
1 BLOG: Probabilistic Models with Unknown

Objects

Brian Milch

Computer Science Division

University of California at Berkeley, USA

milch@cs.berkeley.edu

http://www.cs.berkeley.edu/∼milch

Bhaskara Marthi

Computer Science Division

University of California at Berkeley, USA

bhaskara@cs.berkeley.edu

http://www.cs.berkeley.edu/∼bhaskara

Stuart Russell

Computer Science Division

University of California at Berkeley, USA

russell@cs.berkeley.edu

http://www.cs.berkeley.edu/∼russell

David Sontag

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, USA

dsontag@csail.mit.edu

http://people.csail.mit.edu/dsontag

Daniel L. Ong

Computer Science Division

University of California at Berkeley, USA

dlong@ocf.berkeley.edu

http://www.ocf.berkeley.edu/∼dlong

Andrey Kolobov

Computer Science Division

University of California at Berkeley, USA

karayaone@rambler.ru

2 BLOG: Probabilistic Models with Unknown Objects

1.1 Introduction

Human beings and AI systems must convert sensory input into some understanding

of what is going on in the world around them. That is, they must make inferences

about the objects and events that underlie their observations. No pre-specified list

of objects is given; the agent must infer the existence of objects that were not known

initially to exist.

In many AI systems, this problem of unknown objects is engineered away or

resolved in a preprocessing step. However, there are important applications where

the problem is unavoidable. Population estimation, for example, involves counting a

population by sampling from it randomly and measuring how often the same object

is resampled; this would be pointless if the set of objects were known in advance.

Record linkage, a task undertaken by an industry of more than 300 companies,

involves matching entries across multiple databases. These companies exist because

of uncertainty about the mapping from observations to underlying objects. Finally,

multi-target tracking systems perform data association, connecting, say, radar blips

to hypothesized aircraft.

Probability models for such tasks are not new: Bayesian models for data asso-

ciation have been used since the 1960s [Sittler, 1964]. The models are written in

English and mathematical notation and converted by hand into special-purpose

code. This can result in inflexible models of limited expressiveness—for example,

tracking systems assume independent trajectories with linear dynamics, and record

linkage systems assume a naive Bayes model for fields in records. It seems natural,

therefore, to seek a formal language in which to express probability models that

allow for unknown objects.

Recent achievements in the field of probabilistic graphical models [Pearl, 1988]

illustrate the benefits that can be expected from adopting a formal language:

general-purpose inference algorithms, more sophisticated models, and techniques

for automated model selection (structure learning). However, graphical models

only describe fixed sets of random variables with fixed dependencies among them;

they become awkward in scenarios with unknown objects. There has also been

significant work on first-order probabilistic languages (FOPLs), which explicitly

represent objects and the relations between them. We review some of this work

in Section 1.7. However, most FOPLs make the assumptions of unique names,

requiring that the symbols or terms of the language all refer to distinct objects,

and domain closure, requiring that no objects exist besides the ones referred to

by terms in the language. These assumptions are inappropriate for problems such

as multi-target tracking, where we may want to reason about objects that are

observed multiple times or that are not observed at all. Those FOPLs that do

support unknown objects often do so in limited and ad hoc ways. In this chapter, we

describe Bayesian logic (Blog) [Milch et al., 2005a], a new language that compactly

and intuitively defines probability distributions over outcomes with varying sets of

objects.

1.2 Examples 3

We begin in Section 1.2 with three example problems, each of which involves

possible worlds with varying object sets and identity uncertainty. We show Blog

models for these problems and give initial, informal descriptions of the probability

distributions that they define. Section 1.3 observes that the possible worlds in these

scenarios are naturally viewed as model structures of first-order logic. It then defines

precisely the set of possible worlds corresponding to a Blog model. The key idea

is a generative process that constructs a world by adding objects whose existence

and properties depend on those of objects already created. In such a process, the

existence of objects may be governed by many random variables, not just a single

population size variable. Section 1.4 discusses exactly how a Blog model specifies

a probability distribution over possible worlds.

Section 1.5 solves a previously unnoticed “probabilistic Skolemization” problem:

how to specify evidence about objects—such as radar blips—that one didn’t know

existed. Finally, Section 1.6 briefly discusses inference in unbounded outcome

spaces, stating a sampling algorithm and a completeness theorem for a large class

of Blog models and giving experimental results on one particular model.

1.2 Examples

In this section we examine three typical scenarios with unknown objects—simplified

versions of the population estimation, record linkage, and multitarget tracking

problems mentioned above. In each case, we provide a short Blog model that,

when combined with a suitable inference engine, constitutes a working solution for

the problem in question.

Example 1.1

An urn contains an unknown number of balls—say, a number chosen from a Poisson

distribution. Balls are equally likely to be blue or green. We draw some balls from

the urn, observing the color of each and replacing it. We cannot tell two identically

colored balls apart; furthermore, observed colors are wrong with probability 0.2.

How many balls are in the urn? Was the same ball drawn twice?

The Blog model for this problem, shown in Figure 1.1, describes a stochastic

process for generating worlds. The first 4 lines introduce the types of objects in these

worlds—colors, balls, and draws—and the functions that can be applied to these

objects. For each function, the model specifies a type signature in a syntax similar to

that of C or Java. For instance, line 2 specifies that TrueColor is a random function

that takes a single argument of type Ball and returns a value of type Color. Lines

5–7 specify what objects may exist in each world. In every world, there are exactly

two distinct colors, blue and green, and there are exactly four draws. These are the

guaranteed objects. On the other hand, different worlds have different numbers of

balls, so the number of balls that exist is chosen from a prior—a Poisson with mean

6. Each ball is then given a color, as specified on line 8. Properties of the four draws

are filled in by choosing a ball (line 9) and an observed color for that ball (lines

4 BLOG: Probabilistic Models with Unknown Objects

1 type Color; type Ball; type Draw;

2 random Color TrueColor(Ball);

3 random Ball BallDrawn(Draw);

4 random Color ObsColor(Draw);

5 guaranteed Color Blue, Green;

6 guaranteed Draw Draw1, Draw2, Draw3, Draw4;

7 #Ball ∼ Poisson[6]();

8 TrueColor(b) ∼ TabularCPD[[0.5, 0.5]]();

9 BallDrawn(d) ∼ Uniform({Ball b});

10 ObsColor(d)

11 if (BallDrawn(d) != null) then

12 ∼ TabularCPD[[0.8, 0.2], [0.2, 0.8]](TrueColor(BallDrawn(d)));

Figure 1.1 Blog model for balls in an urn (Example 1.1) with four draws.

10–12). The probability of the generated world is the product of the probabilities

of all the choices made.

Example 1.2

We have a collection of citations that refer to publications in a certain field. What

publications and researchers exist, with what titles and names? Who wrote which

publication, and to which publication does each citation refer? For simplicity, we

just consider the title and author-name strings in these citations, which are subject

to errors of various kinds, and we assume only single-author publications.

Figure 1.2 shows a Blog model for this example, based on the model in [Pasula

et al., 2003]. The Blog model defines the following generative process. First, sample

the total number of researchers from some distribution; then, for each researcher

r, sample the number of publications by that researcher. Sample the researchers’

names and publications’ titles from appropriate prior distributions. Then, for each

citation, sample the publication cited by choosing uniformly at random from the

set of publications. Finally, generate the citation text with a “noisy” formatting

distribution that allows for errors and abbreviations in the title and author names.

Example 1.3

An unknown number of aircraft exist in some volume of airspace. An aircraft’s

state (position and velocity) at each time step depends on its state at the previous

time step. We observe the area with radar: aircraft may appear as identical blips

on a radar screen. Each blip gives the approximate position of the aircraft that

generated it. However, some blips may be false detections, and some aircraft may

not be detected. What aircraft exist, and what are their trajectories? Are there any

aircraft that are not observed?

1.2 Examples 5

1 type Researcher; type Publication; type Citation;

2 random String Name(Researcher);

3 random String Title(Publication);

4 random Publication PubCited(Citation);

5 random String Text(Citation);

6 origin Researcher Author(Publication);

7 guaranteed Citation Cite1, Cite2, Cite3, Cite4;

8 #Researcher ∼ NumResearchersPrior();

9 #Publication(Author = r) ∼ NumPubsPrior();

10 Name(r) ∼ NamePrior();

11 Title(p) ∼ TitlePrior();

12 PubCited(c) ∼ Uniform({Publication p});

13 Text(c) ∼ NoisyCitationGrammar(Title(PubCited(c)),

14 Name(Author(PubCited(c))));

Figure 1.2 Blog model for Example 1.2 with four observed citations.

1 type Aircraft; type Blip;

2 random R6Vector State(Aircraft, NaturalNum);

3 random R3Vector ApparentPos(Blip);

4 nonrandom NaturalNum Pred(NaturalNum) = Predecessor;

5 origin Aircraft Source(Blip);

6 origin NaturalNum Time(Blip);

7 #Aircraft ∼ NumAircraftPrior();

8 State(a, t)

9 if t = 0 then ∼ InitState()

10 else ∼ StateTransition(State(a, Pred(t)));

11 #Blip(Source = a, Time = t) ∼ DetectionCPD(State(a, t));

12 #Blip(Time = t) ∼ NumFalseAlarmsPrior();

13 ApparentPos(b)

14 if (Source(b) = null) then ∼ FalseAlarmDistrib()

15 else ∼ ObsCPD(State(Source(b), Time(b)));

Figure 1.3 Blog model for Example 1.3.

6 BLOG: Probabilistic Models with Unknown Objects

The Blog model for this scenario (Figure 1.3) describes the following process:

first, sample the number of aircraft in the area. Then, for each time step t (starting

at t = 0), choose the state (position and velocity) of each aircraft given its state at

time t− 1. Also, for each aircraft a and time step t, possibly generate a radar blip

b with Source(b)= a and Time(b)= t. Whether a blip is generated or not depends

on the state of the aircraft—thus the number of objects in the world depends on

certain objects’ attributes. Also, at each step t, generate some false alarm blips

b′ with Time(b′) = t and Source(b′)= null. Finally, sample the position for each

blip given the true state of its source aircraft (or using a default distribution for a

false-alarm blip).

1.3 Syntax and Semantics: Possible Worlds

1.3.1 Outcomes as first-order model structures

The possible outcomes for Examples 1 through 3 are structures containing many

related objects, with the set of objects and the relations among them varying from

outcome to outcome. We will treat these outcomes formally as model structures of

first-order logic. A model structure provides interpretations for the symbols of a

first-order language; each sentence of the first-order language can be evaluated to

yield a truth value in each model structure.

In Example 1.1, the language has function symbols such as TrueColor(b) for the

true color of ball b; BallDrawn(d) for the ball drawn on draw d; and Draw1 for

the first draw. (Usually, first-order languages are described as having predicate,

function, and constant symbols. For conciseness, we view all symbols as function

symbols; predicates are just functions that return a Boolean value, and constants are

just zero-ary functions.) To eliminate meaningless random variables, we use typed

logical languages. Each Blog model uses a language with a particular set of types,

such as Ball and Draw. Blog also has some built-in types that are available in all

models, namely Boolean, NaturalNum, Integer, String, Real, and RkVector (for each

k ≥ 2). Each function symbol f has a type signature (τ0, . . . , τk), where τ0 is the

return type of f and τ1, . . . , τk are the argument types. The type Boolean receives

special syntactic treatment: if the return type of a function f is Boolean, then terms

of the form f(t1, . . . , tk) constitute atomic formulas, which can be combined using

logical operators and placed inside quantifiers.

The logical languages used in Blog are also free: a function is not required to

apply to all tuples of arguments, even if they are appropriately typed [Lambert,

1998]. For instance, in Example 1.3, the function Source usually maps blips to

aircraft, but it is not applicable if the blip is a false detection. We adopt the

convention that when a function is not applicable to some arguments, it returns

the special value null. Any function that receives null as an argument also returns

null, and an atomic formula that evaluates to null is treated as false.

The truth of any first-order sentence is determined by a model structure for the

1.3 Syntax and Semantics: Possible Worlds 7

corresponding language. A model structure specifies the extension of each type and

the interpretation for each function symbol:

Definition 1.1

A model structure ω of a typed, free, first-order language consists of an extension

[τ]
ω

for each type τ , which may be an arbitrary set, and an interpretation [f]
ω

for

each function symbol f . If f has return type τ0 and argument types τ1, . . . , τk, then

[f]
ω

is a function from [τ1]
ω
× · · · × [τk]

ω
to [τ0]

ω
∪ {null}.

1 2 3 4
Draws

Balls

1 2 3 4
Draws

Balls

1 2 3 4
Draws

Balls

(a) (b) (c)

Figure 1.4 Three model structures for the language of Figure 1.1. Shaded circles

represent balls that are blue; shaded squares represent draws where the drawn ball

appeared blue (unshaded means green). Arrows represent the BallDrawn function

from draws to balls.

Three model structures for the language used in Figure 1.1 are shown in Fig-

ure 1.4. Identity uncertainty arises because [BallDrawn]
ω

(Draw1) might be equal

to [BallDrawn]
ω

(Draw2) in one structure (such as Figure 1.4(a)) but not another

(such as Figure 1.4(b)). The set of balls, [Ball]
ω
, can also vary between structures,

as Figure 1.4 illustrates. The purpose of a Blog model is to define a probability

distribution over such structures. Because any sentence can be evaluated as true or

false in each model structure, a distribution over model structures implicitly defines

the probability that ϕ is true for each sentence ϕ in the logical language.

1.3.2 Outcomes with fixed object sets

We begin our formal discussion of Blog semantics by considering the relatively

simple case of models with fixed sets of objects. Blog models for fixed object sets

have five kinds of statements. A type declaration, such as the two statements on

line 1 of Figure 1.3, introduces a type. A random function declaration, such as line

2 of Figure 1.3, specifies the type signature for a function symbol whose values will

be chosen randomly in the generative process. A nonrandom function definition,

8 BLOG: Probabilistic Models with Unknown Objects

such as the one on line 4 of Figure 1.3, introduces a function whose interpretation

is fixed in all possible worlds. In our implementation, the interpretation is given by

a Java class (Predecessor in this example). A guaranteed object statement, such

as line 5 in Figure 1.1, introduces and names some distinct objects that exist in all

possible worlds. For the built-in types, the obvious sets of guaranteed objects and

constant symbols are predefined. The set of guaranteed objects of type τ in Blog

model M is denoted GM (τ). Finally, for each random function symbol, a Blog

model includes a dependency statement specifying how values are chosen for that

function. We postpone further discussion of dependency statements to Section 1.4.

The first four kinds of statements listed above define a particular typed first-order

language LM for a model M . The set of possible worlds of M , denoted ΩM , consists

of those model structures of LM where the extension of each type τ is GM (τ), and

all nonrandom function symbols (including guaranteed constants) have their given

interpretations.

For each random function f and tuple of appropriately typed guar-

anteed objects o1, . . . , ok, we can define a random variable (RV)

f [o1, . . . , ok] (ω) , [f]
ω

(o1, . . . , ok). For instance, in a simplified ver-

sion of Example 1.1 where the urn contains a known set of balls

{Ball1, . . . ,Ball8} and we make four draws, the random variables are

TrueColor [Ball1] , . . . ,TrueColor [Ball8], BallDrawn [Draw1] , . . . ,BallDrawn [Draw4],

and ObsColor [Draw1] , . . . ,ObsColor [Draw4]. The possible worlds are in one-to-one

correspondence with full instantiations of these basic RVs. Thus, a joint distribution

for the basic RVs defines a distribution over possible worlds.

1.3.3 Unknown objects

In general, a Blog model defines a generative process in which objects are added

iteratively to a world. To describe such processes, we first introduce origin function

declarations1, such as lines 5–6 of Figure 1.3. Unlike other functions, origin functions

such as Source or Time have their values set when an object is added. An origin

function must take a single argument of some type τ (namely Blip in the example);

it is then called a τ -origin function.

Generative steps that add objects to the world are described by number state-

ments, such as line 11 of Figure 1.3:

#Blip(Source = a, Time = t) ∼ DetectionCPD(State(a, t));

This statement says that for each aircraft a and time step t, the process adds some

number of blips, and each of these added blips b has the property that Source(b) = a

and Time(b) = t. In general, the beginning of a number statement has the form:

#τ(g1 = x1, . . . , gk = xk)

1. In [Milch et al., 2005a] we used the term “generating function”, but we have now
adopted the term “origin function” because it seems clearer.

1.3 Syntax and Semantics: Possible Worlds 9

where τ is a type, g1, . . . , gk are τ -origin functions, and x1, . . . , xk are logical

variables. (For types that are generated ab initio with no origin functions, the empty

parentheses are omitted, as in Figure 1.1.) The inclusion of a number statement

means that for each appropriately typed tuple of objects o1, . . . , ok, the generative

process adds some random number (possibly zero) of objects q of type τ such that

[gi]
ω

(q) = oi for i= 1, . . . , k. Note that the types of the generating objects o1, . . . , ok

are the return types of g1, . . . , gk.

Object generation can even be recursive: objects can generate other objects of

the same type. For instance, consider a model of sexual reproduction in which

every male–female pair of individuals produces some number of offspring. We could

represent this with the number statement:

#Individual(Mother = m, Father = f)

if Female(m) & !Female(f) then ∼ NumOffspringPrior();

We can also view number statements more declaratively:

Definition 1.2

Let ω be a model structure of LM , and consider a number statement for type τ

with origin functions g1, . . . , gk. An object q ∈ [τ]
ω

satisfies this number statement

applied to o1, . . . , ok in ω if [gi]
ω

(q)= oi for i= 1, . . . , k, and [g]
ω

(q)= null for all

other τ -origin functions g.

Note that if a number statement for type τ omits one of the τ -origin functions,

then this function takes on the value null for all objects satisfying that number

statement. For instance, Source is null for objects satisfying the false-detection

number statement on line 12 of Figure 1.3:

#Blip(Time = t) ∼ NumFalseAlarmsPrior();

Also, a Blog model cannot contain two number statements with the same set of

origin functions. This ensures that, in any given model structure, each object o

has exactly one generation history, which can be found by tracing back the origin

functions on o.

The set of possible worlds ΩM is the set of model structures that can be

constructed by M ’s generative process. To complete the picture, we must explain

not only how many objects are added on each step, but also what these objects are. It

turns out to be convenient to define the generated objects as follows: when a number

statement with type τ and origin functions g1, . . . , gk is applied to generating

objects o1, . . . , ok, the generated objects are tuples {(τ, (g1, o1), . . . , (gk, ok), n) :

n= 1, . . . , N}, where N is the number of objects generated. Thus in Example 1.3,

the aircraft are pairs (Aircraft, 1), (Aircraft, 2), etc., and the blips generated by

aircraft are nested tuples such as (Blip, (Source, (Aircraft, 2)), (Time, 8), 1). The tuple

encodes the object’s generation history; of course, it is purely internal to the

semantics and remains invisible to the user.

10 BLOG: Probabilistic Models with Unknown Objects

Definition 1.3

The universe of a type τ in a Blog model M , denoted UM (τ), consists of the

guaranteed objects of type τ as well as all nested tuples of type τ that can be

generated from the guaranteed objects through finitely many recursive applications

of number statements.

As the following definition stipulates, in each possible world the extension of τ is

some subset of UM (τ).

Definition 1.4

For a Blog model M , the set of possible worlds ΩM is the set of model structures

ω of LM such that:

1. for each type τ , GM (τ) ⊆ [τ]
ω
⊆ UM (τ);

2. nonrandom functions have the specified interpretations;

3. for each number statement in M with type τ and origin functions g1, . . . , gk,

and each appropriately typed tuple of generating objects (o1, . . . , ok) in ω, the set

of objects in [τ]
ω

that satisfy this number statement applied to these generating

objects is {(τ, (g1, o1), . . . , (gk, ok), n) : n= 1, . . . , N} for some natural number N ;

4. for every type τ , each element of [τ]
ω

satisfies some number statement applied

to some objects in ω.

Note that by part 3 of this definition, the number of objects generated by any

given application of a number statement in world ω is a finite number N . However,

a world can still contain infinitely many non-guaranteed objects if some number

statements are applied recursively: then the world may contain tuples that are

nested to depths 1, 2, 3, . . ., with no upper bound. Infinitely many objects can

also result if number statements are triggered for every natural number, like the

statements that generate radar blips in Example 1.3.

With a fixed set of objects, it was easy to define a set of basic RVs such that a

full instantiation of the basic RVs uniquely identified a possible world. To achieve

the same effect with unknown objects, we need two kinds of basic RVs:

Definition 1.5

For a Blog model M , the set VM of basic random variables consists of:

for each random function f with type signature (τ0, . . . , τk) and each tuple

of objects (o1, . . . , ok) ∈ UM (τ1) × · · · × UM (τk), a function application RV

f [o1, . . . , ok] (ω) that is equal to [f]
ω

(o1, . . . , ok) if o1, . . . , ok all exist in ω, and

null otherwise;

for each number statement with type τ and origin functions g1, . . . , gk that have

return types τ1, . . . , τk, and each tuple of objects (o1, . . . , ok) ∈ UM (τ1) × · · · ×

UM (τk), a number RV #τ [g1 = o1, . . . , gk = ok] (ω) equal to the number of objects

that satisfy this number statement applied to o1, . . . , ok in ω.

Intuitively, each step in the generative world-construction process determines the

1.4 Syntax and Semantics: Probabilities 11

value of a basic variable. The crucial result about basic RVs is the following:

Proposition 1.6

For any Blog model M and any complete instantiation of VM , there is at most

one model structure in ΩM consistent with this instantiation.

Some instantiations of VM do not correspond to any possible world: for ex-

ample, an instantiation for the urn-and-balls example where #Ball [] = 2, but

TrueColor [(Ball, 7)] is not null. Instantiations of VM that correspond to a world

are called achievable. Thus, to define a probability distribution over ΩM , it suffices

to define a joint distribution over the achievable instantiations of VM .

Now that we have seen this technical development, we can say more about

the need to represent objects as tuples that encode generation histories. Equat-

ing objects with tuples might seem unnecessarily complicated, but it becomes

very helpful when we define a Bayes net over the basic RVs (which we do

in Section 1.4.2). For instance, in the aircraft tracking example, the parent

of ApparentPos [(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)] is State [(Aircraft, 2), 8]. It

might seem more elegant to assign numbers to objects as they are generated, so

that the extension of each type in each possible world would be simply a prefix

of the natural numbers. Specifically, we could number the aircraft arbitrarily, and

then number the radar blips lexicographically by aircraft and time step. Then we

would have basic RVs such as ApparentPos [23], representing the apparent aircraft

position for blip 23. But blip 23 could be generated by any aircraft at any time

step. In fact, the parents of ApparentPos [23] would have to include all the #Blip

and State variables in the model. So defining objects as tuples yields a much simpler

Bayes net.

1.4 Syntax and Semantics: Probabilities

1.4.1 Dependency statements

Dependency and number statements specify exactly how the steps are carried out

in our generative process. Consider the dependency statement for State(a, t) from

Figure 1.3:

State(a, t)

if t = 0 then ∼ InitState()

else ∼ StateTransition(State(a, Pred(t)));

This statement is applied for every basic RV of the form State [a, t] where a ∈

UM (Aircraft) and t ∈ N. If t=0, the conditional distribution for State [a, t] is given

by the elementary CPD InitState; otherwise it is given by the elementary CPD

StateTransition, which takes State(a,Pred(t)) as an argument. These elementary

CPDs define distributions over objects of type R6Vector (the return type of State).

12 BLOG: Probabilistic Models with Unknown Objects

In our implementation, elementary CPDs are Java classes with a method getProb

that returns the probability of a particular value given a list of CPD arguments,

and a method sampleVal that samples a value given the CPD arguments.

A dependency statement begins with a function symbol f and a tuple of logical

variables x1, . . . , xk representing the arguments to this function. In a number

statement, the variables x1, . . . , xk represent the generating objects. In either case,

the rest of the statement consists of a sequence of clauses. When the statement is

not abbreviated, the syntax for the first clause is:

if cond then ∼ elem-cpd(arg1, . . ., argN)

The cond portion is a formula of the first-order logical language LM (containing no

free variables other than x1, . . . , xk) specifying the condition under which this clause

should be used to sample a value for a basic RV. More precisely, if the possible world

constructed so far is ω, then the applicable clause is the first one whose condition

is satisfied in ω (assuming for the moment that ω is complete enough to determine

the truth values of the conditions). If no clause’s condition is satisfied, or if the

basic RV refers to objects that do not exist in ω, then the value is set by default to

false for Boolean functions, null for other functions, and zero for number variables.

If the condition in a clause is just “true”, then the whole string “if true then”

may be omitted.

In the applicable clause, each CPD argument is evaluated in ω. The resulting

values are then passed to the elementary CPD. In the simplest case, the arguments

are terms or formulas of LM , such as State(a,Pred(t)). An argument can also be a

set expression of the form {τ y : ϕ}, where τ is a type, y is a logical variable, and ϕ

is a formula. The value of such an expression is the set of objects o ∈ [τ]
ω

such that

ω satisfies ϕ with y bound to o. If the formula ϕ is just true it can be omitted: this

is the case on line 9 of Figure 1.1, where we just see the expression {Ball b}. Blog

also includes other kinds of arguments to allow counting the number of elements in

a set, aggregating a multiset of values, or passing in a set of pairs (o, w) where the

o’s are objects and the w’s are non-uniform sampling weights.

We require that the elementary CPDs obey two rules related to non-guaranteed

objects. First, if a CPD is defining a distribution over non-guaranteed objects (e.g.,

the Uniform CPD on line 9 of Figure 1.1), it should never assign positive probability

to objects that do not exist in the partially completed world ω. To ensure this,

we allow an elementary CPD to assign positive probability to a non-guaranteed

object only if the object was passed in as part of a CPD argument (in Figure 1.1,

{Ball b} is passed in). Second, an elementary CPD cannot “peek” at the tuple

representations of objects that are passed in: it must be invariant to permutations

of the non-guaranteed objects.

1.4.2 Declarative semantics

So far we have explained Blog semantics procedurally, in terms of a generative

process. To facilitate both knowledge engineering and the development of learning

1.4 Syntax and Semantics: Probabilities 13

algorithms, we would like to have declarative semantics. The standard approach —

which is used in most existing FOPLs — is to say that a Blog model defines a

certain Bayesian network (BN) over the basic RVs. In this section we discuss how

that approach needs to be modified for Blog.

We will write σ to denote an instantiation of a set of RVs vars(σ), and σX to

denote the value that σ assigns to X. If a BN is finite, then the probability it assigns

to each complete instantiation σ is P (σ) =
∏

X∈vars(σ) pX(σX |σPa(X)), where pX

is the CPD for X and σPa(X) is σ restricted to the parents of X. In an infinite

BN, we can write a similar expression for each finite instantiation σ that is closed

under the parent relation (that is, X ∈ vars(σ) implies Pa(X) ⊆ vars(σ)). If the

BN is acyclic and each variable has finitely many ancestors, then these probability

assignments define a unique distribution [Kersting and De Raedt, 2001].

#Ball[]

TrueColor[(Ball, 1)] TrueColor[(Ball, 2)] TrueColor[(Ball, 3)] …

BallDrawn[Draw1]
BallDrawn[Draw4]

…ObsColor[Draw1] ObsColor[Draw4]

Figure 1.5 Bayes net for the Blog model in Figure 1.1. The ellipses and dashed

arrows indicate that there are infinitely many TrueColor [b] nodes.

The difficulty is that in the BN corresponding to a Blog model, variables often

have infinite parent sets. For instance, the BN for Example 1.1 (shown partially in

Figure 1.5) has an infinite number of basic RVs of the form TrueColor [b]: if it had

only a finite number N of these RVs, it could not represent outcomes with more than

N balls. Furthermore, each of these TrueColor [b] RVs is a parent of each ObsColor [d]

RV, since if BallDrawn [d] happens to be b, then the observed color on draw d depends

directly on the color of ball b. So the ObsColor [d] nodes have infinitely many parents.

In such a model, assigning probabilities to finite instantiations that are closed under

the parent relation does not define a unique distribution: in particular, it tells us

nothing about the ObsColor [d] variables.

We required instantiations to be closed under the parent relation so that the

factors pX(σX |σPa(X)) would be well-defined. But we may not need the values of

all of X’s parents in order to determine the conditional distribution for X. For

instance, knowing BallDrawn [d] = (Ball, 13) and TrueColor [(Ball, 13)] =Blue is suf-

ficient to determine the distribution for ObsColor [d]: the colors of all the other balls

are irrelevant in this context. We can read off this context-specific independence

from the dependency statement for ObsColor in Figure 1.1 by noting that the in-

14 BLOG: Probabilistic Models with Unknown Objects

stantiation (BallDrawn [d] = (Ball, 13), TrueColor [(Ball, 13)] =Blue) determines the

value of the sole CPD argument TrueColor(BallDrawn(d)). We say this instantiation

supports the variable ObsColor [d] (see [Milch et al., 2005b]).

Definition 1.7

An instantiation σ supports a basic RV V of the form f [o1, . . . , ok] or

#τ [g1 = o1, . . . , gk = ok] if all possible worlds consistent with σ agree on (1) whether

all the objects o1, . . . , ok exist, and, if so, on (2) the applicable clause in the depen-

dency or number statement for V and the values for the CPD arguments in that

clause.

Note that some RVs, such as #Ball [] in Example 1.1, are supported by the empty

instantiation. We can now generalize the notion of being closed under the parent

relation.

Definition 1.8

A finite instantiation σ is self-supporting if its instantiated variables can be num-

bered X1, . . . , XN such that for each n ≤ N , the restriction of σ to {X1, . . . , Xn−1}

supports Xn.

This definition lets us give semantics to Blog models in a way that is meaningful

even when the corresponding BNs contain infinite parent sets. We will write

pV (v | σ) for the probability that V ’s dependency or number statement assigns

to the value v, given an instantiation σ that supports V .

Definition 1.9

A distribution P over ΩM satisfies a Blog model M if for every finite, self-

supporting instantiation σ with vars(σ) ⊆ VM :

P (Ωσ) =
N∏

n=1

pXn
(σXn

| σ{X1,...,Xn−1}) (1.1)

where Ωσ is the set of possible worlds consistent with σ and X1, . . . , XN is a

numbering of σ as in Definition 1.8.

A Blog model is well-defined if there is exactly one probability distribution that

satisfies it. Recall that a BN is well-defined if it is acyclic and each variable has

a finite set of ancestors. Another way of saying this is that each variable can be

“reached” by enumerating its ancestors in a finite, topologically ordered list. The

well-definedness criterion for Blog is similar, but deals with finite, self-supporting

instantiations rather than finite, topologically ordered lists of variables. Because we

are dealing with instantiations rather than variables, we need to make sure that

they cover all possible worlds in addition to covering all basic variables.

1.4 Syntax and Semantics: Probabilities 15

Theorem 1.10

Let M be a Blog model. Suppose that VM is at most countably infinite,2 and for

each V ∈ VM and ω ∈ ΩM , there is a self-supporting instantiation that agrees with

ω and includes V . Then M is well-defined.

Proof We provide only a sketch of the proof here, deferring the full version

to a more technical paper. First, since VM is at most countably infinite, we

can impose an arbitrary numbering (a bijection with some prefix of the natural

numbers) on VM . This numbering is “global” in the sense that it does not

depend on the instantiation of the random variables. Now, we define a sequence

of auxiliary random variables {Yn : 0 ≤ n < |VM |} on ΩM as follows. Let

Y0(ω) = X(ω) where X is the first basic RV in the global ordering that is

supported by the empty instantiation. For n ≥ 1, let σn(ω) be the instantiation

(Y0 = Y0(ω), . . . , Yn−1 = Yn−1(ω)). Then let Yn(ω) = Z(ω) where Z is the first basic

RV in the global ordering that is supported by σn(ω), but has not already been used

to define Ym(ω) for any m < n. The important property of the sequence {Yn} is

that any instantiation of Y0, . . . , Yn−1 determines the CPD for Yn. In other words, if

we define our model in terms of {Yn}, we get a standard BN in which each variable

has finitely many ancestors.

However, we must show that this sequence {Yn} is well-defined. Specifically, we

must show that for every n < |VM | and every ω ∈ ΩM , there exists a basic RV

Z that is supported by σn(ω) and has not already been used to define Ym(ω) for

some m < n. This can be shown using the premise that for every V ∈ VM , there

is a self-supporting instantiation consistent with ω that contains V .

We can use standard results from probability theory to show that there is a

unique probability distribution over full instantiations of {Yn} such that each Yn

has the specified conditional distribution given all its predecessors. It remains to

show that this distribution over instantiations corresponds to a unique distribution

on ΩM . First, we must show that each full instantiation of {Yn} corresponds to at

most one possible world: this follows from Proposition 1.6, plus the fact that a full

instantiation of {Yn} determines all the basic RVs. Second, we can show that the

probability distribution we have defined over {Yn} is concentrated on instantiations

that actually correspond to possible worlds — not instantiations that give RVs

values of the wrong type, or give RVs non-null values in contexts where they must

be null.

Finally, we need to check that this unique distribution on ΩM indeed satisfies M .

For finite, self-supporting instantiations σ that correspond to the auxiliary instan-

tiations σn(ω) used in defining {Yn}, the constraint is satisfied by construction. All

other finite, self-supporting instantiations can be expressed as disjunctions of those

“core” instantiations. From these observations, it is possible to show that (1.1) is

satisfied for all finite, self-supporting instantiations.

2. This is satisfied if the Real and RkVector types are not arguments to random functions
or return types of gorigin functions.

16 BLOG: Probabilistic Models with Unknown Objects

To check that the criterion of Theorem 1.10 holds for a particular example, we

need to consider each basic RV. In Example 1.1, the number RV for balls is sup-

ported by the empty instantiation, so in every world it is part of a self-supporting in-

stantiation of size one. Each TrueColor [b] RV depends only on whether its argument

exists, so these variables participate in self-supporting instantiations of size two.

Similarly, each BallDrawn variable depends only on what balls exist. To sample an

ObsColor [d] variable, we need to know BallDrawn [d] and TrueColor [BallDrawn [d]],

so these variables are in self-supporting instantiations of size four. Similar argu-

ments can be made for Examples 1.2 and 1.3. Of course, we would like to have an

algorithm for checking whether a Blog model is well-defined; the criteria given in

Theorem 1.12 in Section 1.6.2 are a first step in this direction.

1.5 Evidence and Queries

Because a well-defined Blog model M defines a distribution over model structures,

we can use arbitrary sentences of LM as evidence and queries. But sometimes such

sentences are not enough. In Example 1.3, the user observes radar blips, which are

not referred to by any terms in the language. The user could assert evidence about

the blips using existential quantifiers, but then how could he make a query of the

form, “Did this blip come from the same aircraft as that blip?”

A natural solution is to allow the user to extend the language when evidence

arrives, adding constant symbols to refer to observed objects. In many cases, the

user observes some new objects, introduces some new symbols, and assigns the

symbols to the objects in an uninformative order. To handle such cases, Blog

includes a special macro. For instance, given 4 radar blips at time 8, one can assert:

{Blip r: Time(r) = 8} = {Blip1, Blip2, Blip3, Blip4};

This asserts that there are exactly 4 radar blips at time 8, and introduces new

constants Blip1, . . . ,Blip4 in one-to-one correspondence with those blips.

Formally, the macro augments the model with dependency statements for the

new symbols. The statements implement sampling without replacement; for our

example, we have

Blip1 ∼ Uniform({Blip r : (Time(r) = 8)});

Blip2 ∼ Uniform({Blip r : (Time(r) = 8) & (Blip1 != r)});

and so on. Once the model has been extended this way, the user can make assertions

about the apparent positions of Blip1, Blip2, etc., and then use these symbols in

queries.

These new constants resemble Skolem constants, but conditioning on assertions

about the new constants is not the same as conditioning on an existential sentence.

For example, suppose you go into a new wine shop, pick up a bottle at random, and

observe that it costs $40. This scenario is correctly modeled by introducing a new

1.6 Inference 17

constant Bottle1 with a Uniform CPD. Then observing that Bottle1 costs at least

$40 suggests that this is a fancy wine shop. On the other hand, the mere existence

of a $40+ bottle in the shop does not suggest this, because almost every shop has

some bottle at over $40.

1.6 Inference

Because the set of basic RVs of a Blog model can be infinite, it is not obvious that

inference for well-defined Blog models is even decidable. However, the generative

process intuition suggests a rejection sampling algorithm. We present this algorithm

not because it is particularly efficient, but because it demonstrates the decidability

of inference for a large class of Blog models (see Theorem 1.12 below) and

illustrates several issues that any Blog inference algorithm must deal with. At

the end of this section, we present experimental results from a somewhat more

efficient likelihood weighting algorithm.

1.6.1 Rejection sampling

Suppose we are given a partial instantiation e as evidence, and a query variable Q.

To generate each sample, our rejection sampling algorithm starts with an empty

instantiation σ. Then it repeats the following steps: enumerate the basic RVs in a

fixed order3 until we reach the first RV V that is supported by σ but not already

instantiated in σ; sample a value v for V according to V ’s dependency statement;

and augment σ with the assignment V = v. The process continues until all the

query and evidence variables have been sampled. If the sample is consistent with

the evidence e, then the program increments a counter Nq, where q is the sampled

value of Q. Otherwise, it rejects this sample. After N accepted samples, the estimate

of P (Q= q | e) is Nq/N .

This algorithm requires a subroutine that determines whether a partial instan-

tiation σ supports a basic RV V , and if so, returns a sample from V ’s conditional

distribution. For a basic RV V of the form f [o1, . . . , ok] or #τ [g1 = o1, . . . , gk = ok],

the subroutine begins by checking the values of the relevant number variables in

σ to determine whether all of o1, . . . , ok exist. If some of these number variables

are not instantiated, then σ does not support V . If some of o1, . . . , ok do not exist,

the subroutine returns the default value for V . If they do all exist, the subroutine

follows the semantics for dependency statements discussed in Section 1.4.1. First, it

iterates over the clauses in the dependency (or number) statement until it reaches

3. Each basic RV f [o1, . . . , ok] or #τ [g1 = o1, . . . , gk = ok] can be assigned a “depth” which
is the maximum of the depths of nested tuples and the magnitudes of integers among its
arguments o1, . . . , ok. The number of RVs at each given depth is finite. Thus, we can
enumerate first the RVs at depth 0, then those at depth 1, depth 2, etc.

18 BLOG: Probabilistic Models with Unknown Objects

a clause whose condition is either undetermined or determined to be true given σ

(if all the conditions are determined to be false, then it returns the default value for

V). If the condition is undetermined, then σ does not support V . If it is determined

to be true, then the subroutine evaluates each of the CPD arguments in this clause.

If σ determines the values of all the arguments, then the subroutine samples a value

for V by passing those values to the sampleVal method of this clause’s elementary

CPD. Otherwise, σ does not support V .

To evaluate terms and quantifier-free formulas, we use a straightforward recursive

algorithm. The base case looks up the value of a particular function application

RV in σ; if this RV is not instantiated, the algorithm returns “undetermined”. To

evaluate a formula, we evaluate its subformulas in order from left to right. We stop

when we hit an undetermined subformula or when the value of the whole formula is

determined. For example, to evaluate α∨β, we first evaluate α. If α is undetermined,

we return “undetermined”; if α is true, we return true, and if α is false, we go on

to evaluate β.4

It is more complicated to evaluate set expressions such as {Blip r: Time(r) = 8},

which can be used as CPD arguments. A naive algorithm for evaluating this ex-

pression would first enumerate all the objects of type Blip (which would require

certain number variables to be instantiated), then select the blips r that satisfy

Time(r)= 8. But Figure 1.3 specifies that there may exist some blips for each air-

craft a and each natural number t: since there are infinitely many natural numbers,

some worlds contain infinitely many blips. Fortunately, the number of blips r with

Time(r)= 8 is necessarily finite: in every world there are a finite number of aircraft,

and each one generates a finite number of blips at time 8. We have an algorithm

that scans the formula within a set expression for origin function restrictions such

as Time(r)= 8, and uses them to avoid enumerating infinite sets when possible.

These restrictions may be either equality constraints, or inequalities that define a

bounded set of natural numbers, such as Time(r) < 12. A similar method is used

for evaluating quantified formulas.

1.6.2 Termination criteria

In order to generate each sample, the algorithm above repeatedly instantiates the

first variable that is supported but not yet instantiated, until it instantiates all

the query and evidence variables. When can we be sure that this will take a finite

amount of time? The first way this process could fail to terminate is if it goes into

an infinite loop while checking whether a particular variable is supported. This

happens if the program ends up enumerating an infinite set while evaluating a

set expression or quantified formula. We can avoid this by ensuring that all such

4. This left-to-right evaluation scheme does not always detect that a formula is deter-
mined: for instance, on α ∨ β, it returns “undetermined” if α is undetermined but β is
true—even though α ∨ β must be true in this case.

1.6 Inference 19

expressions in the Blog model are finite once origin function restrictions are taken

into account.

The sample generator also fails to terminate if it never constructs an instantiation

that supports a particular query or evidence variable. To see how this can happen,

consider calling the subroutine described above to sample a variable V . If V is not

supported, the subroutine will realize this when it encounters a variable U that is

relevant but not instantiated. Now consider a graph over basic variables where we

draw an edge from U to V when the evaluation process for V hits U in this way. If

a variable is never supported, then it must be part of a cycle in this graph, or part

of a receding chain of variables V1 ← V2 ← · · · that is extended infinitely.

The graph constructed in this way varies from sample to sample: for instance,

sometimes the evaluation process for ObsColor [d] will hit TrueColor [(Ball, 7)], and

sometimes it will hit TrueColor [(Ball, 13)]. However, we can rule out cycles and

infinite receding chains in all these graphs by considering a more abstract graph

over function symbols and types (along the same lines as the dependency graph of

[Koller and Pfeffer, 1998, Friedman et al., 1999]).

Definition 1.11

The symbol graph for a Blog model M is a directed graph whose nodes are the

types and random function symbols of M , where the parents of a type τ or function

symbol f are:

the random function symbols that occur on the right hand side of the dependency

statement for f or some number statement for τ ;

the types of variables that are quantified over in formulas or set expressions on

the right hand side of such a statement;

the types of the arguments for f or the return types of origin functions for τ .

The symbol graphs for our three examples are shown in Figure 1.6. If the sampling

subroutine for a basic RV V hits a basic RV U , then there must be an edge from U ’s

function symbol (or type, if U is a number RV) to V ’s function symbol (or type) in

the symbol graph. This property, along with ideas from [Milch et al., 2005b], allows

us to prove the following:

Theorem 1.12

Suppose M is a Blog model where:

1. uncountable built-in types do not serve as function arguments or as the return

types of origin functions;

2. each quantified formula and set expression ranges over a finite set once origin

function restrictions are taken into account;

3. the symbol graph is acyclic.

Then M is well-defined. Also, for any evidence instantiation e and query variable

Q, the rejection sampling algorithm described in Section 1.6.1 converges to the

posterior P (Q|e) defined by the model, taking finite time per sampling step.

20 BLOG: Probabilistic Models with Unknown Objects

Ball DrawColor

TrueColor

BallDrawn

ObsColor

Publication

Citation

Researcher

Name Title

PubCited

Text

(a) (b)

Aircraft Blip

NaturalNum

State ApparentPos

(c)

Figure 1.6 Symbol graphs for (a) the urn-and-balls model in Figure 1.1; (b) the

bibliographic model in Figure 1.2; (c) the aircraft tracking model in Figure 1.3.

The criteria in Theorem 1.12 are very conservative: in particular, when we

construct the symbol graph, we ignore all structure in the dependency statements

and just check for the occurrence of function and type symbols. These criteria are

satisfied by the models in Figures 1.1 and 1.2. However, the aircraft tracking model

in Figure 1.3 does not satisfy the criteria because its symbol graph (Figure 1.6(c))

contains a self-loop from State to State. The criteria do not exploit the fact that

State(a, t) depends only on State(a,Pred(t)), and the nonrandom function Pred is

acyclic. Friedman et al. [1999] have already dealt with this issue in the context of

probabilistic relational models; their algorithm can be adapted to obtain a stronger

version of Theorem 1.12 that covers the aircraft tracking model.

1.6.3 Experimental results

Milch et al. [2005b] describe a guided likelihood weighting algorithm that uses

backward chaining from the query and evidence nodes to avoid sampling irrelevant

variables. This algorithm can also be adapted to Blog models. We applied this

algorithm for Example 1.1, asserting that 10 balls were drawn and all appeared

blue, and querying the number of balls in the urn. Figure 1.7(a) shows that when

the prior for the number of balls is uniform over {1, . . . , 8}, the posterior puts more

weight on small numbers of balls; this makes sense because the more balls there

1.7 Related Work 21

are in the urn, the less likely it is that they are all blue. Figure 1.7(b), using a

Poisson(6) prior, shows a similar but less pronounced effect.

Note that in Figure 1.7, the posterior probabilities computed by the likelihood

weighting algorithm are very close to the exact values (computed by exhaustive

enumeration of possible worlds with up to 170 balls). We were able to obtain

this level of accuracy using runs of 20,000 samples with the uniform prior, and

100,000 samples using the Poisson prior. On a Linux workstation with a 3.2 GHz

Pentium 4 processor, the runs with the uniform prior took about 35 seconds (571

samples/second), and those with the Poisson prior took about 170 seconds (588

samples/second). Such results could not be obtained using any algorithm that

constructed a single fixed BN, since the number of potentially relevant TrueColor [b]

variables is infinite in the Poisson case.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Number of balls in urn

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Number of balls in urn

(a) (b)

Figure 1.7 Distribution for the number of balls in the urn (Example 1.1). Dashed

lines are the uniform prior (a) or Poisson prior (b); solid lines are the exact posterior

given that 10 balls were drawn and all appeared blue; and plus signs are posterior

probabilities computed by 5 independent runs of 20,000 samples (a) or 100,000

samples (b).

1.7 Related Work

Gaifman [1964] was the first to suggest defining a probability distribution over first-

order model structures. Halpern [1990] defines a language in which one can make

statements about such distributions: for instance, that the probability of the set

of worlds that satisfy Flies(Tweety) is 0.8. Probabilistic logic programming [Ng and

Subrahmanian, 1992] can be seen as an application of this approach to Horn-clause

knowledge bases. Such an approach only defines constraints on distributions, rather

than defining a unique distribution.

Most first-order probabilistic languages (FOPLs) that define unique distributions

22 BLOG: Probabilistic Models with Unknown Objects

fix the set of objects and the interpretations of (non-Boolean) function symbols. Ex-

amples include relational Bayesian networks [Jaeger, 2001] and Markov logic mod-

els [Domingos and Richardson, 2004]. Prolog-based languages such as probabilistic

Horn abduction [Poole, 1993], PRISM [Sato and Kameya, 2001], and Bayesian logic

programs [Kersting and De Raedt, 2001] work with Herbrand models, where the ob-

jects are in one-to-one correspondence with the ground terms of the language (a

consequence of the unique names and domain closure assumptions).

There are a few FOPLs that allow explicit reference uncertainty, i.e., uncertainty

about the interpretations of function symbols. Among these are two languages that

use indexed RVs rather than logical notation: BUGS [Gilks et al., 1994] and indexed

probability diagrams (IPDs) [Mjolsness, 2004]. Reference uncertainty can also be

represented in probabilistic relational models (PRMs) [Koller and Pfeffer, 1998],

where a “single-valued complex slot” corresponds to an uncertain unary function.

PRMs are unfortunately restricted to unary functions (attributes) and binary

predicates (relations). Probabilistic entity-relationship models [Heckerman et al.,

2004] lift this restriction, but represent reference uncertainty using relations (such as

Drawn(d, b)) and special mutual exclusivity constraints, rather than with functions

such as BallDrawn(d). Multi-entity Bayesian network logic (MEBN) [Laskey and

da Costa, 2005] is similar to Blog in allowing uncertainty about the values of

functions with any number of arguments.

The need to handle unknown objects has been appreciated since the early days of

FOPL research: Charniak and Goldman’s plan recognition networks (PRNs) [Char-

niak and Goldman, 1993] can contain unbounded numbers of objects representing

hypothesized plans. However, external rules are used to decide what objects and

variables to include in a PRN. While each possible PRN defines a distribution

on its own, Charniak and Goldman do not claim that the various PRNs are all

approximations to some single distribution over outcomes.

Some more recent FOPLs do define a single distribution over outcomes with

varying objects. IPDs allow uncertainty over the index range for an indexed family

of RVs. PRMs and their extensions allow a variety of forms of uncertainty about

the number (or existence) of objects satisfying certain relational constraints [Koller

and Pfeffer, 1998, Getoor et al., 2001] or belonging to each type [Pasula et al., 2003].

However, there is no unified syntax or semantics for dealing with unknown objects

in PRMs. MEBNs take yet another approach: an MEBN model includes a set of

unique identifiers, for each of which there is an “identity” RV indicating whether

the named object exists.

Our approach to unknown objects in Blog can be seen as unifying the PRM

and MEBN approaches. Number statements neatly generalize the various ways

of handling unknown objects in PRMs: number uncertainty [Koller and Pfeffer,

1998] corresponds to a number statement with a single origin function; existence

uncertainty [Getoor et al., 2001] can be modeled with two or more origin functions

(and a CPD whose support is {0, 1}); and domain uncertainty [Pasula et al.,

2003] corresponds to a number statement with no origin functions. There is also

a correspondence between Blog and MEBN logic: the tuple representations in

1.8 Conclusions and Future Work 23

a Blog model can be thought of as unique identifiers in an MEBN model. The

difference is that Blog determines which objects actually exist in a world using

number variables rather than individual existence variables.

Finally, it is informative to compare Blog with the IBAL language [Pfeffer, 2001],

in which a program defines a distribution over outputs that can be arbitrary nested

data structures. An IBAL program could implement a Blog-like generative process

with the outputs viewed as logical model structures. But the declarative semantics

of such a program would be less clear than the corresponding Blog model.

1.8 Conclusions and Future Work

Blog is a representation language for probabilistic models with unknown objects.

It contributes to the solution of a very general problem in AI: intelligent systems

must represent and reason about objects, but those objects may not be known a

priori and may not be directly and uniquely identified by perceptual processes. Our

approach defines generative models in which first-order model structures are created

by adding objects and setting function values; everything else follows naturally from

this design decision.

Much work remains to be done on Blog. The inference algorithms presented

in this paper are not practical for any but the smallest examples. For real-world

problems, we expect to employ Markov chain Monte Carlo (MCMC) techniques

(see, e.g, Gilks et al. [1996]), simulating a Markov chain over possible worlds.

More precisely, these algorithms must use partial descriptions of possible worlds:

in a model with infinitely many RVs, a world cannot be represented explicitly as

a full instantiation. We plan to implement a general Gibbs sampling algorithm

for Blog models, using some of the same techniques as the BUGS system [Gilks

et al., 1994]. However, for models with unknown objects, we expect to obtain faster

convergence with Metropolis-Hastings algorithms [Metropolis et al., 1953] using

proposal distributions that split and merge objects [Jain and Neal, 2004]. For now,

it appears that these proposal distributions will need to be designed by hand to

propose reasonable splits and merges (e.g., merging publications with similar or

identical titles), as was done in [Pasula et al., 2003]. However, we have implemented

a general Metropolis-Hastings inference engine for Blog that maintains the state

of the Markov chain and computes acceptance probabilities for any given proposal

distribution. In the future, we plan to explore adaptive MCMC techniques (see,

e.g., [Haario et al., 2001] and references therein).

Another important question is how to design Blog models that will lead to ac-

curate inferences from real-world data. For the citation matching problem, Pasula

et al. [2003] obtained state-of-the-art accuracy using reasonably simple prior distri-

butions for publication titles and author names, estimated from BibTeX files and

U.S. Census data (these results are competitive with the discriminative approach

of Wellner et al. [2004]). It is not so clear how to estimate the prior distributions

for the numbers of objects of various types, such as researchers and publications.

24 BLOG: Probabilistic Models with Unknown Objects

Pasula et al. [2003] simply used a log-normal distribution, which has a very large

variance. As an alternative to defining such a prior distribution, one could use

the nonparametric version of Blog proposed by Carbonetto et al. [2005], which

incorporates Dirichlet process mixture models.

Finally, perhaps the most interesting questions about Blog have to do with

learning. Parameter estimation, even from partially observed data, is conceptually

straightforward: the sampling-based inference algorithms described above can serve

as the basis for Monte Carlo expectation-maximization (EM) algorithms [Wei

and Tanner, 1990]. But learning the structure of Blog models is an exciting

open problem. In other statistical relational formalisms, techniques have been

proposed for discovering dependencies that hold between attributes of related

objects [Friedman et al., 1999, Popescul et al., 2003]. We believe that extensions of

these techniques can be applied to Blog. The ultimate goal, however, is to develop

algorithms that can hypothesize new attributes, new relations, and even new types

of objects. Blog provides a language in which such hypotheses can be expressed.

References

P. Carbonetto, J. Kisyński, N. de Freitas, and D. Poole. Nonparametric Bayesian

logic. In Proc. 21st Conf. on Uncertainty in AI, pages 85–93, 2005.

E. Charniak and R. P. Goldman. A Bayesian model of plan recognition. Artificial

Intelligence, 64(1):53–79, 1993.

P. Domingos and M. Richardson. Markov logic: A unifying framework for statistical

relational learning. In ICML Workshop on Statistical Relational Learning and

Its Connections to Other Fields, 2004.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational

models. In Proc. 16th Int’l Joint Conf. on AI, pages 1300–1307, 1999.

H. Gaifman. Concerning measures in first order calculi. Israel J. Math., 2:1–18,

1964.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models

of relational structure. In Proc. 18th Int’l Conf. on Machine Learning, pages

170–177, 2001.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte

Carlo in Practice. Chapman and Hall, London, 1996.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for

complex Bayesian modelling. The Statistician, 43(1):169–177, 1994.

H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm.

Bernoulli, 7:223–242, 2001.

J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,

46:311–350, 1990.

D. Heckerman, C. Meek, and D. Koller. Probabilistic models for relational data.

Technical Report MSR-TR-2004-30, Microsoft Research, 2004.

M. Jaeger. Complex probabilistic modeling with recursive relational Bayesian

networks. Annals of Math and AI, 32:179–220, 2001.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for

the Dirichlet process mixture model. J. Computational and Graphical Statistics,

13:158–182, 2004.

K. Kersting and L. De Raedt. Adaptive Bayesian logic programs. In Proc. 11th

Int’l Conf. on Inductive Logic Programming, 2001.

26 References

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proc. 15th National

Conf. on Artificial Intelligence, pages 580–587, 1998.

K. Lambert. Free logics, philosophical issues in. In E. Craig, editor, Routledge

Encyclopedia of Philosophy. Routledge, London, 1998.

K. B. Laskey and P. C. G. da Costa. Of starships and Klingons: Bayesian logic for

the 23rd century. In Proc. 21st Conf. on Uncertainty in AI, pages 346–353, 2005.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equations of state calculations by fast computing machines. J. Chemical Physics,

21:1087–1092, 1953.

B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG:

Probabilistic models with unknown objects. In Proc. 19th Int’l Joint Conf. on

AI, pages 1352–1359, 2005a.

B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov. Approximate

inference for infinite contingent Bayesian networks. In 10th Int’l Workshop on

Artificial Intelligence and Statistics, 2005b.

E. Mjolsness. Labeled graph notations for graphical models. Technical Report

04-03, School of Information and Computer Science, UC Irvine, 2004.

R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information

and Computation, 101(2):150–201, 1992.

H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty

and citation matching. In Advances in Neural Information Processing Systems

15. MIT Press, Cambridge, MA, 2003.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Francisco, revised edition, 1988.

A. Pfeffer. IBAL: A probabilistic rational programming language. In Proc. 17th

Int’l Joint Conf. on AI, pages 733–740, 2001.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-

gence, 64(1):81–129, 1993.

A. Popescul, L. H. Ungar, S. Lawrence, and D. M. Pennock. Statistical relational

learning for document mining. In Proc. 3rd IEEE Int’l Conf. on Data Mining,

pages 275–282, 2003.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-

statistical modeling. J. Artificial Intelligence Res., 15:391–454, 2001.

R. W. Sittler. An optimal data association problem in surveillance theory. IEEE

Trans. Military Electronics, MIL-8:125–139, 1964.

G. C. G. Wei and M. A. Tanner. A Monte Carlo implementation of the EM

algorithm and the poor man’s data augmentation algorithms. J. American

Stat. Assoc., 85:699–704, 1990.

B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated, conditional model

of information extraction and coreference with application to citation matching.

References 27

In Proc. 20th Conf. on Uncertainty in AI, 2004.

