, it s unlikely we would
know the power of a heunstic precisely, in each possible situation; while
diagrams such as Figs. 15-18 may be supgestive, the data almost never s
available to draw them quantitatively for a given heunistic. s more likely thin
we would have some measure of the average power of each heurstic, and
would use that as a puess of how useful each one would be an the current
situation. Since there is wsually a radeoll berween generality and power, o
gross simplification of the preceding strategy s simply o apply the most
specific heuristic first, and so on. This is the scheme am used. with very Tew
serious problems. IF all heuristics had precisely the same multiple megral of
their power curves, this would coincide with the previous scheme. OF course.
there are always some heuristics which, while being very gencral, really are the
most important ones 1o lisien to if they ever trigger (710 a contlagration breaks
out, then escape it"”), and some so important that natural selection has wired
them in' as reflexes ("Il there is a sudden bright light, then close your eyes
quickly").

Motice that the ‘generality vs, power' tradeoll has turned into o statement
about the conservation of volumes in n ¥ ni-dimensional space, when one takes
the multiple integral of all the power curves of a heuristic. In particular. there
are tradeoils among all the dimensions: a gain along some wiility dimension
(say Convincingness) can be paid for by a decrease along another (say
Efficiency) or by a decrease along a task dimension (a reduction ol breadth ol
applicability of the heuristics). One historically common bug has been over-
reliance upon (and glorification of) heuristics which are pathologically exireme
along some dimension: tables, algorithms, weak methods, ele.

Heuwristics are often spoken of as if they were incomplete, uncertam knowl-
edge, much like mathematical conjectures or scennfic hypotheses, This s nat
necessarily so. The epistemological status of a heuristic, its justilicanon. can be
arbitrarily sound. For example, by analyzing the optimal play of Black jack.
rather complex table of appropriate actions (as o function of situation) s buil
up. One can simplify this into a "Basic Strategy” of just o few rules, and know
quite precisely just how well those rules should perform. That s, heuristics may
be built up from systematic, exhaustive search, Trom Ccompleie’ undsight,
Another example of the formal, complete analysis of heunsie methods s
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familiar from physics, where Newtonian mechanics is known 1o be only an
approximation to the world we inhabit. Relativistic theories quantily tha
deviation precisely. But rather than supplanting Newtonian physics, they bolster
its use in everyday situations, where its inadequacies can be quantitatively
shown to be too small 1o make worthwhile the additional computation reguired
to do relativistic caleulations,

Many, nay most, heuristics are merely conjectural, empirical, aesthetic, or in
other ways epistemologically less secure than the Basic Strategy in Blackjuck
and MNewtonian physics. The canonical wse of heuristics is to guide future
behavior in cost-effective channels; the canonical use of a conjecture is (o guide
a search for a proof of it. Il a conjecture turns out to be false (such as
MNewtonian mechanics, or the assertion that there is always a generality vs,
power tradeoff) it may yet stand as a useful heuristic.

A4, The space of heuristics

Imagine graphing the utility of an entire sei of heuristics, as a function of the
tasks it’s being applied to. Not surprisingly, the curve produced would resemble
the one produced by a single heuristic (Fig. 16), for it is (to first approximation)
i huge compound heuristic (call it a Mega-heuristic). Hopefully, the sct of
heuristics is more useful than any member, thus its graph is probably much
broader and taller (or less negative) than that of any single heuristic inside it.

One cannot simply ‘superpose’ or ‘max’ the curves of its members; the
interactions among heuristics are often quite strong, and independence is the
exception rather than the rule. Ofien, two heuristics will be dilferent methods
for getting to the same place, or one will be a generalization or isomorph of the
other, ete., and as a result the set will really not benelit very much from having
both of them present. On the other hand, sometimes heuristics interact
synergistically, and the eifects can be much greater than simple superposition
would have predicted. The opposite of this sometimes happens: . two experts
have each provided a set of heuristics which works, yet some heuristics in cuch
set directly contradict some in the other set, Using either half-corpus would
solve your problem, but mixing them causes chaos (e.g., one mathematici
gives you heuristics for finding empirical examples and generalizing, while a
second gives you heuristics for formally axiomatizing the situation; either may
suffice, the unsiructured mixing of the two sets can be catastrophic).

Just as a set of heuristics can be conceptually grouped into a large Mega-
heuristic, s0 an individual heuristic may be atomized into a cloud of much
smaller heuristics. Much of the expertise we tap from human experts, when
building expert systems, is their feel for the proper level at which to state and
use heuristic knowledge. If the heuristics are too small, they stop being
meaningful chunks of wisdom to the human expert, and risk having many stray
interactions. Often languages which enforce a small grain size for rules have
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facilities 1o “chain’ them ogether W prevent such crosstalk. 1 the hearsne
rules are oo large, we begin W lose the benchits of taking a hearnst
rule-guided approach: additivity, synergy. case of cntry and cxplanation and
modiliability. Ulimately, we are left with one hearnistic” which is an opague
lump of Lise code performing the entire task.

Hewretics is interested in the space of all the world™s heunstes. What s is
structure? What regularities in it can be exploied? The sheer siee ol this
space—and our as yel minuscule experience o omavigating within —maky
these tantalizing questions diflicult o investigate,

By examining—and peneralizing—heuristics Trom a dogen disparate lields
(including set theory, number theory, biologiwcal evolution,  evolution ol
naval leets, vse programming, game-playing. and oil spill cleanups), we have
built up some data—and some conjectures—involving heuaristicspace. Con
sider arranging all the world’s hewristics a0 generalization/specibisaton
hierarchy, with the most general omes at the top Ad o top level B the so-called
weak methods (generate and test, hill-climbing. matching, meins-ciodds anilysis,
ete.). At the bottom are millions of very specilic heanstios, ivolving donnm
specilic terms ke "King-side” and “Arseonwe’. Owe may prcture o Clinistinas tree,
with a pure angel at the top, and the worthwhile gins ar the baottom,

In between are heuristics such as those depicied i Fig, 19 Look Tor Baed
points”, “Examine extreme cases™, “Sce what happens when oo process s
repeated”, “Given fx,y), examine what happens when v = v7 These are more
specific than the weak methods at the wp of the tree, yer are Tar Trom
domain-dependent heurnistics below them. Progressimg doswnward, more il
more conditions appear on the lele-hand sides of the heanstes 003 and awae
specialized advice appears on the right-hand sides (then's),

A purely ‘legal-move’ estimate of the sive of this tree gives o huge Tinal
number: Based on the lengths and vocabuluries of heuriste rules i s one
may suppose that there are about 20 blanks wo be Glled oo o evpacal hearsie,
and about 100 possible entries for each blunk (predicate. argument. action. cic )
related to am’s math world, So there are W0 synacncally well-formed heurs
tics just in the elementary mathematics cormer of the tree. OF course, most ol
these are never (thankfully!) going to fire, and alimost all the vest wall perlorm
irrelevant actions when they do fire. From now on, lets resteict our attention 1o
the tree of only those heuristics which have positive wility an least in some
domains,

What does that tree actually look like? One can take a speatic heuristic and
generalize it gradually, in all possible ways, until all the gencralizations collapse
into weak methods. Such a preliminary analysis (using an's heuristios) led s o
expect the tree to be of depth about 50, and in the case of an expert system
with a corpus of a thousand rules, we might expect a picture of them arranged
50 (o form an equilateral triangle. But when we went through thes pariad ree
analyzing the power of the rules therein, it quickly became apparent thin mos
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Fic. 19, A tiny fragment of the graph of all heuristics, related by generalization/specialization
Mote the similar derivation of coalescing and fixed-points heuristics,

generalizations were no less powerful than the rule(s) beneath them! Thus the
specific rule can be eliminated from the tree. The resulting tree has depth of
roughly 3 or 4, and is thus incredibly shallow and bushy. Herbert Simon.
Woody Bledsoe, and the author analyzed the 243 heuristics from am, and were
able to transform their deep (depth 12) tree into an equivalent one containing
less than fifty rules and having depth of only four.

Looking at heuristics arranged in a tiny tree (e.g., Fig. 19), we observed thu
all but the top and bottom levels can be eliminated. A similar phenomenon was
seen earlier in the case of a heuristic which said to smack a vu-graph projector
in case it acted up; it and several levels of its generalizations can be eliminated,
since they are no more powerful than the general “Smack a mallunctioning
device” heuristic. Some very specific rule, such as “Smack a MNanook HI7
vu-graph projector on its right side if it hums”, might embody some new,
powerful, specific knowledge (such as the location of the motor mount and this
brand's tendency to misalign), and thus need to stay around.

This ‘shallow-tree’ result should make advocates of weak methods happy,
because it means that there really is something special about that top level of
the hierarchy. Going even one level down (1o more specific rules) means paying
attention not to an additional ten or twenty heuristics, but to hundreds. It

THE NATURE OF HEURISTICS 221

should also please the knowledge engineering advocates, since most of the very
specific domain-dependent rules also had to remain, It appears, however, 1o be
a severe blow to those of us who wish to automatically synthesize new
heuristics via specialization, since the result says that that process is usually
going to produce something no more wseful than the rule you start with,
Hencelorth, we shall term this the shallow-iree profdem.

There are two ways out of this dilemma, however. Natice that “unilhity ol o
heuristic’ really has several distinct dimensions: eflicieney. lexibility, power lor
pedagogical purposes, usefulness in future specializations and peneralizations,
elc. Also, ‘task Teatures’ has several dimensions: subject nuiiller. resources
allotted (user's time, cpu time, space, etc.), degree of complexity (eg. consider
Knuth's numeric rating of his problems” ditliculiy), time (e date i history ),
paradigm, etc. I there are noutility dimensions and s task dimensions, then
there are actually o * o dilferent power curves to be deawn for coach heansnic
Euch of them may resemble the canonical one pictured o B B 1 b
specializing a heuristic we create one which has the appearance of Fig, 17 a0
any one of these n % m graphs, then i s o uselul specialization. So. while
specialization is unlikely to be useful in any particubir unbityfesk graphe s
guite likely 1o be uselul according 1o some one of the a = an such graphs

Consider the ‘Focus of Attention’ heuristic; that s one which recommends
pursuing a course of action simply because its been worked on recently. Llsing
this as one reason to support tasks on its agenda made as appear more
intelligent to human observers, yet actually take longer too make any given
discovery. Thus, it is useful in the "‘Convincingness” dimension of unillity, but
may be harmful vis a vis "Efficiency’.

As another example, consider the heuristics “Sm;
it's acting up™”, “Smack a child if s acting up’, and CSmack a0 va-graph
projector or child if it's acting up”. There may be some utility dimensions in
which the third of those is best (e.g., scope, humor). However, the rationale or
justification for the first two hearistics is quite ditferent (random perturhation
toward stable state vs. reinforcement learning). Therefore the third heursne is
probably going 1o be deficient along other unility dimensions (elariy, uscliolness
for analogizing, case of teaching).

But there is an even more basic way in which the “shallow-tree™ problem
goes away. There are really a hundred different wselul relationships thar 1w
heuristics can have connecting them (Possibly-trigeers, More-restnctive-al-part.
Faster, My-average-power-higher-than-your-peak-power,  Asks-fewer-gues-
tions-of-the-user, eic.) For each such relation. an entire graph (note that cven
the Genl/Spec relation generated a graph. not o tree—see Figo 15) can be
drawn of all the world's heuristics; pragmatically. we considered only those in o
given program. In some of these trees or graphs, we Tound the broad, shallow
grouping that was found for the am heuristics under GenlfSpec, For others,
such as Possibly-Triggers, we found cach rule pointing tooa small collection ol
other rules, and hence the depth was quite Brpe Gipprosimately 3R s nal

ik o vu-graph projector af
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including cycles). There are still many difficult questions to study, about this
phenomenon, even with the theory in this primitive state: How does the shape
of the tree (the graph of heuristics related by some attribute R) relate to the
ways in which R ultimately proves itself to be useful or not useful? Already,
one powerful correlation seems to hold: In cases where the tree depth is great,
that relation is a good one to generalize and specialize along; in cases where
the resulting tree is very broad and shallow, other methods (notably analogy)
may be more productive ways of getting new heuristics.

3.5. The first-order theory of heuristics

There are several things wrong with the Oth-order theory: it presumes tha
knowledge is complete and unchanging; that is, it ignores the "potato in the
tailpipe’ problem, and ‘solves’ the frame problem by asserting that assertions
never change their validity (another way to view this that it spawns the frame
problem). Corollary 1 above (see Fig. 11) presumes that the axis of “Situations’
is well defined and continuous, when of course it is neither. As we said carlier.
the items in Fig. 9 are 2nd-order correction terms to a theory of heuristics, and
Fig. Il is a very simplified Oth-order theory. Intermediate between them lies
theory which interfaces to each. That first-order theory says that the Oth-order
theory is often a very useful fiction. It is cost-effective to behave as though it
were true, il you are in a situation where your state of knowledge is very
incomplete, where there is nevertheless a great quantity of knowledge already
known, where the task is very complex, etc. At an earlier stage, there may have
been too little known to express very many heuristics; much later, the
environment may be well enough understood to be algorithmized; in between,
heuristic search is a useful paradigm. Predicting eclipses has passed into this
final stage of algorithmization; medical diagnosis is in the middle stage where
heuristics are useful;, building programs to search for new representations of
knowledge is still pre-heuristic (Fig. 20).

Notice that the Ist-order theory is itself a heuristic! This is not too disturbing,
since it is dubious that we will ever know enough about thinking to supplant it.
Until your model of me is absoluely perfect, your predictions of my behavior
will diverge more and more as time proceeds, and after a relatively shor
interval you will have to rely upon heuristics again to understand and predici
my thoughts and actions. And there is probably something akin 1o Heisen-
berg’s uncertainty principle to guarantee that your model of me can never he
perfectly complete.

1st: If you are in a complex, knowledge-rich, Incompletely-understood world,
Then it Is frequently useful to behave as though It were true that
APPROPRIATENESS{Action,SHuatlon) Is continuous and time-invariant.

Fic, 20, The first-order theory of heuristics: the Oith-order theory is a useful fiction,

THE NATURE OF HEURISTICS 233

3.6, The second-order theory of heuristics

The second-order corrections in Fig. ¥ (and, as we shall soon see, g, 21
below) now apply to the first-order theory (e.p.. the division of heunsiics into
generators and pruners). Additionally, some new second-order ones are ap-
parent. For instance, the adjective ‘frequently’, uscd in Fig. 200 can be replaced
by a body of rules which govern when it is and is not useful 1o behave so.
Finally, careful examination of the wse ol heuristics in an reveals some
regularities which seem to be the opposite of the claims of the tih-ordes
theory.

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only
we'd had them sooner, would have led us to our present state much Taster. This
means that some of the blind alleys we pursucd would have becn avoided, and
some of the powerful discoveries would have been made sooner

Even the synthesis of a new discovery can be considered o be the resull of
employing guidance heunstics, rules of good puessing based on analogy,
aesthetic criteria such as symmetry, or random combination. A lew tvpical such
rules would be *Analogies are useful in formulating baological and sociological
theories”, “Symmetry is useful in postulating the existence of Tundamental
particles in physics”, “Randomly look at empirical diata Tor regularities in
elementary number theory and plane peometry™,
observed, consider the extreme cases of that relationship”™. Those guidance
heuristics were in turn based on several past episodes, hence are themselves
compiled hindsight. Nilsson and others have argucd for the primacy of search:
we are simply stating the very special case where we cannot decide which node
to investigate next, but rather must let Time carry o stream ol events past us,
each event serving as a node for our observation and recording: the primacy of
compiled experiential knowledge.

As new empincal evidence accumulates, it may be uselul o recompile” the
new hindsight into heuristics (synthesize new heuristics and modify old anes)
am demonsirated that, certainly by the time you've opencd up o whole new
field, you must recompile. Working in point-set topology with geometry
heuristics is not very efficient, nor was am's working in numbcer theory using
only heuristics from set theory. The set of heurnistics must evolve: some old
ones are no longer useful, some must be refined o suin the new doman. ad
some entirely new heuristics may be uscful, As the task varies, or as lime virnes
and one gains new experiences, one's set of puiding heuristics as oo longer
optimal. The utility of a heuristic will vary, then, both across tasks and across
time, and this variance is nol necessarily continuous,

Exactly what kinds of changes can occur in o domain of knowledpe tha
might require you to alier your set of heuristics? In other words, what are the
sources of granularity in the space of “fields of knowledge™

First, there might be the invention of a new picce of apparatus. This could be

“Chce a correlation s
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theoretical (such as Godel's theorem) or technological (such as the electronic
digital computer). The first few painful experiences with a new invention
quickly lead to a specialized corpus of heuristics: rules which tell you how to
use such a thing, where not to poke your fingers, when it's relevant, how to fix
one, what kind to buy, etc. In addition, many of the old heuristics may be less
or (rarely) more useful than they used to be. The invention of the airplane
invalidated most of the long distance travel heuristics then extant, reinforced
the heuristic that said 1o be skeptical of printed timetables, and led 1o the
creation of many new rules of thumb for dealing with air travel.

Second, there might be a new technique devised, one which doesn’t actually
depend upon any new apparatus. Again, this can be theoretical (such as the
recent widespread application of divide and conquer in complexity theory) or
practical (such as Maxam and Gilbert's ingenious method for sequencing
DNA). New heuristics about reliability, applicability, etc. become useful.

Third, a new phenomenon may be observed. When a new invention (e.g., the
telescope) occurs, there are often two immediate new phenomena: the
sociological one of how the invention is used, and the ‘real’ one now obsery-
able using the invention,

Fourth, and most unusually, there may be a newly-explicated or newly-
isolated concept or field, one which was always around but never spoken abou
explicitly. Three such concepts, recently out of the closet, are: paradigms in
scientific research, the whole field of heuristics itself, and the analysis of
algorithms.,

In brief, the four sources of granularity in the space of ‘domains of knowl-
edge’ are precisely those components which, if varied, lead to a new domain of
knowledge. In other words, they define what we mean by a domain of
knowledge: a set of phenomena to study, a body of specific problems about
those phenomena which are considered worth working on, and a set of
methods (both theoretical and experimental, mental and material) for attacking
such questions.

The space of domains is granular, quantized, hence the ‘power curves' we
drew earlier for individual heuristics are really step-functions (or histograms)
rather than smooth curves as we've drawn them. One implication of this is that
there is a very precise point along the task axis where the wtility drops from
positive to negative (or zero). Often this is a large, sudden drop across a single
discontinuity in the axis (e.g., when a product emerges, an expert dies, a
theorem is proved).

One frequent problem we face when trying to apply heuristics is not being
able to evaluate their if- parts, their conditions. We may not know whether the
acyclic preconditions demanded by Pert techniques are satisfied; we may not
know for sure whether the difficulty of the request from the aircraft database is
neither (oo trivial nor too complex; etc. In such a sitvation, we rely on
heuristics for deciding which heuristics to apply. A few such are:
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(1) Nomwmonotonic reasomng: assume that some of the uncertain conditions
hold, and tag dependencies so that it is casy to undo conseguences of that
heuristic application if it later turns out that the assumption was wrong.

(2) Deferral: if all of the alternative heunstics would cause a certain sub-
action to be taken (as one entry of their then- parts), then take that action now
and hope that by the time it finishes more knowledge will be available o aid
choosing among the competing heuristics.

(3) Approximation: weaken some of the conditions for applicability of the
heunstics. E.g., replace *all’ by ‘most’, ‘equal’ by “similar’, eliminate one entire
conjunct from a condition comprised of many conjuntive tests, ete. This applics
to heuristics for choosing heuristics as well;, thus one could weaken (2) above,
into a rule that said “if most of the alternative heuristics would cause @ certain
action to be taken .., replacing the technique of guaranieed deferral with
plausible delerral.

This section has now contributed three new clements to our growmg theory
of heuristics (see Fig. 21).

(v} HEURISTICS ARE COMPILED HINDSIGHT
(vi) THE SPACE OF '‘DOMAINS OF KNOWLEDGE' 15 GRANULAR
(vii) USE HEURISTICS TO DECIDE WHICH HEURISTIC TO APPLY MNEXT

Fui. 21, Three sdditional (see Fig, Y) clements of o theory ol heunstics

4. puwisko: The Owigin of New Hewristics

Recently, the am program has been extended into pusisko. a progeam capable
of discovering new heurnistics as well as new mathematical concepts. The as
heuristics were originally coded as opague lumps of Dse code—mmutable and
uninspectable by the system. In pokesko these have cach been recast s
full-Aedged uwnits, with their content spread out mto dosens of kinds of slogs,
The corpus of heuristics guides the synthesis, data gathering, and judgmental
evaluation of new concepts—be they new math concepts (PrimeMNumC i Divis),
representation concepls (VolatileSlots), or heuristics (Generalise RareCyp) This
section briefly recounts some of the design considerations and  runtinme
experiences we have had 1o date with surisko.

4.1. Meta-heuristics are just heuristics

Is there something special about the heuristics which inspect, gather data
about, modify, and synthesize other heuristics? That is, should we distinguish
‘meta-heuristics” from “domain heuristics™ According to our general theory. as
presented in Section 3, domains of knowledge are granular but nearly con-
tinuous along every significant  axis  (complexity  of sk, amount o
quantification in the task, degree of formalization, ete.) Thus, our first hypo-
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thesis is that it is not necessary to differentiate meta-level heuristics from
object-level heuristics—nay, that it may be artificial and counterproductive to
do so,

This is one hypothesis upon which the design of Burisko rests. Fig. 22
illustrates three heuristics which can deal with both heuristics and mathematical
functions. The first one says that if some concept f has always led 10 bad
results, then f should be marked as less valuable. If a mathematical operation,
like Compose, has never led to any good new math concepts, then this heuristic
would lower the number stored on the Worth slot of the Compose concep.
Similarly, if a heuristic, like the one for drawing diagrams, has never paid olf,
then its Worth slot would be decremented. eurisko put this rule to frequent
and good use, so there was little chance in practice of it applying to itself
{though in principle it might have).

HI1Z: it the results of performing  have always been numercus and worlhless,
then lower the expected worth of f

H13: it the results of perdorming f are only occasionally uselul,
then consider crealing new specializalions of f by specializing some slots of f

H14: if a newly-synthesized conceplt has slols that coincide in value with those
ol an already-exisling concept,
then the new concept should be destroyed because il is redundant

Fig. 22. Three heuristics capable of working on heuristics as well as math concepts.

The second heuristic H I3 says that if some concept has been occasionally
useful and frequently worthless, then it's cost-effective to seek new, specialized
versions of that concept, because some of them might be much more frequently
utile (albeit in narrower domains of relevance). Composition of functions is
such a math concepi—it led am to some of its biggest successes and failures,
H13 added a task to am’s agenda, which said “Find new specializations of
Compose”. When it was eventually worked on, it resulted in the creation of
new functions, such as ‘Composition of a function with itsell’, ‘Composition
resulting in a function whose domain and range are equal’, *Composition of
two functions which were derived in the same way’, etc. H13 also is present in
EURISKO, but there it also sometimes applies 1o heuristics, in fact once H 13
applied to dself. How did that happen? HI13 was sometimes useful and
sometimes not, and so it truly did pay to seek new, specialized variations of
H13. Four of the many specializations were: heuristics which demand tha
has proven jtsell useful at least 3 times, that f be specialized in an extreme way.
that f have proven itseli extraordinarily useful at least once, and that the
specializations still be capable of producing any of the successful past creations
of f. eurisko’s Tull results in this case were as follows.

2 heuristies that were more specialized and potentially more useful and more
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powerful (including *
tive) slots').

4 heuristics which looked more specialized but were exactly the same as the
ariginal one (including *. . . and which has been used several times . ).

180 heuristics which were more restricted in applicability. yet performed
actions identical to the original when they were applicable fe.g.. *...and the
concept represents a heuristic rule . ).

07 heuristics which were so specialized they would (essentially) never fire
(e.g.. "...and the concept is Set-Union’, “and the concept is a sel-theory
function and a geography-function’).

5 heuristics which were simply wrong—i.e., would cause much muore hiarm
than good if they were used in guiding the program {including “if the results of
applying f are never useful’, ‘then specialize a noncriterial slot’),

The conclusion is that heuristics can operate on cach other (and thenmselves)
to synthesize new heuristics, but the process is very explosive, and must be
heavily constrained if it is 1o be worthwhile pursuing

Near the end of Section 3.3, we found it feasible to constrain the “choose the
next heuristic 1o apply’ problem by using a few heuristics for stidance, A
similar approach was tried in the above case, not by hand but by sk iself:

Rather than hand-crafting some "meta-rules’, we simply re-ran coeisko all
over again, but keeping the four synthesized heuristies to whivh romsko hid
given its highest Worth ratings. These are shown in Fig. 23 The first two are
special cases of H13. Each of them also claims 1w subsine HI13, therely
effectively turning it off for the duration of the second run. Heunstie 115
suggests specializing only those slots of £ which are Criterial (defining rather
than commentary). Thus, a terrible specialization such as used 1o arise [
altering only the EnglishStatement slot could no longer occur. H 1o linnits its
recommendations to those slots which, viewed as units in their own right, have

- then specialize one of its eriterial (not merely escrap-

H15: if the resulls of perdorming [ are only cccasionally uselul,
then consider crealing new specializations of f by specializing some criferial
slots of 1

H 1o it the results of pedorming f are only occasionally uselul,
then consider creating new specializations of f by specializing some
highly-rated stols ol |

HIT: it modifying any “il- part’ of a heuristic H,
then don't replace ‘and’ by any other predicale

H 18: If a newly-synihesized concepl has criterial slals thal coincide in value
with those of an already-existing concept,
then the new concept should be destroyed because it is redundant

Fig. 23, Four pew heuristics synthesiced by Buiisko, Two consirained penerimtion” sty s
un “implausible pruning’ heurisiic replace H 13 yieldimg bess explismive resulis
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high Worth values, Occasionally, both rules (H15 and H16) support the same
task, and that task will jump to the top of the Agenda and is worked on almost
immediately.

The next heuristic, H 17, is a bit of compiled hindsight which, if only it had
existed all along, would have prevented one of the disastrous explosions of
worthless concepts due to the synthesis of a terrible heuristic. While the other
heuristics in Fig. 23 are small perturbations on existing heuristics, HI17 is
completely new (though synthesized using prexisting templates, to be sure),
How did this rule get synthesized?

EurIsko originally used H 13, sometimes to good advantage, and decided 1o
generalize it. A task to that effect was placed on the Agenda, and eventually it
was selected as the best task to work on for a while. Burisko chose, atl random,
the IfPotentiallyRelevant slot as piece of H13 to generalize. This had con-
tained ‘il the task is to specialize C, and no slot to specialize has yet been
chosen’; that is, this test was a predicate with two conjuncts, EURISKO general-
ized this by replacing ‘and' by ‘TheFirstOF—i.e., by eliminating the second
conjunct, In this manner a new, generalized heuristic, H13b, was created. Why
was it so terrible? Instead of placing tasks on the Agenda only when a
particular slot hadn't been decided, H 13b fired even when the selected slot was
known! This resulted in a continuous stream of new tasks, and eventually new
concepts, being synthesized. Finally, another heuristic caught this, by noticing
the sudden influx of uninvestigated, uninstantiated concepits. It destroyed the
mutant H13b, and synthesized a few new heuristics, rules which would have
been capable of preventing such a mutant from ever being created. One of
those eventually got a high Worth rating, and it appears as H17 in Fig. 23.

The final heuristic in Fig. 23 needs little commentary; it is a specialization of
the final heuristic in Fig. 22, but is much more useful, as the empirical results of
rerunning Eurisko showed, With the four heuristics from Fig. 23 added 1o the
initial state of the evmisko System, the resulis changed dramatically. For the
particular case above, of H 13 applying to itself, they were:

2 heuristics that were more specialized and potentially useful;

4 heuristics which looked more specialized but were not,

9 heuristic which applied less often and did the same thing;

20 heuristics which were so specialized they would never fire;

4 heuristics which were simply wrong and harmful.

The very good—and the very dangerous—heuristics were still generated and
passed on for future consideration; the intermediate ones, the ones which
would appear foolish 10 a human on first reading them, were almost completely
suppressed. The only way to eliminate any of the four harmful specializations
from being considered, however, was to add (by hand) new pruning heuristics,

Owerall, the number of new heuristics synthesized was reduced by an order
of magnitude. Five hundred tasks were worked on during the first execution,
but only 75 tasks needed 10 be run during the second execution (with the four
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new rules from Fig. 23), The times for these runs were, respectively, 3 oo
Yepu minutes (on a DEC 20060, running Interhisp), The 250k of address spawe
was quickly exhausted, and it was necessary Lo employ o mueans 1o swap units
out onto disk (we used the rue language) or a machine with a lairger vietoal
address space (we now have access o a Xerox Dolphing.

When run for very long periods of time, urisko invents ways of cotering
infinite loops (e.g., a mutant heuristic which nmages o alter the siuation so
that it will soon be triggered again). Much of our current work involves addimg
new capabilities 1o the program to detect and break out of such mlinite loops,
and to compile its expericnces into one or more hearistios which would have
prevented such situations from arising. [t is not always casy to espliin what s
wrong with a certain “bad product’. For instance, one newly syathesized
heuristic kept rising in Worth, and finally 1 looked at it It wis doing oo real
work at all, but just before the credit/blame assignment phase, o guickly eveled
through all the new concepts, and when it found one with high Waorth s pu ats
own name down as one of the creditors. Nothing s wrong” with that polcy,
except that in the long run it fails to lead o beter results,

One additional factor which appears 1o have a dramatic ellect upon the
guality and rapidity of heuristic synthesis is the precise set ol slots that are
known to the system. This is the topic of Sections 4.2, 4.3, ol 4.4

4.2, Attributes of a heuristic

In am, heuristics examine existing frame-like concepls, and Tead o new and
different concepts. To have heuristics operate onand produce haunstics,
EURISKD represents each heuristic as o full-Bedged frame-like concept. g
H 12 (see Fig. 22) needs to reset the value of the Worth slot tattribute) of the
concept [ it operates on, hence even if £ is a hearistic it must have o Worth slol
{else we cannot run H12). Similarly, o heunistic that referred o such slots as
Average-running-time, Date-created, Is-a-kind-of, Number-ol-instmnees, cie
could only operate upon units (be they mathematical Tunctions or heurisiics)
having such slots.

Fig. 24 illustrates (some of the slots from) a heurstic from eeieseo. Notice s
similarity to the representation of o mathematical operation (kg 501 he
heuristic resembles the math funcuon (compare Figs. 24 and 35 much more
than the math function resembles the static math concept (compare Figs. 3 and
).

Earlier we defined a heuristic wo be a contingent piece of guidanee knowl-
edge: In some situation, here are some actions that may be especilly fruitful,
and here are some that may be extremely inappropriate. While some heuristics
have pathological formats (e.g.. algorithms which lack contngency: delia
function spikes which can be succinctly represented as tables)h most hearistics
seem to be naturally stated as rules having the format if-conadienrs, then-
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NAME: Cieneralite-rare-predicate
ABHBREVIATION: GRP
STATEMEN]
English: 17 o predecate is rarely ue, Then create generalizations ol it
IF-ust-inished-a-task-dealing-with: a predicate P A IEESE 0 SEUREEE 1RS & ORI
IF-ubout-w-work-on-tsk-dealing-with: an agenda A |+ RS A R
1F-in-the-middle-ol-a-tsk-dealing-with:  *never® !
IF-truly-relevant; P oreturns True bess thon 5% of Averoge Predicoe
IF-resources-avinluble: at least 10 cpu seconds, an least 300 cells
THES-add-tisk-w-ugenda: Fill in emnies for Generalizations shog of 1
THEN-conpecture; P is less interesting than espected
Generalizations of P omas be beter than P
Speciabzations of P omay by vers bad
THES-modily-slots:  Reduce Worth of P by 0%
Reduce Wonh of Specialications(1*) by 310
Incresse Worth of Generalizations(P) by 2006
THE-print-w-user:  English{GRP) with “a predicate™ replaced by P
THE - define: new-concepis;
CODELIF-PART: MP) ... <1050 iuscin desvass wssicd Bercd
CODELY THEN-PART: MPY o SHISE dunciim definamm smiiad B
CODENFIF-THES-PARTS: MPY . ISP jumctaon Meilisn ommad B
COMPILFD-CODELD-IF-THEMN-PARTS: # W875
SPECIALIAATIONS: Generahrerare-set-predicite
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Figi. 24. Frame-like represemation for a heuristic rule for ast. The rule is composed of nothing but
attnbute:value pairs.

actions’. As the body of heuristics grows, the conditions fall into a few common
categories (testing whether the rule is potentially relevant, testing whether
there are enough available resources to expect the rule to work successfully 1o
completion, etc.). The actions of the rules also begin to fall into a few common
categories (add new tasks to the agenda, print explanatory messages, define
new concepts, eic.). Each of these categories is worth making into a separare
named attribute which heuristic rules can possess; Sections 4.3 and 4.4 will
show the power which can arise from drawing such distinctions.
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So instead of a heuristic having simply an il-slor and a then-shor i has g
bundle of slots which 1ogether comprise the conditions of applcability of the
heuristic, and another bundle of slots which comprise the actions (sce Fig. 24)
In addition, there are several non-executable slots that describe the heuristie,
that facilitate indexing of it, that relate it 1o other heuristics, cie,

By a ‘slot’ of a unit, we mean something closely related 1o the standird
attributefvalue pairing provided by property lists in pse. However, there s no
regquirement that the value for the slot actually be stored explicitly: rather, we
require only that it be retrievable upon demand, Thus our system, Fosiskao, T
a slot called Compiled-Coded-1-Then-Parts, no rule ever explicitly writes a
value on such a slot, but some rules (such as those which deline o role
interpreter) access such slots and evar them, When one s oaccessed, anmd found
to be nonexistent, the unit called Compiled-Coded-1-Then-Parts as Tewched,
and its Definition is found, That definition says to aceess the Coded- 1 Then-
Parts slot, and then run the vise compiler on that value. But suppose the
Coded-1f-Then-Parts slot doesn’t exist, either: then s delinition s consulied
That results in the Coded-I1-Puart and the Coded-"Then-Part bemg accessed, and
their values being put together into a Conditional expression. The Coded- 11
Part doesn’t exist, and the Definition slot of the unin called Coded-TE-Part savs
to access—and conjoin—all the slots called I-Potentially-Relevant, - Traly
Relevant, If-Resources-Available, cte. This looking up of slors” detimtions
continues until the only slots called Tor are ones which are prooinee, which are
actually stored on the property list of the unit, This is rennmiscent of macro
expansion, but more semantically puided: ontologically i actually has closer
kinship to the style of knowledge-based automanic program synthesis done by
Balzer, Barstow, Green, and others. See | 7] tor the origins of this paradizm.
and [ 10] for more details of this malleable represcotation scheme.

One analogue of hardware caching is to store the cirrpal slonrs vadues as they
are computed; thus the property list of Generaliee-Rare-Predicate might even-
tally look like that shown in Fig. 24, even though very few of those slots had
their values stored there explicitly. Should the  I-Truly-Relevant slo of
Generalize-Rare-Predicaie ever change, the system automatically updaies the
virtual slois defined wsing H-"Truly-Relevant (in voniske. this currently would
include 1f-Relevant, H-Parts, Coded-I-Parts, 1 Then-Parts, Couded-0-Then
Parts, and Compiled-Coded-1-Then-Parts. )

These two leatures—software caching of slots values, plus the aluliny o hase
virtual slots defined in terms of more primitive omes—Ilead o the dyviniomic
expansion of the vocabulary of legal slots. Thus the original oskes system
had hewristics with primitive Coded-1-Part and Coded-Then-Fart shots: these
were later given definitions in terms of new., more primitive slots Gsach as
Then-Define-New-Concepts). Any existing rule, which had only the Coded-11-
Part and Coded-Then-Part lumps of code, sull rons for all purposes Adl rles
which ask For either of those slots sull oo B new rules have the aption ol
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being specified in terms of more refined slots, and their Coded-1f-Part and
Coded-Then-Part slots are assembled upon demand out of those smaller picces.

All the previous attributes (If- parts, Then- parts, Coded- ... paris) huxre
been effective, executable conditions and actions. These are paramount, since
they serve to define the heuristic—they are the c.-'l'Ierm{ ?hns. Many non-
effective non-criterial slots are important as well, for describing the heuristics
Some of these relate the heuristic to other heuristics (Generalizations, Speci-
alizations), 1o classes of heuristics (Isa), and to non-heuristic concepts (View)
Several slots record the heuristic's origins (Defined-using, Creation-date) and
the case studies of its uses so far (Examples).

Once a rich stock of slots is present for heuristics, several new ones can be
derived from them by choosing an n-ary relation R, and n slot names, and
defining R(5,. 5. .. .. 5.) as a new type of slot. .

First. consider choosing just a single kind of slot (e.g., Examples), and asking
some questions about it: how does it evolve over time in length? what
relationships exist among entries that fill it? how useful are those values?, ele.
Each such guestion spawns a new kind of slot, eg., AvgMNumberOfEx-
tremeExamples, RelnsAmongMyExtremeExamples, AveWorthOfExtreme-
Examples. In furisko, these are thought of, and implemented, as full-
fledged slots in their own right, not as subparts of slots. In our program, the
various if- slots have not been relegated to second-class citizenship beneath
Coded-If-and-Then-Parts. Indentation (in Figs. 5, 6, 24) is used merely as a
visual aid. not to reflect extra levels of parentheses in Lise.

We now have an ad hoc way in which to generate new kinds of slots out of
old ones. To accomplish this in a principled way, one would draw a lowchart of
the primitive slots functions (Get, Put, Assert, eic.), and categorize—Tfor each
kind of flow chart primitive—what ‘questions’ one can ask about it Thus, for a
Aowchart arrow that symbolizes a Write, one could ask aboul the old value, the
new value, the amount of time the old value was present, the source of the new
value, etc, More complex slots (such as average length of entries written] could
be defined from these more elementary records. The above method focused on
R(S), i.e. on slots defined by asking unary questions about other slots, but the
method generalizes:

One can take a pair of slots (say ThenConjecture and If-Truly-Relevant) and
a relation (such as Implies) and define a new unary function on heuristics—a
new kind of slot that any heuristic can have—where H, would list H; as an
entry on that slot only if (in the present case) the ThenConjecture slot of H,
Implies the IfTrulyRelevant slot of H,. A good name for this new slot might be
‘CanTrigger’. because it lisis some heuristics which might trigger when H, is
fired. .

If there are n shots, and m binary relations then this technigque generates 4
space of ma® “cross-term’ type slots. Naturally most of them won't be very
uscful, but this provides a generator for a large space of potentially worthwhile
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new slots. (This space is actually milinite, as nos—wmn” alter an exhaustive
application of this process, and one must start all over again.) Some heorstics
guide Eurisko in selecting plausible ones 1o define, monitoning the utibiny of
each selection, and obliterating any losers (slots which, cmparnically, Lol o
facilitate the statement of or discovery of a highly-rated concept of any type )
An excerpt from gurisko illustrating this process s given in Scetion 4.3

Again, there is nothing magical about the number “twa’, and one could pick
an n-ary relation B and noslol names, and use them all o burld o new slon, as
mentioned in the first paragraph of this subscetion. “Twa® s shightly special,
though, in that "a kind of slot whose values are names of units —such s
Is-a'—is actually a binary relation, i.e., a subscet of Units < Units.

4.3, Discovering a new heuristic

The heuristics present in am and EURISKO create new concepls v specializing
existing ones, generalizing (either from existing ones or Trom pewlv-gathered
data), and analogizing. These are the three “dircetions” new heuristiics wall come
from. We have exemplilied Specialization already, Cne poat about Cieneral-
ization 15 worth making: Heuristics which serve as plausible move pencritors
originate by generalizing from past successes: heuristics which prone awans
implausible moves originate by generalizing from past failires. Since successes
are much less commaon than failures, it s not surprising that most heunstics i
most heurnistic search programs are of the pruming varnety. In Gt many
authors define heuristic to mean nothing more tham o proning

Cne of the typacal "commuon sense numiber theory” heuansties wlich s lcked
wis the one which decides that the unigue Tactonization theorem s probably
more significant than Goldbach’s conjecture, becouse the first has oo do with
multiplication and division, while the Ltter deals with addition amd subiraction
and Primes is inherently tied up with the former operations

How could such a heurstic be discovered automatically™ This s the starting
point for the example we now begin, an example which concludes me the
following Section 4.4, What is the tie between these two sections That s, whin
in the world does discovering heuristics have o dooowith representation ol
knowledge? The connection is much decper than we ongimally suspecied

Consider just the special case where we restict our represcililions fo
frame-like ones. The larger the number of dilferent kinds of slots thar are
known about, the fewer keystrokes are reguired 1o tvpe o given Tramw
{concept, unit) in to the system. For istance, il NGoodOonjees were e
known, it might take 40 keystrokes rather than | otooassert thar “there e 3
good conjectures known involving prime numbers.” Moreover, no specil
purpose machinery to process such an assertion would be Known 1o the svsiem
The larger your vocabulary, the shorter your messages can e

This s akin to the power Interhisp derives Trom the thickiness ol ds ol
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from the huge numbers of useful predefined functions. A broad vocabulary
streamlines communication. Not only does a profusion of slot types facilitate
entering (lyping in) a concepl, it makes it easier to modify it once it's entered,
This is because (i) fewer keystrokes are needed in tolo, and (ii) the possible
kinds of things you might need to type in are explicitly presented to you (in a
menu).

Not only does a profusion of slot types facilitate entering a concept and
modifying a concept, it makes it easier to discover new concepls—in particular
new heuristics—because (i) it is a process of combining terms in a more
powerful, higher level language, and (i) specialized knowledge may exist, rules
which refer 1o particular slots of heuristics, telling when and how the com-
bination process should be done,

We are thus claiming that the task of discovering heuristics can be pro-
foundly accelerated—or retarded—by the choice of slots we make for our
representation. In the case of an excellent choice of slots, a new heuristic would
frequently be simply a new entry on one slot of some concept. Let’s see how
that can be.

Recall that primes were originally discovercd by the am system as extremi of
the function *Divisors-of'. This was recorded by placing the entry *Divisors-of’
in the slot called *Defined-using’ on the concept called *Primes’ (see Fig. 6).
Later, conjectures involving Primes were found, empirically-observed patterns
connecting Primes with several other concepts, such as Times, Divisors-of,
Exponentiation, and NMumbers-with-3-divisors. This is recorded on the Good-
ConjecUnits slot of the Primes concept. Notice that all the entries on Primes’
DefinedUsing slot are also entries on its GoodConjecUnits slot. This recurred
several times while running eumisko, that is for several concepts besides
Primes, and ultimately the heuristic H 19 (Fig. 25) became relevant (its if- part
became satisfied). The notation w - r means slot r of unit .

H 19 said that it would probably be productive to pretend that DefinedUsing
was always a subslot® of GoodConjecUnits. Le., H19 applied in the current
situation, with r = Defined Using and s = GoodConjecUnits. It created a new
heuristic, whose effect was the following: **As soon as Eurisko defines any new
conceplt X in terms of Y, it should expect there to be some interesting
conjectures between X and ¥Y." In our uvsual iffthen-format we might express
this rule the way that H20 is worded (Fig. 25).

*Oour usage of the werm subslor is drawn from subset, subgroup, etc.. namely, r is a subslot of 5 ifl
{lor all comcepts w) any entry on w-r is also a valid entry one could plice on w -5 50
Extreme-examples is a subslol of Examples, since any extreme example of a concept u is also an
example of w. Motheris a subslot of Parent. Subslot is a subslot of Specializations. Another way 1o
formulate this is 1 say that, for every concept u, the legal entries for its r slot are o subsen of the
legal entries for its 5 slot, The inverse of the subslon relation is called superstor, Unlike some uses of
these words, the fuct thin one slot is a supersion of another has no bearing on how it is stored,
retrieved, eic., now on whether one is primitive and the other vinual,
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Hw: it (for many units u) most of the entries on u - are also on w - 5
then-assert thal r is a subslol of 5 (with justification H19)

H2X): It a concept u is created with a value in its DefinedUsing slot,
then place that value in u's GoodConjecUnils slol (justil = H19)

Fig, 25 islic C i
o 28 A heunistic which sotices and congeiures o continment relmisnship beiween ot
Tollowecd by one of the fruits of its Tl new Beristic

There is already a very pencral rule in the system, which says 1o venily
suspected members of any slot (members whose Justification s L!l;tkllnll;lhh'j
When H20 appears in the system, and is used 1o add suspected entnies 1o the
GoodConjecUnits slots of units, this general rule will cause tasks 1o appear on
the Agenda, tasks which try 1o confirm or deny whether they deserve 1o he
there,

The |.'rmin point here is that H 20 was not synthesized as o hong. complicared
expression such as shown above in Fig. 25 Rather, all fukisko did wis 1o i L
the mnl_jept called DefinedUsing (the data structure which halds all the
information the program knows about that kind of slot in gencral), and record
that one of its Superslots is GoodConjecUnits. In other words, it added one
atom to one list. EurIsko also gave this an explicit justification. namel Hiy,
since it s a hewristic, not a fact. That required u second trivial action at the | isp
In:\rn:l.. Fig._Eﬁlxhnm what this record looks like currently in cumisko, The new
heuristic’ is simply the first word which is emboldened Below; all the mon-laold
text was present in the program already (though most of it was writien bw the
program itsell at earlier times, not lilled in by human hands) The second
cmht_ﬂ-:!a:ncd word gives the epistatus (epistemological status) of the new
heuristic—namely, it is a heuristic and owes its existence 1o the speculations of
heuristic H 19,

Thanks to the large number of useful specialized slots, large if/then.

rles
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:an be compactly, conveniently, efliciently represented as simple links. Some of
hese useful slots are very general, but many are domain dependent. Thus, as
wew domains of knowledge emerge and evolve, new kinds of slots must be
levised if this powerful property is to be preserved. The next natural question
s, therefore, ""How can useful new slots be found?” The last two senlences are
he final two points of our original five-point programme, and the nex
ection answers them by way of continuing the example we've begun in this
ection,

To reiterate: eumisko has already almost a thousand separate kinds of slots,
nost of which are defined using other slots, all of which were useful at some
ime or times. As a result of this large vocabulary of useful slot types, many
:mtire heuristics can be recorded succinctly as a single atom or two placed in
he right slot. Heuristic H20 was added to the program (by the program itself)
nerely by adding the atom GoodConjecUnits to the slot called SuperSlots of
he unit called Archetypical-*Defined-Using -slot.

It is important to make clear that the semantics of a value v appearing as an
mitry on slot 5 of concept ¢ does not necessarily mean that it is formally proven
hat v merits a position there; rather, it is merely plausible. Any entry v can
wave an explicit justification, but in lieu of any information to the contrary, the
lefault justification is merely empirical. Thus, when an entry, say Palindromes,
5 on the GoodConjecUnits slot of Primes, it may mean that some interesting
:onjectures have been found between Primes and Palindromes, or just that it is
auspected—and expected—that such conjectures can be found if one spends
he trouble looking for them.

How does the eurisko program know what the justification of a slot is, if it
sn't explicitly recorded? It goes to the unit for the archetypical representative
of that slot, looks up a slot called Justification, and retrieves that value. In the
ase of the Defined-Using slot, there is almost never any question of un-
certainty about its values—the definition of one slot in terms of another has (o
we spelled out in black and white. Therefore, as Fig. 26 shows, the Justilication
dot for the unit called Archetypical-'Defined-Using'-slot is filled with the entry
Formal'. Things are not so clearcut for entries on most units’ Worth slots, and
herefore in the eurisko system, on the Justification slot of the Archetypical-
Worth™-slot unit, there is no entry. Rather, by inheritance from the very
righ-level unit called Any-Slot, the justification for Worth values is determined
o be "Empirical’.

Thanks to the large number of useful specialized slots, thousands of heuris-
ics which would be bulky if stated as iffthen- rules can be compactly,
:onveniently, efficiently represented as simple links—as a single atom entered
m the appropriate slot of the appropriate unit. Most of these useful slots are
+ery general (e.g.. Examples, Worth, SuperSlots), but some are domain
lependent (e.g.. Predators, Toxicity, HullArmor). Thus, as new domains of
snowledge emerge and evolve, new kinds of slots must be devised if this
aowerful property is to be preserved. The next natural guestion is, therefore,
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How can useful new slots be found?™ By way of answering those 1w
questions, the next section continues—and concludes—ihe exinple we have
begun in this section.

4.4. Heuristics used to extend existing representations

Each kind of representation makes some set of operitions ellicient, often at he
expense of other operations. Thus, an cxploded-view diagram of o bicvele
makes it easy to see which parts touch each other. sequential verbal in
structions make it easy 1o assemble the bicyele, an axiomatic formulbation
makes it casy to prove propertics about it, cle.

. As a ficld matures, its poals vary, its paradigm shifts. the questions 1o
investigate change, the heuristics and algorithms 1o bring 1o bear on those
questions evolve. Therefore, the utility of a given representation s bound 1o
vary both from domain to domain and within o domain from tme o e,
much as did that of a given corpus of heuristics. The represcentation of toudin
must adapt or give way to a new one—or the ficld wself is likely 1o slagante
be supplanted.

Where do these new representations come from” The musl (raonless rone s
to merely select a new one from the stock of existing representational schemes,
Choosing an appropriate representation means preking one which lets vou
quickly carry out the operations you are now going 1o carry oul miost Treguently

In case there is no adequate existing representation, y.nu muy eyt extend
one, or devise a whole new one (good luck!'y. or (most lu-..iuumln ST
employ a set of known ones. whose union makes all the commuon H:pl_'|.||:|n|'|-\
fast. Thus, when | buy a bicycle, | expect hoth disgrams and prited -
s_lnlulium- o be provided. The carrying along of multiple reprosentations
simultancously, and the concommitant need to st from one w another, s
not been much studicd—or attempred—in Al 1o date, T A TR SO T TITY
worlds (e.g., the Missionaries and Cannibals puzzle: graphics)

There are several levels at which “‘new representations” can be found, Al the
lowest level, one may say that as changed ats representation eveny Lime il
defined a new domain concept or predicate, thereby chamging s vouibulan
out of which new ones could be built. At the highest level would be e
open-ended exploration in “the space of all representations of knowledee The
latter may someday be possible, but we currently lack adeguiate :.'x|.w||rm'u
to formulate the necessary gencration rules,

The example below lies intermediate between these two extremes: it shows
how eukisko discovers new kinds of slots which can be used 1o advantape. For
instance, when am found the unique factorization conjecture (LIFT), it would
have been helpful if am had at that instamt delined a new kind of shot.
Prime-Factors, that every Number could have possessed. H 21 is o pisisko rule
capable of this sort of second-level representation augmentation (see Fig 27}
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H21: It most units in the system have very large 5 slols (i.e., have many antries

slored therein),
then propose a new task: replace s by new specializalions of s

H22: il a slot 5 is very important, and all its values are unils,
then-create-new-kind-of-slot which contains “all the relalions among the
values of my s slot”

Fic. 27, Heuristics which occasionally lead 1o new kinds of slots worth having,

The vague terms in the rule have specific computational interpretations, of
course, in Eurisko; for instance, ‘large’ is coded as ‘more than twice the
average size of all slots, and also larger than the average number of slots a unit
has'. In one experiment, the various types of examples (extreme, typical,
boundary, etc.) were not given separate slots initially, but were unioned into
huge Examples slots. The above rule then caused the program to focus on
defining new specializations of Examples; recall that we term such specializa-
tions ‘subslois’, though this does not mean that they are implemented as pieces
of their superslots; the old Examples slot still exists and has many entries, even
if every one of those entries also exists on some subslot(s) of Examples. Note
that the subslots will not in general be disjoint. In a more domain-dependent
usage, the above rule causes Factors to be split up into PrimeFactors, Odd.
Factors, LargeFaciors, etc.

A slightly more advanced level at which ‘new representations’ are syn-
thesized by eurisko is to actually shift from one entire scheme to another—
potentially novel—one. The first two rules in Fig. 28 indicate when a certain
type of shift is appropriate. All the heuristics of this type are specializations of
the third, general one, H25.

H2%: It the problem is a geomaetric ona,
then draw a diagram

H24: it most units have most of their possible slots filled in,
then shift from property lists to record structures

H25: it some operation is performed frequently,
then shift 1o a representation in which it is inexpensive o parform

Fig. 28, Heuristics which occasionally effect a change of representation,

Let us continue our example. H22 (shown above, in Fig. 27) is capable of
reacting to a situation by defining an entirely new slot, built up from old ones, a
new slot which it expects will be useful. When the number stored in the Waorth
slot of the GoodConjecUnits concept is large enough, the system attends 1o the
task of explicitly: studying GoodConjecUnits. Several heuristics are relevam
and fire; among them is H22, the rule shown above. It then synthesizes
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a whole new unit, calling it RelationsAmongEntriesOnMy Good€Con-
jecUnits'Slot. Every known way in which entries on the Guoolt vngectinits slot
of a concept C relate to each other can be recarded on this new slot of € In
practice, this slot typically had only o few entries. Tor most units: only relations
which were explicitly defined could be perceived and recorded therein (e, all
the various types of slots), and sumisko is nol designed o spend its time in
undirected searching for entries for that slot.

How was the new slot used by the program? Take a look ot the Primes
concept (Fig. 6). lts GoodConjecUnits slot contains the following cntries:
Times, Divisors-of, Exponentiation,  Squaring. and  Numbers-with-three-
divisors. The first two of these entries are inverses of cach others: that s, if vou
look over the Divisors-of unit you will sce a slot called Inverse which is filled
with names of concepts, including Times. Similarly, sill looking over the Tines
unit, one can see a slot called Repeat which is filled with the entry Exponenti-
tion, and one can see a slot called Compose filled with Squaring. So Ioverse and
Repeat and Compose are some of the relations connectimg entres on e
GoodConjecUnits slot of Primes, hence the program will record Tnverse and
Repeat and Compose as three entrics on the RelationsAmongEntriesOnhdy
‘GoodConjecUnits'Slot slot of the Primes concep.

Mow it so happens that several concepts wind up with “Compose” and
Inverse’ as entries on their RelationsAmongEntriesOnMy Good CongeeUnies
Slot slot. The alert reader may suspect that this is no accident, amd an alert
program should suspect that, too. Indeed, heuristic #4026 (Fig. 29) savs that i
might be useful to behave as if *Compose’ and “liverse’ were alwayvs soing 10
eventually appear there, There is no formal justilication behind this kind ol
anticipation, but it is cost-effective 1o follow such o policy: oo akin 1o the
psychological phenomenon of expectation-liltering

H 20 causes curisko o add Compose and Tnverse 1o the shn called Lapoc-
tedEntries of the concept called  RelatiomsAmongEntricst ndy-GioodCon-
jecUnits™Slot. This one small act, the creation of o pair of links, is i eflect
creating a new heuristic cquivalent 1o H27 (Fig. 2.

H 20 it {lor many units u) the 5 slol of u contains the same
values v,
then-add-value v, lo the ExpecledEntries slot of the Typical-s-siol urmi

H2Y, It a concepl v gels enlries X and ¥ on its GoodConjecUnits
shot,
then-predict: v will also evenlually get Inverse(X), Inverse( ¥
and Compose {X, ¥) thare as well

Fici. 29, Entries which wswally cropeoup on s shots cin be expectad tooappear there H %0 s s
aned ewne ol 105 applications sprewned a heursie coguivadent to JE27 (sl s conmigont
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How is this actually used? Consider what occurs when the program defines a
new concept. O, which is DefinedUsing Divisors-of. As soon as thal concept is
formed, the heuristic link from DefinedUsing to GoodConjecUnits automatic-
ally fills in Divisors-of as an entry on the GoodConjecUnits slot of C. Next, the
links just illustrated above come into action, and place Inverse and Compose
on the RelationsAmongEntriesOnMy*GoodConjecUnits'Slot of C. That in turn
causes the inverse of Divisors-of, namely Times, to be placed on the Good-
ConjecUnits slot as well as the already-present entry, Divisors-of. Finally, tha
causes the program to go ofl looking for conjectures between C© and either
multiplication or division. When a conjecture comes in connecting C to one of
them, it will get a higher a priori estimated worth than one which does not connect
1o them,

If only we had the new heuristics back when Primes was [irsi defined, they
would have. therefore embodied enough ‘common sense” to prefer the Unigue
Factorization Theorem to Goldbach's conjecture. If we had them then, these
heuristics would have led us to our present state much sooner. Because of our
assumptions about the continuity of the world, such heuristics are stll worth
having and using—we expect them to be useful from time to time in the future

Notice that there is nothing special about mathematics—the newly syn-
thesized heuristics have to do with very general slots, like DefinedUsing and
GoodConjecUnits. For instance, as soon as a new concept (say Middle-Class) is
defined using the old slot Income, the program immediately fills in the
bold printed information in Fig. 30,

NAME: Middle-Class
Delined-using: Income
RelationsAmongEntriesOnMy ' GoodConjecUnils'Slol: Inverse, Compose
Good-Conjec-Units: Income, Spending, Earnedinterest
Fi. M A fragment of a non-math concept for which some predictions have been recorded (in
holdface). thanks 10 the heuristics shown in Fig. 249.

Thus, eurisko goes off looking for (and will expect more from) conjectures
between Middle-Class and any of Income, Spending, and Earnedinterest. In
one run of the surisko system, some such conjectures were then found
(including *MiddleClass spends all its income’), but we primed the system with
very caricatured data about Americans’ incomes and spending habits, When we
removed heuristic H22, RelationsAmong . . . slots never was defined, so H2q
did not fire, so Income and Spending were not placed on the GoodConjecUnits
slot of MiddleClass, and the preceding conjecture was never found. S0 the new
slot is useful, though it has a terrible name, and the new little heuristics (which
looked like lintle links or facts but were actually permission to make daring
guesses) were powerful after all.

We have relied heavily on our representation being very structured; in a very

THE NATURE OF HEURISTICS 24

uniform one (say a calculus of linear propositions, with the only operiatomns
being Assert and Match) it would be ditheult o abtain cnough coopaneal dita
to easily modily that representation. This s akin o the nature of discovering
domain facts and heuristics: if the domain s o simple. it is harder o Bind new
knowledge and—in particular—new  heuristics. Heunstes Tor propositional
calculus are much fewer and weaker than those available Tor guiding work in
predicate calculus; they in turn pale before the rich vanety avlable Tor
guiding theorem proving “the way mathematicians really dooa’. This as an
argument for attacking seemingly-chitlicult problems which e out o be Jush
with structure, rather than working in artificial worlds so constramed that ther
simplicity has sterilized them of henristic siricinre,

4.5. Recent results of the sumisko progrim

Much of the preceding discussion has been guite abstract. To s secion we
present some of the concrete results produced by the perisko program so Far.
with some pglimpses inte how they were obtmaed rowseo s hondeeds of
units for six dilferent donains: Set Theory, Number Theory, Gl Spall Aanel-
wration, Device Physics, Games, Heuristics atsell, and Bepresentation itsell

4.5.1. Resulis in the games dinain

As our first example, let us consider porisko's exploits an a0 Ciames Lusk,
exploring the design of naval Aleets conforming 1o o body of (several hundreds
of) rules and constraints as set forward in Travellee: The Trllien redin
Squadron. eumisko designed a fleet of ships sotable for cotry e the recent
Origins national wargame tournament, held ar Dunfey’s Hotelo m San Sateo,
CA, over July 4 weekend, 1981 The traveller tounvament, run by Ciame
Designers Workshop (based in NMormal, Hhnois) was single eliminatum, six
rounds. Eurisko’s fleet won that tournament. thereby becomung the ranking
player in the United States {and also an honorary Admaral e the Traveller
navy). This win is made more significant by the Gaet than the author bid never
played this game before, nor any miniatures battle game of this types amd there
were no practice rounds,

Each participant has a budget of a trillion “credies” (roughly cqual 1o dolliars)
to spend in designing and building a flect of futurstie ships. There are ove
one hundred pages of rules which detadl varous costs, constramis, and
tradeodls, but basically there are two levels of varalality i the design process

(1) Design an individual ship: worry abowt tradeodls between vpes ol
weapons carried, amount of armor an the hull, agility of the vessel, grouping o
weapons into batteries, amount of Tuel carried. which svstenms will have
hackups, extra replacement crew carried, ele

(2) Alter designing several distinet Kinds of individual ships, group sets ol
them together into a Meet. The Deet must meet several design constrnnts (e,
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ships having a total fuel tonnage of at least 10% of the total fleet fu_;:] tonnage
must be capable of refueling and processing unrefined fuel), and in addition
must function tactically as a coherent unit, _

EURISko was given the rules of the game, and the constraints on the design
process, and spent a great amount of time (roughly Slcpu hours on a Xf:rnx
Dolphin) managing a heuristically-guided evolution process. Fleets wuu_ld_ fight,
and the simulated battle would be analyzed (by some of EURIskO's heuristics) to
determine which design policies were winning, and—occasionally—what for-
tuitous circumstances could be abstracted into new design heuristics. An
example of the former was when the Agility of ships gradually decreased, in
favor of heavier and heavier Armor plating of the hulls. An example of the
latter was when a purely defensive ship was included in an uthurwisﬁ'-uw!ul
fleet, and that Aeet could never be fully defeated because that defensive ship,
being very small. unarmored, and super agile, could not be hit by any of the
weapons of the larger nearly-victorious fleet. The author culled through .lhc
runs of the program every 12 hours or so of machine time (i.e., um'h_ morning,
after letting it run all night), weeding out heuristics he deemed nnvuh-:{ or
undesirable, rewarding those he understood and liked, ete. Thus the final
crediting of the win should be about 60/40% Lenat/eurisko, though the
significant point here is that neither Lenat nor eurisko could have won alone,
Most of the battles are tactically trivial, the contest being almost decided by the
designs of the two fleets; that—and the thickness of the rulebooks—were the
reason this appeared to be a valid domain for EURIsKO.

One very general result Eurisko abstracted from this process was a 'nc_zlriy
extreme’ heuristic: In almost all Traveller fleet design situations, the right
decision is go for a nearly—bul not quite—extreme solution. Thus, the final
ships had Agility 2 (slightly above the absolute minimum), one weapon of each
type of small weapons (rather than (0 or many), the fleet had almost as many
ships as it could legally have but not quite (93 instead of ?5]. elc. Cllur
ariginal intuitions were to have a moderate number of large ships, uuuh_mlh
one enormous spinal mounted weapon capable of blasting another r‘.h.lp.lu
pieces with a single shot; eurisko gradually changed this into a fleet consisting
of a large number of small ships, collectively bearing an enormous number of
small missile weapons. The fleet had almost all (75) ships of this type, though
there were a couple of ships which were small and agile, and a couple of ships
which had weapons large enough to destroy any enemy ships that were small and
agile. _

Almost all the other entrants in the final tournament had feets that consisted
of about 20 ships, each with a huge spinal mount weapon, low armor. and fairly
high agility, "and a large number of secondary energy weapons {Iuscr-t?rpn:
weapons). This contrasted with Eurisko's fleet, and such an enemy was r=1|;:md_l1.I
decimated. at a loss of about a third of Eurisko's line ships, and no risk to its

specialty ships.
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Eurisko's first opponent resigned after one exchange of lire. when the
pattern became clear. lis second opponent did some caleulations and resigned
without ever firing a shot. The subsequent opponents resigned during the
second round. The few specialty ships remaincd unused untl the final round of
the tournament, battling for st vs. 2nd place. That apponent also had ships
with heavy armor, few large weapons, low agility, ete. He was lacking any fast
ships or fast-ship-killers, though. The author simply pointed out to him that il
Eurisko were losing then we could put only our Tast ship out in the front line.
withdraw the others and repair them, and cllectively start the batile all over
again, This could go on until such time as Eurisko appeared 1o he winning.
when we would let it continue o termination. The opponent did o few
calculations and surrendered without fighting, Thus. while most of the wour-
nament battles took 2—4 hours, most of those involving corske took only o lew
minutes,

The tournament dircetors were chagrined Uit o bizarre Dot such s this one
captured the day, and a similar leer (though not so extreme) ook second
place. As a result, the rules for future years” TCS tourmments hine been
changed, o dramatically reduce the design singubaritics whieh fcgskes (work-
ing with the author) found.

4.5.2. Results in progreonming aond representation

A few hundred of the most common istegse function have been reprosented
as units within curisko. This enables i o monitor and modily s own
behavior, as well as synthesice and modily new e Tunctions, eieske s salhers
data about wse, just as it does about clementary mathematios, or wanwes. For
cxample, purisko was originally piven units for EOQ and BEOUAL, wil no
explicit connection recorded  between them. Eventuallv, it got round 1o
recording examples (and nonexamples) for cach, and conpectured that 150 wis
i restriction (a more specilized  predicate) ol FOUALL which s true, A
hewristic suggested disjoining an EQ test onto the front of BEOUAL L st
might speed EQUAL up, Surprisingly (1o the author, though not (o000 e, 1
did! This turned out to be o small bug (since lixed) in the then-estmt se e
it had the conjecture about EQ being o special kind of EOUATL 1 was able 1o
look through its code and specialize bits of it by replacing EOUAL by 1O
o generalize them by substituting in the reverse order. Fosisko by scd e
dilferences between EQ and EQUAL and came up with the concept we refer
o s pse atoms, Do analogue to hunankind, once surmsko discovered atoms il
wits able to destroy its environment (by clobbering CDR of atomes ).

4.5.3. Resulis in device physics

After discussion with Bert Sutherlund and Jim Gibbons, it wis decnded ha
one domain ripe for attack by an exploration system such s vvisko s the
design of VLS circuits. We began by building i a knowledee Bise ol concepls
such as groups in the periodic table, dopine carness il l '
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to a very carefully chosen vocabulary of nouns (n-doped-region, p-doped-
region, insulator) and verbs (abut-regions, apply-electric-field), many elemen-
tary physical devices were trivial, short ‘sentences’ in that language (e.g., the
silicon diode, MOSFET transistor). That was not particularly surprising, and
further discussion caused us to go up a level of abstraction, and discuss the
conduction paths in a circuit, rather than the specific behavior of charged
carriers moving through various types of materials.

Thus, considering only NMOS technology, one can view a transistor simply
as a pate which, when ‘on’, allows current to flow between its two terminals. In
other words, emitter and collector are symmetric in NMOS, though most
designs try to be less technology-dependent and don't take advantage of that
symmetry as eurisko did. Recent advances in polysilicon recrystallization
fabrication technigues make it feasible to design three-dimensional VLS|
devices, a series of allernating layers of (i} metal and insulator material, (i)
doped semiconductor material and channel material. eurisko explored various
configurations of these materials, using a few heuristics 1o constrain its search
through this enormous space. Some heuristics constrain the generation process,
others recognize interesting or useful functionality—or inconsistencies—in the
resuliant candidate circuit. Almost immediately it happened upon a surpris-
ingly tiny design for a memory cell; see Fig. 31b for an illustration of that
design, and Fig. 3la for the corresponding two-dimensional circuit diagram of
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beings, and the potential ril..‘hili..“\:‘\ ol the rurskeo .||‘rplll-u|l- |ul al the |11 .~|,‘|\|
promising uses for programs which automancally glean lumh.“:\ I |\|1 “L”w
which are just opening up, in which people have not vet e :u,!u : ;I s
powerful heuristics. By now, several uselul new concepts have l.lll!_l1l1l.ll~_l.. nnl
the device physics line of rescarch with FURISKO. |.mzlmlu|3: i |1.|g.I1IL[ : u1”Ll|h-" '.‘
level of abstraction for describing circuits quite disting tm_m \lll...x'\.{ |.I|_|_.|.|:11.
(involving terms like -potentially-connected-to and epule Sabstract gites)

4.5.4. Results in heurishcs

purisko has synthesized many new heuristivs using the techmigues |1|'u-n.-|n:;.x|! i
Sections 4.1-4.4, Sometimes this hus oceurred as o by-product of other .unlxl--
ties, during the course of working in s p.'l.uu'ul;u sk I.IIHl'IL'..In f‘u!u:lll !-I"L-ll ‘..;
gulisko has from time to time chosen 1o I:uul*-.nn 1.Ia.; o nl. LIHIL IIL-
explicitly for a while. Among the new hearstics discovered so Far by e
L i ) 2
Pnf;i:::n!d:;:mcilic 1o gaming (such as. o Traveller, prefer armis h.l.-l!._'lll|‘|. sl
“In designing a military foree, go nearly but not guite 1o L'\IIL'I.ILI..'N I e
Several specilic o mathematics (such as, 0 mvers Tunctin 1% _L.Ium_,
be used even once, then it's probably worth it o search Tor a Fast algonthn b

computing it”’).
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Several specilic 1o programming (such as, “If you can use EQ instead of
EQUAL, do it 1o save tme”, or “Sometimes ‘and’ means ‘do in sequence’, and
sometimes it means “do simultanecusly’, and those two cases are importan
to distinguish before you consider generalizing or specializing a piece of
code™).

A few specilic 1o heuristics itself (such as, “If you're generalizing a heuristic,
then avoid changing the main connective of the premises of the heuristic from
and’ to ‘or'; it is a generalization but it leads o terrible resulis such as infinie
loops and Lise errors’).

Many additional heuristics have been created synergistically, with credit 1o
both eumisko and one or more humans working with that program. For
example:
= In Traveller, having a small agile ship might give you an infinite ‘restart’

capubility for the battle (this made the difference between Ist and 2Znd place

al the tournament).

- When designing three-dimensional VLSI devices, in allernating layers of
metal and semiconductor material, have the *wires' run North-South in odd
metal layers, and Easti-West in even metal layers (amusingly, this is an
analogue of an ancient TTL heuristic).

- When folding a 2-dimensional NMOS design into 3 dimensions, look for two
gates whose controls are identical, and implement them as a single 2-pole’
gate controlling regions both above and below it" (compare Figs. 31a and 31b
to see how four transistors were replaced by only two gates).

5, Conclusions

The field of Heuretics was proposed as a promising one for Al 1o investigate,
one which may aid us in understanding—and constructing—expert systems. We
began by defining what it meant for something 1o be a scientific discipline, and
showing that Heuretics met these criteria.

Heuretics asks “What is the source of power of heuristics?”, to which our
first-order reply is: “Behave as though approrriaTENESS{Action, Situation) were
time-invariant and continuous in both variables.” Heuristic search is adequate
for modeling worlds which are observable (so heuristics can be formed), stable
(s0 heuristics absiracted from past experiences will be useful in the future), and
continions (50 that if A was (in)appropriate in 5, then actions similar 1o A will
be (inJappropriate in situations similar 1o 5). Corollaries of this provide the
justification for the use of analogy, generalization, and even for the utility of
memory. The central assumption was seen to be just that—an assumption. It's
often false in small ways, but nevertheless the central assumption has proven
isell 1o be a useful fiction to be guided by,

Using the metaphor of approrriaTeness being a function, we considered
graphing the power curves of a heuristic (the utility of that heuristic as a

e
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function of task being worked on), amd were able o see e ginns-—indd
dangers—of specializing and generalizing heurnstics 1o pet new ones, Cone
sideration of such curves led us tooan algorithm for deciding i which order 1o
obey relevant heuristics, and suggested several specilic new atinbutes warth
measuring and recording for cach heurnistic (cog. the sharpoess with swloch i
flips from useful to harmiul, as one leaves its domain of relevance)

By arranging all the world’s heuristios (well, an least all of as's o Bines
several more from chess, biological evolution, naval lleet design. device phy-
sics, plumbing, game-playing, and oil spills) into a hierarchy using the reliation
‘More-General-Than', we were surprised 1o find that hierarchy very shallow,
thereby implying that analogy (a side-1o-side aperation) would be more usctul o
method of generating new heuristic than would specialization or gencralization
{up-and-down operations). By noting that both Utility and Task have several
dimensions, most of this “shallow-tree” problem went away. By noting that two
heuristics can have many important relations connecting them, o which
More-General-Than s just one example, the shallowness problem turs inio
powerful heuristic: if a new heuristic s to dilfer Trom an old one along some
dimension (relation) r, then wse analogy o get ol cs graph graph s shallow,
and uwse peneralizationfspecialization iF s graph is deep. We also discussed
some uselul slots which heuristics can have, and o principled  methoad Fo
generating new kinds of slots,

Heuretics asks “"How do new heuristics onginate? . to which we recarsively
reply: "By generalizing other heuristies, abstracting frome data, specializing
other heuristics, inding analogics to other heuristics and to processes whereby
other heuristics were formed.” cumisko demonstrated e these processes
themselves can be puided adequately by o corpus ol heuristios, that there is no
need 1o distinguish such “meta-heuristies” from object-level heonstes’, and
surprisingly 1o us—that analogy has as much porental as pencralization o
specialization. In more detail: as demonstrated the adeguacy of the hearistic
search paradigm o guide o progrum i formulanmg usclul new concepls,
gathering data about them, and noticing  relationships  connecting them.
However, as the body of domain-specilic facts grew. the old set of heurisies
became less and less relevant, less and less capable of guding the discovery
process effectively. New heuristics must also be discovered

Eurisko was developed as the successor system, one whose held of espertse
was not mathematics, or diagnosis, but rather Hearevies, That s, e vaasko had a
corpus of heuristics which, as they ran, gathered data about ther own renmimg,
and synthesized new members of that corpus (and moditied old ones). As
expected, this process was very slow and explosive. By taking the four best (in
Eurisko's judgment) synthesized heuristics, and rerunning the progrum from
scratch, almost an order of magnitude improvement i perfornmance wis
obtained (a factor 7 in the number of tasks exceuted, o factor of = an the
number of losing heuristics synthesized, a factor of 4 0 the cpu time mvolved,
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ind a factor of Y in the storage cells used). The explosive process of synthesiz-
ng heuristics was made feasible only by having ‘the right representation’,
surisko, like am, used o schematized representation, so the right representation
meant having a lurge repertoire of very useful kinds of slots.

We saw how, in eurisko, heuristics led to the development of useful new
kinds of slots, and 1o improved representations of knowledge. Note that the
same representation am used for attributes and values of object-level math
concepts was also used 1o represent heuristics and even Lo represent represen-
tation. E.g.. Primes (a set of numbers), Generalize RarePredicate (a heuristic),
GeneralizeRareHeuristic (a meta-heuristic), and DefinedUsing (o represen-
tation concept) are all represented adequately as concepts (units with slots
having values). Since meta-heuristics are not distinguished from heuristics, a
single interpreter of necessity runs both types of rules, and is itself represented
as @ collection of units (and dynamically redefinable). While meta-heuristics
could be tagged to distinguish them from heuristics, the utility of doing so rests
on the existence of rules which genuinely treat them differently somehow—and
few such rules have to date been encountered. Finally, we surveyed some
recent results obtained by running eurisko in several different domains outside
mathematics, namely: wargames, programming, and circuit design.

To advance the Heuristics research programme, much more must be known
about analogy, and more complete theories of heuristics and of representation
must exist. Toward that goal we must obtain more empirical results from
programs trying 1o find useful new domain-specific heuristics and represen-
tations,
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