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Abstract 

In domains with everyday scenarios, an important aspect of 
model formulation concerns moving from broad 
descriptions to the technical abstractions necessary for 
effective problem-solving.  We present a method for 
learning how to make abstraction decisions from experience 
via analogical generalization.  Specifically, we generalize 
abstraction decisions from worked examples, abstracting 
away irrelevant information.  When faced with a new 
situation, our method compares the entities in the situation 
with the generalizations, and makes its decision by using the 
best match.  We argue that the similarity score from the 
comparison is an effective heuristic for judging the quality 
of the modeling decision.  Using textbook physics problems, 
we show that our method can make accurate abstraction 
decisions, and that these decisions improve as the system 
gains experience. 

Introduction 

One of the important contributions of qualitative reasoning 
has been formalizing the process of model formulation (cf. 
Falkenhainer & Forbus 1991; Nayak 1994; Rickel & Porter 
1994).  Most model formulation work has focused on 
ascertaining what levels of detail and which perspectives 
should be used in a model, given a particular task.  In 
general, model formulation research has ignored the 
problem of computing structural descriptions, i.e. moving 
from the broad set of concepts used in everyday life to a 
concise, technical vocabulary of abstractions that can be 
used effectively for problem-solving.  We use the term 
participant abstraction to refer to the type of a participant 
in a domain theory, and the term scenario entity to refer to 
an entity within the everyday domain scenario.  This work 
addresses how decisions about participant abstractions can 
be learned.  Specifically, we use analogical techniques 
from structure-mapping theory (Gentner 1983) to decide 
how to represent everyday entities in a scenario model. 
 The typical method for making these participant 
abstraction decisions is as follows.  Given a scenario and a 
domain theory, one can use the type of each scenario entity 
in an ontology to determine its appropriate participant 
abstraction in the domain theory.  For example, in the 

ResearchCyc1 ontology, the collection Coin is a 
specialization of the collection PartiallyTangible.  
Consequently, we could write a rule stating that a 
PartiallyTangible should be considered a PointMass in 
a model.  This rule-based approach is problematic for 
several reasons.  First, these rules would contain false 
positives (e.g. a Lake, which is a PartiallyTangible, 
should not be considered a point mass in most situations).  
Second, participant abstraction decisions are very 
contextual.  While a coin falling off a building could be 
considered a PointMass, the same coin spinning on a table, 
in a rotational mechanics problem, should be a viewed as 
an object with extent.  Accounting for this necessary 
contextual information greatly increases the complexity of 
such rules.  As noted by Falkenhainer and Forbus (1991), 
modeling rules are very domain specific; that is, for each 
new domain a knowledge engineer will have to construct a 
new set of rules. 
 We propose an alternative method that learns from 
examples the necessary connections between everyday 
scenario entities and participant abstractions to construct 
scenario models.  Our method uses psychological 
simulations of analogical processing to learn these 
participant abstraction decisions. 

This paper uses physics problem solving to demonstrate 
our method, but we believe it is applicable across a wide 
range of domains.  We begin by summarizing the 
analogical processing components we use and our 
representations of the physics domain.  Next, we describe 
how participant abstraction decisions can be learned from 
examples, using generalization.  We present experimental 
results demonstrating the effectiveness of our method.  
Finally, we close with a discussion of related work and 
future work. 

Background 

Our approach to learning participant abstraction decisions 
utilizes the SEQL generalization model (Kuehne et al. 
2000).  SEQL constructs generalizations incrementally via 
analogical comparison using SME, the Structure-Mapping 
Engine (Falkenhainer et al. 1989).   For this work, the 
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generalizations are formed over example participant 
abstraction decisions from physics problems.  We begin 
with an overview of the analogical processes utilized in our 
method, and then we describe the participant abstractions 
of our domain theory and physics representations. 

Analogical Processes: SME and SEQL 

We use Gentner’s (1983) structure-mapping theory, which 
postulates that analogy and similarity are computed via 
structural alignment between two representations (the base 
and target) to find the maximal structurally consistent 
match.  For maximality, structure-mapping uses the 
principle of systematicity: mappings that are highly 
interconnected and contain deep chains of higher order 
relations are preferred. 
 SME simulates analogical matching.  It takes as input 
two structured representations (base and target).   It 
produces one or more mappings that describe how the two 
representations can be aligned.  A mapping includes 
correspondences that link items (entities and relations) in 
one representation with items of the other, a structural 
evaluation score which reflects the quality of the entire 
mapping, and a set of candidate inferences that are 
conjectures about the target created by projecting partially 
mapped base expressions.   

SEQL simulates analogical generalization.  It maintains 
a list of generalizations and exemplars, which are 
structured representations, called a generalization context.  
It takes as input a sequence of new examples.  Given a new 
example, SME is used to compare it to the existing 
generalizations.  When the structural evaluation score is 
above the assimilation threshold, the example is 
assimilated into that generalization by keeping the 
common overlapping structure.  If the example is not 
assimilated into an existing generalization, it is compared 
against the exemplars.  Again, if it is sufficiently similar to 
another exemplar, a new generalization is created from the 
common structure.  Otherwise, the new example is added 
to the list of exemplars.  

Physics problem-solving and QP theory 

de Kleer’s (1977) pioneering work emphasized the 

importance of modeling in solving physics problems.  

Given a domain theory and a physics problem, a problem-

solver must make a number of modeling decisions to arrive 

at the correct solution.  Consider a problem where a ball is 

dropped off the top of a building.  The ball should be 

considered a point mass, and the falling event should be 

considered a constant linear acceleration event.  These are 

examples of participant abstraction decisions and are the 

focus of this paper.  Solving this problem requires 

additional modeling decisions, including assuming that the 

event occurs on Earth.  As noted in related work, analogy 

may be useful for learning how to make these types of 

decisions as well.  In this paper, these other modeling 

decisions are made via hand-coded rules, so we can focus 

exclusively on participant abstraction decisions here.  

Determining which abstraction to apply, given problem 

scenarios whose entities can range over tens of thousands 

of possible categories, is quite challenging. 

Our physics domain theories consist of encapsulated 

histories (Forbus 1984) that represent physics equations.  

Encapsulated histories, unlike model fragments, permit 

constraints to be placed on the duration of events and time 

intervals.  The encapsulated histories for our physics 

domain theory include participant abstractions such as 

PointMass and ConstantTranslationAccelerationEvent.  

These abstractions are not used within the scenario 

descriptions of physics problems; rather, the scenario 

entities are encoded as real-world objects such as 

Automobile and Driving.  Moving from the real-world 

entities to the technical language for problem-solving is 

one kind of simplifying assumption (Falkenhainer & 

Forbus 1991). 

 Figure 1 shows the definition for the encapsulated 

history representing the equation vf = vi + at, velocity as a 

function of time.  The two participants, theObject and 

theEvent, must satisfy their type constraints, PointMass 

and ConstantTranslationAccelerationEvent, 

respectively.  Furthermore, the conditions of the 

encapsulated history must be satisfied in order to 

instantiate it and conclude its consequences.  In this 

example, theObject must be the object moving in 

theEvent for the encapsulated history to be instantiated.     

The method we describe in this paper learns how 

everyday entities in problems should be modeled in terms 

of the abstractions used in the domain theory. 

Representing Physics Problems and Examples 

The representations used in this work are in CycL, the 
predicate calculus language of the ResearchCyc knowledge 
base (Matuszek et al. 2006). We use a subset of the 
ResearchCyc KB, consisting of 33,000+ concepts, and 

Figure 1: Encapsulated history definition 

(def-encapsulated-history 

  VelocityByTime-1DConstantAcceleration 

  :participants  

 ((theObject :type PointMass) 

  (theEvent  :type 

             ConstantTranslationAccelerationEvent)) 

 :conditions 

 ((primaryObjectMoving theEvent theObject)) 

 :consequences 

 ((equationFor VelocityByTime 

  (mathEquals  

   (AtFn (Speed theObject) (EndFn theEvent))  

       (PlusFn 

          (AtFn (Speed theObject) 

            (StartFn theEvent)) 

    (TimesFn  

        (AtFn (Acceleration theObject) theEvent) 

        (Time-Quantity theEvent))))))) 

 



13,000+ relations, plus our own extensions for QP theory 
(Forbus 1984) and problem-solving strategies.  
Consequently, objects, relations, and events that appear in 
physics problems such as “rotor,” “car,” and “driving” are 
predefined in the ontology.  This reduces the degree of 
tailorability in our experiments. 
 All the problems used in this work were taken from a 
common physics textbook (Giancoli 1991).  We represent 
the problems and examples as cases, consisting of 
predicate calculus facts.  Consider the following physics 
problem: 
 

Suppose a ball is dropped from a 70m tower.  How 
far will it have fallen after 3 seconds?  
Example problem 2-9, p. 30. 

 
This problem is represented in our system as a case of 

19 facts, a subset of which is shown in Figure 2.  There are 
five entities in the problem: the top of the tower, the tower, 
the ball, the dropping event, and the 3-second interval.  
The facts in Figure 2 pertain to the ball’s motion during the 
dropping event, the description of the time interval, and the 
query of the problem. 
 

One common learning method physics students use is to 
solve problem sets and compare their answers to worked 
solutions.  This technique motivates the feedback we 
provide our system.  Worked solutions are neither 
deductive proofs nor problem-solving traces produced by 
our solver.  The worked solution for this example problem 
consists of five steps:  

1. Categorize the problem as a constant acceleration 
linear mechanics problem 

2. Assume that the acceleration of the ball (a = 10 m/s2) 
3. Instantiate the distance by velocity time equation       

(d = vit + .5at2) 
4. Because the ball is stationary at the start of the drop 

infer that its velocity is zero (vi = 0 m/s) 
5. Solve the equation for d (d = 45 m) 

 
The entire worked solution for this problem consists of 

38 facts.  The third step is most relevant to the goals of this 
paper – the instantiation of the distance by the velocity 

time equation.  This step depends upon two abstraction 
decisions, one for the ball and one for the dropping event, 
as illustrated in Figure 3.  Next we describe how we build 
generalizations from these example decisions and apply the 
learned knowledge to new problems. 

Learning Participant Abstraction Decisions 

The primary contribution of this work is our method for 

learning how to make decisions about participant 

abstractions for problem entities described in everyday 

terms.  Our method is best understood in two stages: 

generalization and execution.  First, we generalize 

examples of participant abstraction decisions.  Then, when 

faced with a problem, our method uses analogies between 

the entities in the problem and the generalizations to make 

participant abstraction decisions.  These decisions allow 

our solver to instantiate the necessary encapsulated 

histories to solve the problem. 

Generalization of Participant Abstractions 

We create generalizations at the granularity of the 
participant abstraction.  As such, we contextualize the 
generalizations such that all examples of a given 
participant abstraction are considered together.  We 
achieve this with generalization contexts.  Each context has 
an entry pattern that exemplars must satisfy to be 
generalized within.  The entry patterns used here reflect the 
various participant abstractions.  Figure 4 depicts the four 
generalization contexts after generalizing decisions from 
eight worked solutions. 

Our system populates the generalization contexts with 

exemplars generated from worked solutions.  Exemplars 

are created for each participant abstraction within the 

worked solutions and generalized within the appropriate 

contexts.  For example, in the worked solution from Figure 

3, there are two statements indicating participant 

abstractions. The statement (abstractionForObject 

Ball-2-10 PointMass) signals that an exemplar case 

should be constructed, including all statements that 

mention the entity Ball-2-10 in the problem plus the 

abstractionForObject statement.  Since the worked 

solution contains a second participant abstraction, the 

system generates a separate exemplar in the same manner 

for the entity Drop-2-10.  Next, these exemplars are added 

to their appropriate generalization contexts as indicated by 

Figure 4 and generalized via SEQL as described above. 

Figure 3: Worked solutions indicate appropriate 

participant abstractions for problem entities 

 

(StepUses Gia-2-10-WS-Step-3 

   (abstractionForObject Ball-2-10 PointMass)) 

(StepUses Gia-2-10-WS-Step-3 

   (abstractionForObject Drop-2-10 

      ConstantTranslationAccelerationEvent)) 

Figure 2: Part of example problem 2-9 representation 

 

...  

(objectStationary (StartFn Drop-2-10) Ball-2-10) 

(primaryObjectMoving Drop-2-10 Ball-2-10) 

(directionOfTranslation Fall-2-10 Down-Directly) 

(objectTopSide Tower-2-10 Top-2-10) 

(fromLocation Drop-2-10 Top-2-10) 

(temporallyCooriginating Drop-2-10 Interval-2-10) 

(valueOf (Time-Quantity Interval-2-10) 

         (SecondsDuration 3)) 

(querySentence Gia-Query-2-10 

  (valueOf  

   (DistanceTravelled Ball-2-10 Interval-2-10) 

   Distance-2-10)) 



 

Figure 4: Example generalization contextualization 

This allows the system to maintain several contexts 

simultaneously, each representing a participant abstraction 

with its own lists of generalizations and ungeneralized 

exemplars. 

As new worked solutions are made available, our 

method builds participant abstraction examples and adds 

them to the appropriate generalization contexts.  Therefore, 

our method learns incrementally by refining and extending 

its generalizations. 

Making Participant Abstraction Decisions 

Given a problem, a domain theory, and contextualized 

generalizations of participant abstractions, our method uses 

analogy to determine if and how entities in the problem 

should be included in the model.  In addition to making the 

modeling decision, our method returns a confidence value 

(0-1) as a heuristic for confidence in the decision. 

The algorithm listed in Figure 5 is performed on every 

entity in the problem.  The process consists of three steps: 

building a case around the entity, comparing it against the 

best match from each generalization context, and deciding 

which, if any, abstraction is appropriate for the entity. 

 Our method begins by building an entity case from the 

entity.  As in building the worked solution exemplars, we 

include all facts in the problem that mention the entity.  

The system then compares this case to each generalization 

context. 

 From each generalization context, our method identifies 

the generalization or exemplar with the highest structural 

evaluation score via SME comparison with the entity case.  

The systematicity principle implemented in SME means 

that matches with deeper relational structures have higher 

structural evaluation scores; therefore, the best mapping for 

a generalization context is not necessarily the largest, but 

the one with the most relational structure. 

 The confidence value of the match is computed by 

analyzing several aspects of the match.  First, our method 

analyzes the candidate inferences of the match between the 

best match and the entity case.  Because every case in the 

generalization context has an abstractionForObject fact, 

we search the mapping for a corresponding candidate 

inference in the target (entity case) under consideration.  If 

there is no such candidate inference, the confidence for this 

abstraction is zero.  Otherwise, the confidence value is the 

SME structural evaluation score normalized against a self-

match of the exemplar or generalization.  Normalization is 

necessary for comparing confidence values across 

generalization contexts.  Normalizing against the best 

match means the maximum confidence score approaches 

one as the entire exemplar or generalization, aside from the 

abstractionForObject statement, participates in the 

mapping. 

 The confidence values are compared, and the system 

identifies the generalization context that generated the 

highest confidence value.  The participant abstraction 

represented by this generalization context is selected as the 

abstraction for the entity.  If the highest confidence value is 

zero, the entity is not considered a participant in the model. 

Evaluation 

Our evaluation focuses on exploring the following 
questions.  First, is our method able to make accurate 
participant abstraction decisions?  Second, does our 
method’s performance improve as examples are added to 
the system?  Finally, does the confidence value provide a 

1) Given entity, e, from problem, P 

a) Build entity case, ec, with each fact in P  

mentioning e 

2) For each Generalization Context gci  

a) Compare ec with each exemplar and generalization 

within gci 

b) Use the best matching exemplar or generalization 

as the base of an analogy with ec 

c) If a candidate inference of this match includes a 

fact of the form: (abstractionForObject e gci) 

i) Return the normalized structural evaluation 

score for this match as the confidence for this 

generalization context 

ii) Otherwise, return 0 

3) Select as the participant abstraction for e from the 

generalization with the highest confidence 

a) If all generalization context score 0, do not make a 

participant abstraction for e 

 
Figure 5: Participant abstraction decision algorithm 



useful heuristic in determining the accuracy of a participant 
abstraction for a particular problem entity? 

Method 

Our materials include five linear kinematics problems and 
five rotational kinematics problems.  In these problems, 
there are 34 entities, of which 21 should be modeled as one 
of four different participant abstractions: PointMass, 

LinearConstantAccelerationEvent, RigidObject, 

RotationalConstant-AccelerationEvent.  To evaluate 
the effect of learning, we created four conditions based 
upon the size of the training set (2, 4, 6, and 8).  To ensure 
that each generalization context has at least one exemplar, 
each training set consists of an equal number of problems 
from linear and rotational kinematics.  Using the worked 
solution for each training set problem, we added 
participant abstraction exemplars to the appropriate 
generalization contexts.  The remaining problems were 
used for testing.  That is, for each entity in each problem 
our method selected a participant abstraction based upon 
the generalizations created by the training set.  We 
evaluated every possible combination of problems for the 
training sets in each trial (size 2=25 trials, size 4=100 
trials, size 6=100 trials, and size 8=25 trials). 
 For each decision, we compare the result of our method 
to the desired result, as indicated by the worked solutions.  
There are five possible results: 

1. Correct: The entity was a model participant and 
identified correctly. 

2. Correctly Ignored: The entity was not a model 
participant and was not identified as one. 

3. Extraneous: The entity was not a model participant, 
and our method selected an abstraction. 

4. Wrong: The entity was a model participant, but was 
identified as the wrong abstraction. 

5. Failed: The entity was a model participant, but was 
not identified as any abstraction by our method.  

 Correct and correctly ignored answers are considered 
successful modeling decisions.  Extraneous answers result 
in more participants to consider when formulating the 
model, but should not cause errors when solving the 
problem.  In the worst case, additional encapsulated 
histories will be instantiated resulting in valid but 
irrelevant equations for the problem-solver to consider.  
Wrong and failed answers are errors, as they provide the 
rest of the model formulation process with incorrect 
information. 

Results 

As the number of trials varies by the size of the training set 
and the number of entities per trial depends on the 
problems in the test set, each condition has a different 
number of total participant abstraction decisions.  
Therefore, we report the frequency of each decision type as 
a percentage of the total decisions made in Table 1.  
 These results support our hypothesis that our method is 
able to learn to make participant abstraction decisions.  

With two worked solutions, the system made successful 
inferences (correct + correctly ignored) 89% of the time, 
extraneous inferences 6% and incorrect inferences (wrong 
+ failed) 4% of the time.  Furthermore, these results 
support the learning hypothesis because the number of 
incorrect decisions decreases down to 0.5% as the number 
of worked solutions in the training set increases to eight. 
 Figure 6 contains a graph of our method’s mean 
confidence values for each of the inference categories.  
Correctly ignored and failed decisions always have a 
confidence value of 0; consequently, they are not shown.  
The confidence values are a useful discriminator.  The 
correct answer values are significantly different from the 
irrelevant and wrong answers (p < .001).  Additionally, our 
method’s confidence values for correct classifications is 
significantly higher (p < .001) with eight worked solutions 
than with two, supporting our learning hypothesis. 

Discussion 

These results indicate that our method is effective for 

making participant abstraction modeling decisions.  Our 

method not only makes these decisions, but also returns a 

confidence score, permitting additional reflection during 

the model formulation process.  Furthermore, our method 

has a learning component, such that its decisions and 

confidence estimates improve with experience.  We can 

explain these results by noting that SEQL generalizations 

abstract away the aspects of the exemplars that are not 

shared across scenarios.  As such, this focuses the 

participant abstraction decision on the appropriate 

Table 1: Participant abstraction decision results 

 

Training Set Size  
(# of decisions) 

2 
(680) 

4 
(2040) 

6 
(1360) 

8 
(170) 

Correct 72% 74% 75% 76% 

Correctly Ignored 17% 16% 15% 14% 

Extraneous 6% 7% 8% 8% 

Wrong 4% 2% 1% .5% 

Failed 0% 0% 0% 0% 

 

 

Figure 6: Confidence by answer type and number of 

examples 

 



relational structure in the problem representation.  The few 

failure cases within our results are due to extraneous 

relational structure within the generalization contexts 

because the system has not seen enough examples. 

 This behavior is more evident when we compare a 

generalization and an exemplar from the experiment, both 

of which are illustrated in Figure 7.  This generalization 

contains four facts and three generalized entities.  

:genents are entities that have been abstracted by SEQL.  

The generalization contains an entity that is an automobile, 

which is the primary object moving in some event with a 

known acceleration.  On the other hand, the exemplar 

contains seven concrete facts about a jet plane taking off, 

some of which may complicate the modeling decision.  For 

example, the objectStationary fact provides distracting 

relational structure that could align erroneously with facts 

in the entity case and result in incorrect modeling 

decisions.  As generalizations are formed from additional 

examples, however, our method is better able to extract 

and preserve the relational structure important for making 

modeling decisions. 

Related Work 

As noted previously, the majority of model formulation 

work has focused on ascertaining the levels of detail and 

perspectives that should be used in a model, given a 

particular task (cf. Falkenhainer & Forbus 1991; Nayak 

1994 Rickel & Porter 1994).  A notable exception is Flores 

and Cerda’s (2000) work in analog electronics, which 

formalized a number of equivalent circuit configurations as 

rewrite rules to simplify circuit schematics in a human-like 

way.  While these systems perform well in the domains in 

which they were designed, the goal of this work is to learn 

how to make modeling decisions in new domains based 

upon examples.  By focusing on learning, we believe our 

approach will be applicable in a wide variety of domains. 

 An alternative to these rule-based approaches is 

analogical model formulation (Klenk et al. 2005; Klenk & 

Forbus 2007).  Motivated by the observation that engineers 

frequently use analogies with their experiences in 

formulating new models (Falkenhainer 1992), analogical 

model formulation allows an agent to make a number of 

modeling decisions about a situation, described in 

everyday terms, based upon explanations of similar 

situations.  In this work, our method learns how to make 

participant abstraction decisions via generalization.  These 

generalizations allow the learned knowledge to be applied 

more generally than in analogical model formulation. 

Conclusion & Future Work 

This paper presents a method for learning participant 

abstraction decisions from examples via generalization.  

We present results from an evaluation in which participant 

abstraction decisions were learned and applied in the 

physics domain. 

This represents a significant step towards building 

systems that learn how to model situations from examples. 

While our results demonstrate the utility of generalizing at 

the granularity of the model participant decision, we plan 

on extending this method to other modeling decisions.  For 

example, we plan to explore how generalization could be 

used to learn situation-appropriate simplifying or operating 

assumptions (e.g. ignoring friction, laminar flow, or elastic 

collisions).  We also plan to investigate generalization at 

the level of physical processes or encapsulated histories, 

perhaps accelerating the model formulation process with 

experience.   

The ability to leverage previously understood domains 

when faced with new domains is an important frontier for 

AI research.  We plan to incorporate this method for 

learning domain specific modeling decisions into our 

Domain Transfer via Analogy (DTA) framework (Klenk & 

Forbus 2007), which uses multiple cross domain analogies 

to transfer domain theories between areas of physics.   

Transferring the modeling knowledge encoded in these 

generalizations is an important direction for transfer 

learning research. 
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