
Constraints in Cognitive Architectures 1

Running Head: CONSTRAINTS IN COGNITIVE ARCHITECTURES

Constraints in Cognitive architectures

Niels Taatgen and John Anderson

Carnegie Mellon University

Constraints in Cognitive Architectures 2

 Cognitive Architectures and their Uses in Cognitive Modeling

1. Introduction

When Turing wrote his famous paper in which he asked the question whether machines

can think, and how this can be tested (Turing, 1950), he set out the goal of creating an intelligent

machine whose intelligence is indistinguishable from human intelligence. Turing’s earlier work

(Turing, 1936) proved that the basic digital computer’s potential is as great as any conceivable

computational device, suggesting that was only a matter of time before a computer could be

developed that is as intelligent as a human. The exponential growth in power did not, however,

turn out to make computers more intelligent, leading to a divergence into modern artificial

intelligence and the smaller field of cognitive modeling. In modern artificial intelligence the

main goal is to create intelligent programs, with the human intelligence aspect only as a source

of inspiration, while cognitive modeling has taken the opposite route of focusing on faithfully

modeling human intelligence, but not being really interested in creating intelligent programs.

Cognitive architectures are on the one hand echoes of the original goal of creating an

intelligent machine faithful to human intelligence, and on the other hand attempts at theoretical

unification in the field of cognitive psychology. These two aspects imply a duality between

functionality and theory. Cognitive architectures should offer functionality, i.e., representations

and cognitive mechanisms to produce intelligent behavior. More choices in representation and

mechanisms offer a larger toolbox to create a model for a certain phenomenon. But cognitive

architectures should also be theories. A theory offers only a single and not multiple explanations

for a phenomenon. From the theory perspective having many representations and mechanisms is

Constraints in Cognitive Architectures 3

not a good idea, because it increases the probability that many models can fit the same data.

Although there are cognitive architectures that primarily focus on the toolbox aspect and have no

or few theoretical claims (e.g., Cogent, Cooper & Fox, 1998), our focus in this chapter will be on

the theory aspect of cognitive architectures.

The term cognitive architecture is an analogy of the term computer architecture. A

computer architecture serves as a flexible basis for a programmer to create any program.

Similarly, a cognitive architecture allows modelers to create simulation models of human

cognition. A model specifies the initial set of knowledge for the architecture to work with. For

example, a model of multi-column addition might consist of as set of simple addition facts and a

set of production rules that specify that you have to start in the right column, how to handle

carries, etc. The classical method of finding this set of knowledge is through task analysis: a

careful study of the necessary knowledge and the control structure associated with it. The

knowledge specified in the task analysis is then fed into the architecture which can subsequently

make predictions about various aspects of human performance, including reaction times, errors,

choices made, eye movements and fMRI.

A problem of cognitive models is that it is not easy to assess their validity. One might

assume that a model that produces the same behavior as people do is a valid model. However,

several different models might produce the same behavior, in which case a different criterion is

needed to determine which model is best. Unfortunately, there is no quantitative measure for

model validity, but most cognitive modelers agree that the following qualitative factors

contribute to the validity of a model:

- A good model should have as few free parameters as possible. Many cognitive

architectures have free parameters that can be given arbitrary values by the

Constraints in Cognitive Architectures 4

modeler. Because free parameters enable the modeler to manipulate the outcome

of the model, increasing the number of free parameters diminishes the model’s

predictive power (Roberts & Pashler, 2000)

- A model should not only describe behavior, but should also predict it. Cognitive

models are often made after the experimental data have been gathered and

analyzed. A model with high validity should be able to predict performance.

- A model should learn its own task-specific knowledge. Building knowledge into

a model increases its specificity, and may decrease its validity.

As discussed above, many current models use task analysis to specify the knowledge that

an expert would need to do the task. This violates the validity criterion that a model should

acquire task specific knowledge on its own. Moreover, basing a model on a task analysis of

expert performance means that the model is of an expert user whereas the typical user may not

have mastered the task being modeled. Useful predictions and a complete understanding of the

task requires that models are built starting at the level of a novice and gradually proceeding to

become experts in the same way people do. In other words, many applications require building

models that not only perform as humans do, but that also learn as human do.

2. Overview of Cognitive Architectures

In order to discuss the current state of cognitive architectures, we will briefly characterize

them in this section, and then go through areas of cognitive modeling and discuss what

constraints the various architectures offer in that area.

Constraints in Cognitive Architectures 5

Soar

The Soar (States, Operators, And Reasoning) architecture, developed by Laird,

Rosenbloom and Newell (1987; Newell, 1990), is a descendant of the General Problem Solver

(GPS), developed by Newell and Simon (1963). Human intelligence, according to the Soar

theory, is an approximation of a knowledge system. Newell defines a knowledge system as

follows (Newell, 1990, page 50):

A knowledge system is embedded in an external environment, with which it interacts by

a set of possible actions. The behavior of the system is the sequence of actions taken in

the environment over time. The system has goals about how the environment should be.

Internally, the system processes a medium, called knowledge. Its body of knowledge is

about its environment, its goals, its actions, and the relations between them. It has a single

law of behavior: the system takes actions to attain its goals, using all the knowledge that

it has. (...)

According to this definition, the single important aspect of intelligence is the fact that a

system uses all available knowledge. Errors due to lack of knowledge are not failures of

intelligence, but errors due to a failure in using available knowledge are. Both human cognition

and the Soar architecture are approximations of an ideal intelligent knowledge system. As a

consequence, properties of human cognition that are not directly related to the knowledge system

are not central to Soar.

The Soar theory views all intelligent behavior as a form of problem solving. The basis for

a knowledge system is the problem-space computational model, a framework for problem

solving in which a search process tries to accomplish a goal state through a series of operators. In

Soar, all tasks are represented by problem spaces. Performing a certain task corresponds to

Constraints in Cognitive Architectures 6

reaching the goal in a certain problem space. To be able to find the goal in a problem space,

knowledge is needed about all possible operators, about consequences of operators and about

how to choose between operators if there is more than one available. If a problem (an impasse in

Soar terms) arises due to the fact that certain knowledge is lacking, resolving this impasse

automatically becomes the new goal. This new goal becomes a subgoal of the original goal,

which means that once the subgoal is achieved, control is returned to the main goal. The subgoal

has its own problem space, state and possible set of operators. Whenever the subgoal has been

achieved it passes its results to the main goal, thereby resolving the impasse. Learning is keyed

to the subgoaling process: whenever a subgoal has been achieved, new knowledge is added to the

knowledge base to prevent the impasse that produced the subgoal from occurring again. If an

impasse occurs because the consequences of an operator are unknown, and in the subgoal these

consequences are subsequently found, knowledge is added to Soar’s memory about the

consequences of that operator.

Characteristic for Soar is that it is a purely symbolic architecture in which all knowledge

is made explicit. Instead of attaching utility or activation to knowledge it has explicit knowledge

about its knowledge. This makes Soar a very constrained architecture, in the sense that the only

means to model a phenomenon are a single long-term memory, a single learning mechanism and

only symbolic representations. Despite the theoretical advantages of such a constrained theory,

current developments in Soar seek to extend the architecture with more long-term memory

systems, sub-symbolic mechanisms, and a module to model the effects of emotion on the

cognitive system (Nason & Laird, 2004; Marinier & Laird, 2004).

Constraints in Cognitive Architectures 7

ACT-R

The ACT-R (Adaptive Control of Thought, Rational) theory (Anderson et al., 2004) rests

upon three important components: rational analysis (Anderson, 1990), the distinction between

procedural and declarative memory (Anderson, 1976), and a modular structure in which

components communicate through buffers. According to rational analysis, each component of the

cognitive architecture is optimized with respect to demands from the environment, given its

computational limitations. If we want to know how a particular aspect of the architecture should

function, we first have to look at how this aspect can function as optimally as possible in the

environment. Anderson (1990) relates this optimality claim to evolution. An example of this

principle is the way choice is implemented in ACT-R. Whenever there is a choice between what

strategy to use or what memory element to retrieve, ACT-R will take the one that has the highest

expected gain, which is the choice that has the lowest expected cost while having the highest

expected probability of succeeding. This is different from Soar’s approach, which would involve

finding knowledge to decide between strategies.

The principle of rational analysis can also be applied to task knowledge. While evolution

shapes the architecture, learning shapes knowledge and possibly part of the knowledge

acquisition process. Instead of only being focused on acquiring knowledge per se, learning

processes should also aim at finding the right representation. This may imply that learning

processes have to attempt several different ways to represent knowledge, so that the optimal one

can be selected.

The second ACT-R foundation is the distinction between declarative and procedural

knowledge. ACT-R has a separate procedural and declarative memory, each of which has their

own representation and learning mechanisms. Procedural memory stores productions that can

Constraints in Cognitive Architectures 8

directly act upon the current situation. Each of these productions maintains a utility value to keep

track of its past success. Declarative memory is more passive: knowledge in it has to be

requested explicitly in order to be accessed. Elements in declarative memory have an activation

value to track their past use that can model, among other things, forgetting. Declarative memory

also incorporates the function of working memory, making it unnecessary to have a separate

working memory. Because ACT-R uses activation and utility values in addition to purely

symbolic representations, it is called a hybrid architecture.

The third, and also most recent foundation of ACT-R is its modular structure. The

production system, which forms the core of the architecture, cannot arbitrarily access any

information it wants, but has to communicate to with other systems through a buffer interface.

For example, if the visual module attends new information, it places the encoded information in

the visual buffer, after which this information can be accessed by production rules. Although this

restricts the power a single production rule, it does allow each module to do its own processing

in parallel with other modules.

Both Soar and ACT-R claim to be based on the principles of rationality, although they

define rationality differently. In Soar rationality means making optimal use of the available

knowledge to attain the goal, while in ACT-R rationality means optimal adaptation to the

environment. Not using all the knowledge available is irrational in Soar, although it may be

rational in ACT-R if the costs of using all knowledge are too high. On the other hand ACT-R

takes into account the fact that its knowledge may be inaccurate, so additional exploration is

rational. Soar cannot handle the need for exploration very well, since that would imply that

currently available knowledge is not used to its full extent.

Constraints in Cognitive Architectures 9

EPIC

Although most cognitive architectures start from the perspective of central cognition, the

EPIC (Executive-Process Interactive Control) architecture (Meyer & Kieras, 1997) stresses the

importance of peripheral cognition as a factor that determines task performance. In addition to a

cognitive processor with its associated memory systems EPIC provides a set of detailed

perceptual and motor processors. The perceptual modules are capable of processing stimuli from

simulated sensory organs, sending their outputs to working memory. They operate

asynchronously, and the time required to process an input depends on the modality, intensity and

discriminability of the stimulus. The time requirements of the perceptual modules, as well as

other modules, are based on fixed equations like Fitts’ law, and serve as a main source of

constraints.

EPIC’s cognitive processor is a parallel matcher: in each cycle, which takes 50 ms,

production rules are matched to the contents of working memory. Each rule that matches is

allowed to fire, so there is no conflict resolution. It is up to the modeler to prevent this parallel

firing scheme from doing the wrong thing. Whereas both Soar and ACT-R have a production

firing system that involves both parallel and serial aspects, EPIC has a pure parallel system of

central cognition. As a consequence, EPIC predicts that serial aspects of behavior are mainly due

to communication between central and peripheral processors and structural limitations of sense

organs and muscles. An important aspect of EPIC’s modular structure is the fact that all

processors can work in parallel. Once the cognitive processor has issued a command to the

ocular motor processor to direct attention to a spot, it does not have to wait until the visual

processor has processed a new image. Instead, it can do something else. In a dual-task setting the

cognitive processor may use this extra time to do processing on the secondary task. EPIC can

Constraints in Cognitive Architectures 10

represent multiple goals in a non-hierarchical fashion, and these goals can be worked on in

parallel, provided they do not need the same peripheral resources. If they do, as is the case in

experiments where participants have to perform multiple tasks simultaneously, executive

processes are needed to coordinate which of the goals belonging to the tasks may access which

peripheral processors. Because EPIC’s executive processes are implemented by production rules,

they do not form a separate part of the system. This makes EPIC very flexible, but it also means

that EPIC’s theory of central cognition is rather weak (in the sense of having few constraints as a

theory). EPIC is mainly focused on expert behavior and presently has no theory of how

knowledge is learned. As we will see all the other architectures have picked up EPIC’s peripheral

modules, but try to have a constrained central cognitive system as well.

Clarion

The Clarion architecture (Connectionist Learning with Adaptive Rule Induction Online;

Sun, 2003; Sun, Slusarz, & Terry, 2005) has as its main architectural assumption that there is a

structural division between explicit, top-down cognition and implicit, bottom-up cognition. As a

consequence the architecture has two subsystems, the top and the bottom layer, that each have

their own representations and processes. Furthermore each of the two layers is subdivided into

two systems: and action-centered system and a non-action-centered system. This latter

distinction roughly corresponds to procedural and declarative, respectively: the action-centered

system can directly influence action, while the non-action-centered system can only do so

indirectly. A final central assumption of Clarion is that when there is insufficient knowledge in

the system, learning will be bottom-up. Many, but not all, of Clarion’s representations use neural

networks. In that sense it is more a true hybrid architecture than ACT-R in holding the middle

ground between connectionist and symbolist architectures.

Constraints in Cognitive Architectures 11

The central theory of Clarion is that behavior is a product of interacting implicit (bottom-

up) and explicit (top-down) processes, further modulated by a motivational subsystem (which

holds, among others, the system’s goals) and a meta-cognitive subsystem. The explicit action-

oriented system has a rule system in which rules map the perceived state onto actions. The

implicit action-oriented system assigns quality measures to state/action pairs. The final choice of

an action is a combination of the values assign to each action by the top-down and the bottom-up

system. Each of the two systems has its own learning mechanisms: the implicit system uses a

combination of reinforcement learning and backpropagation to improve its assessment of

state/action pairs based on rewards, while the explicit system uses a rule-extraction mechanism

that uses extraction, generalization and specialization to generate new rules. Apart from these

two subsystems, each of the other subsystems of Clarion uses their own mechanisms and

representations.

The danger of having many representations and mechanisms is that it weakens the theory.

When creating a model in Clarion, one has to decide where to represent the knowledge, and

which mechanisms do the learning. In that sense Clarion allows exploration of various modeling

options, but doesn’t enforce a single one of them.

3. Constraints on Modeling

We will now examine a number of topics that can serve as constraints on modeling, and

discuss how four architectures offer constraints to help models in that topic area. A summary can

be found in Table 1. Note that not all architectures address all topic areas, so for example EPIC

does not constrain learning because it presently has no theory of learning.

Constraints in Cognitive Architectures 12

Working Memory Capacity

One of the findings that established cognitive psychology as a field was Miller’s

experiment in which he found that people can only retain a limited number of unrelated new

items in memory (Miller, 1956). This phenomenon quickly became associated with short-term

memory and later working memory. More generally, the function of working memory is to

maintain a representation of the current task environment. What Miller’s and subsequent

experiments showed was that the capacity to maintain this representation is limited.

A naive model of working memory is to have a system with a limited number of slots (for

example the seven suggested by Miller) that can be used to temporarily store items. Once you

run out of slots items have to be tossed out. Although such a model is an almost direct

implementation of the phenomenon on which it is based, it does not work very well as a

component in an architecture. Miller’s task is about completely unrelated items, but as soon as

knowledge is related, which is the case in almost any natural situation, the slot-model no longer

holds.

A good theory of working-memory capacity can be a powerful source of constraint on a

cognitive architecture, because it rules out models that can interrelate unrealistically large sets of

active knowledge. Although working memory is traditionally viewed from the perspective of

capacity, a resource that can run out, another perspective is to consider working memory as a

cognitive function. In the functional approach, limited working memory is not a hindrance, but

the ability to separate relevant from irrelevant information. It allows the rest of the cognitive

system to act upon information that is relevant instead of irrelevant.

Constraints in Cognitive Architectures 13

Capacity limitations in Soar.

An example of a functional approach of working memory is Soar (Young & Lewis,

1999). Young and Lewis explain working memory limitations in terms of what the current set of

skills can do in limited time. For example, consider the following three sentences:

1. The defendant examined the courtroom.

2. The defendant examined by the jury was upset.

3. The evidence examined by the jury was suspicious.

Assuming people read these sentences one word at a time from left to right, the word examined is

ambiguous in sentences 1 and 2, because they can either be the main verb or the starting verb of

a relative clause, but not in sentence 3 because the word evidence is inanimate. Just and

Carpenter (1992) found that people differ in how they handle sentence 3, and attribute this to

working memory capacity: high capacity individuals are able to keep the information that

evidence is inanimate in working memory, disambiguating the sentences, while low-capacity

individuals do not hold that information in memory, forcing them to disambiguate the sentence

later like in sentence 2. Lewis (1996), however, presented a different account of the individual

differences based on a Soar model of natural language comprehension. In sentence 3 after

reading examined, Soar will propose two operators to update the current comprehension of the

sentence, one corresponding to each interpretation of the sentence. This will create an impasse,

which Soar will try to resolve this impasse in a new problem space. Although the Soar model has

the knowledge to solve this problem, this takes time, and given the time pressure the model can

revert to selecting the normally preferred disambiguation of interpreting a verb as the main verb,

which means it will run into trouble later in the sentence.

Constraints in Cognitive Architectures 14

In this model the individual differences are not explained by a limit in capacity of

working memory as such, because the fact that evidence is animate is perfectly available in

working memory, but a limitation of the available knowledge to actually do something with that

fact in the given problem context.

Capacity limitations in ACT-R.

Similarly to Soar, ACT-R has no system that directly corresponds to the notion of

working memory capacity. Indeed, ACT-R does not even have a working memory as such.

Instead the function of working memory is tied to several of ACT-R’s systems. ACT-R’s current

task context is maintained in the set of buffers. A buffer is a means for the central production

system to correspond to the various modules in the system. For example, there is a visual buffer

to hold the representation of the currently attended item in the visual field, there is a retrieval

buffer to hold the last item retrieved from declarative memory, and there is a goal item that holds

the current goal context. Each of these buffers has a capacity of a single item and is constrained

by their function (i.e., vision, manual, retrieval, etc.).

Although the buffers together are the main means of holding the current context, the

system that is mainly associated with the notion of working memory capacity is declarative

memory. Any new item that enters the system is eventually stored in declarative memory. If the

task is to memorize a string of numbers, each of the numbers is stored in memory as separate

item that is linked to the other numbers (Anderson & Matessa, 1997). In order to recall the string

of numbers each of the items must be retrieved successfully. However, as the string of numbers

becomes longer, interference and decay in declarative memory decrease the probability that

recall is successful, producing the phenomenon of a limited working memory capacity.

Constraints in Cognitive Architectures 15

Although ACT-R’s explanation seems to be closer to a capacity explanation, in the root

of the theory the explanation is functional. The purpose of activation in declarative memory is

not to model forgetting, but to order knowledge in order of potential relevance. Knowledge

receives a high activation due to frequent past use or a high correlation with the current context

because that makes it more available and distinguishable from irrelevant knowledge. From that

perspective working memory capacity is the ability to increase the signal-to-noise ratio in

declarative memory, and individuals who are good at increasing this ratio have a high working

memory capacity (Lovett, Reder & Lebiere, 1999).

Cognitive Performance

How powerful is the human reasoning system? According to, for example, Penrose

(1989), the human reasoning is more powerful than a Turing Machine, making it possible for

humans to solve problems that are computationally intractable. The challenge for cognitive

architectures is, however, not to make the computing machinery more powerful, but to put

constraints on the power that is already there, without constraining it so much that it cannot do

certain tasks that humans can.

The serial bottleneck.

A recurrent topic of debate in the psychology of human perception and performance is

whether there is a central bottleneck in human cognition (Pashler, 1994; Schumacher et al.,

2001). In terms of cognitive architectures the debate is centered between ACT-R and EPIC. In

ACT-R the central production system can only fire one rule at a time. Although each rule firing

only takes 50 ms, it limits the number of cognitive steps that can be taken. In EPIC the central

rule system can fire any number of rules in parallel. EPIC can therefore naturally explain dual-

tasking experiments in which participants achieve perfect time-sharing. An example of such an

Constraints in Cognitive Architectures 16

experiment is by Schumacher et al. (2001). In that experiment participants were given a visual

stimulus and a tone at the same time. They had to respond to the visual stimulus by pressing a

key, and to the tone by saying a word. Given sufficient training, participants were eventually able

to do the two task perfectly in parallel, meaning that their reaction times on each task were the

same in the dual-task and in the single-task situation.

For ACT-R dual-tasking experiments are a challenge. Nevertheless Byrne and Anderson

(2001) constructed a model that was able to perfectly share time between the models, and

Taatgen, Anderson and Byrne made models that can learn the perfect time-sharing that captured

not only the eventual performance but also the learning trajectory towards this final performance

(Taatgen, 2005; Anderson, Taatgen & Byrne, 2005). In the ACT-R models the key to perfect

dual tasking is the fact that most of time consumed in these tasks is needed for either perception

or motor actions, especially when the task is highly trained. The occasional central action is

needed to shift attention or to select a response. In the highly trained cases each of these actions

only take a single production rule of 50 ms. Unless the response selection for both tasks has to

happen at exactly the same moment (which is unlikely given noise in the perceptual processes),

the costs of dual-tasking are very low or absent.

An interesting aspect of the central bottleneck is the way the discussion plays out. With a

serial bottleneck ACT-R has the more constrained theory, because it is always possible to do

things serially in EPIC, but one cannot do them in parallel in ACT-R. ACT-R principally has the

ability to predict circumstances in which the serial bottleneck constrains performance, while

EPIC poses no constraints at all. In order for EPIC to prove its point, it needs to identify a

phenomenon or task where ACT-R’s serial rule system just does not have the time to do

everything that needs to be done. Even when such a phenomenon would be found, it would only

Constraints in Cognitive Architectures 17

prove that ACT-R is wrong, and not necessarily that EPIC is right. This example shows that a

more constrained architecture almost automatically gains the scientific upper ground, despite (or,

as Popper, 1962, would say, because of) the fact that it makes itself vulnerable to refutation.

Hidden computational power.

The simplicity of production rules is can be deceptive. If production rules can match

arbitrary patterns, it is possible to write production rules in which matching a condition is an NP-

complete problem (Tambe, Newell & Rosenbloom, 1990). Production rules in Soar have that

nature, and this is why Soar needs a powerful rule-matching algorithm (Rete, see Forgy, 1982).

Although powerful rules offer a great deal of flexibility, it under-constrains what can be done in

a single production-matching cycle. In Clarion (Sun, 2003), for example, the rule system (the

explicit, action-oriented system) is implemented in a neural network. Given the localist nature of

neural networks there is no hidden computational power, producing a more constrained system.

ACT-R also has a constrained production system: it can only match items in its buffers. This

implies that it cannot match arbitrary patterns in declarative memory, but can only retrieve items

one at a time. A complex match of information might therefore take up multiple retrieval steps,

and is in no way a fail-safe process. ACT-R’s performance system may eventually prove to be

too restrictive, but for the time being it comprises a stronger theory.

Perceptual and Motor Systems

Perceptual and motor systems are potentially a strong source of constraints, because the

perceptual and motor actions can be registered more precisely in experiments than cognitive

actions, and because the psychophysical literature offers precise predictions about the timing of

these actions. The EPIC architecture (Meyer & Kieras, 1997) is based on this premise.

Constraints in Cognitive Architectures 18

The perceptual-motor modules in EPIC can handle only a single action at a time, and

each of these actions take a certain amount of time. Although a module can do only one thing at

a time, expert behavior on a task is exemplified by skillful interleaving of perceptual, cognitive,

and motor actions. EPIC’s modules incorporate mathematical models of the time it takes to

complete operations that are based on empirical data. The knowledge of the model is

represented using production rules.

An example of how perceptual and motor constraints can inform a model is menu search

(Hornof and Kieras, 1997). The task was to find a label in a pull-down menu as quickly as

possible. Perhaps the simplest model of such a task is the serial-search model in which the user

first attends to the top item on the list and compares it to the label being searched for. If the item

does not match the target, the next item on the list is checked; otherwise, the search is

terminated. EPIC’s predictions for search time using this method can be obtained by

implementing the strategy in EPIC production rules and performing a simulation in a test

environment in which menus have to be searched can obtain. It turns out that a naive serial-

search model grossly overestimates actual search time (obtained with human subjects), except

when the target is in the first position to be searched. For example, if the menu item is in position

10, the serial search model predicts that finding the item takes 4 seconds while participants only

need in the order of 1.6 seconds.

Hornof and Kieras propose an alternative model, the overlapping search model that

exploits the parallelism of the cognitive system. Instead of waiting for the cognitive system to

finish deciding whether or not the requested label is found, the eye moves on to the next item in

the list while the first item is still being evaluated. Such a strategy results in the situation that the

eye has to move back to a previous item in the list once it has been decided that the item has

Constraints in Cognitive Architectures 19

been found, but this is a small price to pay for the speed-up this parallelism produces. Parallelism

is allowed in EPIC as long as perceptual-motor modules do one thing at a time. In practice, the

most influential constraint is posed by the duration of actions. For example, in the serial-search

model, the parameter that influences the search time could, in theory, be changed to make this

(incorrect) model match the data. EPIC precludes this from occurring because an eye-movement

takes a certain amount of time, as does a decision as to whether the label is correct or not, such

that the data can only be explained if these actions occur in parallel.

The menu-search example shows that while the perceptual and motor systems in EPIC

provide strong constraints, central cognition is under-constrained in the sense that it allows both

correct and incorrect models of menu search. EPIC’s perceptual and motor modules, however,

have proved to be so powerful as constraints that all the other architectures (ACT-R, Soar and

Clarion) have copied them.

Learning

As we mentioned in the introduction, a desirable feature of a model is that it learns its

own knowledge. In the classical modeling paradigm the only constraints placed on the

knowledge come from the architecture and task analysis and this usually leaves the knowledge

specification largely up to the whim of the modeler. A more constrained approach is to have a

model that learns its own knowledge. A weak variant of this type of modeling is to supply the

model with some initial method that becomes faster through learning. For example, in an ACT-R

model of alphabet-arithmetic (Anderson & Lebiere, 1998) the task is to verify additions using

letters and numbers, like G+3=J. The model’s initial strategy is to find the answer through a

counting process. But because it stores its answers, the model gradually accumulates addition

facts in declarative memory, allowing it to give a direct answer instead of having to count.

Constraints in Cognitive Architectures 20

Although the model learns the new addition facts, it already starts out with the production rules

that can count and with the productions rules that attempt retrieval of initially non-existing

addition facts.

Learning from direct instruction.

A more ambitious approach is to have a model that learns all of its own task-specific

knowledge through either instruction or feedback. An example in Soar of such a system is

Instructo-Soar (Huffman & Laird, 1995). Instructo-Soar can learn to carry out commands in

natural language. If it doesn’t know how to do a certain command, it will ask for an instruction.

A sample dialog from Huffman and Laird is as follows (Soar’s questions are in italics):

Push the green button.

 That’s a new one. How do I do that?

 Move to the grey table.

 Ok. What next?

 Move above the green button.

 How do I do that?

 Move the arm up.

 Oh, I see! What next?

 Move down.

 Ok, What next?

 The operator is finished.

In this example Soar receives instructions how to push a green button. The indentation

represents the structure of the problem solving, with each level of indentation an impasse that has

to be resolved. Soar’s learning mechanism will learn new rules to resolve similar cases in the

Constraints in Cognitive Architectures 21

future. For example, after this exchange Soar will know how to move above things, and how to

push buttons. One of the challenges is to make the right generalization: instead of learning how

to push buttons, another generalization might have been a procedure to push green things. To

make the right generalization Soar used background knowledge to reason out that green is not a

relevant attribute for pushing things. An alternative to knowledge-based generalization is

Clarion’s bottom-up generalization, in which associations between state, action and success are

first gathered by the implicit learning process. These bottom-up associations then gradually

inform the rule-extraction mechanism to make the right generalization. So instead of making

inferences about colors and buttons Clarion would rather induce out of experiences that colors

don’t matter but buttons do.

Interpreting instructions stored in memory.

Instead of direct instruction, a model can also be taught what to do by memorizing an

initial set of instructions. Several ACT-R models are based on this paradigm (Taatgen & Lee,

2003; Anderson et al., 2004; Taatgen, 2005). The idea is that the system first reads instructions

that it then stores in declarative memory. When the task is performed these instructions are

retrieved from memory and carried out by production rules. These production rules are not

specific for the task, but rather represent general skills like pushing buttons, finding things on the

screen, comparing items, etc. The declarative instructions string the general skills together to

produce task-specific behavior. The cycle of retrieving and interpreting instructions from

memory can explain many aspects of novice behavior. Performance is slow because the process

of retrieving an instruction from memory is a time-consuming process during which the system

cannot do much else. It is serial, because only one instruction is active at the same time, making

it impossible to do two steps in parallel. It is prone to errors, because instructions may have been

Constraints in Cognitive Architectures 22

forgotten, requiring the model to reconstruct them through a time-consuming problem-solving

process. It also puts heavy demands on working memory capacity: both instructions and

temporary information has to be stored and retrieved from declarative memory, making it the

main bottleneck of novice processing. Because declarative memory is the bottleneck it is almost

impossible to do other tasks in parallel that also make demands on declarative memory.

Novice behavior is gradually transformed into expert behavior through a knowledge

compilation process (production compilation, Taatgen & Anderson, 2002). Production

compilation combines two existing rules into one new rule, while substituting any memory

retrieval in between those rules into the new rule. If the memory retrieval in between the two

rules is an instruction, this instruction is effectively encoded into the newly learned rule, creating

a production rule that is specific to the task. Production learning in ACT-R therefore gradually

transforms task-specific declarative knowledge and general production rules into task-specific

production rules. These newly learned rules exhibit many characteristics of expert behavior.

They are longer tied to a linear sequence of instructions, so they can be used out of sequence

whenever they apply, allowing parallel performance and increased flexibility of carrying out a

task (Taatgen, 2005).

Although models that learn from instructions cannot yet directly parse natural language,

they do offer more constrained models than models that are given expert knowledge right away.

Not all the expert models that can be encoded using production rules are learnable, and those that

are not can therefore be ruled out. In addition to that, the fact that the model learns its knowledge

offers the opportunity to match predictions about the learning trajectory to human data. This

means that some expert models that are learnable in the sense that the knowledge could be

Constraints in Cognitive Architectures 23

produced by the mechanisms in the architecture can still be ruled out because their learning

trajectory doesn’t match the human data.

From implicit to explicit learning.

One other way for a model to obtain its knowledge is by discovering regularities in the

environment. Although many classical models of discovery focus on explicit discovery

processes, many modern models start from the assumption that knowledge is often learned

implicitly. In, for example, the sugar factory experiment by Berry and Broadbent (1984),

participants have to decide how many workers they should send into the factory each day to

achieve some target output. The output depends not only on the number of workers, but also on

the production of the previous day. Although participants in the experiment generally do not

explicitly discover the relationship, they do get better at adjusting the number of workers in the

course of the experiment. This and similar experiments suggest that there is some unconscious

component to learning, implicit learning, that improves our performance without awareness.

Several models have been proposed to capture this effect. An ACT-R model by Wallach

(Taatgen & Wallach, 2002) stores examples of input/output relations in declarative memory, and

retrieves the example that has the highest activation and similarity to the current situation. This

model never gains explicit knowledge of the relationships in the task, but achieves better

performance by learning a representative set of examples.

Although knowledge in the sugar factory task never becomes explicit, at least not in the

ACT-R model, for many other task situations this is quite a conceivable theory. The learning

mechanisms in Clarion (Sun, Slusarz & Terry, 2005) are based on this idea: implicit learning

mechanisms first learn the viabilities of state/action combinations, after which an explicit rule-

learning mechanism capitalizes on these implicitly acquired connections by extracting explicit

Constraints in Cognitive Architectures 24

rules. Using this technique they modeled a broad range of tasks, among which various analogues

of the sugar factory task and various sequence learning tasks.

Constraints from Neuroscience

Human cognition is implemented in the brain. This fact can offer additional sources of

constraint in a cognitive architecture. The architecture of the brain offers two levels of

constraints: at the level of individual neurons and their interconnections, and at the level of

global brain structures.

Constraints at the level of individual brain cells.

The bottom line of cognition is that its ultimate substrate is an interconnected network of

neurons. Whether or not this is a significant source of constraint is open to debate. One view is

that brain cells implement some virtual architecture, and that the characteristics of brain cells are

irrelevant for an understanding of cognition (e.g., Newell, 1990). A more moderate version of

this point of view is adapted by the ACT-R architecture (Anderson & Lebiere, 2003). In that

view the main level of abstraction to study cognition is higher than the level of brain cells.

However, Lebiere has implemented a neural network version of ACT-R that is functionally

identical to the regular implementation. Nevertheless this model proved to supply some

additional restrictions on the architectures, for example the restriction that declarative memory

can only retrieve one item at a time.

Clarion (Sun, 2003) takes the point of view that elements and mechanisms that resemble

neurons are an important source of constraint on the architecture. Many of Clarion’s subsystems

are composed from neural networks. This offers additional constraints, because neural networks

are less easy to “program” than symbolic models. Clarion is still a hybrid architecture with both

symbolic and subsymbolic aspects. One can go even further and design an architecture

Constraints in Cognitive Architectures 25

completely build out of neural network components. Leabra (O’Reilly & Munakata, 2000) is an

example of such an architecture. The challenge with an architecture built out of simulated

neurons is that it has to deal with a number computational problems that are trivial to partly

symbolic architectures. A first problem is the binding problem, the problem how the cognitive

systems groups features together, like associating a filler with a role, or a value with a variable or

attribute (Fodor & Pylyshyn, 1988). Given the large number of possible combinations of

attributes and values, it is not feasible that each combination already has a pre-wired connection

that can be activated, so some other means must be found to temporarily connect concepts

together. A second problem is called catastrophic interference (McCloskey & Cohen, 1989),

which refers to the fact that many networks unlearn previously learned knowledge when new

knowledge is presented. A third problem is serial behavior. Although networks perform

particularly well with respect to massively parallel performance, it is much harder to let them do

steps that have to be performed in a certain serial order. The three problems might seem to be an

argument against neural network architectures, but they may turn out to be the opposite, because

overcoming these problems will offer new constraints on the architecture. In fact, for each of the

three problems solutions have been proposed. A neural network cognitive architecture that would

offer solutions to each of these problems could make a very strong theory.

Constraints at the global brain architecture level.

Recent advances in brain imaging have allowed neuroscientists to build increasingly

finer-grained theories of what the functions of various regions in the brain are, and how these

regions are interconnected. The result is a map of interconnected, functionally labeled regions.

What brain imaging does not provide is the actual processing in these regions. Cognitive

architectures can provide processing theories constrained by the processing map of the brain.

Constraints in Cognitive Architectures 26

ACT-R (Anderson et al, 2004; Anderson, 2005) has mapped its buffers and production system

onto brain regions, and is capable of making predictions of brain activity on the basis of a

cognitive model. For example, in a study in which children had to learn to solve algebra

equations, the ACT-R model predicted how activity in several brain areas would differ with

problem difficulty and the effects of learning (Anderson, 2005).

4. Conclusions

The viewpoint of cognitive constraint can offer different perspectives on cognitive

architectures than the question of how much functionality they can provide (as, for example,

expressed by Anderson and Lebiere, 2003). Although both functionality and strength as a theory

are important for a cognitive architecture, the latter will ultimately determine its success. One

symptom of the fact that cognitive architectures are still relatively weak theories is that few

predictions are made, as opposed to fitting a model onto data after the experiment has been done

(but see Salvucci & Macuga, 2002 and Taatgen, van Rijn & Anderson, in preparation, for

examples of successful predictive research). A research culture in which modelers would

routinely model their experiment before they would conduct the experiment would create a much

better research environment, in which confirmed predictions would be evidence for theory

strength, and in which failed predictions would be great opportunities to strengthen the theory.

Nevertheless even the current architectures are stronger theories than the collection of micro-

theories that the general field of cognitive psychology offers.

Constraints in Cognitive Architectures 27

Constraints in Cognitive Architectures 28

References

Anderson, J. R. (1976). Language, Memory and Thought. Mahwah, NJ: Erlbaum.

Anderson, J. R. (1990). The adaptive character of thought. Mahwah, NJ: Erlbaum.

Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive

architecture. Cognitive Science, 29(3), 313-341.

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R. & Lebiere, C. L. (1998). The atomic components of thought. Mahwah,

NJ: Erlbaum.

Anderson, J. R. & Lebiere, C. L. (2003). The Newell test for a theory of cognition.

Behavioral & Brain Sciences, 26, 587-637.

Anderson, J. R. & Matessa, M. P. (1997). A production system theory of serial memory.

Psychological Review, 104, 728-748.

Anderson, J.R., Taatgen, N.A. & Byrne, M.D. (2005). Learning to Achieve Perfect Time

Sharing: Architectural Implications of Hazeltine, Teague, & Ivry (2002). Journal of

Experimental Psychology: Human Perception and Performance, 31(4), 749-761.

Berry, D. C., & Broadbent, D.E. (1984). On the relationship between task performance

and associated verbalizable knowledge. The Quarterly Journal of Experimental Psychology,

36A, 209-231.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological

refractory period and perfect time-sharing. Psychological Review, 108, 847-869.

Constraints in Cognitive Architectures 29

Chong, R. S. (1999). Modeling dual-task performance improvement: Casting executive

process knowledge acquisition as strategy refinement. Unpublished dissertation. University of

Michigan.

Cooper, R. & Fox, J. (1998). COGENT: A visual design environment for cognitive

modelling. Behavior Research Methods, Instruments, & Computers, 30, 553-564.

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a

critical analysis. Cognition, 28, 3-71.

Forgy, C. L. (1982). Rete: a fast algorithm for the many object pattern match problem.

Artificial Intelligence, 19, 17-37.

Hornof, A.J., & Kieras, D.E. (1997). Cognitive modeling reveals menu search is both

random and systematic. Proceedings of CHI-97 (pp. 107–114). New York: Association for

Computing Machinery.

Huffman, S.B. & Laird, J.E. (1995). Flexibly instructable agents. Journal of Artificial

Intelligence Research, 3, 271-324.

Just, M. A. & Carpenter, P. A. (1992). A Capacity Theory of Comprehension: Individual

Differences in Working Memory. Psychological Review, 99, 122-149.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general

intelligence. Artificial Intelligence, 33, 1-64.

Lewis, R. L. (1996) Interference in short-term memory: The magical number two (or

three) in sentence processing. Journal of Psycholinguistic Research, 25, 93-115.

Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a

unified architecture: An ACT-R perspective. In A. Miyake & P. Shah (Eds.) Models of Working

Memory (pp. 135-182). Cambridge, MA: Cambridge.

Constraints in Cognitive Architectures 30

Marinier, R. P. & Laird, J. E. (2004). Toward a comprehensive computational model of

emotions and feelings. Proceedings of the Sixth International Conference on Cognitive Modeling

(pp. 172-177). Mahwah, NJ: Erlbaum.

McCloskey, M. & Cohen, N. J. (1989). Catastrophic interference in connectionist

networks: The sequential learning problem. In G.H. Bower (Ed.), The Psychology of Learning

and Motivation, vol. 24 (pp. 109-164). San Diego, CA: Academic Press.

Meyer, D. E. & Kieras, D. E. (1997). A computational theory of executive cognitive

processes and multiple-task performance. Part 1. Basic mechanisms Psychological Review, 104,

2-65.

Miller, G.A. (1956). The magic number seven, plus or minus two: some limits on our

capacity for processing information. Psychological Review, 63, 81-97.

Nason, S. & Laird, J. E. (2004). Soar-RL: Integrating Reinforcement learning with Soar.

Proceedings of the Sixth International Conference on Cognitive Modeling (pp. 208-213).

Mahwah, NJ: Erlbaum.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard.

Newell, A. & Simon, H. A. (1963). GPS, a program that simulates human thought. In E.

A. Feigenbaum & J. Feldman (eds.), Computers and Thought. New York: McGraw-Hill.

O’Reilly, R. C. & Munakata, Y. (2000). Computational explorations in cognitive

neuroscience. Cambridge, MA: MIT Press.

Pashler, H. (1994). Dual-task interference in simple tasks: Data and Theory.

Psychological Bulletin, 116, 220-244.

Penrose, R. (1989). The emperor’s new mind. Oxford, UK: Oxford University Press.

Constraints in Cognitive Architectures 31

Popper, K. R. (1962). Conjectures and refutations: The growth of scientific knowledge.

New York: Basic Books.

Roberts, S. & Pashler, H. (2000). How persuasive is a good fit? A comment on theory

testing. Psychological Review, 107, 358-367.

Salvucci, D.D., & Macuga, K. L. (2002). Predicting the effects of cellular-phone dialing

on driver performance. Cognitive Systems Research, 3, 95-102.

Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J., Kieras, D.

E., & Meyer, D. E. (2001). Virtually perfect time sharing in dual-task performance: Uncorking

the central cognitive bottleneck. Psychological Science, 12 (2), 101-108.

Sun, R. (2003). A tutorial on Clarion. Technical report Cognitive Science Department,

Rensselaer Polytechnic Institute. http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf.

Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in

skill learning: A dual-process approach. Psychological Review, 112(1), 159-192.

Sun, R. & Zhang, X. (2004). Top-down versus bottom-up learning in cognitive skill

acquisition. Cognitive Systems Research, 5(1), 63-89.

Taatgen, N.A. (2005). Modeling parallelization and speed improvement in skill

acquisition: from dual tasks to complex dynamic skills. Cognitive Science, 29, 421-455.

Taatgen, N. A. & Anderson, J. R. (2002). Why do children learn to say "broke"? A model

of learning the past tense without feedback, Cognition, 86 (2), 123-155.

Taatgen, N.A. & Lee, F.J. (2003). Production Compilation: A simple mechanism to

model Complex Skill Acquisition. Human Factors, 45(1), 61-76.

Taatgen, N.A., van Rijn, D.H. & Anderson, J.R. (in preparation). An integrated model of

time interval estimation.

Constraints in Cognitive Architectures 32

Taatgen, N.A. & Wallach, D. (2002). Whether skill acquisition is rule or instance based is

determined by the structure of the task. Cognitive Science Quarterly, 2(2), 163-204.

Tambe, M., Newell, A. & Rosenbloom, P. S. (1990). The problem of expensive chunks

and its solution by restricting expressiveness. Machine Learning, 5, 299-348.

Turing, A. (1936). On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, 2nd series, 42, 230-

265.

Turing A. (1950). Computing machinery and intelligence. Mind, 59, 433-460.

Young, R.M. & Lewis, R.L. (1999). The Soar cognitive architecture and human working

memory. In A. Miyake & P. Shah (Eds.) Models of Working Memory (pp. 224–256). Cambridge,

MA: Cambridge.

Constraints in Cognitive Architectures 33

Table 1. Overview on how architectures constrain aspects of information processing.

Process Architec

ture

Constraint Reference

Working

Memory

 Soar Limitations of working memory arise on

functional grounds, usually due to lack of

reasoning procedures to properly process

information.

Young & Lewis

(1999).

 ACT-R Limitations of working memory arise from

decay and interference in declarative

memory. Individual differences are

explained by differences in spreading

activation.

Lovett, Reder &

Lebiere (1999).

 Clarion Limitations of working memory are

enforced by a separate working memory

with decay.

Sun & Zhang (2004).

Cognitive

performance

 Soar A decision cycle in Soar takes 50 ms,

although many production rules may fire in

parallel leading to the decision.

Newell (1990).

 ACT-R A production rule takes 50 ms to fire, no Anderson, et al.

Constraints in Cognitive Architectures 34

parallel firing is allowed. A rule is limited to

inspecting the current contents of the

perceptual and memory-retrieval systems

and initiating motor action and memory-

retrieval requests.

(2004).

 EPIC Production rules take 50 ms to fire, but

parallel firing of rules is allowed.

Meyer & Kieras

(1997).

 Clarion Performance is produced by an implicit

(parallel) and explicit (serial) reasoning

system that both have an action-oriented and

a non-action-oriented subsystem.

Sun (2003).

Perceptual and

Motor systems

 EPIC Perceptual and motor modules are based on

timing from the Model Human Processor

(Card, Moran & Newell, 1983). Modules

operate asynchronously alongside central

cognition.

Kieras & Meyer

(1997).

 ACT-R;

Soar;

Clarion

Use modules adapted from EPIC. Byrne & Anderson

(2001), Chong (1999),

Sun (2003).

Learning

 Soar Learning is keyed to so-called impasses, Newell (1990).

Constraints in Cognitive Architectures 35

where a sub-goal is needed to resolve a

choice problem in the main goal.

 ACT-R Learning is based on rational analysis in

which knowledge is added and maintained

in memory on the basis of expected use and

utility.

Anderson et al.

(2004).

 Clarion Learning is a combination of explicit rule

extraction/refinement and implicit

reinforcement learning.

Sun, Slusarz & Terry

(2005).

Neuroscience

 ACT-R Components in ACT-R are mapped onto

areas in the brain, producing predictions of

fMRI activity.

Anderson (2005).

 Clarion Uses brain-inspired neural networks as

components in the architecture

Sun (2003).

