
BLOG : Probabilistic Models with Unknown Objects∗

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong and Andrey Kolobov
Computer Science Division

University of California
Berkeley, CA 94720-1776

{milch, bhaskara, russell, dsontag, dlong, karaya1}@cs.berkeley.edu

Abstract

This paper introduces and illustrates BLOG, a formal lan-
guage for defining probability models over worlds with
unknown objects and identity uncertainty. BLOG unifies
and extends several existing approaches. Subject to cer-
tain acyclicity constraints, every BLOG model specifies
a unique probability distribution over first-order model
structures that can contain varying and unbounded num-
bers of objects. Furthermore, complete inference algo-
rithms exist for a large fragment of the language. We
also introduce a probabilistic form of Skolemization for
handling evidence.

1 Introduction
Human beings and AI systems must convert sensory input
into some understanding of what’s out there and what’s going
on in the world. That is, they must make inferences about
the objects and events that underlie their observations. No
pre-specified list of objects is given; the agent must infer the
existence of objects that were not known initially to exist.

In many AI systems, this problem of unknown objects is
engineered away or resolved in a preprocessing step. How-
ever, there are important applications where the problem is
unavoidable. Population estimation, for example, involves
counting a population by sampling from it randomly and mea-
suring how often the same object is resampled; this would
be pointless if the set of objects were known in advance.
Record linkage, a task undertaken by an industry of more
than 300 companies, involves matching entries across multi-
ple databases. These companies exist because of uncertainty
about the mapping from observations to underlying objects.
Finally, multi-target trackingsystems performdata associa-
tion, connecting, say, radar blips to hypothesized aircraft.

Probability models for such tasks are not new: Bayesian
models for data association have been used since the
1960s[Sittler, 1964]. The models are written in English and
mathematical notation and converted by hand into special-
purpose code. In recent years,formal representation lan-
guagessuch as graphical models[Pearl, 1988] have led to
general inference algorithms, more sophisticated models,and
automated model selection (structure learning). In Sec. 7,we
review severalfirst-order probabilistic languages(FOPLs)

∗This work was supported by DARPA under award 03-000219,
and by an NSF Graduate Research Fellowship to B. Milch.

that explicitly represent objects and the relations between
them. However, most FOPLs only deal with fixed sets of ob-
jects, or deal with unknown objects in limited andad hoc
ways. This paper introduces BLOG (Bayesian LOGic), a
compact and intuitive language for defining probability dis-
tributions over outcomes with varying sets of objects.

We begin in Sec. 2 with three example problems, each of
which involves possible worlds with varying object sets and
identity uncertainty. We describe generative processes that
produce such worlds, and give the corresponding BLOG mod-
els. Sec. 3 observes that these possible worlds are naturally
viewed as model structures offirst-order logic. It then defines
precisely the set of possible worlds corresponding to a BLOG
model. The key idea is a generative process that constructs a
world by adding objects whose existence and properties de-
pend on those of objects already created. In such a process,
the existence of objects may be governed by many random
variables, not just a single population size variable. Sec.4
discusses how a BLOG model specifies a probability distribu-
tion over possible worlds.

Sec. 5 solves a previously unnoticed “probabilistic
Skolemization” problem: how to specify evidence about
objects—such as radar blips—that one didn’t know existed.
Finally, Sec. 6 briefly discusses inference in unbounded out-
come spaces, stating a sampling algorithm and a complete-
ness theorem for a large class of BLOG models, and giving
experimental results on one particular model.

2 Examples
In this section we examine three typical scenarios with un-
known objects—simplified versions of the population estima-
tion, record linkage, and multitarget tracking problems men-
tioned above. In each case, we provide a short BLOG model
that, when combined with a suitable inference engine, consti-
tutes a working solution for the problem in question.

Example 1. An urn contains an unknown number of balls—
say, a number chosen from a Poisson distribution. Balls are
equally likely to be blue or green. We draw some balls from
the urn, observing the color of each and replacing it. We
cannot tell two identically colored balls apart; furthermore,
observed colors are wrong with probability 0.2. How many
balls are in the urn? Was the same ball drawn twice?

The BLOG model for this problem, shown in Fig. 1, de-
scribes a stochastic process for generating worlds. The first 4

1 type Color; type Ball; type Draw;

2 random Color TrueColor(Ball);
3 random Ball BallDrawn(Draw);
4 random Color ObsColor(Draw);

5 guaranteed Color Blue, Green;
6 guaranteed Draw Draw1, Draw2, Draw3, Draw4;

7 #Ball ∼ Poisson[6]();

8 TrueColor(b) ∼ TabularCPD[[0.5, 0.5]]();

9 BallDrawn(d) ∼ Uniform({Ball b});

10 ObsColor(d)
11 if (BallDrawn(d) != null) then
12 ∼ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
13 (TrueColor(BallDrawn(d)));

Figure 1: BLOG model for the urn-and-balls scenario of Ex. 1
with four draws.

lines introduce the types of objects in these worlds—colors,
balls, and draws—and the functions that can be applied to
these objects. Lines 5–7 specify what objects may exist in
each world. In every world, the colors are blue and green and
there are four draws; these are theguaranteedobjects. On the
other hand, different worlds have different numbers of balls,
so the number of balls that exist is chosen from a prior—a
Poisson with mean 6. Each ball is then given a color, as spec-
ified on line 8. Properties of the four draws are filled in by
choosing a ball (line 9) and an observed color for that ball
(lines 10–13). The probability of the generated world is the
product of the probabilities of all the choices made.

Example 2. We have a collection of citations that refer to
publications in a certain field. What publications and re-
searchers exist, with what titles and names? Who wrote which
publication, and which publication does each citation refer
to? For simplicity, we just consider the title and author-name
strings in these citations, which are subject to errors of vari-
ous kinds, and we assume only single-author publications.

Fig. 2 shows a BLOG model for this example, based on
the model in[Pasulaet al., 2003]. The BLOG model de-
fines the following generative process. First, sample the to-
tal number of researchers from some distribution; then, for
each researcherr, sample the number of publications by that
researcher. Sample the publications’ titles and researchers’
names from appropriate prior distributions. Then, for eachci-
tation, sample the publication cited by choosing uniformlyat
random from the set of publications. Sample the title and au-
thor strings used in each citation from string corruption mod-
els conditioned on the true attributes of the cited publication;
finally, generate the full citation string according to a format-
ting model.

Example 3. An unknown number of aircraft exist in some
volume of airspace. An aircraft’s state (position and veloc-
ity) at each time step depends on its state at the previous time
step. We observe the area with radar: aircraft may appear as
identical blips on a radar screen. Each blip gives the approxi-
mate position of the aircraft that generated it. However, some
blips may be false detections, and some aircraft may not be
detected. What aircraft exist, and what are their trajectories?
Are there any aircraft that are not observed?

The BLOG model for this scenario (Fig. 3) describes the
following process: first, sample the number of aircraft in the

1 guaranteed Citation Cite1, Cite2, Cite3, Cite4;

2 #Researcher ∼ NumResearchersDistrib();
3 #Publication: (Author) -> (r) ∼ NumPubsDistrib();

4 Title(p) ∼ TitlePrior();
5 Name(r) ∼ NamePrior();

6 PubCited(c) ∼ Uniform({Publication p});

7 TitleString(c) ∼ TitleObs(Title(PubCited(c)));
8 AuthorString(c) ∼ AuthorObs(Name(Author(PubCited(c))));

9 CitString(c) ∼ CitDistrib(TitleString(c),AuthorString(c));

Figure 2: BLOG model for Ex. 2 with four observed citations
(type and function declarations are omitted).

area. Then, for each time stept (starting att = 0), choose the
state (position and velocity) of each aircraft given its state at
time t − 1. Also, for each aircrafta and time stept, possibly
generate a radar blipr with Source(r)= a andTime(r)= t.
Whether a blip is generated or not depends on the state of the
aircraft—thus the number of objects in the world depends on
certain objects’ attributes. Also, at each step, generate some
false alarm blipsr′ with Source(r′)= null. Finally, sample
the position for each blip given the true state of its source
aircraft (or using a default distribution for a false-alarmblip).

3 Syntax and Semantics: Possible Worlds
3.1 Outcomes as first-order model structures
The possible outcomes for Ex. 1 through Ex. 3 are structures
containing many related objects, which we will treat formally
as model structuresof first-order logic. A model structure
provides interpretations for the symbols of a first-order lan-
guage. (Usually, first-order languages are described as having
predicate, function, and constant symbols. For conciseness,
we view all symbols as function symbols; predicates are just
functions that return a Boolean value, and constants are just
zero-ary functions.)

For Ex. 1, the language has function symbols such as
TrueColor(b) for the true color of ballb; BallDrawn(d) for the
ball drawn on drawd; andDraw1 for the first draw. (Statisti-
cians might use indexed families of random variables such as
{TrueColorb}, but this is mainly a matter of taste.)

1 type Aircraft; type Blip;

2 random R6Vector State(Aircraft, NaturalNum);
3 random R3Vector ApparentPos(Blip);

4 nonrandom NaturalNum Pred(NaturalNum) = Predecessor;

5 generating Aircraft Source(Blip);
6 generating NaturalNum Time(Blip);

7 #Aircraft ∼ NumAircraftDistrib();

8 State(a, t)
9 if t = 0 then ∼ InitState()

10 else ∼ StateTransition(State(a, Pred(t)));

11 #Blip: (Source, Time) -> (a, t)
12 ∼ DetectionDistrib(State(a, t));

13 #Blip: (Time) -> (t)
14 ∼ NumFalseAlarmsDistrib();

15 ApparentPos(r)
16 if (Source(r) = null) then ∼ FalseAlarmDistrib()
17 else ∼ ObsDistrib(State(Source(r), Time(r)));

Figure 3: BLOG model for Ex. 3.

To eliminate meaningless random variables, we use a
typed, free logical language, in which every object has a type
and in which functions may be partial. Each function sym-
bol f has atype signature(τ0, . . . , τk), whereτ0 is the return
type of f and τ1, . . . , τk are the argument types. A partial
function applied to arguments outside its domain returns the
special valuenull, which is not of any type.

The truth of any first-order sentence is determined by a
model structurefor the corresponding language. A model
structure specifies theextensionof each type and theinter-
pretationfor each function symbol:

Definition 1. A model structureω of a typed, free, first-order
language consists of an extension[τ]

ω for each typeτ , which
may be an arbitrary set, and an interpretation[f]

ω for each
function symbolf . If f has return typeτ0 and argument types
τ1, . . . , τk, then[f]

ω is a function from[τ1]
ω
× · · · × [τk]

ω to
[τ0]

ω
∪ {null}.

A BLOG model defines a probability distribution over a
particular set of model structures. In Ex. 1, identity uncer-
tainty arises because[BallDrawn]

ω
(Draw1) might be equal

to [BallDrawn]
ω

(Draw2) in one structure but not another.
The set of balls,[Ball]

ω, can also vary between structures.

3.2 Outcomes with fixed object sets
BLOG models for fixed object sets have five kinds of state-
ments. Atype declaration, such as the two statements on line
1 of Fig. 3, introduces a type. Certain types, namelyBoolean,
NaturalNum, Integer, String, Real, andRkVector (for each
k ≥ 2) are already provided. Arandom function declaration,
such as line 2 of Fig. 3, specifies the type signature for a func-
tion symbol whose values will be chosen randomly in the gen-
erative process. Anonrandom function definition, such as the
one on line 4 of Fig. 3, introduces a function whose interpreta-
tion is fixed in all possible worlds. In our implementation, the
interpretation is given by a Java class (Predecessor in this
example). Aguaranteed object statement, such as line 5 in
Fig. 1, introduces and names some distinct objects that exist
in all possible worlds. For the built-in types, the obvious sets
of guaranteed objects and constant symbols are predefined.
The set of guaranteed objects of typeτ in BLOG modelM is
denotedGM (τ). Finally, for each random function symbol,
a BLOG model includes adependency statementspecifying
how values are chosen for that function. We postpone further
discussion of dependency statements to Sec. 4.

The first four kinds of statements listed above define a par-
ticular typed first-order languageLM for a modelM . The
set ofpossible worldsof M , denotedΩM , consists of those
model structures ofLM where the extension of each typeτ
is GM (τ), and all nonrandom function symbols (including
guaranteed constants) have their given interpretations.

For each random functionf and tuple of appropriately
typed guaranteed objectso1, . . . , ok, we can define a random
variable (RV)Vf [o1, . . . , ok] (ω) , [f]

ω
(o1, . . . , ok). The

possible worlds are in one-to-one correspondence with full
instantiations of these basic RVs. Thus, a joint distribution
for the basic RVs defines a distribution over possible worlds.

3.3 Unknown objects
In general, a BLOG model defines a generative process in
which objects are added iteratively to a world. To describe

such processes, we first introducegenerating function decla-
rations, such as lines 5–6 of Fig. 3. Unlike other functions,
generating functions such asSource or Time have their val-
ues set when an object is added. A generating function must
take a single argument of some typeτ (namelyBlip in the
example); it is then called aτ -generating function.

Generative steps that add objects to the world are described
by number statements. For instance, line 11 of Fig. 3 says
that for each aircrafta and time stept, the process adds some
number of blipsr such thatSource(r)= a andTime(r)= t.
In general, the beginning of a number statement has the
form: #τ : (g1, . . . , gk) –> (x1, . . . , xk) whereτ is a
type, g1, . . . , gk are τ -generating functions, andx1, . . . , xk

are logical variables. (For types that are generatedab initio
with no generating functions, the() -> () is omitted, as
in Fig. 1.) The inclusion of a number statement means that
for each appropriately typed tuple of objectso1, . . . , ok (the
appropriate types are the return types ofg1, . . . , gk), the gen-
erative process adds some number (possibly zero) of objects
q of typeτ such that[gi]

ω
(q) = oi for i = 1, . . . , k.

Object generation can even be recursive: for instance, in
a model for phylogenetic trees, we could have a generating
function Parent that takes a species and returns a species;
then we could model speciation events with a number state-
ment that begins:#Species: (Parent) -> (p).

We can also view number statements more declaratively:

Definition 2. Let ω be a model structure ofLM , and con-
sider a number statement for typeτ with generating functions
g1, . . . , gk. An objectq ∈ [τ]

ω satisfiesthis number statement
applied too1, . . . , ok in ω if [gi]

ω
(q)= oi for i= 1, . . . , k,

and[g]
ω

(q)= null for all other τ -generating functionsg.

Note that if a number statement for typeτ omits one of the
τ -generating functions, then this function takes on the value
null for all objects satisfying that number statement. For in-
stance,Source is null for objects satisfying the false-detection
number statement on line 13 of Fig. 3. Also, a BLOG model
cannot contain two number statements with the same set of
generating functions. This ensures that each objecto has ex-
actly one generation history, which can be found by tracing
back the generating functions ono.

The set of possible worldsΩM is the set of model struc-
tures that can be constructed byM ’s generative process. To
complete the picture, we must explain not onlyhow many
objects are added on each step, but alsowhat these ob-
jects are. It turns out to be convenient to define the gen-
erated objects as follows: when a number statement with
type τ and generating functionsg1, . . . , gk is applied to
generating objectso1, . . . , ok, the generated objects are tu-
ples {(τ, (g1, o1), . . . , (gk, ok), n) : n= 1, . . . , N}, where
N is the number of objects generated. Thus in Ex. 3,
the aircraft are pairs(Aircraft, 1), (Aircraft, 2), etc., and
the blips generated by aircraft are nested tuples such as
(Blip, (Source, (Aircraft, 2)), (Time, 8), 1). The tuple en-
codes the object’s generation history; of course, it is purely
internal to the semantics and remains invisible to the user.

The set of all objects (nested tuples) of typeτ that can be
generated from the guaranteed objects via finitely many re-
cursive applications of number statements is called theuni-
verseof τ , and denotedUM (τ). In each possible world, the
extension ofτ is some subset ofUM (τ).

Definition 3. For a BLOG model M , the set of possible
worldsΩM is the set of model structuresω of LM such that:

1. for each typeτ , GM (τ) ⊆ [τ]
ω
⊆ UM (τ);

2. nonrandom functions have the specified interpretations;
3. for each number statement inM with type τ and

generating functionsg1, . . . , gk, and each appropri-
ately typed tuple of generating objects(o1, . . . , ok) in
ω, the set of objects in[τ]

ω that satisfy this num-
ber statement applied to these generating objects is
{(τ, (g1, o1), . . . , (gk, ok), n) : n= 1, . . . , N} for some
natural numberN ;

4. for every typeτ , each element of[τ]
ω satisfies some

number statement applied to some objects inω.
Note that by part 3 of this definition, the number of objects

generated by any given application of a number statement in
world ω is a finite numberN . However, a world can still con-
tain infinitely many non-guaranteed objects if some number
statements are applied recursively, or are triggered for every
natural number (like the ones generating radar blips in Ex. 3).

With a fixed set of objects, it was easy to define a set of ba-
sic RVs such that a full instantiation of the basic RVs uniquely
identified a possible world. To achieve the same effect with
unknown objects, we need two kinds of basic RVs:
Definition 4. For a BLOG modelM , the setVM of basic
random variablesconsists of:

• for each random functionf with type signature
(τ0, . . . , τk) and each tuple of objects(o1, . . . , ok) ∈
UM (τ1) × · · · × UM (τk), a function application RV
Vf [o1, . . . , ok] (ω) that is equal to[f]

ω
(o1, . . . , ok) if

o1, . . . , ok all exist inω, andnull (or false for Boolean
RVs) otherwise;

• for each number statement with typeτ and generating
functionsg1, . . . , gk that have return typesτ1, . . . , τk,
and each tuple of objects(o1, . . . , ok) ∈ UM (τ1)×· · ·×
UM (τk), a number RV N(τ,g1,...,gk) [o1, . . . , ok] (ω)
equal to the number of objects that satisfy this number
statement applied too1, . . . , ok in ω.

Intuitively, each step in the generative world-construction
process determines the value of a basic variable. The crucial
result about basic RVs is the following:
Proposition 1. For any BLOG modelM and any complete
instantiation ofVM , there is at most one model structure in
ΩM consistent with this instantiation.

Equating objects with tuples might seem unneces-
sarily complicated, but it becomes very helpful when
we define a Bayes net over the basic RVs (which
we do in Sec. 4.2). For instance, the sole parent
of VApparentPos [(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)] is
VState [(Aircraft, 2), 8]. It might seem more elegant to assign
numbers to objects as they are generated, so that the exten-
sion of each type in each possible world would be simply a
prefix of the natural numbers. Specifically, we could num-
ber the aircraft arbitrarily, and then number the radar blips
lexicographically by aircraft and time step. Then we would
have basic RVs such asVApparentPos [23], representing the ap-
parent aircraft position for blip 23. But blip 23 could be gen-
erated by any aircraft at any time step. In fact, the parents
of VApparentPos [23] would have to include all the#Blip and
State variables in the model. So, defining objects as tuples
yields a much simpler Bayes net.

4 Syntax and Semantics: Probabilities
4.1 Dependency statements
Dependency and number statements specify exactly how the
steps are carried out in our generative process. Consider
the dependency statement forState(a, t) beginning on line
8 of Fig. 3. This statement is applied for every basic RV of
the formVState [a, t] wherea ∈ UM (Aircraft) and t ∈ N.
If t = 0, the conditional distribution forState(a, t) is given
by the elementary CPDInitState; otherwise it is given
by the elementary CPDStateTransition, which takes
State(a,Pred(t)) as an argument. These elementary CPDs
define distributions over objects of typeR6Vector (the return
type ofState). In our implementation, elementary CPDs are
Java classes with a methodgetProb that returns the proba-
bility of a particular value given a list of CPD arguments.

A dependency statement begins with a function symbolf
and a tuple of logical variablesx1, . . . , xk representing the ar-
guments to this function. In a number statement, the variables
x1, . . . , xk represent the generating objects. In either case,
the rest of the statement consists of a sequence ofclauses.
When the statement is not abbreviated, the syntax for the
first clause is if cond then ∼ elem-cpd(arg1, . . .,
argN). Thecondportion is a formula ofLM (in which only
x1, . . . , xk can occur as free variables) specifying the con-
dition under which this clause should be used to sample a
value for a basic RV. More precisely, if the possible world
constructed so far isω, then the applicable clause is thefirst
one whose condition is satisfied inω (assuming for the mo-
ment thatω is complete enough to determine the truth val-
ues of the conditions). If no clause’s condition is satisfied,
or if the basic RV refers to objects that do not exist inω,
then the value is set by default tofalse for Boolean functions,
null for other functions, and zero for number variables. If the
condition in a clause is just “true”, then the whole string
“if true then” may be omitted.

In the applicable clause, each CPD argument is evaluated
in ω. The resulting values are then passed to the elementary
CPD. In the simplest case, the arguments are terms or formu-
las ofLM , such asState(a,Pred(t)). An argument can also
be aset expressionof the form{τ y : ϕ}, whereτ is a type,y
is a logical variable, andϕ is a formula. The value of such an
expression is the set of objectso ∈ [τ]

ω such thatω satisfies
ϕ with y bound too. If the formulaϕ is just true it can be
omitted: this is the case on line 9 of Fig. 1.

We require that the elementary CPDs obey two rules re-
lated to non-guaranteed objects. First, a CPD should never
assign positive probability to objects that do not exist in the
partially completed worldω. Thus, we allow an elementary
CPD to assign positive probability to a non-guaranteed object
only if the object was passed in as a CPD argument. Second,
an elementary CPD cannot “peek” at the tuple representations
of objects that are passed in: it must be invariant to permuta-
tions of the non-guaranteed objects.

4.2 Declarative semantics
So far we have explained BLOG semantics procedurally, in
terms of a generative process. To facilitate both knowledge
engineering and the development of learning algorithms, we
would like to have declarative semantics. The standard ap-
proach — which is used in most existing FOPLs — is to say

that a BLOG model defines a certain Bayesian network (BN)
over the basic RVs. In this section we discuss how that ap-
proach needs to be modified for BLOG.

We will write σ to denote an instantiation of a set of RVs
vars(σ), andσX to denote the value thatσ assigns toX. If
a BN is finite, then the probability it assigns to each com-
plete instantiationσ is P (σ) =

∏
X∈vars(σ) pX(σX |σPa(X)),

wherepX is the CPD forX andσPa(X) is σ restricted to the
parents ofX. In an infinite BN, we can write a similar expres-
sion for eachfinite instantiationσ that is closed under the par-
ent relation (that is,X ∈ vars(σ) impliesPa(X) ⊆ vars(σ)).
If the BN is acyclic and each variable has finitely many an-
cestors, then these probability assignments define a unique
distribution[Kersting and De Raedt, 2001].

The difficulty is that in the BN corresponding to a BLOG
model, variables often have infinite parent sets. For instance,
the BN for Ex. 1 has an infinite number of basic RVs of the
form VTrueColor [b]: if it had only a finite numberN of these
RVs, it could not represent outcomes with more thanN balls.
Furthermore, each of theseVTrueColor [b] RVs is a parent of
eachVObsColor [d] RV, since if BallDrawn(d) happens to be
b, then the observed color on drawd depends directly on the
color of ballb. So theVObsColor [d] nodes have infinitely many
parents. In such a model, assigning probabilities to finite in-
stantiations that are closed under the parent relation doesnot
define a unique distribution: in particular, it tells us nothing
about theVObsColor [d] variables.

We required instantiations to be closed under the par-
ent relation so that the factorspX(σX |σPa(X)) would be
well-defined. But we may not need the values ofall of X ’s
parents in order to determine the conditional distribution
for X. For instance, knowingVBallDrawn [d] = (Ball, 13)
and VTrueColor [(Ball, 13)] =Blue is sufficient to determine
the distribution forVObsColor [d]: the colors of all the other
balls are irrelevant in this context. We can read off this
context-specific independence from the dependency state-
ment forObsColor in Fig. 1 by noting that the instantiation
(VBallDrawn [d] = (Ball, 13), VTrueColor [(Ball, 13)] =Blue)
determines the value of the sole CPD argument
TrueColor(BallDrawn(d)). We say this instantiation
supportsthe variableVObsColor [d] (see[Milch et al., 2005]).

Definition 5. An instantiationσ supportsa basic RVV of
the form Vf [o1, . . . , ok] or Np [o1, . . . , ok] if all possible
worlds consistent withσ agree on (1) whether all the objects
o1, . . . , ok exist, and, if so, on (2) the applicable clause in the
dependency or number statement forV and the values for the
CPD arguments in that clause.

Note that some RVs, such asNBall [] in Ex. 1, are supported
by the empty instantiation. We can now generalize the notion
of being closed under the parent relation.

Definition 6. A finite instantiationσ is self-supportingif its
instantiated variables can be numberedX1, . . . ,XN such
that for eachn ≤ N , the restriction ofσ to {X1, . . . ,Xn−1}
supportsXn.

This definition lets us give semantics to BLOG models in
a way that is meaningful even when the corresponding BNs
contain infinite parent sets. We will writepV (v | σ) for the
probability thatV ’s dependency or number statement assigns
to the valuev, given an instantiationσ that supportsV .

Definition 7. A distribution P over ΩM satisfiesa BLOG
modelM if for every finite, self-supporting instantiationσ
with vars(σ) ⊆ VM :

P (Ωσ) =
∏N

n=1pXn
(σXn

| σ{X1,...,Xn−1})

whereΩσ is the set of possible worlds consistent withσ and
X1, . . . ,XN is a numbering ofσ as in Def. 6.

A BLOG model iswell-definedif there is exactly one prob-
ability distribution that satisfies it. Recall that a BN is well-
defined if it is acyclic and each variable has a finite set of an-
cestors. Another way of saying this is that each variable can
be “reached” by enumerating its ancestors in a finite, topolog-
ically ordered list. The well-definedness criterion for BLOG
is similar, but deals with finite, self-supporting instantiations
rather than finite, topologically ordered lists of variables.

Theorem 1. Let M be a BLOG model. Suppose thatVM

is at most countably infinite,1 and for eachV ∈ VM and
ω ∈ ΩM , there is a self-supporting instantiation that agrees
with ω and includesV . ThenM is well-defined.

The theorem follows from a result in[Milch et al., 2005]
that deals with distributions over full instantiations of aset
of RVs. Prop. 1 makes the connection between full instantia-
tions ofVM and possible worlds.

To check that the criterion of Thm. 1 holds for a partic-
ular example, we need to consider each basic RV. In Ex. 1,
the number RV for balls is supported by the empty instan-
tiation, so in every world it is part of a self-supporting in-
stantiation of size one. EachTrueColor(b) RV depends only
on whether its argument exists, so these variables participate
in self-supporting instantiations of size two. Similarly,each
BallDrawn variable depends only on what balls exist. To sam-
ple anObsColor(d) variable, we need to knowBallDrawn(d)
andTrueColor(BallDrawn(d)), so these variables are in self-
supporting instantiations of size four. Similar argumentscan
be made for Examples 2 and 3. Of course, we would like
to have an algorithm for checking whether a BLOG model is
well-defined; the criteria given in Thm. 2 in Sec. 6.2 are a first
step in this direction.

5 Evidence and Queries
Because a well-defined BLOG modelM defines a distribution
over model structures, we can use arbitrary sentences ofLM

as evidence and queries. But sometimes such sentences are
not enough. In Ex. 3, the user observes radar blips, which are
not referred to by any terms in the language. The user could
assert evidence about the blips using existential quantifiers,
but then how could he make a query of the form, “Didthis
blip come from the same aircraft asthat blip?”

A natural solution is to allow the user to extend the lan-
guage when evidence arrives, adding constant symbols to re-
fer to observed objects. In many cases, the user observes
some new objects, introduces some new symbols, and assigns
the symbols to the objects in an uninformative order. To han-
dle such cases, BLOG includes a special macro. For instance,
given 4 radar blips at time 8, one can assert:

{Blip r: Time(r) = 8} = {Blip1, Blip2, Blip3, Blip4};

1This is satisfied if theReal andRkVector types are not argu-
ments to random functions or return types of generating functions.

This introduces the new constantsBlip1, . . . ,Blip4 and as-
serts that there are exactly 4 radar blips at time 8.

Formally, the macro augments the model with dependency
statements for the new symbols. The statements implement
sampling without replacement; for our example, we have

Blip1 ∼ Uniform({Blip r : (Time(r) = 8)});
Blip2 ∼ Uniform({Blip r : (Time(r) = 8) & (Blip1 != r)});

and so on. Once the model has been extended this way,
the user can make assertions about the apparent positions of
Blip1, Blip2, etc., and then use these symbols in queries.

These new constants resemble Skolem constants, but con-
ditioning on assertions about the new constants isnot the
same as conditioning on an existential sentence. For exam-
ple, suppose you go into a new wine shop, pick up a bottle at
random, and observe that it costs $40. This scenario is cor-
rectly modeled by introducing a new constantBottle1 with a
Uniform CPD. Then observing thatBottle1 costs over $40
suggests that this is a fancy wine shop. On the other hand, the
mereexistenceof a $40+ bottle does not suggest this, because
almost every shop hassomebottle at over $40.

6 Inference
Because the set of basic RVs of a BLOG model can be infinite,
it is not obvious that inference for well-defined BLOG models
is even decidable. However, the generative process intuition
suggests a rejection sampling algorithm. We present this al-
gorithm not because it is particularly efficient, but because it
demonstrates the decidability of inference for a large class of
BLOG models (see Thm. 2 below) and illustrates several is-
sues that any BLOG inference algorithm must deal with. At
the end of this section, we present experimental results from
a somewhat more efficient likelihood weighting algorithm.

6.1 Rejection sampling
Suppose we are given a partial instantiatione as evidence, and
a query variableQ. Our rejection sampling algorithm starts
by imposing an arbitrary numbering on the the basic RVs.
To generate each sample, it starts with an empty instantiation
σ. Then it repeats the following process: scan the basic RVs
in the imposed order until we reach the first RVV that is
supported byσ but not already instantiated inσ; sample a
valuev for V according toV ’s dependency statement; and
augmentσ with the assignmentV = v. It continues until all
the query and evidence variables have been sampled. If the
sample is consistent with the evidencee, then it increments a
counterNq, whereq is the sampled value ofQ. Otherwise, it
rejects this sample. AfterN accepted samples, the estimate
of P (Q= q | e) is Nq/N .

This algorithm requires a subroutine that determines
whether a partial instantiationσ supports a basic RVV , and
if so, returns a sample fromV ’s conditional distribution. For
a basic RVV of the formVf [o1, . . . , ok] or Np [o1, . . . , ok],
the subroutine begins by checking the values of the relevant
number variables inσ to determine whether all ofo1, . . . , ok

exist. If some of these number variables are not instantiated,
thenσ does not supportV . If some ofo1, . . . , ok do not ex-
ist, the subroutine returns the default value forV . If they
do all exist, the subroutine follows the semantics for depen-
dency statements discussed in Sec. 4.1. First, it iterates over
the clauses in the dependency (or number) statement until it

reaches a clause whose condition is either undetermined or
determined to be true givenσ (if all the conditions are deter-
mined to be false, then it returns the default value forV). If
the condition is undetermined, thenσ does not supportV . If
it is determined to be true, then the subroutine evaluates each
of the CPD arguments in this clause. Ifσ determines the val-
ues of all the arguments, then the subroutine samples a value
for V by passing those values to thesample method of this
clause’s elementary CPD. Otherwise,σ does not supportV .

To evaluate terms and quantifier-free formulas, we use a
straightforward recursive algorithm. The base case looks up
the value of a particular function application RV inσ and re-
turns “undetermined” if it is not instantiated. A formula may
be determined even if some of its subformulas are not deter-
mined: for example,α ∧ β is determined to be false ifα is
false. It is more complicated to evaluate set expressions such
as{Blip r: Time(r) = 8}, which can be used as CPD
arguments. A naive algorithm for evaluating this expression
would first enumerate all the objects of typeBlip (which re-
quires certain number variables to be instantiated), then select
the blipsr that satisfyTime(r)= 8. But Fig. 3 specifies that
there may exist some blips for each aircrafta and each natu-
ral numbert: since there are infinitely many natural numbers,
some worlds contain infinitely many blips. Fortunately, the
number of blipsr with Time(r)= 8 is necessarily finite: in
every world there are a finite number of aircraft, and each
one generates a finite number of blips at time 8. We have
an algorithm that scans the formula within a set expression
for generating function restrictionssuch asTime(r)= 8, and
uses them to avoid enumerating infinite sets when possible.
A similar method is used for evaluating quantified formulas.

6.2 Termination criteria
In order to generate each sample, the algorithm above repeat-
edly instantiates the first variable that is supported but not yet
instantiated, until it instantiates all the query and evidence
variables. When can we be sure that this will take a finite
amount of time? The first way this process could fail to termi-
nate is if it goes into an infinite loop while checking whethera
particular variable is supported. This happens if the program
ends up enumerating an infinite set while evaluating a set ex-
pression or quantified formula. We can avoid this by ensuring
that all such expressions in the BLOG model are finite once
generating function restrictions are taken into account.

The sample generator also fails to terminate if it never con-
structs an instantiation that supports a particular query or ev-
idence variable. To see how this can happen, consider calling
the subroutine described above to sample a variableV . If
V is not supported, the subroutine will realize this when it
encounters a variableU that is relevant but not instantiated.
Now consider a graph over basic variables where we draw an
edge fromU to V when the evaluation process forV hits U
in this way. If a variable is never supported, then it must be
part of a cycle in this graph, or part of a receding chain of
variablesV1 ← V2 ← · · · that is extended infinitely.

The graph constructed in this way varies from sample to
sample: for instance, sometimes the evaluation process for
VObsColor [d] will hit VTrueColor [(Ball, 7)], and sometimes it
will hit VTrueColor [(Ball, 13)]. However, we can rule out cy-
cles and infinite receding chains in all these graphs by consid-
ering a more abstract graph over function symbols and types.

Definition 8. Thesymbol graphfor a BLOG modelM is a
directed graph whose nodes are the types and random func-
tion symbols ofM , where the parents of a typeτ or function
symbolf are:

• the random function symbols that occur on the right
hand side of the dependency statement forf or some
number statement forτ ;

• the types of variables that are quantified over in formu-
las or set expressions on the right hand side of such a
statement;

• the types of the arguments forf or the return types of
generating functions forτ .

If the sampling subroutine for a basic RVV hits a basic RV
U , then there must be an edge fromU ’s function symbol (or
type, if U is a number RV) toV ’s function symbol (or type)
in the symbol graph. This property, along with ideas from
[Milch et al., 2005], allows us to prove the following:

Theorem 2. SupposeM is a BLOG model where:
1. uncountable built-in types do not serve as function argu-

ments or as the return types of generating functions;
2. each quantified formula and set expression ranges over a

finite set once generating function restrictions are taken
into account;

3. the symbol graph is acyclic.
ThenM is well-defined. Also, for any evidence instantiation
e and query variableQ, the rejection sampling algorithm de-
scribed in Sec. 6.1 converges to the posteriorP (Q|e) defined
by the model, taking finite time per sampling step.

The criteria in Thm. 2 are very conservative: in particular,
when we construct the symbol graph, we ignore all structure
in the dependency statements and just check for the occur-
rence of function and type symbols. These criteria are satis-
fied by the models in Figures 1 and 2. However, the model in
Fig. 3 does not satisfy the criteria because there is a self-loop
from State to State. The criteria do not exploit the fact that
State(a, t) depends only onState(a,Pred(t)), and the non-
random functionPred is acyclic. Friedmanet al. [1999] have
already dealt with this issue in the context of probabilistic re-
lational models; their algorithm can be adapted to obtain a
stronger version of Thm. 2 that covers Fig. 3.

6.3 Experimental results
Milch et al. [2005] describe a guided likelihood weighting
algorithm that uses backward chaining from the query and
evidence nodes to avoid sampling irrelevant variables. This
algorithm can also be adapted to BLOG models. We applied
this algorithm for Ex. 1, asserting that 10 balls were drawn
and all appeared blue, and querying the number of balls in
the urn. The top graph of Fig. 4 shows that when the prior for
the number of balls is uniform over{1, . . . , 8}, the posterior
puts more weight on small numbers of balls; this makes sense
because the more balls there are in the urn, the less likely itis
that they are all blue. The bottom graph, using a Poisson(6)
prior, shows a similar but less pronounced effect. Note that
the posterior probabilities computed by the likelihood weight-
ing algorithm are very close to the exact values (computed by
exhaustive enumeration). These results could not be obtained
using any algorithm that constructed a single fixed BN, since
the number of potentially relevantVTrueColor [b] variables is
infinite in the Poisson case.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Number of balls in urn

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Number of balls in urn

Figure 4: Distribution for the number of balls in the urn
(Ex. 1). Dashed lines are the uniform prior (top) or Poisson
prior (bottom); solid lines are the exact posterior given that
10 balls were drawn and all appeared blue; and plus signs
are posterior probabilities computed by 5 independent runs
of 20,000 samples (top) or 100,000 samples (bottom).

7 Related Work
Gaifman[1964] was the first to suggest defining a probability
distribution over first-order model structures. Halpern[1990]
defines a language in which one can make statements about
such distributions: for instance, that the probability of the
set of worlds that satisfyFlies(Tweety) is 0.8. Probabilis-
tic logic programming[Ng and Subrahmanian, 1992] can be
seen as an application of this approach to Horn-clause knowl-
edge bases. Such an approach only definesconstraintson
distributions, rather than defining a unique distribution.

Most first-order probabilistic languages (FOPLs) that de-
fine unique distributions fix the set of objects and the interpre-
tations of (non-Boolean) function symbols. Examples include
relational Bayesian networks[Jaeger, 2001] and Markov
logic models[Domingos and Richardson, 2004]. Prolog-
based languages such as probabilistic Horn abduction[Poole,
1993], PRISM[Sato and Kameya, 2001], and Bayesian logic
programs[Kersting and De Raedt, 2001] work with Herbrand
models, where the objects are in one-to-one correspondence
with the ground terms of the language.

There are a few FOPLs that allow explicitreference uncer-
tainty, i.e., uncertainty about the interpretations of function
symbols. Among these are two languages that use indexed
RVs rather than logical notation: BUGS[Gilks et al., 1994]
and indexed probability diagrams (IPDs)[Mjolsness, 2004].
Reference uncertainty can also be represented in probabilistic
relational models (PRMs)[Koller and Pfeffer, 1998], where

a “single-valued complex slot” corresponds to an uncertain
unary function. PRMs are unfortunately restricted to unary
functions (attributes) and binary predicates (relations). Prob-
abilistic entity-relationship models[Heckermanet al., 2004]
lift this restriction, but represent reference uncertainty using
relations (such asDrawn(d, b)) and special mutual exclusivity
constraints, rather than with functions such asBallDrawn(d).
Multi-entity Bayesian network logic (MEBN)[Laskey, 2004]
is similar to BLOG in allowing uncertainty about the values
of functions with any number of arguments.

The need to handle unknown objects has been appreciated
since the early days of FOPL research: Charniak and Gold-
man’s plan recognition networks (PRNs)[1993] can con-
tain unbounded numbers of objects representing hypothe-
sized plans. However, external rules are used to decide what
objects and variables to include in a PRN. While each pos-
sible PRN defines a distribution on its own, Charniak and
Goldman do not claim that the various PRNs are all approxi-
mations to some single distribution over outcomes.

Some more recent FOPLs do define a single distribution
over outcomes with varying objects. IPDs allow uncer-
tainty over the index range for an indexed family of RVs.
PRMs and their extensions allow a variety of forms of un-
certainty about the number (or existence) of objects satisfy-
ing certain relational constraints[Koller and Pfeffer, 1998;
Getooret al., 2001] or belonging to each type[Pasulaet al.,
2003]. However, there is no unified syntax or semantics for
dealing with unknown objects in PRMs. MEBNs take yet
another approach: an MEBN model includes a set of unique
identifiers, for each of which there is an “identity” RV indi-
cating whether the named object exists.

Our approach to unknown objects in BLOG can be seen as
unifying the PRM and MEBN approaches. Number state-
ments neatly generalize the various ways of handling un-
known objects in PRMs: number uncertainty[Koller and Pf-
effer, 1998] corresponds to a number statement with a sin-
gle generating function; existence uncertainty[Getooret al.,
2001] can be modeled with two or more generating functions
(and a CPD whose support is{0, 1}); and domain uncertainty
[Pasulaet al., 2003] corresponds to a number statement with
no generating functions. There is also a correspondence be-
tween BLOG and MEBN logic: the tuple representations in
a BLOG model can be thought of as unique identifiers in an
MEBN model. The difference is that BLOG determines which
objects actually exist in a world using number variables rather
than individual existence variables.

Finally, it is informative to compare BLOG with the IBAL
language[Pfeffer, 2001], in which a program defines a dis-
tribution over outputs that can be arbitrary nested data struc-
tures. An IBAL program could implement a BLOG-like gen-
erative process with the outputs viewed as logical model
structures. But the declarative semantics of such a program
would be less clear than the corresponding BLOG model.

8 Conclusion
BLOG is a representation language for probabilistic models
with unknown objects. It contributes to the solution of a very
general problem in AI: intelligent systems must represent and
reason about objects, but those objects may not be known
a priori and may not be directly and uniquely identified by

perceptual processes. Our approach defines generative mod-
els that create first-order model structures by adding objects
and setting function values; everything else follows naturally
from this design decision. Much remains to be done, espe-
cially on inference: we expect to employ MCMC with user-
defined and possibly adaptive proposal distributions, and to
develop algorithms that work directly with objects rather than
at the lower level of basic RVs.

References
[Charniak and Goldman, 1993] E. Charniak and R. P. Goldman. A

Bayesian model of plan recognition.AIJ, 64(1):53–79, 1993.
[Domingos and Richardson, 2004] P. Domingos and M. Richard-

son. Markov logic: A unifying framework for statistical rela-
tional learning. InProc. ICML Wksp on Statistical Relational
Learning and Its Connections to Other Fields, 2004.

[Friedmanet al., 1999] N. Friedman, L. Getoor, D. Koller, and
A. Pfeffer. Learning probabilistic relational models. InProc. 16th
IJCAI, pages 1300–1307, 1999.

[Gaifman, 1964] H. Gaifman. Concerning measures in first order
calculi. Israel J. Math., 2:1–18, 1964.

[Getooret al., 2001] L. Getoor, N. Friedman, D. Koller, and
B. Taskar. Learning probabilistic models of relational structure.
In Proc. 18th ICML, pages 170–177, 2001.

[Gilks et al., 1994] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter.
A language and program for complex Bayesian modelling.The
Statistician, 43(1):169–177, 1994.

[Halpern, 1990] J. Y. Halpern. An analysis of first-order logics of
probability. AIJ, 46:311–350, 1990.

[Heckermanet al., 2004] D. Heckerman, C. Meek, and D. Koller.
Probabilistic models for relational data. Technical Report MSR-
TR-2004-30, Microsoft Research, 2004.

[Jaeger, 2001] M. Jaeger. Complex probabilistic modeling with re-
cursive relational Bayesian networks.Annals of Math and AI,
32:179–220, 2001.

[Kersting and De Raedt, 2001] K. Kersting and L. De Raedt. Adap-
tive Bayesian logic programs. In11th Int. Conf. on ILP, 2001.

[Koller and Pfeffer, 1998] D. Koller and A. Pfeffer. Probabilistic
frame-based systems. InProc. 15th AAAI, pages 580–587, 1998.

[Laskey, 2004] K. B. Laskey. MEBN: A logic for open-world prob-
abilistic reasoning. Technical report, George Mason Univ., 2004.

[Milch et al., 2005] B. Milch, B. Marthi, D. Sontag, S. Russell,
D. L. Ong, and A. Kolobov. Approximate inference for infinite
contingent Bayesian networks. In10th AISTATS Wksp, 2005.

[Mjolsness, 2004] E. Mjolsness. Labeled graph notations for graph-
ical models. Technical Report 04-03, School of Information and
Computer Science, UC Irvine, 2004.

[Ng and Subrahmanian, 1992] R. T. Ng and V. S. Subrahmanian.
Probabilistic logic programming.Information and Computation,
101(2):150–201, 1992.

[Pasulaet al., 2003] H. Pasula, B. Marthi, B. Milch, S. Russell, and
I. Shpitser. Identity uncertainty and citation matching. InNIPS
15. MIT Press, Cambridge, MA, 2003.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, San Francisco, revised edition, 1988.

[Pfeffer, 2001] A. Pfeffer. IBAL: A probabilistic rational program-
ming language. InProc. 17th IJCAI, pages 733–740, 2001.

[Poole, 1993] D. Poole. Probabilistic Horn abduction and Bayesian
networks.AIJ, 64(1):81–129, 1993.

[Sato and Kameya, 2001] T. Sato and Y. Kameya. Parameter learn-
ing of logic programs for symbolic-statistical modeling.JAIR,
15:391–454, 2001.

[Sittler, 1964] R. W. Sittler. An optimal data association problem
in surveillance theory.IEEE Trans. Military Electronics, MIL-
8:125–139, 1964.

