BLOG: Probabilistic Models with Unknown Objects*

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong and Andrey Kolobov
Computer Science Division
University of California
Berkeley, CA 94720-1776
{milch, bhaskara, russell, dsontag, dlong, karay@ts.berkeley.edu

Abstract that explicitly represent objects and the relations betwee
them. However, most FOPLs only deal with fixed sets of ob-
jects, or deal with unknown objects in limited aad hoc
ways. This paper introducesLBG (Bayesian LOGic), a
compact and intuitive language for defining probability-dis

This paper introduces and illustratesds, a formal lan-
guage for defining probability models over worlds with
unknown objects and identity uncertaintyL®G unifies

and extends several existing approaches. Subject to cer-

tain acyclicity constraints, every ®G model specifies tributions over outcomes with varying sets of objects.

a unigue probability distribution over first-order model We begin in Sec. 2 with three example problems, each of
structures that can contain varying and unbounded num- which involves possible worlds with varying object sets and
bers of objects. Furthermore, complete inference algo- identity uncertainty. We describe generative processass th

rithms exist for a large fragment of the language. We produce such worlds, and give the corresponding®mod-

also introduce a probabilistic form of Skolemization for els. Sec. 3 observes that these possible worlds are ngturall
handling evidence. viewed as model structuresfirst-order logic It then defines

precisely the set of possible worlds corresponding taa®
. model. The key idea is a generative process that constructs a

1 Introduction world by adding objects whose existence and properties de-
Human beings and Al systems must convert sensory inpytend on those of objects already created. In such a process,
into some understanding of what's out there and what’s goinghe existence of objects may be governed by many random
on in the world. That is, they must make inferences abouvariables, not just a single population size variable. $ec.
the objects and events that underlie their observations. Ndiscusses how al®G model specifies a probability distribu-
pre-specified list of objects is given; the agent must irtier t tion over possible worlds.
existence of objects that were not known initially to exist. Sec. 5 solves a previously unnoticed “probabilistic

In many Al systems, this problem of unknown objects is Skolemization” problem: how to specify evidence about
engineered away or resolved in a preprocessing step. Hovebjects—such as radar blips—that one didn’t know existed.
ever, there are important applications where the problem ifinally, Sec. 6 briefly discusses inference in unbounded out
unavoidable. Population estimationfor example, involves come spaces, stating a sampling algorithm and a complete-
counting a population by sampling from it randomly and mea-ness theorem for a large class of & models, and giving
suring how often the same object is resampled; this would&xperimental results on one particular model.
be pointless if the set of objects were known in advance.
Record linkage a task undertaken by an industry of more Examples
than 300 companies, involves matching entries across-multi] : . .))
ple databases. These companies exist because of ungertaifft this section we examine three typical scenarios with un-
about the mapping from observations to underlying objectsknown objects—simplified versions of the population estima-
Finally, multi-target trackingsystems perforndata associa- tion, record linkage, and multitarget tracking problemsime
tion, connecting, say, radar blips to hypothesized aircraft. ~tioned above. In each case, we provide a shaw®model

Probability models for such tasks are not new: Bayesiarthat, when combined with a suitable inference engine, ¢onst
models for data association have been used since tHtes aworking solution for the problem in question.
1960s[Sittler, 1964. The models are written in English and Example 1. An urn contains an unknown number of balls—
mathematical notation and converted by hand into specialsay, a number chosen from a Poisson distribution. Balls are
purpose code. In recent yeafsymal representation lan- equally likely to be blue or green. We draw some balls from
guagessuch as graphical model®earl, 1988 have led to the urn, observing the color of each and replacing it. We
general inference algorithms, more sophisticated moelats, cannot tell two identically colored balls apart; furthermeo
automated model selection (structure learning). In Sewe7, gpserved colors are wrong with probability 0.2. How many
review severalfirst-order probabilistic language¢FOPLS) ba|is are in the urn? Was the same ball drawn twice?

*This work was supported by DARPA under award 03-000219, The BLoG model for this problem, shown in Fig. 1, de-
and by an NSF Graduate Research Fellowship to B. Milch. scribes a stochastic process for generating worlds. Thetfirs

1type Color;

2 random Col or TrueCol or (Ball);
3 random Bal | Bal | Dr awn(Dr aw) ;
4 random Col or ObsCol or (Dra

type Ball; type Draw, 1 guaranteed Citation Citel, Cte2, Cte3, Cite4;

2 #Researcher ~ NunResearchersbDistrib();
3 #Publication: (Author) -> (r) ~ NunmPubsDistrib();

4Title(p) ~ TitlePrior();
5 Name(r? ~ NanePrior();

6 PubCited(c) ~ Uniform({Publication p});

7 TitleString(c) ~ TitIers(TitIe(PubCited(cZ)));
8 Aut hor String(c) ~ AuthorQbs(Name(Aut hor (PubC ted(c))));

9CtString(c) ~ CitDistrib(TitleString(c),AuthorString(c));

5 guaranteed Col or Blue, G een;
6 guaranteed Draw Drawl, Draw2, Draw3, Draw4;

7 #Bal | ~ Poi sson[6]();
8 TrueCol or (b) ~ TabularCPD[[0.5, 0.5]]();
9 Bal I Drawn(d) ~ Uniforn({Ball b});

10035COI0r(d?
11 if (BallDrawn(d) !'= null) then
% ~ Tabul arCPD[[0. 8 .2, 0.8]]

d.21. 10 Figure 2: B.oG model for Ex. 2 with four observed citations
(TrueCol or (Bal'l Drawn’(J)));

(type and function declarations are omitted).

Figure 1: B.oG model for the urn-and-balls scenario of Ex. 1

with four draws. area. Then, for each time stefstarting at = 0), choose the

state (position and velocity) of each aircraft given itsesta

timet — 1. Also, for each aircraft and time step, possibly
lines introduce the types of objects in these worlds—colorsgenerate a radar blipwith Source(r) = a and Time(r) = t.
balls, and draws—and the functions that can be applied t@vhether a blip is generated or not depends on the state of the
these objects. Lines 5-7 specify what objects may exist imircraft—thus the number of objects in the world depends on
each world. In every world, the colors are blue and green andertain objects’ attributes. Also, at each step, genetees
there are four draws; these are hearanteedbjects. Onthe false alarm blips”’ with Source(r’) = null. Finally, sample
other hand, different worlds have different numbers ofsall the position for each blip given the true state of its source

so the number of balls that exist is chosen from a prior—aaircraft (or using a default distribution for a false-alabtip).
Poisson with mean 6. Each ball is then given a color, as spec-
ified on line 8. Properties of the four draws are filled in by i ;
choosing a ball (line 9) and an observed color for that baII3 Syntax and Semantics: Possible Worlds

(lines 10-13). The probability of the generated world is the3.1 Outcomes as first-order model structures

product of the probabilities of all the choices made. The possible outcomes for Ex. 1 through Ex. 3 are structures
Example 2. We have a collection of citations that refer to containing many related objects, which we will treat fortyal
publications in a certain field. What publications and re- as model structuref first-order logic A model structure
searchers exist, with what titles and names? Who wrote whichrovides interpretations for the symbols of a first-order- la
publication, and which publication does each citation refe guage. (Usually, first-order languages are described asgav
to? For simplicity, we just consider the title and authomma predicate, function, and constant symbols. For concisgnes
strings in these citations, which are subject to errors aiva we view all symbols as function symbols; predicates are just
ous kinds, and we assume only single-author publications. functions that return a Boolean value, and constants ate jus

Fig. 2 shows a BoG model for this example, based on zero-ary functions.)

the model in[Pasulaet al, 2003. The BLoG model de- For Ex. 1, the language has function symbols such as

: ; . ; TrueColor(b) for the true color of balb; BallDrawn(d) for the
fines the following generative process. First, sample the top_all drawn on drawi; andDraw for the first draw. (Statisti-

cians might use indexed families of random variables such as

each researcher sample the number of publications by that {TrueColor, }, but this is mainly a matter of taste.)

researcher. Sample the publications’ titles and resees’che
names from appropriate prior distributions. Then, for ezieh
tation, sample the publication cited by choosing uniforatly 1 type Aircraft; type Blip;

random from the set of publications. Sample the title and au-2 r andom RéVect or State(Aircraft, Natural Nun;

thor strings used in each citation from string corruptiordmo
els conditioned on the true attributes of the cited pullicat
finally, generate the full citation string according to anfat-
ting model.

Example 3. An unknown number of aircraft exist in some
volume of airspace. An aircraft’s state (position and veloc

ity) at each time step depends on its state at the previos tino

3 random R3Vect or Appar ent Pos(Blip);
4 nonrandom Nat ur al Num Pred(Nat ural Num) = Predecessor;

5 generating Aircraft Source(Blip);
6 generating Natural Num Ti me(Blip

7 #Aircraft ~ NumAircraftDistrib();
8 State(a, t)
9 if

t =0 then ~ InitState()
else ~ StateTransition(State(a,

Pred(t)));

step. We observe the area with radar: aircraft may appear as; #g i p: (source, Time) -> (a

identical blips on a radar screen. Each blip gives the approx 12

13 #Bl i p:

blips may be false detections, and some aircraft may not b&

%g Appar ent Pos(r)
|

17

mate position of the aircraft that generated it. Howevemso

detected. What aircraft exist, and what are their trajeiteP
Are there any aircraft that are not observed?

The BLOG model for this scenario (Fig. 3) describes the

following process: first, sample the number of aircraft ia th

(a, 1)
~ DetectionDistrib(State(a, t));

(Time) -> (t)
~ Nuntal seAl arnsDi strib();

f (Source(r) = null) then ~ Fal seA arnDistrib()
el se ~ ObsDistrib(State(Source(r), Tinme(r)));

Figure 3: B.oG model for Ex. 3.

To eliminate meaningless random variables, we use auch processes, we first introdupenerating function decla-
typed freelogical language, in which every object has a typerations such as lines 5-6 of Fig. 3. Unlike other functions,
and in which functions may be partial. Each function sym-generating functions such &surce or Time have their val-
bol f has aype signaturér, ..., 7.), wherer, is the return ues set when an object is added. A generating function must
type of f and7y,..., 7, are the argument types. A partial take a single argument of some typgnamelyBlip in the
function applied to arguments outside its domain returias thexample); it is then called &generating function.
special valuanwull, which is not of any type. Generative steps that add objects to the world are described

The truth of any first-order sentence is determined by &y number statementsFor instance, line 11 of Fig. 3 says
model structurefor the corresponding language. A model that for each aircraft and time step, the process adds some
structure specifies thextensionof each type and thiter- number of blips- such thatSource(r) = a and Time(r) =t.

pretationfor each function symbol: In general, the beginning of a number statement has the
Definition 1. A model structurev of a typed, free, first-order form: — #7: (g1,...,gx) => (#1,...,74) wherer is a
language consists of an extensiif’ for each typer, which ~ YP€, g1, - .., g, areér-generating functions, and, ...,z

may be an arbitrary set, and an interpretatifi* for each '€ logical variables. (For types that are generatedhitio

function symbof. If f has return typey, and argument types With no generating functions, thg -> () is omitted, as
1,. .., T then[f] is a function from{r;]“ x --- x [r,]"to N Fig. 1.) The inclusion of a number statement means that

[70]* U {null}. for each appropriately typed tuple of objeets. . ., o (the
. . L appropriate types are the return typegqf. . ., gx), the gen-
pa'rAti Euﬁgresgo(ﬂe%ggg?ziui tﬂ:%ts)ablll!llt)llf flslm?duet:qqcrilyoxﬁzz (fr era}}ltve proces§ tar\]d?[s jsug)zn)e num?er.(polssmly zero) of objects
. . w Y g ortyper suc alg; q)=o;10r, =1,...,
Eg'?éyal?gfaevin?ffggjf;)”%ag‘r’g s(tlr)urgmié rglﬁhr:obteaigltjﬁér Object generation can even be recursive: for instance, in
The set of ballsiBalll* . can also vary between structures - a model for phylogenetic trees, we could have a generating
|Ball*, vary UCWUTES. fynction Parent that takes a species and returns a species:
3.2 Outcomes with fixed object sets then we could model speciation events with a number state-
’ ment that begins#Speci es: (Parent) -> (p).

BLoG models for fixed object sets have five kinds of state- \ye can also view number statements more declaratively:
ments. Atype declaratiopsuch as the two statements on line

1 of Fig. 3, introduces a type. Certain types, nanBdylean, Definition 2. Letw be a model structure of ,;, and con-

NaturalNum, Integer, String, Real, andRkVector (for each sider a number statement ‘Pr typevith generating functions

k > 2) are already provided. fandom function declaratign 91, - -» 9x- An objec € [7]” satisfieshis number statement

such as line 2 of Fig. 3, specifies the type signature for a-funcapplied tooy, ..., o5 in w if [g,]" (q) =0; for i=1,... . k,

tion symbol whose values will be chosen randomly in the genand [9]” (g) = null for all other 7-generating functiong.

erative process. Aonrandom function definitigsuch as the Note that if a number statement for typ@mits one of the

one on line 4 of Fig. 3, introduces a function whose integgret r-generating functions, then this function takes on theealu

tion is fixed in all possible worlds. In our implementatiomet | for all objects satisfying that number statement. For in-

interpretation is given by a Java clags édecessor inthis stanceSource is null for objects satisfying the false-detection

example). Aguaranteed object statemerstich as line 5in number statement on line 13 of Fig. 3. Also, ad& model

Fig. 1, introduces and names some distinct objects that exigannot contain two number statements with the same set of

in all possible worlds. For the built-in types, the obvioe$ss generating functions. This ensures that each objéets ex-

of guaranteed objects and constant symbols are predefinegetly one generation history, which can be found by tracing

The set of guaranteed objects of typen BLOG modelM is back the generating functions on

denotedG (7). Finally, for each random function symbol, The set of possible world®), is the set of model struc-

a BLoG model includes alependency statemespecifying tures that can be constructed bf/s generative process. To

how values are chosen for that function. We postpone furthegomplete the picture, we must explain not omigw many

discussion of dependency statements to Sec. 4. objects are added on each step, but aldmt these ob-
The first four kinds of statements listed above define a parj'ects are. It turns out to be convenient to define the gen-

ticular typed first-order languagéy, for a modelM. The erated objects as follows: when a number statement with
set ofpossible worldof M, denoted2,,, consists of those type + and generating functions, ..., g is applied to
model structures of ,; where the extension of each type generating objects, ..., o5, the generated objects are tu-
is G (7), and all nonrandom function symbols (including ples {(r, (g1, 01),. .., (gr,0)sn) : n=1,..., N}, where
guaranteed constants) have their given interpretations. N is the number of objects generated. Thus in Ex. 3,

For each random functiorf and tuple of appropriately the aircraft are pairgAircraft, 1), (Aircraft,2), etc., and
typed guaranteed objeats, . . ., ox, we can define arandom the blips generated by aircraft are nested tuples such as
variable (RV) Vs [o01, ..., 0] (w) = [f]” (01,...,0k). The (Blip, (Source, (Aircraft,2)), (Time,8),1). The tuple en-
possible worlds are in one-to-one correspondence with fultodes the object’s generation history; of course, it is fyure
instantiations of these basic RVs. Thus, a joint distriuti internal to the semantics and remains invisible to the user.
for the basic RVs defines a distribution over possible worlds The set of all objects (nested tuples) of typthat can be

. generated from the guaranteed objects via finitely many re-

3.3 Unknown objects cursive applications of number statements is calleduttie
In general, a BoG model defines a generative process inverseof 7, and denoted/,, (7). In each possible world, the
which objects are added iteratively to a world. To describeextension ofr is some subset df, (7).

Definition 3. For a BLoG model M, the set of possible 4 Syntax and Semantics: Probabilities
worlds €, is the set of model structuresof £, such that:
1. for each typer, Gar(r) C [7]° C Uy (7); 4.1 Dependency statements _

2. nonrandom functions have the specified interpretationsPependency and number statements specify exactly how the
3. for each number statement i with type r and steps are carried out in our generative p_I'OC.ESS. C.OHSIdeI'
generating functionsyy,...,g,, and each appropri- the dependency statement férate(a,t) beginning on line

ately typed tuple of generating objedis;, ..., o) in 8 of Fig. 3. This statement is applied for every basic RV of
w, the set of objects ifr]” that satisfy this num- the formVsie [a,t] wherea € Uy (Aircraft) andt € N.
ber statement applied to these generating objects idf t=0, the conditional distribution foBtate(a,?) is given
{(,(g1,01),---,(g,01),n) : n=1,..., N} for some by the elementary CPD ni t St at e; otherwise it is given
natural numberV: by the elementary CP[3t at eTr ansi ti on, which takes
4. for every typer, each element ofr]“ satisfies some State(a, Pred(t)) as an argument. These elementary CPDs
number statement app“ed to some objects_in define distributions 0_/er ObjeCtS O.f typ®Vector (the return
Note that by part 3 of this definition, the number of objectsYPe Oflsmte)' ".‘tr?ur mﬂ}ergentaﬂopﬁ (ilent"nentart)é CPDE are
generated by any given application of a number statement iﬂ?‘."a classes with a methget Pr ob that returns the proba-
world w is a finite numberV. However, a world can still con- ility of a particular value given a list qf CPD arguments.
tain infinitely many non-guaranteed objects if some number '3‘ depelnd?rlmy. stfiltem_eglt begins with a function s%nfool
statements are applied recursively, or are triggered feryey 2nd atuple Oh.O?'Ca _vana} es,.. v Tk representlnhgt e ?‘rbl
natural number (like the ones generating radar blips in [x. 3 duments to this unct|ohn. nanumber skt)atemenlt, t .ehvana
With a fixed set of objects, it was easy to define a set of bag’hl’ e ,xkfrehpresent the generating]9 Jects. ”agg‘mgr case,
sic RVs such that a full instantiation of the basic RVs unlgue EN?] restho the statement conilts)ts or a dse?]uen ?s h
identified a possible world. To achieve the same effect with en the statement is not abbreviated, the syntax for the

unknown objects, we need two kinds of basic RVs: irstclauseis if cond then ~ elemcpd(argl, ...
Definition 4. For a B del M. th V. of basi ar gN) . Thecondportion is a formula ofZ, (in which only
rai(Ijr:)lrlr?\r;ari.ablersgnsiLs?forpo eliM, the Setva or basic . " " 2, can occur as free variables) specifying the con-

. . . dition under which this clause should be used to sample a
o for each random functionf with type signature e for a basic RV. More precisely, if the possible world
(0,- -, 7) and each tuple of object®s,...,0r) € congirycted so far is, then the applicable clause is thiest
Ung (11) % -+ x Un (1), @ function application RV gne'\whose condition is satisfied in(assuming for the mo-
Vilor,..., o] (w) that'is equal to[f]” (o1,...,00) It \nant'that, is complete enough to determine the truth val-
01, ..., 0 all existinw, andnull (or false for Boolean a5 of the conditions). If no clause’s condition is satisfied
RVs) otherwise;) . or if the basic RV refers to objects that do not existuin
e for each number statement with typ@nd generating o, the value is set by defaultfalse for Boolean functions,
functionsgy; . .., gr t.hat have return types, ..., 7, null for other functions, and zero for number variables. If the
and each tuple of objects,, ..., ox) € Unr (1) X=X ¢ondition in a clause is just f ue”, then the whole string
Un (7x), @ number RV Nz, _g,) [01? o O.k] (w) “i f true then”may be omitted.
equal to the number of objects that satisfy this number |, ye anplicable clause, each CPD argument is evaluated
statement applied oy, ..., oy, in w. inw. The resulting values are then passed to the elementary
Intuitively, each step in the generative world-constritti Cpp. In the simplest case, the arguments are terms or formu-
process determines the value of a basic variable. The ¢rucigas of £, such asState(a, Pred(t)). An argument can also
result about basic RVs is the following: be aset expressionf the form{r y : ¢}, wherer is a typey
Proposition 1. For any BLOG model M and any complete is a logical variable, ang is a formula. The value of such an
instantiation ofV , there is at most one model structure in expression is the set of objects= [7]“ such thatv satisfies
Q) consistent with this instantiation. ¢ with y bound too. If the formulay is justtrue it can be

Equating objects with tuples might seem unnecesomitted: this s the case on line 9 of Fig. 1.
sarily complicated, but it becomes very helpful when We require that the elementary CPDs obey two rules re-
we define a Bayes net over the basic RVs (whichlated to non-guaranteed objects. First, a CPD should never
we do in Sec. 4.2). For instance, the sole paren@issign positive probability to objects that do not existhie t
of Vapparentos [(Blip, (Source, (Aircraft, 2)), (Time, 8),1)]is ~ Partially completed world. Thus, we allow an elementary
Vstate F(Aircraft, 2),8]. It might seem more elegant to assign CPD to assign positive probability to a non-guaranteedatbje
numbers to objects as they are generated, so that the exte®ily if the object was passed in as a CPD argument. Second,
sion of each type in each possible world would be simply a&n elementary CPD cannot “peek” at the tuple representation
prefix of the natural numbers. Specifically, we could num-of objects that are passed in: it must be invariant to permuta
ber the aircraft arbitrarily, and then number the radarsblip tions of the non-guaranteed objects.
lexicographically by aircraft and time step. Then we would . .
have basic RVs such & pparentros [23], representing the ap- 4.2 Declarative semantics
parent aircraft position for blip 23. But blip 23 could be gen So far we have explained G semantics procedurally, in
erated by any aircraft at any time step. In fact, the parentterms of a generative process. To facilitate both knowledge
of Vapparentros [23] would have to include all the/Blip and engineering and the development of learning algorithms, we
State variables in the model. So, defining objects as tuplesvould like to have declarative semantics. The standard ap-
yields a much simpler Bayes net. proach — which is used in most existing FOPLs — is to say

that a B.oG model defines a certain Bayesian network (BN) Definition 7. A distribution P over Q,, satisfiesa BLOG
over the basic RVs. In this section we discuss how that apmodel M if for every finite, self-supporting instantiatian

proach needs to be modified foLBG. with vars(o) C V!
We will write o to denote an instantiation of a set of RVs N
vars(o), andox to denote the value that assigns taX. If P(Qy) =1,—ipx,(0x, | 0¢(x,,... x0 1))

a BN is finite, then the probability it assigns to each com- . . : :
plete instantiationr is P(o) = [|y 3 (0x10Pacx)). where(), is the set of possible worlds consistent witlnd
_ cvars(o)) X1,..., Xy isanumbering of as in Def. 6.

wherepx is the CPD forX andop,) is o restricted to the))]
parents ofX. In an infinite BN, we can write a similar expres- A BLOG model iswell-definedf there is exactly one prob-
sion for eacHfiniteinstantiations that is closed under the par- @bility distribution that satisfies it. Recall that a BN islive
ent relation (thatisX € vars(o) impliesPa(X) C vars(c)). ~ defined if itis acyclic and each variable has a finite set of an-
If the BN is acyclic and each variable has finitely many an-Cestors. Another way of saying this is that each variable can
cestors, then these probability assignments define a uniqi¢ ‘reached” by enumerating its ancestors in a finite, tapolo
distribution[Kersting and De Raedt, 20p1 ically ordered list. The well-definedness criterion fordss

The difficulty is that in the BN corresponding to a.86 is similar, but deals with finite, self-supporting instaions
model, variables often have infinite parent sets. For instan rather than finite, topologically ordered lists of variable
the BN for Ex. 1 has an infinite number of basic RVs of the Theorem 1. Let M be aBLOG model. Suppose thaf
form Viyecolor [b]: if it had only a finite numbetV of these is at most countably infinite,and for eachV € V;; and
RVs, it could not represent outcomes with more thaballs. o € Q,, there is a self-supporting instantiation that agrees
Furthermore, ﬁach of theSérecolor [b] F(RV)S is a parent of withw and includes/. Then) is well-defined.
eachVopscolor [4] RV, since if BallDrawn(d) happens to be o y0rem follows from a result iMilch et al, 2004
b, then the observed color on draldepends directly on the that deals with distributions over full instantiations obat

cglroern?; b?r!“;uiﬁ tz;]%)gséﬁ()Igs,[ﬂ nn?ges ?oat\)/aet;irlliftligléetlg ;Ti]rrﬁtneyi of RVs. Prop. 1 makes the connection between full instantia-
P ’ ’ gning p tions of V,; and possible worlds.

stantiations that are closed under the parent relation nloes To check that the criterion of Thm. 1 holds for a partic-

define a unique distribution: in particular, it tells us rioth ular example, we need to consider each basic RV. In Ex. 1
ab\?\;‘t theVQbS%O'Qf [dt} va;.rlz%bles.t be closed under th the number RV for balls is supported by the empty instan-
X € Irg{quwe 't?]s ta?hla |fon? 0 be closed un erld g Patiation, so in every world it is part of a self-supporting in-

\?vn ”_rg eflir|10r(]1| sg t\;av me "‘;‘C ?%]SX (g)'[(rLUPG()I()> vncf)uf X’e stantiation of size one. EachueColor(b) RV depends only
ell-defined. but we may not need the valuesaBlot A'S 55 \yhether its argument exists, so these variables pateip
parents in order to determine the conditional distribution;, self-supporting instantiations of size two. Similaréach
for X. For instance, knowing/gaiprawn [d] =(Ball, 13) g5 0 Variabie depends only on what balls exist. To sam-
and Vrecolor [(Ball, 13)] =Blue is sufficient to determine o 560 Color(d) variable, we need to knoallDrawn(d)
the distribution forVopscoor [d]: the colors of all the other 5 n 47 eColor(BallDrawn(d)), so these variables are in self-
balls are irrelevant in this context. We can read off thiSg,) ing instantiations of size four. Similar argumeres
context-specific independence from the dependency statgi" o 4e for Examples 2 and 3. Of course, we would like
ment for ObsColor in Fig. 1 by noting that the instantiation to have an algorithm for checking whether adg& model is

(Viatiprawn [d] = (Ball, 13), Virecolor [(Ball, 13)] = Blue) well-defined; the criteria given in Thm. 2 in Sec. 6.2 are 4 firs
determines the value of the sole CPD argument,Step in this direction

TrueColor(BallDrawn(d)). We say this instantiation
supportsthe variableVopscolor [d] (Se€[Milch et al, 2003).

Definition 5. An instantiationo supportsa basic RVV of
the form Vy [o1,...,0,] OF Nplo1,..., 0] if all possible
worlds consistent withr agree on (1) whether all the objects
o1,...,0 €Xist, and, if so, on (2) the applicable clause in the
dependency or number statement¥oand the values for the
CPD arguments in that clause.

5 Evidence and Queries

Because a well-definedl®G model M defines a distribution

over model structures, we can use arbitrary sentencgg,of

as evidence and queries. But sometimes such sentences are

not enough. In Ex. 3, the user observes radar blips, which are

not referred to by any terms in the language. The user could

] assert evidence about the blips using existential quanstifie
Note that some RVs, such &g, [] in Ex. 1, are supported but then how could he make a query of the form, “Diis

by the empty instantiation. We can now generalize the notiomlip come from the same aircraft #sat blip?”

of being closed under the parent relation. A natural solution is to_allow the user to extend the lan-

. L . . L uage when evidence arrives, adding constant symbols to re-
Definition 6. A finite instantiatioro is self-supportingf its ?er t% observed objects. In many c%ses, the u)s/er observes

instantiated variables can be numberéd, ..., Xy such 5ome new objects, introduces some new symbols, and assigns
that for eachn < N, the restriction ot to {X1,..., X1} the symbols to the objects in an uninformative order. To han-
supportsX,. dle such cases, IB®G includes a special macro. For instance,

This definition lets us give semantics ta & models in ~ 9iven 4 radar blips at time 8, one can assert:
a way that is meaningful even when the corresponding BNS {Blip r: Tine(r) = 8} = {Blipl, Blip2, Blip3, Blipal};
contain infinite parent sets. We will writg, (v | o) for the
probability thatl”’s dependency or number statement assigns !This is satisfied if theReal and RkVector types are not argu-
to the valuev, given an instantiation that supportd’. ments to random functions or return types of generating functions.

This introduces the new constariéipl, ..., Blip4 and as- reaches a clause whose condition is either undetermined or
serts that there are exactly 4 radar blips at time 8. determined to be true given (if all the conditions are deter-
Formally, the macro augments the model with dependencynined to be false, then it returns the default valuelfyr If
statements for the new symbols. The statements implementie condition is undetermined, thendoes not suppoft’. If
sampling without replacement; for our example, we have it is determined to be true, then the subroutine evaluatels ea
Blipl ~ Uni forgﬁm ipr ﬁTi ”Em ;}); . of the CPD arguments in this clausealﬁetermines the val-
Blip2 ~ Uniform({Blipr : (Time(r 8) & (Blipl '=r)}); ues of all the arguments, then the subroutine samples a value

and so on. Once the model has been extended this wafpr V' by passing those values to thanpl e method of this
the user can make assertions about the apparent positions @fuse’s elementary CPD. Otherwisedoes not suppoft’.
Blip1, Blip2, etc., and then use these symbols in queries. To evaluate terms and quantifier-free formulas, we use a
These new constants resemble Skolem constants, but copt@ightforward recursive algorithm. The base case logks u
ditioning on assertions about the new constantadsthe the va“lue of a pa_rtlcg’lz_ir_fgnct|or_1 application RVdnand re-
same as conditioning on an existential sentence. For exanidns “undetermined” if it is not instantiated. A formula yna
ple, suppose you go into a new wine shop, pick up a bottle dpe determined even if some of its subformulas are not deter-
random, and observe that it costs $40. This scenario is cofhined: for exampleq A 3 is determined to be false if is
rectly modeled by introducing a new const&attlel with a false. _It is more _compllcated to evaluate set expressiocis su
Uni f or mCPD. Then observing th@ottlel costs over $40 as{Blip r: Tinme(r) = 8}, which can be used as CPD
suggests that this is a fancy wine shop. On the other hand, tfguments. A naive algorithm for evaluating this expressio
mereexistencef a $40+ bottle does not suggest this, becausavould first enumerate all the objects of tyBép (which re-

almost every shop hammebottle at over $40. quires certain number variables to be instantiated), thkts
the blipsr that satisfyTime(r) = 8. But Fig. 3 specifies that
6 Inference there may exist some blips for each aircrafind each natu-

ral numbett: since there are infinitely many natural numbers,
Because the set of basic RVs of ad&s model can be infinite, some worlds contain infinitely many blips. Fortunately, the
itis not obvious that inference for well-defined 8 models number of blipsr with Time(r) =8 is necessarily finite: in
is even decidable. However, the generative process iniuiti every world there are a finite number of aircraft, and each
suggests a rejection sampling algorithm. We present this abne generates a finite number of blips at time 8. We have
gorithm not because it is particularly efficient, but beeaits an algorithm that scans the formula within a set expression
demonstrates the decidability of inference for a largesctds for generating function restrictionsuch asTime(r) =8, and
BLOG models (see Thm. 2 below) and illustrates several isuses them to avoid enumerating infinite sets when possible.
sues that any BoG inference algorithm must deal with. At A similar method is used for evaluating quantified formulas.
the end of this section, we present experimental resulta fro o o
a somewhat more efficient likelihood weighting algorithm. 6.2 Termination criteria

L . In order to generate each sample, the algorithm above repeat

6.1 Rejection sampling edly instantiates the first variable that is supported btiyab
Suppose we are given a partial instantiati@s evidence, and instantiated, until it instantiates all the query and et
a query variableg). Our rejection sampling algorithm starts variables. When can we be sure that this will take a finite
by imposing an arbitrary humbering on the the basic RVsamount of time? The first way this process could fail to termi-
To generate each sample, it starts with an empty instamtiati nate is if it goes into an infinite loop while checking whether
o. Then it repeats the following process: scan the basic RVparticular variable is supported. This happens if the @ogr
in the imposed order until we reach the first RVthat is ends up enumerating an infinite set while evaluating a set ex-
supported by but not already instantiated in; sample a pression or quantified formula. We can avoid this by ensuring
valuev for V according toV’s dependency statement; and that all such expressions in thee8G model are finite once
augmentr with the assignment” = . It continues until all generating function restrictions are taken into account.
the query and evidence variables have been sampled. If the The sample generator also fails to terminate if it never con-
sample is consistent with the evidengdhen it increments a structs an instantiation that supports a particular quesve
counterN,, whereg is the sampled value @. Otherwise, it idence variable. To see how this can happen, consider gallin
rejects this sample. AfteV accepted samples, the estimatethe subroutine described above to sample a vari&blelf
of P(Q=gq|e)isN,/N. V' is not supported, the subroutine will realize this when it

This algorithm requires a subroutine that determinesncounters a variablEg that is relevant but not instantiated.
whether a partial instantiation supports a basic RV, and Now consider a graph over basic variables where we draw an
if s0, returns a sample frofvi’s conditional distribution. For edge fromU to V' when the evaluation process for hits U
a basic RVV of the formVy [o1,...,05] OF N, [01,...,0;], inthis way. If a variable is never supported, then it must be
the subroutine begins by checking the values of the relevargart of a cycle in this graph, or part of a receding chain of
number variables i@ to determine whether all afi, ..., o variablesl; <+ V, « --- that is extended infinitely.
exist. If some of these number variables are not instagtiate The graph constructed in this way varies from sample to
theno does not suppor’. If some ofoq,...,0, do not ex- sample: for instance, sometimes the evaluation process for
ist, the subroutine returns the default value Tor If they Vopscolor [d] Will hit Viyecolor [(Ball, 7)], and sometimes it
do all exist, the subroutine follows the semantics for depenwill hit Viuecoor [(Ball, 13)]. However, we can rule out cy-
dency statements discussed in Sec. 4.1. First, it iterats o cles and infinite receding chains in all these graphs by densi
the clauses in the dependency (or number) statement until @ring a more abstract graph over function symbols and types.

Definition 8. Thesymbol graphor a BLOG model M is a
directed graph whose nodes are the types and random func-
tion symbols of\/, where the parents of a typeor function
symbolf are:

e the random function symbols that occur on the right
hand side of the dependency statement ffayr some
number statement far,

¢ the types of variables that are quantified over in formu-
las or set expressions on the right hand side of such a
statement;

e the types of the arguments féror the return types of
generating functions for.

If the sampling subroutine for a basic R¥hits a basic RV
U, then there must be an edge fr@i's function symbol (or
type, if U is a number RV) td/’s function symbol (or type)
in the symbol graph. This property, along with ideas from
[Milch et al, 2004, allows us to prove the following:

Theorem 2. SupposéV! is aBLOG model where:
1. uncountable built-in types do not serve as function argu-
ments or as the return types of generating functions;

2. each quantified formula and set expression ranges over a
finite set once generating function restrictions are taken
into account;

3. the symbol graph is acyclic.

ThenM is well-defined. Also, for any evidence instantiation
e and query variable), the rejection sampling algorithm de-
scribed in Sec. 6.1 converges to the posteffd€)|e) defined
by the model, taking finite time per sampling step.

Probability

Probability

0.45
0.4

0.35
0.3 |
0.25
0.2 |
0.15
0.1 |
0.05

0.18

0.16
0.14
0.12
0.1 |
0.08
0.06
0.04

0.02

0¥

Number of balls in urn

1 2 3 4 5 6 7 8
Number of balls in urn
r?(ﬁ \
DAY
A\
/ b
.”v’ ‘\X»
> \x\
0 5 10 15 20

25

Figure 4: Distribution for the number of balls in the urn
(Ex. 1). Dashed lines are the uniform prior (top) or Poisson
prior (bottom); solid lines are the exact posterior giveatth

The criteria in Thm. 2 are very conservative: in particular,10 balls were drawn and all appeared blue; and plus signs
when we construct the symbol graph, we ignore all structurere posterior probabilities computed by 5 independent runs
in the dependency statements and just check for the occuof 20,000 samples (top) or 100,000 samples (bottom).

rence of function and type symbols. These criteria are-satis
fied by the models in Figures 1 and 2. However, the model i
Fig. 3 does not satisfy the criteria because there is aceff-|

n7 Related Work

from State to State. The criteria do not exploit the fact that Gaifman[1964 was the first to suggest defining a probability

State(a, t) depends only oiState(a, Pred(t)), and the non-
random functiorPred is acyclic. Friedmart al.[1999 have
already dealt with this issue in the context of probabiisti-

distribution over first-order model structures. HalpEr29Q
defines a language in which one can make statements about
such distributions: for instance, that the probability loé t

lational models; their algorithm can be adapted to obtain &et of worlds that satisfflies(Tweety) is 0.8. Probabilis-

stronger version of Thm. 2 that covers Fig. 3.

tic logic programmingNg and Subrahmanian, 199@an be

seen as an application of this approach to Horn-clause knowl

6.3 Experimental results

edge bases. Such an approach only defomsstraintson

Milch et al. [2004 describe a guided likelihood weighting distributions, rather than defining a unique distribution.
algorithm that uses backward chaining from the query and Most first-order probabilistic languages (FOPLSs) that de-
evidence nodes to avoid sampling irrelevant variabless Thifine unique distributions fix the set of objects and the irerp

algorithm can also be adapted ta® models. We applied

tations of (non-Boolean) function symbols. Examples idelu

this algorithm for Ex. 1, asserting that 10 balls were drawnrelational Bayesian networkElaeger, 2001and Markov
and all appeared blue, and querying the number of balls iftogic models[Domingos and Richardson, 2004 Prolog-
the urn. The top graph of Fig. 4 shows that when the prior folbased languages such as probabilistic Horn abduffoanle,

the number of balls is uniform ovel, . .., 8}, the posterior

1994, PRISM[Sato and Kameya, 20f)land Bayesian logic

puts more weight on small numbers of balls; this makes sensgrogramgKersting and De Raedt, 20D&ork with Herbrand

because the more balls there are in the urn, the less likisly it models where the objects are in one-to-one correspondence
that they are all blue. The bottom graph, using a Poisson(8)ith the ground terms of the language.
prior, shows a similar but less pronounced effect. Note that There are a few FOPLs that allow expliciference uncer-

the posterior probabilities computed by the likelihood gt

tainty, i.e., uncertainty about the interpretations of function

ing algorithm are very close to the exact values (computed bgymbols. Among these are two languages that use indexed
exhaustive enumeration). These results could not be @atain RVs rather than logical notation: BUd®ilks et al., 1994
using any algorithm that constructed a single fixed BN, sinceand indexed probability diagrams (IPO#)jolsness, 2004

the number of potentially relevanfryecoior [b] Variables is
infinite in the Poisson case.

Reference uncertainty can also be represented in progtadbili
relational models (PRMdXKoller and Pfeffer, 1998 where

a “single-valued complex slot” corresponds to an uncertairperceptual processes. Our approach defines generative mod-
unary function. PRMs are unfortunately restricted to unaryels that create first-order model structures by adding tbjec
functions (attributes) and binary predicates (relatioRsbb- and setting function values; everything else follows reitur
abilistic entity-relationship modelsHeckermaret al, 2004 from this design decision. Much remains to be done, espe-
lift this restriction, but represent reference uncertainding cially on inference: we expect to employ MCMC with user-
relations (such aBrawn(d, b)) and special mutual exclusivity defined and possibly adaptive proposal distributions, and t
constraints, rather than with functions suctBadiDrawn(d). develop algorithms that work directly with objects rathearn
Multi-entity Bayesian network logic (MEBN)Laskey, 2008 at the lower level of basic RVs.

is similar to BLOG in allowing uncertainty about the values

of functions with any number of arguments. References

. The need to handle unknown objects has be.en appredat?sharniak and Goldman, 19DE. Charniak and R. P. Goldman. A
since the early days of FOPL research: Charniak and Gold- Bayesian model of plan recognitioAlJ, 64(1):53—79, 1993.

man’s plan recognition networks (PRNE)993 can con- [Domingos and Richardson, 2004. Domingos and M. Richard-
tain unbounded numbers of objects representing hypothe- son. Markov logic: A unifying framework for statistical rela-
sized plans. However, external rules are used to decide what tional learning. InProc. ICML Wksp on Statistical Relational
objects and variables to include in a PRN. While each pos- Learning and Its Connections to Other Fiel@004.

sible PRN defines a distribution on its own, Charniak andFriedmaretal, 1999 N. Friedman, L. Getoor, D. Koller, and
Goldman do not C|a|m that the Varlous PRNS are a” approx|_ A. Pfeffer. Learnlng pl’ObablllstIC relational models.Rroc. 16th
mations to some single distribution over outcomes. IJCAI, pages 1300-1307, 1999.

. . ., [Gaifman, 1964 H. Gaifman. Concerning measures in first order
Some more recent FOPLs do define a single d|str|but|or£ calculi. Israel J. Math, 2-1-18, 1964.

over outcomes with varying objects. IPDs allow uncer-[cetooret al, 2004 L. Getoor, N. Friedman, D. Koller, and

tainty over the index range for an indexed family of RVs. B Taskar. Learning probabilistic models of relational structure.
PRMs and their extensions allow a variety of forms of un- |n proc. 18th ICML pages 170-177, 2001.

certainty about the number (or existence) of objects satisf [Gilks et al, 1994 W.R. Gilks, A. Thomas, and D. J. Spiegelhalter.
ing certain relational constraintoller and Pfeffer, 1998; A language and program for complex Bayesian modellifige
Getooret al., 2001 or belonging to each typdPasulaet al., Statistician 43(1):169-177, 1994.

2003. However, there is no unified syntax or semantics forlHalpern, 1999 J. Y. Halpern. An analysis of first-order logics of
dealing with unknown objects in PRMs. MEBNSs take yet . Probability. AlJ, 46:311-350, 1990.

another approach: an MEBN model includes a set of uniquéitéckermaretal, 2004 D. Heckerman, C. Meek, and D. Koller.
identifiers, for each of which there is an “identity” RV indi- Probabilistic models for relational data. Technical Report MSR-

. hether th d obi ; TR-2004-30, Microsoft Research, 2004.
cating whether the named object exists. [Jaeger, 2001 M. Jaeger. Complex probabilistic modeling with re-

Our approach to unknown objects in8G can be seenas cyrsive relational Bayesian networksinnals of Math and Al
unifying the PRM and MEBN approaches. Number state- 32:179-220, 2001.

ments neatly generalize the various ways of handling unfKersting and De Raedt, 20DK. Kersting and L. De Raedt. Adap-

known objects in PRMs: number uncertaifhioller and Pf- tive Bayesian logic programs. ItLth Int. Conf. on ILP2001.
effer, 1998 corresponds to a number statement with a sindKoller and Pfeffer, 1998 D. Koller and A. Pfeffer. Probabilistic
gle generating function; existence uncertaif®etooret al., frame-based systems. Rioc. 15th AAAlpages 580-587, 1998.

JLaskey, 2008 K. B. Laskey. MEBN: A logic for open-world prob-

2001 can be modeled with two or more generating function abilistic reasoning. Technical report, George Mason Univ., 2004.

Egndﬁchlwzhoooséa Supportﬂé,dl}z; and dolr;Walntu?certaltntyth[M”Ch etal, 2009 B. Milch, B. Marthi, D. Sontag, S. Russell,
asuieet al, corresponds 1o a number statement wi D. L. Ong, and A. Kolobov. Approximate inference for infinite
no generating functions. There is also a correspondence be- ¢qningent Bayesian networks. 10th AISTATS Wksg005.
tween B.0G and MEBN logic: the tuple representations in [mjolsness, 2004 E. Mjolsness. Labeled graph notations for graph-
a BLoG model can b_e thought of as unique |dentlf|ers_ln an ical models. Technical Report 04-03, School of Information and
MEBN model. The difference is thatl® G determines which Computer Science, UC Irvine, 2004.
objects actually exist in a world using number variableseat [Ng and Subrahmanian, 199R. T. Ng and V. S. Subrahmanian.
than individual existence variables. Probabilistic logic programmingnformation and Computatign

Finally, it is informative to compare BoG with the IBAL 101(2):150-201, 1992. _ _
languagdlPfefer, 2001, in which a program defines a dis- [PaSuietal, 2003 i Pasua, B, Mart, & ich, . Russel, and
tribution over outputs that can be arbitrary nested datecstr - Snpiser. y un Y 9

. O 15. MIT Press, Cambridge, MA, 2003.

tures. An IBAL program could implement aLBG-like gen- EP

; : .) earl, 1988 J. Pearl. Probabilistic Reasoning in Intelligent Sys-
erative process with the outputs viewed as logical model tems Morgan Kaufmann, San Francisco, revised edition, 1988.

structures. But the declarative semantics of such a progranpfeffer, 2001 A. Pfeffer. IBAL: A probabilistic rational program-

would be less clear than the correspondingoB model. ming language. IfProc. 17th IJCAJ pages 733-740, 2001.
[Poole, 1998 D. Poole. Probabilistic Horn abduction and Bayesian

; networks.AlJ, 64(1):81-129, 1993.

8 Conclusion [Se_tto and Kameya, 2001T. Sato and_Y. Kameya. Parameter learn-

BLOG is a representation language for probabilistic models ing of logic programs for symbolic-statistical modelindAIR,

with unknown objects. It contributes to the solution of ayer __ 15:391-454, 2001. , o

general problem in Al: intelligent systems must represedt a LSittler, 1964 R. W. Sittler. An optimal data association problem

reason about objects, but those objects may not be known in surveillance theory.IEEE Trans. Military ElectronicsMIL-

. ! . : . . 8:125-139, 1964.
a priori and may not be directly and uniquely identified by

