
Analogical Model Formulation for AP Physics Problems

Matthew Klenk, Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University
2133 Sheridan Road, Evanston, IL, 60208

{m-klenk, forbus}@northwestern.edu

Abstract
One of the least studied problems in qualitative reasoning is
computing structural descriptions, i.e., how to move from
the unruly, broad set of concepts used in everyday life to a
concise, formal vocabulary of abstractions that can be used
effectively for problem solving. This paper describes how
learning by analogy can be used to solve this problem in the
domain of AP physics problems. The system starts with
some basic mathematical skills, a broad ontology covering
many aspects of everyday life, and some basic qualitative
mechanics. By studying worked solutions, it learns
equations and modeling strategies that can be used to solve
AP Physics problems. By examining systematic variations
of problems, we show that analogical model formulation
can be used to solve three kinds of transfer problems:
parameterization, restructuring, and restyling.

Introduction
One of the important contributions of qualitative reasoning
has been formalizing the process of model formulation (cf.
Falkenhainer & Forbus, 1991; Nayak 1994, Rickel &
Porter, 1994). Most model formulation work has focused
on ascertaining what levels of detail and which
perspectives should be used in a model, given a particular
task. These algorithms take as input a structural description
of the system to be modeled, a kind of high-level
schematic. On the whole, they do very little reasoning
about the structural descriptions. An exception is analog
electronics, where (Flores & Cerda, 2000) shows how to
formalize a number of equivalent circuit configurations as
rewrite rules, to simplify circuit schematics in a human-
like way to make analyses more tractable. But otherwise,
the problem of constructing such structural descriptions
from everyday inputs has received little attention.

One class of problems where this issue arises is solving
textbook physics problems. A major challenge for students
is learning how to reframe familiar everyday situations into
models that can be solved using the formal techniques of
physics. This is challenging for a variety of reasons. The
conditions under which particular equations are applicable
must be learned. How particular conditions translate into
parameter values must be learned, e.g., an object at rest has

zero velocity, and objects on Earth are affected by gravity.
A coin being dropped from a building might be
approximated as a point mass, but the same coin being
spun on a table (in a problem about angular momentum)
cannot be viewed so. Learning to construct formal models
that can be analyzed mathematically from everyday
situations is one of the essential skills of a good scientist,
so the importance of these skills goes well beyond physics
itself.

Our hypothesis is that people learn how to formulate
models via analogy. That is, they use their experience
(both everyday and with solving textbook problems) to
enable them to solve new problems, and over time, extract
generalizations and heuristics. These enable them to
perform well under a broad variety of circumstances. This
is consistent with Falkenhainer’s (1992) observation that
engineers often use analogies with their experience to
formulate new models, but goes beyond it, in focusing on
constructing structural descriptions as well as learning
aspects of the domain itself. In (Klenk et al 2005) we
showed that modeling assumptions could be learned by
analogy to solve everyday reasoning problems, of the kind
found on the Bennett Mechanical Comprehension test. In
this paper we go beyond that result, by looking at whether
or not such techniques can be used to learn to solve
Advanced Placement (AP) physics problems. The AP tests
are tests taken by high school graduates to pass out of
college level courses.

With many AI ideas and systems focused on broad the
concept of learning, it is important to explicitly
differentiate between different types of learning to guide
further research in the field. One important distinction to
consider is the amount of transfer from problems in a
training set to problems in a test set. This characterizes
how general what is learned is, i.e., how broadly can it be
reused? In this paper we explore three distinct near-transfer
problems1:

1 These levels are from a 10-level catalog of transfer tasks used
in DARPA’s Transfer Learning Program
(http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA05-

• Parameterization: Can problems that vary in
terms of the specific numerical parameters be
solved?

• Restructuring: Can problems with the same
qualitative structure, but involving a different
solution variable, be solved?

• Restyling: Can problems with the same qualitative
structure, but different types of everyday objects,
be solved?

All three types of transfer are important. It is hard to say
that a system learned anything if it cannot solve the kind of
trivial variation involved in parameterization. The ability to
solve problems involving restructuring provides evidence
that the system is learning in a way that goes beyond
slavishly following the same procedure each time.
Restyling addresses the need to go beyond the specific
circumstances in which a principle was learned, to a broad
set of situations in which it is applicable.

This paper describes an analogical learning system which
exhibits the ability to perform these three kinds of transfer
on a set of AP physics problems. We start by reviewing the
analogical processing techniques used, then describe how
the solver works, illustrating its operation with a particular
problem. Then we discuss the results of an experiment
showing that it is capable of performing these three types
of transfer. We close with related work not mentioned
elsewhere in the paper, and plans for future work.

Background
We use Gentner's structure-mapping theory of analogy and
similarity (Gentner, 1983). In structure-mapping, analogy
and similarity are defined in terms of structural alignment
processes operating over structured representations. The
output of this comparison process is one or more
mappings, constituting a construal of how the two entities,
situations, or concepts (called base and target) can be
aligned. A mapping consists of a set of correspondences, a
set of candidate inferences, and a structural evaluation
score. A correspondence maps an item (entity or
expression) from the base to an item in the target. A
candidate inference is the surmise that a statement in the
base might hold in the target, based on the
correspondences. The structural evaluation score indicates
overall match quality.

We use two cognitive simulations based on structure-
mapping theory here. The Structure-Mapping Engine
(SME) does analogical mapping (Falkenhainer et al, 1986).
SME uses a greedy algorithm to compute approximately
optimal mappings in polynomial time. The base and target
descriptions can be pre-stored cases, or dynamically

29/BAA05-29TransferLearningPIP.doc)

computed based on queries to a large knowledge base
(Mostek et. al, 2000). MAC/FAC (Forbus et al, 1994)
models similarity-based retrieval. The first stage uses a
special kind of feature vector, automatically computed
from structural descriptions, to rapidly select a few
(typically three) candidates from a large case library. The
second stage uses SME to compare these candidates to the
probe description, returning one candidate (or more, if they
are very close) as what the probe reminded it of. As
performance systems, both SME and MAC/FAC have been
used successfully in a variety of different domains, and as
cognitive models, both have been used to account for a
variety of psychological results (Forbus, 2001). Now we
show how these domain-independent simulations can be
used to solve physics problems from worked solutions.

Solving physics problems by worked solutions
When students study for the AP Physics exam, one
important way in which they learn is by doing problem
sets. The feedback students often get is in the form of
worked solutions in the back of the book. We believe that
this is a promising type of learning to explore. Through
collaboration with the Educational Testing Service (ETS),
the organization that administers the AP Physics exam, we
obtained a number of example problems, illustrating a
variety of types of problems found on the exam and
worked solutions for each problem. We initially are
focusing on Newtonian dynamics. We translated the
problems and the worked solutions into predicate calculus,
using the contents drawn from the ResearchCyc knowledge
base plus our own extensions. ResearchCyc is useful for
this purpose because it includes over 30,000 distinct types
of entities, over 8,000 relationships and functions, and 1.2
million facts constraining them. Thus everyday concepts
like “astronaut” and “ball” are already defined for us,
rather than us generating them specifically for the purpose
of this project.

Example Worked Solution
Consider the following physics problem:
An astronaut on a planet with no atmosphere throws a ball
upward from near ground level with an initial speed of 4.0
m/s. If the ball rises to a maximum height of 5.0 m, what is
the acceleration due to gravity on this planet?
Our formal version of the ETS-supplied worked solution
for this problem has the following steps:

1. Recognize and instantiate the distance-velocity
under constant acceleration equation for the ball’s
motion (Vi^2 = Vf^2 – 2ad)

2. Given the projectile motion event infer that the
velocity of the ball at the maximum height is 0 (Vf
= 0 m/s)

3. Given the projectile motion and the lack of
atmosphere, infer that the value of the acceleration
on the ball is the gravitational force of the planet (a
= g)

4. Given that the ball is thrown from near the ground,
assume the height of the ball is equal to the
distance the ball travels during the upward motion
(d = h, given as 5.0 meters)

5. Apply the previous steps to solve the distance-
velocity equation for acceleration (g = 1.6 m/s/s)

Figure 1 shows the formal description of Step 4, for
concreteness. Notice that the description of the worked
solution is in terms of high-level operations, not the
internal reasoning vocabulary of our problem solver. This
is important, since this provides more opportunities for the
system to learn (and to make mistakes). We store the
worked solution along with the problem description as a
case in our case library, which will be used to solve new
problems. This is a very simple form of learning, learning
by accumulating examples. We discuss our plans to move
beyond this below.

Solving a Problem
Problem instances are presented as cases containing a
statement indicating the goal parameter. The first phase of
problem solving is to generate a mapping with a relevant
example. This is done in three steps. First, the problem
solver retrieves an example from the case library using the
problem case as the probe in MAC/FAC. Second, it creates
an orienting mapping between the relevant example and
the probe in which only statements concerning the
qualitative event structure are considered. Figure 2 shows
the representation of event structure for our running
example. It includes the events that occur in the description
of the problem, the statements about the entities that
participate in those events and relationships between the
events. Since dynamics is about the properties of objects

undergoing particular kinds of events, ensuring that the
qualitative event structure is accurately aligned provides a
solid basis for importing knowledge from a worked
example into a new problem.

Next, the retrieved example and the problem are compared,
but using the correspondences found in the orienting
mapping as constraints on this new mapping. The
candidate inferences of this new mapping will include the
solution steps for the worked problem. These solution steps
are used as necessary in the general problem-solving
process. But before any step can be used, it is inspected to
ensure that it is applicable in the current problem.

The general problem-solving process concerns finding the
value for a quantity. The system can find the value of a
quantity in three different ways. First, it may already be
known as part of the problem. Second, it may be able to
find an applicable solution step from the candidate
inferences in the mapping in which the goal parameter is
assumed. Third, an applicable solution step indicating a
relevant equation containing the sought after quantity.
With this equation, the system can recursively search for
values of the other quantities in the equation until the
equation is solvable for the sought after quantity. It is
important to note that the current version of the system
does not start with any of the equations of physics in a
general form – it only has access to them through examples
of how they have been used, in the worked examples. Thus
analogical reasoning is essential to the system being able to
solve any physics problems.

To determine whether or not a solution step suggested by
candidate inferences is valid for a given problem, the
system checks the context surrounding the previous use of
the solution step. Suppose for example the step assumes
that the only force on a dropped ball is the force of gravity,
because there is no atmosphere on the planet in the worked
solution. There has to be a corresponding fact saying there

Figure 2: Qualitative event structure for Problem 2

(isa Astronaut-2 Astronaut)
(isa Ball-2 Ball)
(isa HYP-Planet-2 Planet)
(isa ProjectileMotion-2 ProjectileMotion)
(eventOccursAt ProjectileMotion-2
 HYP-Planet-2)
 (primaryObjectMoving ProjectileMotion-2
 Ball-2)
(eventOccursNear ThrowingEvent-2 Ground-2)
(isa ThrowingEvent-2 ThrowingEvent)
(causes-EventEvent ThrowingEvent-2
 ProjectileMotion-2)
(contiguousAfter ProjectileMotion-2
 ThrowingEvent-2)
(performedBy ThrowingEvent-2 Astronaut-2)

Figure 1: Step 4 of Problem 2 worked solution

(solutionStepUses Step4-P2-WS
(isa Ground-2 SurfaceRegion-Tangible))

(solutionStepUses Step4-ETS-P2-WS
(groundOf HYP-Planet-2 Ground-2))

(solutionStepUses Step4-ETS-P2-WS
(eventOccursNear ThrowingEvent-2 Ground-2))

(solutionStepResult Step4-ETS-P2-WS
(math=
 (DistanceTraveled Ball-2

 (TimeFn (StartFn ProjectileMotion-2)
 TimePoint-2))

 (Height Ball-2 HYP-Planet-2
 TimePoint-2)))
(solutionStepOperation Step4-ETS-P2-WS
 AssumedEquation)

is no atmosphere on the planet in the problem, or the
ability to infer that there is no atmosphere, if this step is to
be applied. These context facts act as preconditions that
must be verified for the inferred step to be usable.

The algebra routines are simple, currently based on the
system in (Forbus & de Kleer 1993). We currently treat the
mathematical operations involved in solving a problem as a
black box, not subject to learning.

Modeling knowledge in worked solutions
As evident from the worked solution steps, problem
solvers are required to make a variety of modeling
assumptions to successfully find the solution. First, the
problem solver must determine which equations are
applicable for a given situation. This is required because,
even in a relatively constrained domain such as physics,
the number of equations mentioning common variables
such as acceleration is quite large. Efficient problem
solvers should not exhaustively search this space. Second,
a problem solver has to make assumptions to infer
parameter values. In the example above, the problem is not
solvable if the problem solver fails to recognize that the
ball has zero velocity at its highest point. Third, there is the
notion of default circumstances. The most common of
these in AP physics is to assume that events happen on
Earth and are subject to Earth’s gravity unless otherwise
mentioned. Finally, simplifying assumptions, such as
viewing an object as a point mass or assuming a collision
is elastic, are often required to make complex situations
tractable.

Three of the four types of modeling assumptions are
handled by our system directly through analogical
reasoning. That is, determining parameter values, default
circumstances, and relevant equations are handled directly
by the analogy with the worked solution. Only the last
type, categorizing an everyday object in terms of an
abstraction, is not currently handled by our system.
Instead, we take the categorization as acceptable if it is
compatible with the rest of the mapping. This works well
when the analogous problems are close, but could run into
trouble when the analogs are more distant.

Learning conditions for such categorizations is one of our
goals, but it turns out to be complex. Worked solutions for
people provide at best partial information about why a
modeling assumption they used is reasonable. For
example, modeling the ball as a point mass in the example
problem is never justified on other grounds. Students are
expected to generalize from a body of examples they have
seen about when to apply such ideas, probably in part
because the ontology of everyday things is so broad, and
the subset of object types that are appropriate for a
particular idealization are not tightly localized to one part

of the ontology. For example, rocks, coins, soda cans, and
ferrets can all be considered as point masses for some
kinds of problems, but most ontologies would not consider
these categories as being particularly close otherwise.

An Experiment
We conducted an experiment to investigate this model. We
chose three types of problems, of the kind found on AP
physics tests, provided to us by the Educational Testing
Service. Examples of these problem types are:

1. A ball is released from rest from the top of a 200 m
tall building on Earth and falls to the ground. If air
resistance is negligible, which of the following is
most nearly equal to the distance the ball falls
during the first 4 s after it is released?

2. An astronaut on a planet with no atmosphere
throws a ball upward from near ground level with
an initial speed of 4.0 m/s. If the ball rises to a
maximum height of 5.0 m, what is the acceleration
due to gravity on this planet?

3. A 5.0 kg object is moving with speed v when it
makes a head-on collision with a 2.0 kg object,
initially at rest. If friction is negligible, what must
be the speed v, if after the collision the 5.0 kg
object has speed 1.0 m/s, the 2 kg object has speed
2.5 m/s, and both objects are moving in the same
direction?

To test the verification of modeling assumptions, a copy of
each problem case was made in which the cases were
missing a precondition for a necessary modeling
assumption. We call these bogus problems, since they look
like they should be analogous but are not. An example
would be that problem type 3 states that you can ignore
friction on both blocks. Without this given information, the
problem becomes unsolvable because one cannot
instantiate the conservation of momentum equation.

Each original problem was represented as a case stored
with its worked solution in the case library. Then copies of
each problem, but not the worked solution, were created
for each of the transfer conditions – parameterization,
restructuring, and restyling, as per above – along with a
bogus problem. For parameterization problems, the values
for all the parameters mentioned in the problem statement
were changed, but the objects included all remained of the
same types as before. For example, the parameterization of
problem 2 involved a ball thrown upwards at 1 m/s and it
reached a height of 10 meters. For restructuring problems,
the system was asked to solve for a different quantity. For
example, the restructuring of problem 3 provided the value
of the initial velocity of the initially moving object as 2.5
m/s and asked for the velocity of that object post collision.

For restyling, the entity types were all changed but the
event types remained the same. For example, the restyling
of problem 1 included dropping a block off of a ledge.

The four versions of each problem were given to the
system. Its results are summarized in Table 1. We scored a
problem as being correct for the parameterization,
restructuring, and restyling conditions if the system
produced the correct answer. Because bogus problems do
not provide enough information to be solved correctly,
they were scored as correct when the system could not
produce an answer because it could not prove a
precondition for an assumption it attempted to make while
solving the problem.

 Problem 1 Problem 2 Problem 3

Parameterization Correct Correct Correct

Restructuring Correct Correct Correct

Restyling Correct Correct Failed

Bogus Problem Correct Correct Correct

Table 1: Experimental Results

The system’s only failure was Problem 3’s restyling
problem. Examination of the system’s explanations for its
results revealed that the error was due to a mismatch in the
orienting mapping. The motion events of each object after
collision are extremely symmetric, making it equally likely
that SME would choose to match the motion of object-1
after the collision in the new problem with the motion of
object-2 as with the motion of object-1 in the worked
solution. We discuss remedies for this problem below.

Related Work
Physics problem solving is a classic domain for qualitative
reasoning, starting with de Kleer’s (1977) pioneering work
in reasoning about sliding motion problems. Subsequent
work mostly focused on equation-solving, and we used the
results from Bundy (1983) in designing our equation-
solver. Pisan (1996) exploited qualitative representations to
reason about modeling assumptions in engineering
thermodynamics, but did not explore learning issues.
AI research on analogy in problem solving has a similarly
long history, including (Carbonell, 1986; Melis & Whittle,
1999; Veloso and Carbonell 1993). The closest systems to
ours are Cascade (VanLehn & Jones, 1993; VanLehn
1998) and APSS (Ouyang and Forbus, 2006). Cascade
starts with equations and other domain knowledge, and
only attempts to learn search control heuristics. By
contrast, our search control mechanism is currently fixed.
APSS is built on Pissan’s TPS system, and uses analogy to
solve textbook engineering thermodynamics problems.
Like TPS, it starts with a full suite of domain knowledge

and can solve problems without prior examples purely
from first principles, with analogy serving only to improve
performance. We differ from both Cascade and APSS in
that we focus on learning domain knowledge.

Discussion
This paper has examined how a learner can go from the
unruly, broad common sense world to the refined world of
parameters, equations, and modeling assumptions. While
the overall performance of the system is already quite
good, so far, we are have only tested it on three types of
problems out of more than 20 which are relevant to the
domain. Our future work is motivated by the goal of
expanding the system to the point where it can learn all of
the material on an AP physics exam about Newtonian
dynamics.

In addition to testing the system on more problems and
problem types, there are certain additions that we believe
to be essential to handle a larger exam involving more
complex transfer. First, we need to incorporate
rerepresentation (Yan et al 2003) to overcome errors in
analogical matching. The one failure we had can, as
described above, be traced back to a mapping error, and
this particular error is already handled by the existing
theory, although the implementation did not use it. Second,
AP physics problems often include diagrams, as do worked
solutions. We plan to incorporate sKEA (Forbus & Usher,
2002) to enable ETS to create sketches for problems and
worked solutions, and extend our system to be able to
exploit sketches in its reasoning. For example, knowing
that the direction of motion is downward when something
falls is an example of a piece of common sense that we
should be able to automatically extract from sketches in
worked solutions. Third, we plan to move beyond learning
by accumulating examples, in several ways. We plan to
construct generalizations based on SEQL (Kuehne et al
2000) to facilitate the system’s ability to transfer what it
learns more broadly. For example, equations might be
learned as encapsulated histories (Forbus, 1984), which,
being parameterized, could extend the system’s reach still
further. Fourth, we plan to use analogical generalization
over a corpus of physics problems to learn category
assignments of everyday categories to structural
abstractions. As Chi et al. (1981) note, one difference
between novices and experts appears to be in their
encoding strategies: Novices sort problems according to
the kinds of objects that appear in them, while experts sort
them according to the principles they would use to solve
them. Consequently, we plan to explore methods for
learning new encoding strategies, to capture this ability to
move more directly from the everyday world to models
that can be used to solve problems.

Acknowledgments
This research was supported by the Information Processing
Technology Office of the Defense Advanced Research
Projects agency. The opinions expressed herein are solely
those of the authors, and do not represent the US
government. We thank Pat Kyllonen and the Educational
Testing Service for providing sample problems.

References
Bundy, A. 1983. The Computer Modeling of

Mathematical Reasoning. Academic Press.
Carbonell, J. 1986. Derivational analogy: A theory of

reconstructive problem solving and expertise acquisition.
In R. Michalski, J. Carbonell, and T. Mitchell (Eds.)
Machine Learning: An artificial Intelligence Approach. pp
137-161, Springer.

de Kleer, J. 1977. Multiple representations of knowledge
in a mechanics problem solver, pp.299–304. Proc. IJCAI-
77.

Falkenhainer, B. 1992. Modeling without amnesia:
Making experience-sanctioned approximations.
Proceedings of QR02.

Falkenhainer, B. and Forbus, K. 1991. Compositional
modeling: finding the right model for the job. Artificial
Intelligence 51:95–143.

Flores, J. and Cerda, J. 2000. Efficient modeling of
linear circuits to perform qualitative reasoning tasks. AI
Communiations, 13(2) 125-134.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24:85–168.

Forbus, K. Exploring analogy in the large. In Gentner,
D., Holyoak, K., and Kokinov, B. (Eds.) Analogy:
Perspectives from Cognitive Science. MIT Press. 2001.

Forbus, K. and de Kleer, J., Building Problem Solvers,
MIT Press, 1993.

Forbus, K., Gentner, D., and Law, K. MAC/FAC: A
model of similarity-based retrieval. Cognitive Science, 19,
141-205. 1994.

Forbus, K. and Usher, J. 2002. Sketching for knowledge
capture: A progress report. Proceedings of IUI’02, January
13-16, 2002, San Francisco, California.

Gentner, D., Structure-mapping: A theoretical
framework for analogy, Cognitive Science 7(2), 1983.

Kuehne, S., Forbus, K., Gentner, D., and Quinn, B.
2000. SEQL: Category learning as incremental abstraction
using structure mapping. Proceedings of CogSci-2000.
Philadelphia, PA.

Melis, E. and Whittle, J. 1999. Analogy in inductive
theorem proving. Journal of Automated Reasoning,
22:117-147. Kluwer.

Mostek, T., Forbus, K, Meverden, C. Dynamic case
creation and expansion for analogical reasoning.
Proceedings of AAAI-2000. Austin, TX. 2000

Nayak, P. 1994. Causal approximations. Artificial
Intelligence 70:277–334.

Ouyang, T. and Forbus, K. 2006. Strategy variations in
analogical problem solving. To appear in Proceedings of
AAAI-06

Rickel, J. and Porter, B. 1994. Automated modeling for
answering prediction questions: selecting the time scale
and system boundary, pp. 1191–1198. Proc. AAAI-94.

VanLehn, K. 1998. Analogy Events: How Examples are
Used During Problem Solving. Cognitive Science 22(19),
pp 347-388.

VanLehn, K. and Jones, R. 1993. Better learners use
analogical problem solving sparingly. In Proceedings of
the 10th International Conference on Machine Learning,
pp 338-345, Morgan-Kauffman.

Veloso, M. and Carbonell, J. 1993. Derivational analogy
in PRODIGY: Automating case acquisition, storage, and
utilization. Machine Learning, 10:249-278.

Yan, J., Forbus, K. and Gentner, D. 2003. A theory of
rerepresentation in analogical matching. Proceedings of
the 25th Annual Conference of the Cognitive Science
Society

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

