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ABSTRACT
Using Analogy to Overcome Brittleness in Al Systems

Matthew Evans Klenk

One of the most important aspects of human reasoning is our abilioptistly adapt to new
situations, tasks, and domains. Current Al systems exhibit begdewhen faced with new
situations and domains. This work explores how structure mapping modeasalafgical

processing allow for the robust reuse of domain knowledge. Thik ¥ocuses on two

analogical methods to reuse existing knowledge in novel situations and domains.

The first method,analogical model formulatign applies analogy to the task ohodel
formulation Model formulation is the process of moving from a scenario oersydescription
to a formal vocabulary of abstractions and causal models that caisele effectively for
problem-solving. Analogical model formulation uses prior exampleslei@rmine which
abstractions, assumptions, quantities, equations, and causal modelppkecable in new
situations within the same domain. By employing examples, tlge rahan analogical model
formulation system is extendable by adding additional examplefispecidels. The robustness
of this method for reasoning and learning is evaluated in ssHrexperiments in two domains,

everyday physical reasoning with sketches and textbook physics problem-solving.

The second methodjomain transfer via analogyis a task-level model of cross-domain
analogical learning. DTA helps overcome brittleness by atigwbstract domain knowledge, in

this case equation schemas and control knowledge, to be transtemed tdomains. DTA
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learns adomain mappingbetween the entities and relations of the new domain and the
understood domain, through comparisons between structures of explanations.usihg this
mapping, a new domain theory can be inferred and extended through an detleggn the
domain theories themselves. This model is evaluated acr@sgety\of physics domains (e.g.,
mechanics, electricity and heat flow). Successful cross-doaratogies result ipersistent
mappings which support incremental learning of the target domain theoough multiple

cross-domain analogies.
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1 Introduction

One of the most important aspects of human reasoning is our abilioptistly adapt to new
situations, tasks, and domains. Current Al systems fall far shaxhibiting this flexibility.

While modern cars have sophisticated diagnostic systems, oné woulexpect the system
designed for a Ford Focus to work in Chevy Malibu. Consequently, stersydevelopers
frequently design whole new systems from scratch for each pradobeirtask. On the other
hand, people learn new tasks and domains all the time. In facgdhis with limited external
feedback and without anyone reaching inside their heads and repnoiggarthem. When
presented with faulty Chevy, an experienced Ford mechanic vibeultble to apply his or her

knowledge to diagnose the problem. This flexibility is the subject of this dissertat

1.1 Problems of Brittleness

Most large-scale Al systems rely on a knowledge base (KB)les and facts relevant for the
domain. These KBs attempt to capture the knowledge and reasoning oh lexperts.
Therefore, to build an Al system for a domain, the system nmiesigencode domain knowledge
from human experts into the KB. Given a query, the Al systemiogaence rules and facts
from the KB to arrive at an answer. In a perfect world, thesysttem can answer the same

guestions about the domain as human experts.

Unfortunately, this perfect world is rarely realized outsidenafrow domains. Frequently, Al
systems fail to extrapolate to unseen problems from the donfiesommon source of this

brittleness is either incorrect or missing knowledge in the KBis ould be because the domain
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expert failed to provide some piece of reasoning, or the systsignde failed to encode all the
ways in which a piece of knowledge could be used. This results Al #ystem failing to come

up with solutions for questions in which humans answer with ease.

The TacAir-Soar system (Jonetsal. 1999) is a great example of a successful Al systems using a
knowledge base. TacAir-Soar was designed to provide redistidated aircraft for military
training exercises. It generated “human like” behavior for sitedlair combat missions, which
represented a significant advance over the previous state of fbeaurtomated entity behaviors

in simulations. While this was a great success for Akdlagents were unable to use a variety
of weapons and sensors because the system designers did nouffiaientstime to build
intelligent behaviors for them. Even though this is within the sdoneain, air combat, adapting
the system to handle new sensors and weapons requires addingaigrkfiowledge to the
agent. Given a new weapons and sensor systems, human pilotsdils®ytineir knowledge and

experiences to determine how best to employ them.

An analysis of two recent Al research projects demonstratentdgnitude of this problem in
regards to broad domains and unanticipated problems. In the High ReréerrKnowledge
Base (HPKB) project, teams constructed knowledge bases to artpestions about
international responses to crises (Cobeal. 1999). Tracking the development of the SRI/CYC
system illustrates how brittleness affects knowledge sysieelopment. SRI required 1703
new axioms to answer the sample questions and be ready fondke P test. On 110 unseen

guestions about a crisis management scenario, the SRI/CYC syateable to produce at least



17

a partially correct answer only 30% of the time. The systewelopers were then given 4 days
to improve performance. By adding 123 axioms, the system answedessiapartially correct
45% of the questions. Next, the domain was expanded. This requiregstida® slesigners to
add another 1485 axioms to the system. But when given a new scenadonamd set of
guestions, the system was only able to achieve a score of 40%llpartimect. This
performance was improved to 65% with the addition of 304 axioms. Thiseféo perform well
on unseen problems and the need for large scale KB changes taldd¢onexpand the scope of

problems covered within the same domain demonstrate the brittleness of currgsteAlss

In the HALO project, three teams attempted to build Al systémanswer AP Chemistry
guestions from a subset of a chemistry textbook (Bagked. 2004). The three systems were
evaluated on unseen problems. None of the teams scored over 70% ontiple ichuwice
section. This represented only half the exam, the other sectiorsmege difficult. On the
exam as a whole, none of the systems scored above 50%. Ontcelagdil systems failed to

operate robustly on unseen questions.

These projects represent the traditional approach to overcomitigness. They seek to
overcome brittleness by constructing larger KBs with increagiggheral knowledge about the
world (Newell & Ernst 1965). The general knowledge would allow th&esys$o perform even
when the domain specific knowledge is not available. This approatle is\otivation of the
CYC project, which seeks to build a KB representing human common ssasming (Lenat

1995). While these approaches have had many successes, the lwittlédent in current Al
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systems requires searching for new solutions to this problem.

1.2 Analogy for Robustness

This dissertation explores using computational models of analogy tcoowe this brittleness by
reusing existing knowledge. While numerous researchers have propasaglyaas a solution to
this problem (e.g., Lenat & Feigenbaum 1991; Forbus & Gentner 198@)plogress has been
made in terms of realizing this goal. Analogy here includes bdathinadomain and cross-
domain analogies. For example, when reasoning about how a hot taavafl cool sitting by
your desk, you could use your experiences with other cups of hot liqUifds is an example of
a within-domain analogy. Researchers also emphasize the oreeb$s-domain analogies in
which superficially dissimilar but systematically relatedgais of knowledge allow inferences in
new domains (Gentner & Gentner 1983). When trying to understand wihptloeip of tea is
cooling, an analogy between heat flow and fluid flow would suggest#sa is flowing out of

the tea and into the air.

Unfortunately, like the idea of more general knowledge, analogy akn®t enough to
overcome this problem of brittleness. The Al system needs to know arme how to use
analogy. A basic approach is to invoke analogical reasoning whedeshgctive reasoning fails.
This is inadequate because as our KBs grow in size, queriehdake or even days to fail.
Therefore, it is necessary to integrate analogy direotly the reasoning process. In addition,
most analogical reasoning methods involve comparisons between twe tmsgenerate
inferences about one of them. In these methods, it is importantdeystend what kind of

knowledge is being transferred between the cases. Other anategmaning methods use the
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correspondences resulting from analogical comparison for gergi@iizand learning. Because
of these different uses of analogy, more investigations are rddaimmprove our understanding

of how analogy can be used to alleviate brittleness.

1.3 Claims and Contributions

This dissertation outlines two methodsalogical model formulatiomnd domain transfer via
analogy (DTA), which use analogy to robustly reuse knowledge from previouatsihs and

domains.

The first method, analogical model formulation, applies analogy to tdlsk of model
formulation Model formulation is the process of moving from a scenario oersydescription

to a scenario model The scenario model consists of assumptions, abstractions, and causal
models that can be used effectively for problem-solving. Givenvieryaay physical reasoning
problem inFigure 1 asking, “Which crane is more stable?”, the problem-solver must make
number of modeling decision. While many things can potentiallyctafbility of objects, a
useful model for this problem connects the stability of each d@rbe horizontal distance
between the crane and the boat it is carrying. Then, using tlgislnone can determine that the

crane on the right is more stable.
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Figure 1: Which crane is more stable?

Analogical model formulation uses prior examples to determine which abmtsa@Essumptions,
and causal models are applicable in new situations. The process bggetrieving a similar
precedent from memory. An analogy is created between thedprécand the current situation.
Using analogical inferences concerning the applicable abetrac assumptions and causal
relationships, the problem-solver creates a model from which ivedethe solution. The
robustness of this method for reasoning and learning is evaluageskeries of experiments from
two multiple choice test domains, everyday physical reasoning skittches and AP Physics

problem-solving.

The second method, domain transfer via analogy, is a task-level ofaeks-domain analogy.
These analogies are frequently employed when one is ttgiggin an understanding of a new
domain. For example, when students are learning about electheyfrequently make use of
analogies to flowing water and moving crowds (Gentner & Gentner)1988se cross-domain
analogies generate conceptual inferences concerning etgctrigtrequently, teachers and
textbook authors appeal directly to their students to make theseji@sald-or example, in an
introduction to electricity, Koff (1961) writes “The idea thatadtieity flows as water does is a
good analogy.” Providing Al systems with this capability to eetleir knowledge through

cross-domain analogies would greatly improve their flexibility.
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Domain Transfer via Analogy (DTA) models this process of cdmgsain analogy. DTA helps
overcome brittleness by allowing knowledge previously learnedhier @tomains to be applied

to new domains. Cognitive science research on cross-domain arfedsggmphasized the
importance of alomain mappindetween the vocabularies of the new and understood domains
(Gentner 1983). DTA learns a domain mapping through comparisons hesivaetures of
explanations in the two domains. Then, using this mapping, a new domany tan be
inferred and extended through an analogy between the domain thbeneselves. This model

is evaluated across a variety of physics domains (e.g., mechanics, &featiicheat flow).

This work fits into the following high level view of learning arehsoning by intelligent agents.
In the initial stages, the agent has limited domain knowledge easoms directly from
experiences and examples. To account for this ability, we intratheceognitive process of
analogical model formulation. With these examples and expesertbe agent constructs
generalizations of domain principles as it develops expertidggnwihe domain (Forbus and
Gentner 1986). While this dissertation does not provide an account forhigwabstraction
process occurs, a number of promising methods are discussed invigtlresections. The
application of this abstracted knowledge to new but similar domammigh cross-domain
analogies enables the agent to quickly learn new domain theories.domain transfer via
analogy method provides this functionality. Taking this view of donm&{pertise, these
methods occur under very different circumstances dictated by plee tf domain knowledge

available to the agent.
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1.4 Organization

Chapter 2 provides the relevant background on analogical procesdmguded in this
discussion is an overview of the structure mapping theory obgyathe cognitive simulations
of analogical processes used in this work, and the Companions Coduithieacture on which

the systems presented here are built.

Chapter 3 describes the foundations of analogical model formulatiofter Arguing that
traditional model formulation has critical limitations for accongtfor human reasoning about

the real world, | describe how analogical processing can be used to ovenesmehallenges.

Chapters 4 and 5 evaluate analogical model formulation in two kes¢rtdomains: everyday

physical reasoning and AP Physics problem-solving.

Chapter 6 contains related work and a general discussion of analogical modeltftormula

Chapter 7 describes in detail domain transfer via analogy. chiister includes the cognitive
science foundations of cross-domain analogy, the domain transferaltgyamlgorithm, a pilot
study between linear and rotational kinematics, and a more rigex@lgation between four

physics domains: linear mechanics, rotational mechanics, electricityhemaodynamics.

Chapter 8 contains related work on cross-domain analogy and a discussion of domainviansf

analogy.
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Chapter 9 recaps the central claims of this thesis and discusses some infytorexirections.
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2 Background

This dissertation builds upon ideas from cognitive psychology andciattifntelligence. This
chapter presents the background concerning the analogical goaesd in this work. This
chapter begins with a description of the underlying psychological ythedtext, | describe
computational models analogy and similarity-based retrieval bapes this theory and
continued psychological research. These models have been integratesl Gorhpanions
Cognitive Architecture (Forbust al. 2008). The central hypothesis of Companions is that

structure-mapping operations are central to human reasoning and learntreg abil

2.1 Analogical Processing

Over the past 30 years, there has been an explosion of intesalogy. This research has
brought together computer scientists, philosophers, linguists, and rientists as well as
psychologists from a number of disciplines including cognitive, devedopat) and animal
psychology (Penmt al. 2008). These researchers have documented extensive use of analogy
throughout the human experience. These domains include student le@B@nger and
Gentner 1983), scientific discovery (Gentregral. 1997; Nersessian 1992), legal arguments
(Holyoak and Simon 1999), and decision-making (Markman and Medin 2002)oghitice
science, structure mapping theory (SMT; Gentner 1983) has becom@amaint framework for
understanding analogy. This dissertation uses computational modat&lofjical processing

based upon SMT.
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In SMT, analogy is based on a structural alignment betweendpresentations (theaseand
thetarge)). These representations are collections of predicate caladissmhade up of entities,
attributes, relations between entities, and higher-order relabetseen propositions. The
alignment process constructs the maximal structurally consisteatch. A structurally
consistent match is one that satisfies the following three reamist tiered-identicality parallel
connectivity and one-to-one mapping The tiered-identicality constraint provides a strong
preference for only allowing identical predicates to match, bawallfor rare exceptions. For
exampleminimal ascensiofFalkenhainer 1988) allows non-identical predicates to match if they
are part of a larger mapped structure and share a close commestoann the ontology.
Parallel connectivity states that if two predicates aedched then their arguments must also
match. The one-to-one mapping constraint requires that each elanttembase corresponds to
at most one element in the target and vice versa. To explgisavhe analogies are better than
others, structure-mapping uses the principle sgétematicity Mappings that are highly
interconnected and contain deep chains of higher order relationsedeergad over mappings
with an equal number of relations which are independent from each othech nested

structures indicate explanations, which provide context to help evaluate arlatdgresnces.

The Structure-Mapping Engine (SME; Falkenhaigkal. 1989) is a cognitive simulation of the
analogical matching process. Given two structured represergtas input (the base and target),
SME produces one or moneappings each representing a construal of what iteemditjesand
expressionsin the base go with what items in the target. Each mgppirepresented by a set

of correspondences Mappings also includeandidate inferencew/hich are conjectures about
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the target using expressions from the base which, while unmapped rinethieety, have
subcomponents that participate in the mapping’s correspondences. upasdtie systematicity
constraint, astructural evaluation scores computed to estimate the match quality. SME
operates in polynomial time, using a greedy algorithm (Foebued1994; Forbus & Oblinger

1990). At a high level, mapping in SME consists of the following steps:

e Step 1: In parallel, create local correspondences callatth hypothesebetween
expressions in the base and target using tiered-identicality
o Determine inconsistencies
= Mark match hypotheses inconsistent which violate parallel connectivity
= Mark pairs of match hypotheses mutually inconsistent that wouldtgiol
the one-to-one constraint
0 Assign scores to each correspondence using a local score fornestch
hypothesis and then using trickle-down to add to the scores of the arguments.
e Step 2: Creat&ernel mappinggorming maximally structurally consistent collections of
match hypotheses.
e Step 3: Combine kernel mappings usingreedy mergealgorithm to create between one

and three global mappings.

To illustrate this more concretely, let us examine SME’s dijperaver the example base and
target representations fromable 1 The base description contains six facts describing a ball

being released and falling. The target description describes getting released. In the first



27

step, two match hypothesis are created by matching identical predicdtes€xptessions, ‘d~
‘iand ‘c’ « ‘h’. Because these match hypothesis are consistent, they fkemal mapping.
Because there is only one kernel mapping, it becomes the gi@ming with the following
correspondence®iel ease-1 «— Release-2 and Ball-1 < Box-1. Due to its
participation in both expressions in the mapping, the support scorbefétet ease-1 «
Rel ease- 2 correspondence is greater than the score for Baél -1 < Box-1
correspondence. SME computes the structural evaluation score byg &olgiether the support
scores of the mapping. Partially matched expressions from the base bendidateanferences
by replacing the parts of the base expression which participake icorrespondences with the
target items. In this case, expression ‘b’ becof@asl | Box- 1), expression ‘e’ becomes
(causes- Event Event Rel ease-2 (Anal ogySkol enFn Fal |l -1)) and expression
‘T becomes( pri mar yQbj ect Movi ng (Anal ogySkol enFn Fal | -1) Box-1). The
expressionAnal ogySkol enFn is used to represent unmapped entities from the base.
Candidate inferences are conjectures about the target. Sombiah are plausible. For
example, theRel ease- 2 event causes something like thal | - 1 event from the base, and
theBox- 1 is the object moving of this event. Some of which are not. Su@oas,1 is a Ball.
The correspondences and candidate inferences are central tgiGaiaiwodel formulation and

domain transfer via analogy.
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Base “A ball is released and falls” Target “A box is released”

Entities -Fal | - 1,Bal | - 1, Rel ease- 1 Entities -Box- 1, Rel ease- 2
Expressions Expressions

a)(Fal l'i ngEvent Fall-1) g)( BoxTheCont ai ner Box-1)
b)(Ball Ball-1) h)( Rel easeO Support Rel ease- 2)
c)( Rel ease Support Rel ease-1) i) (obj ect Act edOn

d)( obj ect Act edOn Rel ease- 2 Box-1)

Rel ease-1 Bal | - 1)
e)(causes- Event Event
Rel ease-1 Fall-1)
f) (pri mar yQbj ect Movi ng
Fall-1 Ball-1)

Table 1: Example base and target descriptions

The other cognitive simulation used throughout this work is the MAC/BRorbuset al. 1995)
model of similarity-based retrieval. It takes as inppt@beand acase library The probe is a
structured description, representing what is currently being worked on bysystem. The case
library is a set of cases, each a structured descriptiomsesiing the set of available examples.
MAC/FAC selects a case from the case library based upolasiynwith the probe. It does this
in two stages. The first stage (MAC) computes a special kifeatiire vector for the probe and
each case in the case library, whose components have a strengthigomaptwtthe number of
occurrences of individual predicates in each structured represantdthe case from the case
library with the highest (or up to three, if very close) dot produth the probe is returned from
the MAC stage. Using the examples fraable 1 the content vectors for the base and target
contain six and three entries respectively. In this examplé, @atent vector the entries are
weighted equally because each predicate occurs only once in eaciptaes The second

(FAC) stage uses SME to compare these candidates to the pitedeandidate with the highest
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structural evaluation score is returned by the algorithm asemsnding. (If others are very
close, up to three can be returned, but in the work discussed here, ontyoshesimilar

reminding is used.)

SME and MAC/FAC do not completely simulate all aspects of huamatogy. Building upon
structure-mapping principles, other cognitive scientists have explarvariety of psychology
phenomena related to analogy. LISA explores the effect®iing memory limitations and is
implemented on a neural network (Hummel & Holyoak 2003). LISA atigreonly handles
descriptions significantly smaller than those used in this rigggm. Kokinov and others have
developed AMBR with an emphasis on integrating analogical reasomatylles with other
reasoning modules (Kokinov & Petrov 2001). This is consistent witintegration constraint
as specified in Forbus (2001) which states that “a cognitive dionulaf an analogical process,
such as matching or retrieval, should be able to serve as a compotengier-scale cognitive
processes.” My research looks at how analogical processdsecased into two large-scale

reasoning tasks: model formulation and cross-domain learning.

2.2 Companions

Building upon the integration constraint, | have been involved in developingdhmgpahions
Cognitive Architecture (Forbus & Hinrichs 2004). The underlying hymishef Companions is
that the flexibility and breadth of human common sense reasoningeardng arises from
analogical reasoning and learning from experience. Companiorss dsstributed agent
architecture. Each agent has its own knowledge base (KB), vdoogents are periodically

updated and synchronized. Communication between agents occurs through rd€¥dages
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(Labrou & Finin 1997). This section describes the project visionlaagents which make up

the architecture configurations used in this work.

2.2.1 Project Vision

The motivating vision of Companions is to create software systgmch can be treated as a
collaborator (Forbus & Hinrichs 2004). In order to realize thisomisCompanions focuses on

three important problems for human-level Al:

¢ Robust reasoning and learning Companions should learn about their domains, users
and themselves.
e Longevity— Companions should operate continuously over weeks and months at a time.

e Interactivity— Companions should have high-bandwidth interaction with their users.

The work in this dissertation focuses primarily on the first problernalogical model
formulation and domain transfer via analogy are advances inddtabe art for learning and
reasoning techniques. They are evaluated here solely on domaindedut | believe that the
methods are applicable to learning about users and self-modelings ssncerning longevity,
performance, and evaluation of progress will be discussed in futuie sections. Chapter 4
includes new ideas concerning sketch-based interaction increasangbandwidth of

communication between the Companion and the user.

2.2.2 Agent Architecture

The Companions’ project is still in its infancy and underlying agjbave evolved over the past
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four years. For the systems describe in this dissertation, the following ageatased:

e Session ManageProvides facilities for user interaction

e Sketching AgentProvides an interface between our sketch understanding system, sKE

(Forbus & Usher 2002), and other Companions agents

e Facilitator Manages sessions and directs communications between agents

e Executive Monitors the Companion's responsibilities and delegates work to the
appropriate agents (e.g. follows scripts describing experimeatsrds quiz results,

checkpoints KBs, etc.)

e Session ReasonePerforms domain reasoning, in this case physics problem-solving

e Similarity-based RetrieveiMonitors the working memory of the Session Reasoner, and

provides similar prior cases when there is a close match.

The Session Manager and Sketch Agent run locally on the usetsnaathe rest of the agents
run on cluster nodes. New problems are given either individually thtbeg8ession Manager,
or by a script describing an experiment which is uploaded to tkeeufixe. The Executive
hands the problem to the Session Reasoner, which implements all keititheal portion of the
analogical model formulation and problem-solving processes. WhilM&@&FAC algorithm
used in the Retriever is efficient, distributing it reduces thamory load on the Session
Reasoner as the size of case libraries rises. The nexehagiscribe the analogical model
formulation and domain transfers via analogy methods and how Companiahesesenethods

in a variety of domains.
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3 Analogical Model Formulation

Modeling is a central activity in scientific and everydaysmeang. A model enables predictions
about the world around us. A given situation could have a variety ofeatiffenodels. Take a
ball dropped off a building. Suppose we wish to know the position of thaftallits release.
The simplest model merely states that objects fall downwahndsefore after its release the
ball's height decreases. Kinematics provides a mathematiwaél of this situation, Y =ii-

9.8* *. Each model is useful in a variety of tasks and requires a number of assumptions.

This chapter explains the method of analogical model formulatitwegih with a description of
the task of model formulation and an example. Next, | describeutiient approaches to this
task along with their limitations. These limitations areipaldrly constraining in comparison
with the flexibility of human reasoning. Analogical model forntiola overcomes these

limitations by using analogy during model formulation.

3.1 Model Formulation

Creating systems capable of the breadth and flexibility of humasoning is one of the central
problems of artificial intelligence. The qualitative reasontegnmunity has offered progress
toward this goal by providing formalisms for reasoning with incatgplknowledge. An
important contribution of this community is formalizing the task mbdel formulation
(Falkenhainer & Forbus 1991). Given a scenario description, a domain,thedna query,

model formulation produces scenario modelwhich consists of the relevant abstractions,
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processes, and causal relationships useful for answering the query.

Model formulation is not just applicable in qualitative reasoning,thatdentral for quantitative
reasoning as well. Consider the following question fMathematics in NaturéAdams 2003):
“Half of a snowball melts in an hour. How long will it take for the remainden¢lt?” To arrive
at a coherent answer for this problem, the following simplify@sgumptions are extremely

helpful:

e Assume the snowball is a uniform sphere at all times. Therefoe surface area of the
snowball is a function of the radius.

e Assume the density of the snowball is uniform throughout. Thereforenake of the
snowball is directly proportional to its volume.

e Assume the mass of the snowball decreases at a rate dpemgtlyrtional to its surface

area, and that no other process affects the melting of the snowball.

While each of the assumptions makes sense from a problem-solvipggiems, none of these
are deductively valid. As any child will tell you, snowballs hemd-packed making a uniform
density spherical snowball is virtually impossible. Also, once timvball begins melting,
certain parts of the snowball will melt faster than others. Howeveg tlsnabove assumptions,
it is possible to formulate a model which allows one to answeitthall take 4.8 hours for the
snowball to melt. There are other potential models. An even simmaléel would be that the

melting rate is constant throughout the entire process. Butitmdes model would likely be
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more erroneous than the model constructed here. Model formulattentassk of constructing a
scenario model to provide a useful answer to a query about a gwatios while minimizing

extraneous detail.

3.2 Traditional Approaches to Model Formulation

The initial approach to model formulation has been to create izanadels by hand. When
engineers needed to monitor or make predictions about a partmatdranical system, they
would manually construct special purpose simulators. Changing tbieameal system or the

purpose of the simulator required rewriting all or part of the simulator.

To improve the reusability, one could constructoaain theoryto describe a class of systems.
The core of the domain theory consistsnoddel fragmentgFalkenhainer and Forbus 1991),
each describing a single phenomenon. Answering a particular gheoy a scenario can be
automated by (1) finding applicable model fragments, (2) instargittiem within the scenario
context, and (3) composing a scenario model. Thmpositional modelingprmalism is a vast
improvement over manually encoding a custom model for every of rszearad query. By
explicitly reasoning about assumptions, compositional modeling considdtiple levels of
detail and mutually exclusive models for the same phenomena (atiyisgc versus Newtonian
motion). Falkenhainer and Forbus (1991) demonstrated that compositionalngaadelireason
with large scale multi-grain, multi-perspective models of ergging thermodynamics. Domain
experts provide the domain theory, including knowledge about the modeheins
assumptions and approximations. Further compositional modeling reseavateprmethods

for identifying the level of detail and perspectives to taka stenario model. In the domain of
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electrical circuits, Nayak (1994) introducedusal approximationsvhich provide a monotonic
ordering between different models of the same object. This ordenables tractable model
formulation. To lessen the burden on the knowledge engineer, Rickel ardSPORIPEL

(1994) builds scenario models using a domain theory consisting soldlg dbmain variables
and influences between them. Then using domain-independent constants, TRIPRictsothstr

simplest adequate model to answer a given prediction question about plant plysiolog

Can these techniques account for the flexibility people show in their abilitiestiulate models
about the world? | believe not, for three reasons. First, wadltmodel formulation relies on
having a complete and correct domain theory. Even in engineeringciamdes applications,
complete and correct domain theories can be difficult to constiiunis problem becomes much
more difficult when accounting for people’s ability to reason abwitvorld around them where
the number of model fragments and entity types is orders of radgrarger than engineering
domains. The process is even more difficult as new conceptual agpeseated all the time.
For example, before the year 2005, no knowledge base would have a con@pViibtote.
Second, work in model formulation tends to start with fairly absseenario descriptions, e.g.
circuit schematics (Flores & Cerda 2000), instead of everydtijes. While this is fine for
engineering applications, the ability to create qualitative guhtitative models of everyday
situations is a hallmark of the flexibility of human problem-solvinghird, also due to an
emphasis on engineering domains, model formulation research hay ligrgeed learning.
Humans are constantly learning about new domains and applying theitekigewto reason

about the world. These limitations make it unlikely that tredé& model formulation
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techniques can account for human-level domain reasoning. The nigom slscribes a method
to mitigate these problems of inflexibility by integratingaéogical reasoning within the model

formulation process.

3.3 Analogical Model Formulation

The solution proposed here is to use analogy to drive the model faonufabcess. By
analogy, | do not mean cross-domain analogies, such as understamafegtacal circuit in
terms of mechanical systems. Instead, within-domain analeff®s a new situation to be
understood in terms of a prior example. For example, given instiacta estimating the
melting time of an ice cube, one could apply similar modelingragsons, approximations, and
abstractions to model the above scenario of the melting snowBakcifically, if assuming
uniform density and a perfect cube shape proved useful to solving thiegniehe of the ice
cube, the problem-solver would be wise to assume the snowball is aledasim density and a
perfect sphere. There are reasons to believe that this kimthof-domain analogical reasoning
is ubiquitous during human common sense reasoning (Forbus & Gentner 1997). fadgdwen
with a new problem, one is reminded of similar experiences. eXpkanations for these prior
experiences can be used to formulate a model for the new situafibe. process of using an

analogy with a prior example to construct a model is calledogical model formulation.
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Figure 2: Overview of Analogical Model Formulation (blue items are
inputs, purple items are processes, and orange itenare results

Figure 2describes this process of analogical model formariatGiven a problem description, t
process begins by retrieving an analogous exanmpégamples using the computational rels
of analogy and similaritypased retrieval discussed in Chapter 2. This gsods guidec
pragmatically to retrieve the sufficient analogye(&.g., if the retrieval does not provide -
means to understand the entire scenario, retridddi@nal alalogs focusing on the unmatch
aspects of the problem description. Next, the mtmenulation step uses inferences sugge
by the analogy between the example(s) and the gmolsicenario to make modeling decisi
concerning abstractions, assumptioand causal models. Here, analogy bridges the
between the problem scenario and any available ookmwledge. For example, if an agt
has an abstract qualitative mechanics domain thdarydoes not know how to map every«
objects into the techrat vocabulary of the domain theory, then the agesats the analogy

decide which abstractions are applicable to whigjeais in the problem scenario. On the o
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hand, if the agent does not have any domain knowledge, then the entirecsceodel is
constructed by analogy with the example. Finally, the agentrutedased problem-solving

over the model to determine the solution for the query.

Analogical model formulation addresses the shortcomings of taditimodel formulation

systems as follows. First, by relying on examples, anabgnodel formulation alleviates the
need for a complete and correct domain theory. It is well-knowthe knowledge acquisition
community that getting domain experts to tell stories (i.e., cta@&eamples) is considerably
easier than getting experts to articulate complete and ctodemain theories. Second,
analogical model formulation can build scenario models of evergitlagtions. The breadth of
entity types is limited only by the underlying ontology. Thiatalogical model formulation
provides a way to create systems that can incrementally lsamaking effective use of what
knowledge they have, even when it is incomplete. Extending the ofrsgenarios or domains

over which the system can reason requires only adding new examples.

3.4 Benefits of Integrating Analogy

While qualitative reasoning has made many advances in gegeaatinreasoning about models,
automating the model construction process is still a difficuk. tashis is especially true for
broad domains. The fact that people are able to form useful modelstlaoudrld all the time
highlights the importance of this problem. The use of experieng®del formulation was first
proposed by Falkenhainer (1992). Falkenhainemeslibility extrapolationused error measured
in prior scenarios to bound the error of a current model. Through @&wlagth previous

experience, the model formulation process was informed about the camsegjuaf the
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approximations and assumptions under consideration from its domain theoke. other
compositional modeling efforts, Falkenhainer’s work still focused omeegng problems, and
the domain theory included the complete set of model fragmentsimpssns and

approximations for the domain.

Analogical model formulation places analogy at the centehefmiodel formulation process.
The examples provide the scenario model with the assumptions, approrsnatausal
relationships and equations. Analogical model formulation offers aigirgnapproach to
account for the human ability to form models about the world around. th&éms method
integrates existing analogical processing and model-based mggtenhniques. The systems
presented in the proceeding chapters utilize qualitative reasaoirtgrive solutions from
models, and leverage analogical reasoning as described above tonoddeng decisions that

are otherwise difficult in broad domains.

In the next two chapters, | will present support for the hypothisis analogical model
formulation provides a robust method for reasoning and learning in twoirdomih relatively

unconstrained scenarios: everyday physical reasoning and AP $2hykie evaluations are
designed evaluate to what extent analogical model formuldtmmasaa Companion with limited

domain knowledge to use examples to solve new problems.
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4 Everyday Physical Reasoning with Analogical Model Formulation

Evaluating the claims of analogical model formulation requires broad domanng-domains
which test the breadth of Al systems, while still allowinggoogress, is difficult. The Bennett
Mechanical Comprehension Test (BMCT; Bennett 1969) is one such dombs.BMCT is

used to evaluate applicants for technical positions. BMCT problemsist of diagrams
depicting physical situations with multiple choice questions about thsilitative properties.

For concreteness, two examples of BMCT questions are illubtiategure 3. The BMCT is
broad in two ways. First, it involves a variety of domains, includitagcs, dynamics, acoustics,
heat, and electricity. This is thebomain breadthproblem. Second, it involves a variety of
everyday objects and systems: Bicycles, railroad caasesr hoists, boats, and many others.
This is everyday breadttproblem. This makes it a valuable domain for assessing everyday

physical reasoning, which is an important part of human common sense.

! To protect the security of the test, we cannotigi®a full list of the problems used in this e\atlan.
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Object-1304

Object-1302

Object-1301

Outcome Problem: Comparative Analysis Problem:
Which way will the ball go? Which crane is more stable?
A) down, B) right, or C) down and A) the left one, B) the right one, or C) equally stahle
right

Figure 3: Bennett Mechanical Comprehension Test pitdems

Figure 3illustrates the two general types of problems that appedreoBNICT. The ball problem
is an example of an outcome problem, which asks for a predidimut a property of a system.
The crane problem is an example of a comparative analysiseproihere the question
concerns a comparison between two (or three) situations, or twosagpebe same situation.
To solve either of these problems requires moving from these evedgdasiptions to a formal
model. Once the model has been formulated, these problems arbtfsira@yd. The ball

problem requires the addition of forces applied by the people, andahe groblem requires
comparing the horizontal distances between the bases of the arahéseir loads. The hard
part is formulating the right model. For both of these examplesy rother parameters were
potentially relevant (e.g. the materials of the objects involvedyties of connections between
them, the kinds of surfaces they are resting on, etc). In the outcome problem, tlod tjpests

play a central role in determining the relevant abstractions. Forpieaif the ball was instead a
lake, the answer would be drastically different. In the contiparanalysis problem, one must

focus on the differences that are visible between the two sognahich requires understanding
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how conceptual properties (like stability) depend on visual propdiikesdistances). To be
successful on the BMCT, one must be able to form a broad ramgedels, integrating spatial
and conceptual reasoning, over a wide range of input descriptidms. mibkes the BMCT a

great domain for evaluating analogical model formulation.

This chapter describes how analogical model formulation allows rap&won to construct
models about a diverse group of everyday scenarios. This enaBles@anion to perform
model formulation without a complete domain theory, as requireddditiopnal first-principles
only qualitative reasoning. In addition to analogical model fomtman, this chapter presents
two additional contributionsSketch annotation€ommunicate linkages between visual and
conceptual properties in sketches, amélogical reference framesnable comparative analysis

to operate over a broader range of problems than prior techniques.

This chapter describes an experiment to see how well a Compasimg analogical model
formulation could perform on a subset of the BMCT. The subsetchwvasen to minimize
encoding efforts while still allowing us to evaluate the pertoroe of analogical model
formulation. The subset design and the analogical model formulationaapprwhich will be
covered in detail later in the chapter, pose both the everyday arandbreath challenges to the
Companion. In addition to simply evaluating the Companion’s ability te®MCT problems,
it is necessary to evaluate the claim that analogical hfodwaulation is a robust solution. To
evaluate robustness, three people were used to provide the Companidmedttifferent sets

of examples for analogical model formulation. Evaluating eacimdependently illustrates that
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this variation is important (i.e. the Companion is able to solve prof@ems with some sets of
examples than others). By combining the sets of examples,evahiate the robustness in the

face of poor examples.

| begin by describing the software systems and researcivahksdraws upon: the sKEA sketch
understanding system (Forbus & Usher 2002) and qualitative mechesmtcd\felsen (1988)
and Kim (1990). The next section describes sketch annotations andhbosxamples are
created. This is followed by a detailed explanation of how ar@bgnodel formulation is
applied to BMCT problems. Before describing the problem-solviggriéthm, | introduce
analogical reference frames to extend the range of applipetiddems for comparative analysis
(Weld 1988). This chapter closes with a description of the expetriarel a discussion of the

results.

4.1 System Components
4.1.1 Sketch Understanding with sKEA

Sketching is a powerful way to work out and communicate ideas.nTBketch model (Forbus
et al. 2004) takes sketching to be a combination of interactive drawing andptoaktlabeling.
While most sketch understanding systems focus on the problemcagnigon, nuSketch
systems are based on the insight that recognition is not ngcessaiman-to-human sketching.
The sketching Knowledge Entry Associate (sKEA) was the fopen-domain sketch
understanding system. Anything that can be described in tersi¢E#'s knowledge base can
be used in a sketch. For this evaluation, sKEA's knowledge basstsarfsa 1.2 million fact

subset of Cycorp's Cyc Knowledge Base, which includes over 38,000 cynoept 8,000
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relations, and over 5,000 logical functions. The KB for this evala#e includes
representations for qualitative physics, visual properties antdorehips, spatial knowledge,
and analogical reasoning. The breadth of this KB makes it @llent platform for exploring
reasoning in a broad domains such as the Bennett Mechanical Comymeliesst, because the
entity types and relations necessary to define problems, sticraas” and “wheelbarrow”, are

already defined, as opposed to having to generate them specifically for tei.proj

Glyphs are the basic constituent of sketchesglyfsh consists of itsnk, representing its visual
properties, and itsontent representing the conceptual entity depicted by the glyph. drterd
can be instances of any of the concepts in the KB. Each sketitvided into layers, which
decompose a sketch into pieces. For example, two systems beipgred side by side would
be drawn in the same sketch, but drawn on different layers. Sometystems must be viewed
at different levels of abstraction. In understanding how a wheeWarorks, for example, it
makes sense to draw the individual parts, since each contributesmtlffdo how it functions.
But if we are considering how hard it will be to lift a whestow, we need to consider the
wheelbarrow as a single rigid object. sKEA includes group glyphigfwntroduce a new entity

to represent a selected set of entities, to handle such situations.

Using the electronic ink, sKEA computes the following visual reteships between glyphs

(Forbuset al. 2003):
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Qualitative topological relationships SKEA uses the RCCS8 algebra (Cohn 1996) to

describe the topological relationships between glyphs in a sk&tcRCC8, two glyphs
might be disjoint (DC), touching exactly on their boundaries (EC)igligroverlapping
(PO), equal (EQ), one completely inside the other (NTPP), or ordeitise other but
their boundaries touching (TPP). With inverses for NTPP and TPPe thight
relationships completely characterize the possible connectiléiyoreships between two

2D regions.

Positional relationshipsRelationships such as above/below and left/right are computed

for pairs of glyphs that are adjacent. Adjacency is determined via a Vorogardia

Visual grouping relationsThe RCCS8 relationships naturally impose two visual grouping

relationships. Connected glyph groupsonsist of sets of glyphs that are pairwise PO or
EC with each otherContained glyph groupsonsist of the set of glyphs which are TPP

or NTPP with some larger glyph (called ttwntainerfor the group).

Orientations: An axis is computed for each glyph, which is characterizggriagarily

vertical or horizontal, as appropriate.

Sizes: Each glyph in the sketch is classified as one of five quaktatategories, from

tiny to very large, depending on the distribution of glyph sizes iskbteh. This is done
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by computing the minimum bounding rectangle of each glyph normalizaidsaghe

minimum bounding rectangle of entire sketch.

Sometimes the visual relationship between a pair of glyphs andatiiee of their contents
implies a conceptual relationship between their contents. Forpéxaifna glyph representing a
wheel is Edge Connected (EC) to a glyph representing the grthed,it is reasonable to
assume that the wheel is touching the ground. These visual-concegatiahships represent
commonly used conventions for depicting situations in sketches (Fethbais2005). sKEA
automatically infers a large candidate set of relationslaipd provides an interface for users to
select which of them, if any, is appropriategure 4contains a screen shot of a user selecting the
ennmeshedCGear s- Adj acent relationship for a pair of gears. The selected conceptual

relationship is added to the predicate calculus representation for the sketch.

User supplied relationship

YWhich of the following best describes the relationship between Gear10BB and Gear1067Y
(enmeshedGears-Adjacent Gear10BE Gearl D7) v

Figure 4: sKEA allows the user to specify the congeual relationship between sketched
entities

The result of drawing in SKEA is a sketch which contains the ahkhe glyphs and a
corresponding case of predicate calculus facts. These faidtgle the spatial relationships
concerning the glyphs as well as the conceptual relationsbiqEeming the conceptual entities
depicted by the sketch. In addition, when reasoning about the sketch,ai€Epts queries for

additional facts to be computed on demand. For example, the ComparsosK&sk when it
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needs to know the outside normal direction of a surface, the overlappiagpbdvo glyphs, or
the distance between two points. SKEA responds to these queriegdiyng a conceptual
representation that is tied directly to the ink of the glypf&ven the spatial and conceptual

components of the BMCT, sKEA is an excellent platform for this task.

4.1.2 Qualitative Mechanics

Mechanics is traditionally concerned with forces, motion, and how bodmEsct. Qualitative
mechanics provides a set of abstractions (e.g., rigid body, surfageal, qualitative
descriptions of angle, etc.) that support qualitative reasoning abaditional mechanics
phenomena. The technical vocabulary and model fragments of qualitatvenics are part of
the starting endowment of the system, rather than as somethingdarbed. The qualitative
mechanics domain theory is drawn from (Nielsen 1988; Kim 1993). iftspdyg, their
gualitative representations of objects, surfaces, force transd@d centers of rotation are

included. The key aspects of the domain theory are summarized here.

The Companion’s domain theory consists of five model fragmeXiEsr ceTr ansfer,
YFor ceTr ansfer, Tor queTr ansfer, Tor queEqui | i brium and
ForceDi stribution. Figure 5contains the CML descriptions (Bobrogt al. 1996) for
XFor ceTransfer andTorqueEqui | i brium TheXFor ceTransfer model fragment
has five participants, the forcer, the object, each of their ssriaue the direction of the force.
This model fragment is active when the forcer is applyingreefon the object’'s surface and
results in the force being added to the net force on the object. TAreueEqui | i bri um

model fragment has seven participants and is active when trerevarapplied torques in
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opposite directions. While this definition is a simplificafioit is sufficient for these problems.
When aTor queEqui | i bri um model fragment is active, its consequences are believed.
These consequences are qualitative proportionalities describingl éanistional dependencies
between quantities. Since the Cyc KB uses a relational fornguantities, the function
QQuanti tyFn converts them to an equivalent fluent. Here two functions are tsed
represent the four quantities affected by the model fragmeme. function( QoQuanti t yFn

For ceAppl i edToSur f aceBy) takes two arguments and denotes the amount of force
applied to a surface (its first argument) by an object #isond argument). The function
(QQuantityFn D stanceToOri gi n) denotes the distance from a surface to the point it
rotates around. When instantiated, these model fragments provide w&atahships (i.e.,

gualitative proportionalities) needed to solve BMCT problems.

2 Torque equilibrium also requires that the opposigues be equal. The system currently assuriebytdefault.
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(def Mbdel Fragment XFor ceTr ansfer

sparticipants ((TheCbject :type RigidObject)
(TheForcer :type Rigi dObject)
(TheSurfacel :type Surface :constraints ((hasSurface TheCbject TheSurfacel)))
(TheSurface2 :type Surface

:constraints ((hasSurface TheForcer2 TheSurface2)
(surfaceContact TheSurfacel TheSurface2)))

(TheXDirl :type Sense))

:conditions ((xForceApplied TheSurfacel TheXDirl TheForcer))

:consequences ((c+ ((QQuantityFn XNet Force) Thebject)

((Q@QuantityFn XForceAt) TheSurfacel))))

(def Model Fragnment Tor queEqui librium
sparticipants ((TheObject :type RigidObject)
(TheForcerl :type Rigi dObject)
(TheForcer2 :type Rigi dObject)
(TheSurfacel :type Surface :constraints ((hasSurface TheObhject TheSurfacel)))
(TheSurface2 :type Surface :constraints ((hasSurface TheObject TheSurface2)))
(TheRotDirl :type RotDirection)
(TheRotDir2 :type RotDirection
:constraints ((inverseRotDirection TheRotDirl TheRotDir2))))
:conditions ((torqueApplied TheSurfacel TheRotDi r1 TheForcer1)
(torqueApplied TheSurface2 TheRotDir2 TheForcer?2))
: consequences ((qprop ((QoQuantityFn ForceAppliedToSurfaceBy) TheSurfacel TheForcer 1)
((QQuantityFn ForceAppl i edToSurfaceBy) TheSurface2 TheForcer?2))
(gprop ((QQuantityFn ForceAppliedToSurfaceBy) TheSurfacel TheForcerl)
((QQuantityFn Di stanceToOrigin) TheSurface2))
(gprop- ((QpQuantityFn ForceAppliedToSurfaceBy) TheSurfacel TheForcerl)
((QQuantityFn D stanceToOrigin) TheSurfacel))))

Figure 5: Example model fragments from the qualitailve mechanics domain theory

Notice that the qualitative mechanics domain theory is defineztnms of a technical vocabulary
of abstract concepts, includingi gi dObj ect, Surface, and Ful crum as well as the
relationshipsf or ceAppl i ed andt or queAppl i ed. The domain theory includes inference
rules which, given conceptual relationships between sketched olgarts&nPi vot Ar ound,
touchesDirectly, and on-Physical), can conclude thexforceApplied and

t or queAppl i ed relationships. However, since problems on the BMCT are givesrnmstof
everyday situations, the appropriate abstractions must be inferggden to determine which
model fragments are applicable. Section 4.3 describes how ttitnés via analogical model

formulation.
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4.2 Sketch Annotations

In sketching, people annotate sketches of physical entities witbeptual information that
would not appear in the actual situation. In architectural drawings, annotaticregergistances
between walls and the widths of windows. In sketches explainimgiges, annotations
indicate important spatial properties, such as the radius ofreagdavhere forces are applied.
Annotation glyphs provide this capability in sSKEA&igure 6contains sketches that illustrate each
type of annotation. Like other glyphs, an annotation glyph consistsiokiand its content, i.e.,
the entity it is representing. However, annotation glyphs also tefone or more other glyphs
in the sketch, indicating the entity (or entities) about which theypaoviding information.

These glyphs are threferencedor the annotation glyph.

Dirsction-of-gear-474

Figure 6: The gear has a rotational annotation indiating counter-clockwise motionan and a linear anriation
indicating its radius. The wheelbarrow has a forceannotation indicating an applied force upward on he
handle and a length annotation indicating the diamier of its wheel.

This work introduces three types of annotation glypRerce annotationsndicate the location
and direction of an applied force on a reference. sKEA computeBréotion and application
surface of a force annotation from its ink and referenced glyphsheilé are two references,
SKEA uses the direction of the arrow and the relative positioriseofeferences to determine

which object is applying the force. If there is only one refexefecg., the handle from the
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wheelbarrow example), SKEA assumes a new object which is ag@yforce at the point of the
arrow onto the referenceRotational annotationsndicate a reference’s direction of rotation.
SKEA assumes the qualitative rotational motion of the referasceither clockwise or counter-
clockwise. Linear annotationsindicate linear distances, either along a single reference or
between two references. Two special subclasses of linear aometareX-coordinateandY -
coordinate annotationswhich refer to the projection of the measurement onto the apgmpria
axis. sKEA computes distance measurements using the cdosbstr pointon the reference(s)
to the endpoints of the linear annotation. Anchor points are used toyspbah parts of the
reference(s) that the annotation is tied to. Each glyph hasanoter points: the centroid, the
rightmost top, leftmost top, top rightmost, and so on clockwise aroundytbte gAnchor points
provide symbolic descriptions that can be projected as candidateniodésrfrom an example to a
new situation (e.g., the distance from the left bottommost point to the right bottoponmdsof a

reference).

4.2.1 Creating Examples using Annotation Glyphs

Examples in the Companion’s case library represent its experiedsers create examples of
physical scenarios using sKEA and a concept map system. The concept @apedigsts users
to enter predicate calculus expressions about the sketched enfitiegrocess begins with the
user drawing the scenario, labeling their glyphs with the eagrgdncepts used to describe the
entities depicted. Next, the user sketches force and rotation amm®tahere applicable in the
sketch. They use sKEA's conceptual labeling interface to idealifyof the appropriate
gualitative mechanics abstractions (e.gRi gi dObj ect) and sKEA's visual/conceptual

relationships interface to identify the appropriate conceptudlaeships between entities (e.qg.,
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touchesDirectly). At any time the user can invoke a traditional model formanati
algorithm (Forbus & Falkenhainer 1991) to see if the appropriate divaitaechanics model
fragments are instantiated. Once they are satisfied withrethdting qualitative mechanics
model, the final step is to create causal models that desaneemtual quantities in terms of
visual quantities. For each relevant conceptual quantity (e.gietbkution rate of a gear), the
user draws a linear annotation for the causally related visaatigu(e.g., the distance from the
center of the gear to its top right most point). Next, usingoneept map system, the user adds
a qualitative proportionality linking the conceptual quantity to the Viguantity (e.g., that the
revolution rate is qualitatively proportional to the radius of the)gebhis completes the process
of constructing the scenario model for the example. Note thahdldel fragments, if any, are
instantiated from an incomplete domain theory, while conceptual/visuattityuacausal
relationships are defined in an example-specific manner. Athefvisual and conceptual
representations for the example are stored as a case i@y, litr be used for subsequent

analogical model formulation.

To illustrate this process more concretely, the following semesrequired to construct the
example wheelbarrow iRigure 6 First, a user draws the wheelbarrow in sKEA. To do thes, t
user draws seven glyphs representing the wheel, axle, bin, frap@ors handle and rock.
Next, a group glyph is created representing the wheelbarrow inglatlithe glyphs except the
rock. The wheelbarrow’s handle is annotated with a force arrowaiialy that there is an
assumed force in the upward direction. Then, the user adds Gumlitechanics abstractions

by labeling the wheelbarrow group glyph and the rock as instaridbe typeRi gi dCbj ect
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and the axle as Bul crum sKEA's visual/conceptual relations interface is then usedido a
some of the conceptual relationships needed by the qualitative mecbdamain theory. Here,

the user stated that the rockar- Physi cal the bin. The domain theory includes rules to
determine that then- Physi cal relationship results in a downward force from the rock onto
the bin. A standard model formulation algorithm instantiates whateeelel fragments are
appropriate, based on these abstractions and relationships. Titis ireshe instantiation of a
ForceDi stribution and two TorqueEquilibrium model fragments. The
For ceDi st ri buti on consists of the rock pushing down on the wheel and the assumed object
in contact with the handle. The tWi@r queEqui | i br i ummodel fragments are symmetric.

In one,t heFor cer 2 is the assumed object in contact with the handlet &edFor cer 1 is the

rock. In the otheifor queEqui | i bri ummodel fragment, the participants are reversed. The
consequences of the first model fragment appegigimne 7 The first qualitative proportionality
states that the force applied by the rock on the surface bettheerock and the bin is
proportional to the force applied on the handle by the assumed forcaceauare defined using
the functionCont act Sur f aceFn which takes two arguments. The term denotes the surface
of the first argument that is in contact with the second argumerfor example,
(Cont act SurfaceFn Bin-110 Rock-111) denotes the surface Bf n- 110 which is

in contact withRock-111. (Contact Cbj ect Fn Handl e- 109) denotes the assumed
object in contact with the handle. The next two statementshsdythe force applied on the
handle is proportional to the distance from the surface of the raitie torigin of rotation and

inversely proportional to its distance from the origin of rotation.
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p
QQuantityFn ForceAppl i edToSurfaceBy) (Contact SurfaceFn Handl e- 109
(Cont act bj ect Fn Handl e- 109))
(Cont act Obj ect Fn Handl e- 109))
QQuantityFn ForceAppl i edToSur faceBy) (Contact SurfaceFn Bin-110 Rock-111) Rock-111))

QQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handl e- 109
(Cont act Qbj ect Fn Handl e- 109))
(Cont act bj ect Fn Handl e- 109) )
QQuantityFn Di stanceToOrigin) (ContactSurfaceFn Bin-110 Rock-111)))

QQuantityFn ForceAppl i edToSurfaceBy) (ContactSurfaceFn Handl e- 109
(Cont act Obj ect Fn Handl e- 109))
(Cont act bj ect Fn Obj ect - 109))
((Q@QuantityFn Di stanceToOrigin) (ContactSurfaceFn Handl e- 109
(Cont act Obj ect Fn Handl e-109))))

Figure 7: Resulting qualitative proportionalities from the torque equilibrium model fragment

Before the example is complete, any causal dependenciesnoéptual quantities on visual
guantities must be entered. All of the entities and quantitiehenstenario model are
automatically added to the concept map interface. Similargrydime an annotation glyph is
used to create a visual quantity, that quantity is automatically added tnitept map interface.
In this example, the user might want to convey that the wheeltarsmoothness of the ride is
determined in part by the diameter of its wheel. To do this, firstyadd a linear annotation to
the wheel. Next, using the concept map interface, they enter theatie proportionality
between the quantity representing the wheel's diameter andhteelbarrow’s smoothness of
ride. Figure 8shows a portion of the symbolic representation for the annotation ghygbhihe
qualitative proportionality entered via the concept map. The &cdtlinks the visual quantity,
named “Wheel Diameter” by the user, to the annotation glyph. n€ketwo facts indicate the
start and end points of the annotation glyph, in terms of anchor points idfence glyph. In
this case, the start and end points are the bottom right point ataptheft point ofWheel -
103, respectively. The final fact shows the qualitative proportigphdletween the quantity

representing the wheel’'s diameter and the wheelbarrow’s smoothness of ride.
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Automatically added by sKEA
(vi sual Representati onOf Quantity
((Concept KnownAsFn "Wheel Di aneter")
(d yphFn Wheel barrow 114 User - Dr awn- Sket ch- Layer-114))
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer - 114))
(start Poi nt OF
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer - 114)
(Ri ght nost Bot t onPoi nt Fn
(d yphFn Wheel - 103 User - Dr awn- Sket ch- Layer-114)))
(endPoi nt O
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer - 114)
(Lef t nost TopPol nt Fn
(4 yphFn Wheel - 103 User - Dr awn- Sket ch- Layer-114)))

Entered manually through the Concept Map
(gprop ((QPQuantityFn Ri deSnoot hness) Wheel barrow 114)
((Concept KnownAsFn "Weel Di aneter")
(d yphFn Wheel barrow 114 User - Dr awn- Sket ch- Layer-114)))

Figure 8: A subset of the facts (simplified for redability) to represent the wheel diameter
annotation and the causal relationship between theheel diameter and the wheelbarrow's
smoothness of ride

To summarize, examples include three types of information:

1. The everyday entities represented in the sketch.

2. Instances of model fragments, constructed automatically fromkétehed entities and
relationships, using the conceptual labeling and the visual/conceptatibnghip
interfaces to provide the necessary abstractions for model formulation.

3. Example-specific causal relationships between visual quan(tressurable in the

sketch) and conceptual quantities.

The next section shows how these examples can be used via armloggstruct scenario

models in new situations.

4.3 Analogical Model Formulation
Analogical model formulation creates a scenario model for asieation by analogy with a
previously understood example. The process begins with MAC/FAC beatjtagetrieve a

relevant example. SME then creates a mapping between thmplexand new situation. This
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mapping includes a set of candidate inferences which suggestimyodecisions for the new
situation. For BMCT problems, candidate inferences provide qualitaigadanics abstractions
and relationships, definitions for visual quantities, and causal relaipsns Together, this

information provides the basis for a scenario model which can be used to solve BMCT problems

Handle13 Boulderls Wheelbamow2?

AesumedForce Amowd

e Chazsis 12

Ground-9 heel10

Figure 9: A wheelbarrow from a problem sketch

This section presents how analogical model formulation construstereario model for the
wheelbarrow shown irigure 9using the example wheelbarrow from Section 4.2.1. SME creates
a mapping, a portion of which is shownTiable 2 between the predicate calculus representations
of the problem and the example. Because SME is guided by sleaédnal structure, the
resulting mapping does not necessarily include all of the eniiti#se problem and example.
Expressions from the example that do not participate fully in thepimg become candidate
inferences, in which the mapped portions are replaced by thespomnaing expressions in the
problem. Analogical model formulation depends upon these candidate ieferemanake

modeling decisions in the problem scenario.
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Example entities (Base) Problem situation entitig¢s

(Target)

Wheelbarrow-114 Wheelbarrow-22

Rock-111 Boulder-15

Handle-109 Handle-13

Frame-107 Chassis-12

Bin-110 Bin-14

Axle-104 Axle-11

Wheel-103 Wheel-10

Lift-113 AssumedForceArrow-19

Support-108 --

Wheeldiameter-203 --

-- Ground-9

Table 2: Mapping between the problem and example ¢ities

Analogical model formulation uses the example to infer three tgpesformation about the
problem scenario: causal models, qualitative mechanics abstraeimohselationships, and
information regarding the measurement of visual quantities. Canoglls are inferred from the
example as follows. The qualitative proportionalities-igure 7 andFigure 8become candidate
inferences with the entities fotheel barr ow 114, Handl e- 109, Wheel - 103, Bi n- 110
and Rock- 111 replaced withwheel barr ow 22, Handl e- 13, Weel - 10, Bi n- 14 and
Boul der - 15 respectively. The system searches the candidate inferémceapualitative
proportionalities and assumes them into the problem representation.itatiy@aimechanics
abstractions and relations are inferred in the same way. Cs8ndidarences concerning
abstractions and relations are assumed into the problem((esp, Axl e-11 Ful crum
and( on- Physi cal Bi n-14 Boul der-15)). Visual quantity measurement information is
imported in two ways. First, measuriby st anceToOri gi h quantities requires qualitative
mechanics knowledge about the center of rotation. For example staaadi to the origin from
the surface between the boulder and the bin requires knowing that ¢his &x¢ fulcrum. The

second type of visual quantity concerns user defined annotations, sWleelsDi anet er -
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203. In this case, the expressions in the example concerning the tembtcome candidate
inferences. The Companion uses these candidate inferences to tmalbmareate a
corresponding annotation in the problenfigure 10 contains the candidate inferences which
define the wheel diameter quantity and provide instructions as to dvalnatv the annotation
based upon anchor points. Since the entity for the annoi#tieael Di anet er - 203 does not
participate in the mapping, these candidate inferences coraiml ogySkol enfn
expressions. These expressions represent entities which appearbiase but do not have a
corresponding entity in the target. Using this automaticallytoacted annotation, the scenario
model includes information concerning the measurement of a visualitgyuhat was defined

only in terms of the example.

(vi sual RepresentationOf Quantity
((Concept KnownAsFn "Wheel Di aneter")
(4 yphFn Wheel barrow 22 User - Drawn- Sket ch- Layer-114))
( Anal ogySkol enfn
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer-114)))
(start Poi nt O
( Anal ogySkol enfn
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer-114))
(R ght nost Bot t onPoi nt Fn
(d yphFn Wheel - 103 User - Dr awn- Sket ch- Layer-114)))
(endPoi nt O
(Anal ogySkol enfn
(Annot ati ond yphFn Weel Di anet er - 203 User - Dr awn- Sket ch- Layer - 114))
(Lef t nost TopPoi nt Fn
(4 yphFn Wheel - 103 User - Dr awn- Sket ch- Layer-114)))

Figure 10: Candidate inferences concerning the whediameter visual quantity

The next section describes how analogy is used to frame corapaaatilyses allowing for its

application between scenario models necessary for solving BMCT problems.

4.4 Analogical Reference Frames for Comparative Analysis

Comparative analysjsand in particulacomparative analysjseeks to understand how and why
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the behavior of a system will change given some changes to itsgiara (Weld 1988). For

example, comparative analysis can explain why the period ofaiatsg block system would

increase if the mass of the block was increasedCAAvalueis a qualitative description of how

one particular parameter in a system will change given prameter changes. There are four

possible CA values: unchanged, increased, decreased and ambiguous. Thaticengpelysis

problems on the BMCT do not fit directly into the traditional perturbed systeneWwark. First,

they involved comparisons between scenarios, rather than describertuebation in a single

scenario. Second, some of the problems require comparisons betweemdéets of the same

system. For example, the BMCT problemFigure 11asks “which wheel of a railcar presses

harder on the rail?”

RailCar1184

N\

Bnuldci‘gf'_\

_J

Carl1183

Wheel1181

Rails1180

Wheell182

Figure 11: A comparative analysis problem concernig aspects of the same system, "which wheel of the
railcar presses harder on the rail?"

Analogy provides a general mechanism for framing comparatedyses.

Using SME, an

analogical reference framis created to determine correspondences between eitheystems,

or different aspects of the same system. These correspondeanesa comparative analysis
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problem by defining what each parameter is compared againbt. problems with multiple
systems, SME creates an analogy between the systems with one akthisgrbase and the other
as the target. In the case of single system problems, tre@msistcompared with itself while
constraining the entities being compared to match each other.indtance, in the rail car
problem fromFigure 11 SME matches the scenario to itself but requires Wheel - 1181

correspond withWheel - 1182.

The analogical reference frame lines up quantities whoseadtiffes can be reasoned about via
standard comparative analysis. Returningigore 11 we want to find the CA value of the force
applied to the rail atheel - 1181 through a comparison with its corresponding quantity, the
force applied to the rail atheel - 1182. The causal models indicate that the force on each
wheel is inversely qualitatively proportional to the distance batvibe surface of the boulder in
contact with the cart and that wheel. Since the two distanmeesligned by the analogical
reference frame, we determine that the CA value for the destemrcerningheel - 1181 is
decreased. Since the relationship to force is inversely quaditaproportional this distance, the
CA value for the force applied &theel - 1181 is increased, i.e\Wheel - 1182 is pressing
harder on the rail. Analogical reference frames are impdrn#use they allow a wider class of
systems to be analyzed, since the correspondences between aspegtsblem are computed

dynamically.

4.5 Solving BMCT Problems via Analogy

This section describes how sketch annotations, analogical model &ionuland analogical
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reference frames come together to allow a Companion to sol&@BMoblems from examples.
Problems are presented as sketches of the situation and a quergesS$ima reasoner solves
these problems using the AND/OR suggestion architecture frorau§@& De Kleer 1994). The
problem-solving knowledge consists of 19 methods and 136 backchainilsg riilee entire
process is implemented on the Companions cognitive architectunetivat following agent

configuration:

e Facilitator Manages sessions, starts up other agents, and helps set up comaomunicati
channels between agents.

e Session ManagerProvides generic facilities for user interaction, including tspear

shutdown, and making queries

e Sketching AgentProvides an interface between sKEA and other Companion’s agents

e Session ReasoneResponsible for the domain reasoning, in this case solving BMCT

problems.

e Similarity-based RetrieveProvides analogical remindings to the session reasoner based

upon the current contents of working memory.

The agent architecture allows specialized reasoning to béudistt to different agents across
the entire Companion. For example, when the session is startedjidrscibrokered by the

Facilitator are set up between the Session Reasoner and tihevdtetso that the Retriever
receives updates in the Session Reasoner’s working memoryg tbese updates, the Retriever

runs MAC/FAC to retrieve a case from its case libraramasanalogical match to the working
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memory contents of the Session Reasoner. When the user makessdatige sketch altering
the Sketching Agent’'s working memory, subscriptions update the wonké@rgory contents in

the Session Reasoner. These brokered subscriptions basically becoote procedure calls
once set up: If the Session Reasoner needs to know the distameerb&vo points, the query is
automatically forwarded to the Sketching Agent, which measuredistence on the sketch and

sends the result back to the Session Reasoner.

Solving BMCT problems using analogical model formulation involves tsteps. First, the
Companion retrieves a relevant example. Second, the Companiors cieatenario model
based upon the example using analogical model formulation. Third, thpa@Gamn uses the
model to compute the answetigure 12shows how analogical model formulation is implemented

on the Companion cognitive architecture.

Step 2: Create

scenario model ] o> -
Problem-solving T e—

—

_ methods and rules  / 3 .| Case Library
= +abstract QM L~ Step1:Retrieve -  of examples
domain theory example
Session .9 " Similarity-based
Reasoner S— Retriever
Stép 3:
iven: ~ Compute
Clver - B | Cluster nodes
Problem - the answer

~ Visual quantity

measurements

.........................................................................

— Local Machine

Sassion Sketching

Manager Agent
Sketches

Figure 12: Solving BMCT problems on a Companion

The Session Reasoner performs the majority of the reasonimgliet on the Retriever to find
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relevant analogs, and the Sketching Agent to perform visual quargdgurements. In addition

to running sKEA, the Sketching Agent also maintains the concept map used in exatnyple e

As previously discussed, there are two types of questions on thd BdW@ome questions and
comparative analysis (CA) questionssigure 13 contains an example of each type and the
associated query stored with each problem. The predicate of the igdmates the type of
problem. Because the ball problem is a single situation,skesched on a single layer. The
predicatesol veQVOneSket chPr obl em designates that this is an outcome question. The
first argument is the query for the outcome question, “what iag¢hérce on the ball?” In CA
problems with comparisons between scenarios, the sketch consigts lafyers, one for each
scenario (e.g., one layer for each wheelbarrow). The predic#te glery in the wheelbarrow
problem,sol veCAPr obl em indicates that this is a comparative analysis problem. if$te f
argument is the context containing the facts representing thehskBhe next two arguments are
the objects being compared, in the case the wheelbarrows. Therguaxieat is the quantity
being compared between these situations, the force applied to the batid top wheelbarrow.
The last argument is the answer, which is the CA value indic#ti@ change in the quantity
from one situation to the other. The correct answer to this prodemcreasing (i.e.,

| ncreasedCA) indicating that the force applied to the handle increases fromtajme

wheelbarrow to the bottom wheelbarrow.
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Object-1304

Object-1302

Object-1301
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?y-dir))) ?val ue)

Figure 13: BMCT problems and predicate calculus quees - "Which direction will the ball travel?"
(Outcome Problem) and "Which wheelbarrow is easieto carry?" (CA Problem)

4.5.1 Retrieve Analogous Example

The first step of problem-solving is retrieving an analogoasmate. The Companion does this
for each layer in the problem sketch. To retrieve a relevann@ea the Retriever uses
MAC/FAC to generate a reminding for the situation depicted by ldyer. MAC/FAC
determines the most similar example from its case litwainyg the situation with the low level
visual properties removed (i.e. visual groupings, glyph orientations,edati/e sizes) as the
probe. For outcome problems, the first retrieval is used. Pogu@stions, the retrieval must
also contain candidate inferences that causally constrain #hegantity. For the wheelbarrow
problem, the candidate inferences must include qualitative proportiesationstraining the

force applied toHandl e-7. This is a useful heuristic, because without these candidate
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inferences, the Companion will not be able to construct a usefuiscenodel for solving the
problem. Should the first retrieval prove unsatisfactory, a secamevedtis performed with the
unsatisfactory case removed from the case library. If that, fails, the low level visual
properties are added back into the probe and up to two more retriievaptst are made. The
multiple retrievals enable different aspects of the problem sogina. the conceptual and visual

aspects) to guide the retrieval and mapping process.

4.5.2 Perform Analogical Model Formulation

As described in Section 4.3, analogical model formulation crematesenario model for the
problem, consisting of causal models, qualitative mechanics abmtsaeind relationships, and
information regarding the measurement of visual quantities. Confsidexxample the ball
problem. Analogical model formulation infers that the ball and tleeg®ople are instances of
the collectionRi gi dObj ect, and the balt ouches-di rect |y each of the people. These
facts allow the Companion to formulate a qualitative mechanics noddleé problem using its
domain theory and a standard model formulation algorithm. This seenadel consists of two
model fragmentsXFor ceTr ansf er andYFor ceTr ansf er. Turning to the wheelbarrow
problem, the results of analogical model formulation for each stuatie described in detail in
Section 4.3. For this particular problem, the qualitative proportionality betweéortkeeapplied
at the handle and the distance between the rock and the cerdttiohris the crucial aspect of

each resulting scenario model.

4.5.3 Solving Outcome Problems
Solving an outcome problem involves standard qualitative reasoning. &wopkx in the ball

problem, the Companion calculates the net force, down and to tiefr@nm the consequences
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of the force transfer model fragments.

4.5.4 Solving Comparative analysis Problems

Solving a comparative analysis problem requires the additionabstemstructing an analogical
reference frame. The Companion uses the causal model andicadateference frame to
ascertain the relevant visual properties to compare. These pisyerties are measured and
their numerical values compared to produce CA values for the gausdpendent parameters.
These CA values are then propagated through the causal modeivio al€@A value for the
guery parameter. These problems can be quite difficult: One praiohethe BMCT involves
comparisons between aspects of three situations. In this cas€ptimganion sets up three
reference frames, one for each pair of situations, and savtiethe same analysis for each

reference frame in order to derive the correct answer

4.5.4.1 Creating the Analogical Reference Frame

As described in Section 4.4, the Companion creates an analogiesdned frame for the
problem. It uses SME to create a mapping between the two iesemairthe scenario with itself.
In the latter case, the mapping is constrained by requiring espamdence between the aspects
of the scenarios being compared by the query. The resulting correspesidadicate how
guantities should be compared. Specifically, the CA value for amptea refers to a
comparison between its value and that of the parameter correspomding the mapping. In
the wheelbarrow problem, the Companion sets up the analogical reférame by mapping the

top wheelbarrow onto the bottom wheelbarrow.
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4.5.4.2 Backward Chaining through the Causal Model

Once the reference frame is set up, comparative analysisgoi®by chaining backward from
the sought quantity through the causal model. Non-visual quantitiearéhatther not causally
constrained by other parameters or are not known to be differeasswened to be the same
across the scenarios, i.e., a CA value of unchanged. For example, in theawbeeproblem in
Figure 13 the Companion assumes that the rocks apply the same amount ofoforte
wheelbarrow’s bins because force applied is not a visual quantity. vadAes for visual
guantities are computed by comparing measurements between the correspaaudlitigg)in the
sketch. In the wheelbarrow problem, the Companion determines thitr¢leeapplied on the
handle is proportional to the distance from the rock to the wheelbarrangin of rotation.
Therefore, since the CA value for distance from the surfatkeeobin touching the rock to the
wheelbarrow’s origin of rotation increases, the force applied omdhele also increases from

the top wheelbarrow to the bottom wheelbarrow.

4.5.4.3 Measuring Visual Quantities

The Companion uses the Sketching Agent to measure visual quantitidgs Work, there are
three types of visual quantitieBi st anceBet weenSur f aces, Di st anceToOri gi n, and
example-specific  visual quantities defined by a linear annotation. The

Di st anceBet weenSur f aces quantity represents the distance between two surfaces. sKEA
reduces each surface to a point by averaging the X and Y coosdafdtes surface’s endpoints
and computes the distance between these points. Dils¢ anceToOri gi n quantity
represents the distance from a surface to the center obrotdtithe object the surface is on.

The center of rotation is determined by two methods, each of whménds upon the results of
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analogical model formulation. First, the object may participatdie conceptual relationship,
canPi vot Ar ound, with another object. In this case, the surface between thest¢solbjsuld
be the center of rotation. Second, the object may be part of a calogigphh group. In this
case, if there is another glyph also in the group who is an instdiribe collectionFul crum
the centroid of this glyph is the center of rotation. Examplefsp&isual quantities created by
annotations are measured from the anchor points transferred viaatanidigrences. Linear
annotations measure the distance between anchor points, while Xaaderdnd Y-coordinate

annotations measure distance between the anchor points along the appropriate axi

In the wheelbarrow problem, the Companion uses the causal model to deterntime dnsthnce
to the origin of rotation from the surface on the wheelbarrow’s bimetktby the contact with
the rock, is a relevant visual quantity. sKEA uses the ink of the bin and rock glyphertoidet
the line segment of the bin which represents the surface. siEwages the endpoints of this
line segment to calculate one end of the distance measurefieatcenter of rotation of this
wheelbarrow depends upon the qualitative mechanics abstrdétibor um Because the
wheelbarrow is a group glyph and the axle is an instance oFuher um collection, the
Companion selects the centroid of the axle as the center obrotatithe wheelbarrow. Next,
SKEA computes the distance between these points and provides tlm $esmsoner with the
results. The same process occurs for the other wheelbarrowall Bet not only was the
relevance of this quantity established via analogy, its measuateatso depended upon the

gualitative mechanics abstraction inferred during analogical modetufation.
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4.6 Experiment

The purpose of this experiment was to determine how well a Companfompge on problems
from the Bennett Mechanical Comprehension Test using analogical noaelldtion. A subset
of the test was chosen to minimize domain encoding efforts and ts fot what could be
achieved via analogical model formulation. | selected 13 of the @3eons on the BMCT,
focusing on problems involving net force, revolution rate, stability, @mdothness of ride.
Given that all of the problems include real world objects, this subsan example of the
everyday breath problem. By including problems not handled by mBe&nagx qualitative

mechanics theories, this subset is useful for evaluating the domain breadth @ebleih

Eleven problems involved differential qualitative analyses, sixto€lvinvolved phenomena not
covered by the Companion’s qualitative mechanics domain theory. offilee two problems
were outcome problems. The experiment and analyses below provdéeaiconcerning three

guestions:

1. Can a Companion using analogical model formulation solve Bennett Meahani
Comprehension Test questions?

2. How does a Companion perform when the number of explanations incredbes?s
important for assessing how well learning by adding examples scales.

3. How well do the retrieval and mapping mechanisms perform? i$hathen there are
errors, how often are these mechanisms the cause, as opposetetotker part of the

system?



70
4.6.1 Method

A central assumption concerning analogical model formulation isinkelligent agents have
access to explanations of situations similar to the current problémse explanations may have
been given to agent or just inferred from experience. To model ¢éxptmnations, a list of 18
example situations was created. 15 examples were intendedytmth@nalogs for specific test
guestions, with each problem from the BMCT subset having sit de@ relevant example. The
other three examples provided additional distracters. Three geaduatents, with varying
degrees of familiarity with sKEA, served as knowledge entekdes)(to create the examples.
Each example was described to the KEs by a short English pbrgsta tricycle”. They were
instructed to draw each example in two dimensions, avoiding perspgutyections. They
were also instructed to break objects into separate glyphs wdretiteey were going to be
referring to a named part in describing how that exampl&kedor For example, because a
wheelbarrow is lifted at its handle and rotates around its é&dehandle and axle would be
separate glyphs. While drawing, they used sKEA's conceptual ngbeiterface to apply
appropriate domain abstractions from a list provided to them. They wded sSKEA's
visual/conceptual relationship interface to select relevartiaehips. KES were also given a
list of physical quantities that were relevant in this subk#die BMCT (i.e., smoothness of ride,
revolution rate, and stability). When one of these quantities wasard| they were instructed to
include it in their example, and explain what other properties ofyeeem that it depends on,
using annotation glyphs as necessary to define physical quantitiderms of visual
measurements. To evaluate their progress, they ran a standardtigealitechanics model

formulation system to derive model fragment instances. letiware missing or inappropriate
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instances of model fragments, they were encouraged to modifystedith until they were
satisfied with the model fragments generated. For exampke,sketch depicting two meshed
gears where one of the gears is rotating (as indicated by arm@aomptthe KE would know that
something was wrong if there was no mention of torque transfieimactive model fragment

list. Once finished, each example sketch was stored in a case libraryt foaurtiaular KE.

The 13 problems were drawn by a fourth graduate student, an expersE& user. The
problem sketches did not include any qualitative mechanics struahstihctions or conceptual
relationships. Thus, all the problems required analogical modelufation to arrive at the
correct answer. Every answer the Companion provided had to beguby its own model of

the scenario. No guessing was allowed.

The problems were presented to the Companion in a series of seven trials. Inhtedsials,
the Companion had access to each KE’s case library individuallyhelnext three trials, the
Companion was given each pair wise combination of case librandsinathe final trial, the

Companion had all the examples from the three cases libraries.

While the 13 problems represent a subset of the test, theyostit a broad range of situations.
The predicate calculus generated for the sketches of these psotmatains 164 entities of 84
different types. These entities are related to each oth&7 hynique relations. The problem
representations contain on average 182 facts, with the largesiratidst problems having 397

and 40 facts respectively. Because annotations and conceptual reipsonsre added to the
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examples, the example representations are slightly largeingafrom 52 to 467 facts with an

average of 201. They include 100 conceptual types and 212 unique relations.

4.6.2 Results

Library # of Correct # of Correct
Retrievals Answers
(out of 13) (out of 13)
KE1 7 6 (p <.24)
KE2 10 10 (p <.001)
KE3 5 2 (p <.96)
KE1+2 11 9 (p <.008)
KE1+3 9 6 (p <.24)
KE2+3 10 10 (p <.001)
KE1+2+3 | 12 10 (p < .001)

Table 3: Problem-solving results by case library

A summary of the results appearsTible 3 The correct retrieval column lists the number of
times the system retrieved one of the appropriate analogudsefproblem sketch. Given the
large number of distracters, 16 or 17 depending on the problem, all dfttleval results are
statistically significant (p < 0.001). The correct answeummml lists the number of times the
system provided the correct answer. In four of the seven tifi@sCompanion produced the
correct answer on a statistically significant number of prosl@Pn< 0.05). Every problem was
solved in at least one of the trials. KE2 had the most expendtitsKEA, leading to similar
representations to the problems, and KE3 had the least expeneoegling some serious
variability. Table 3 demonstrates that Companions can indeed solve BMCT problems via
analogical model formulation: 77% correct, under the best conditionsthefmore, as the
number of available examples grows, the Companion’s performance impkiniee that every
combination of KEs except for KE2+KE3 provides an improvement in coregrievals. This is

important because it means greater breadth can be achieved talegree by increasing the
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system’s experience. A close inspection of the results setieal in each of the combination
trials, example sketches from at least two of the casaridsr were used to formulate correct
answers. This indicates that the methods have some degree of rebustness examples

entered by multiple people.

Question Type (number) # Answerg Correct | # Answers
Produced | Retrievals | Correct
BMCT Questions (91) 71 (78%) 65 (71% 53 (58%)
Outcome Questions (14) 14 (100940 (71%) | 10 (71%)
CA Questions (77) 57 (74%) 55 (71%) 43 (56%)
Net Force Questions (35) 24 (68%) 23 (65%) 15 (42%
Other Questions (42) 33(78%) 32 (76%) 28 (66%)

Table 4: Companion's performance by question type

Table 4looks at the same data, but broken down by question type, to get a bettstamatieg of
the Companion’s performance. Overall, the Companion answered cors8étlyof the time
across all problem/memory conditions. However, since errors inxtaé ¢omponents of the
system have been ruled out via by-hand analysis, the diffebataeen the number of answers
produced (78%) and correct retrievals (71%) suggests that thereceasional problems in
mapping or in using candidate inferences. This was not thefaratdee outcome questions — if
the retrieval was correct, the Companion derived the correct.régetall in outcome questions,
the Companion always uses first analog retrieved. Findingitari@n for testing the
analogically derived model would make a difference here. Tlislggn was worse in the CA
problems, despite the use of a relevance heuristic to ftaevals. In 20 of the CA questions
(26%), the Companion was unable to find an example that causally cuestthe sought
guantity, and thus was unable to produce an answer.

Also, when the Compareorda

relevant example, it still missed 12 out of 55 problems (22%). Thdsees are examined more
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closely below.

Analogical model formulation’s performance without a complete donhaary is evaluated by
distinguishing between different types of CA questions. In neefquestions, the Companion
transferred causal models from examples that were generatadttie qualitative mechanics
domain theory. The Companion performed slightly worse on these mr®lhleeraged across all
memory conditions. It retrieved a relevant example 65% of thedmdeanswered the problem
correctly on 42% of the problems across all memory conditions. The other questicesn the

phenomena not covered in the Companion’s qualitative mechanics domai: thibility,

revolution rate, and ride smoothness. The causal models required téheskweroblems were
defined in an example-specific manner via linear annotations. Thedfaom answered 66% of
these problems correctly across all memory conditions, supportimyple¢hesis that analogical
model formulation is a promising approach to addressing the domauittbablem posed by

the BMCT.

To better evaluate the retrieval heuristic used in CA probleang 5organizes the CA results
based upon which retrieval strategy produced the answer. Whiledjogity of the answers
were based upon the first retrieval, 24 answers across albbrpaonditions required additional
retrievals. Of these, the Companion retrieved an appropriate analogue 2 arnnenswered the
question correctly 15 times. These results support the hypothesihaheetrieval method is

useful in for solving BMCT problems from examples.
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CA Retrieval Strategy Type# Uses # Correct| # Correct
Retrieval | Answer

1% retrieval: No spatial 33 32 28

relations, full case library

2" retrieval: No spatial | 5 5 3

relations, case library ='1

retrieval

3% retrieval: including 11 11 8

spatial relations, full case

library

4" retrieval: including 8 6 4

spatial relations, case

library — 39 retrieval

Total: 57 54 43

Table 5: CA results by retrieval number and stratey

4.6.3 Analysis of failures

It is useful to understand why systems fail. First, failuiresutcome problems are analyzed

followed by a discussion of the failures in CA problems.

The four failures on outcome problems occurred because the Compaiteanto retrieve the
correct example from memory. The Companion confused a geangotaside another gear
with two gears rotating side by side, due to annotation glyph pladteri&is results in incorrect
gualitative mechanics abstractions and relationships being assuthedomoblem, which in turn
leads to the Companion constructing an incorrect scenario model. Gurtéet problem
solving method does not have a method for evaluating the retrieval on eufmatlems.
People seem to handle this problem by recognizing contradictionsein teasoning.

Recognizing contradictions is difficult in analogical model formatatbecause the mapping

with the example is assumed to provide the correct structurédaetosn and conceptual
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relationships. A promising direction for overcoming this problemoisexplore ways of

combining reasoning from multiple examples.

The failures on CA problems occurred during both the retrieval aagpimg stages of the
algorithm. As noted above, the retrieval must yield a mappinghmbausally constrains the
guantity in question. For 20 of the 77 problem/memory condition pairs,auexample could
not be found. Frequently, this was because the KEs sketchexkigle at a different level of
abstraction than the problem. Even when an example is found thaaamn#tie goal quantity,
there are still two failure modes for mapping. First, the daunsael may include surfaces or
objects which do not exist in the problem sketelgure 14illustrates this problem. The problem
sketch contains glyphs for the ground and the axle, but the example dod=urtbermore, the
chassis in the problem sketch is conceptually labeled as a g iexample. While SME
handles incomplete matches, significant differences in depiction,asudivergence in number
of glyphs, can cause mapping failures. In this case, the bin in the exanpgl¢ontiae chassis in
the problem. The candidate inferences postulate surfaces anghas that do not exist (e.g, the
surface between the boulder and the chassis), which sKEA Meut@areason about. The
Companion fails whenever a candidate inference for a necessagl oalasionship includes

references to either surfaces or glyphs that do not exist.

The second kind of mapping failures in CA problems are erroreasuamements of user defined
visual quantities. When measuring the wheel diameter in the praiolemario oFigure 14 if the

wheel in the example was mapped to the axle in the problem, therstiadé measurement for
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the wheel diameter would be the width of the axle in the problemseTimapping failures lead

the Companion to produce incorrect answers.

heelbarmow-12

Figure 14: Example wheelbarrow (left) and problem vheelbarrow (right)

People seem to have several methods for dealing with such problenss. tHey try other
examples, going back to memory to find an example that is more preduét simple version
of this is already implemented in the retrieval method. Also, peoplere@esentatiorfYanet
al. 2003) to bring the base and target into closer alignment. Knowddnge depiction seems
crucial: If two sketches are misaligned, simplifying the mmmplex one, or postulating new

glyphs in the simplified one, seems to be a promising strategy.

As illustrated inTable 5 the Companion performed slightly worse on net force CA problems
which relied on causal models generated by its qualitative meshdomain theory than on
problems which relied upon example-specific causal models. Tlaesalcmodels from the
gualitative mechanics domain theory were larger which incre&sesikelihood of mapping
failures. The net force causal models contained more enhfesthe example-specific causal
models. This is evident in the example wheelbarrowigare 14 The causal model concerning

the force applied at the handle references the following entitidandl e- 4,
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(Cont act Obj ect Fn Obj ect-4), Rock-7, Bi n- 3, andWeel -5. All five of these
objects must map appropriately to the problem to create the agcesgnario model. On the
other hand, the example-specific explanation for the wheelbarrad@ssmoothness references
only two entitiesWheel - 5 andWheel barrow 12. While the causal models concerning net
force CA problems are more complex, the Companion does have accesgualitative
mechanics domain theory. One avenue for future work is to develmgoey twhich uses the

first-principles explanation to verify and repair these analogicalgriedl causal models.

4.7 Summary and Future Directions

In this chapter, | have argued that qualitative reasoning combitle@malogical processing is a
promising avenue for addressing the problems of domain breadth andegviergddth that must
be solved for human-like reasoning. The Companion’s performance ubset ®f the Bennett
Mechanical Comprehension Test provides important evidence for tms. ckanalogical model
formulation enables a Companion to build scenario models over a broad ghngput
descriptions, even with an incomplete domain theory. Sketch annotations paavidans for
defining visual quantities in examples, which can be used in exapetfic causal
explanations and applied via analogy to new situations. This exten@stimganion’s reach by
enabling it to reason about phenomena for which it does not have apoodieg domain
theory. Analogical reference frames extend the scope of cotimeasamalysis to include the

types of problems found on the BMCT.

This work opens a number of promising directions for future researcithinvthe analogical

model formulation framework, there are two important places fgeromement: learning
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evaluation rules for analogical inferences and representatiorptove mappings. As indicated
in the results section, more methods for evaluating analogicaémnues would have benefitted
analogical model formulation on outcome problems. Specificallyaraggent accumulates
multiple examples of a scenario, there is the potential toaahstommonalities between them.
For example, regarding analogical inferences concerning tHggatjua mechanics abstractions
and relationships, one could observe that qualitative mechanics abstraciuches-
directly only occurs when the glyphs representing the two objects $patisdrsect.
Therefore, when the system encounters an analogical infeseiggesting this relationship for
two objects, it could reject the inference. This knowledge could laésa trigger for
rerepresentation (Yaat al. 2003). Similar relationships between objects result in the model
fragments for net force CA problems, such as the problem wheselbm Figure 14 Recall that
this problem failed because the mapping resulted in a causal mba# wmcluded a non-
existent surface between the boulder and the chassis of thébarneel. One strategy would be
to merge glyphs in the problem until the proper spatial relationship foe the analogically
inferred qualitative mechanics relationship. For example, mgrthe chassis with the bin
would create a spatial intersection between with the boulder. intarsection would then allow
the Companion to reason inferred causal model. This repair would W ompanion to
successfully reason about a problem scenario where analogical foodelation initially

produced a flawed model.

Another direction for future research on analogical model formonlas to explore how new

abstract domain theories are learned from examples. In this wwekmagjority of the
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Companion’s domain knowledge is in either examples or the qualitatastanics domain
theory. A common hypothesis in cognitive science is that peoplalde to generalize from
examples into a more abstract domain theory. Taking the exarfiplesthis work, the
Companion could create generalizations across causal models cogdabmiisame quantities.
This could lead to rules such as “things with wider bases are stable.” There are still many
open questions regarding how this knowledge gets formed and how it isdapplfuture

problem-solving episodes.

An important aspect of this evaluation is using the multi-modabreéag requirement of the
BMCT. While sketch annotations provided an excellent way to tie Ivisnd conceptual

information together in sketches, the linear distance annotationigéie the reference glyphs
by anchor points. While the nine anchor points were sufficient fervibrk, experience with

everyday sketch points out a number of other important areas. éngdations, either within an
individual or between a pair of glyphs, represent an additional diypeference point. Also,

additional research is required to understand the types of annotaticaisare used in everyday
sketching. For example, sketches of simple machines frequectlyde hashing to indicate
solid regions and sketches of military plans include circles atidig regions of importance. An
important lesson from this work is that qualitative representatproside a useful bridge
between symbolic representations necessary for analogy and gamg@®ning and the spatial

representation given as input in the problem.

By employing the BMCT to evaluate the system, this work fallthin the umbrella of
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Psychometric Al (Bringsjord & Schimanski 2003). Psychometric Adidiuman intelligence
tests as an important progress meter for Al. Building a&sy$hat could ace the BMCT would
be a substantial achievement. While tests are an importarforvayeasuring progress, how the
system accomplishes its performance is of particular intéoetite Al and cognitive science
community. In this work, analogical processing, comparative aratysalitative reasoning and
sketch understanding all played integral roles in achieving thidt.reContinuing in this
direction, the next chapter describes how a Companion uses analogael formulation to

solve AP Physics problems.

To overcome the brittleness of Al systems, the robustness ankilitg»af the system is very
important. In this evaluation, robustness was evaluated by haviriplekihowledge enterers
provide the Companion with a broad range of inputs. A failure anahdisated some of the
representational differences that are difficult for the Compatwomvercome. Specifically,
analogical model formulation was insufficient when the situatiwwase depicted at different
levels of abstraction. This motivates future work to incorpa@atepesentation strategies (Yan
et al. 2003) to better align the sketches. Also, the Companion’s performmanoeasured with
different combinations of examples provides information concerningaiiestness with both
good and bad examples. In the next chapter, two other measures ohesbume employed:

external evaluation and systematic differences between problems andesxampl
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5 AP Physics problem-solving with analogical model formulation

This chapter describes how the same method, analogical model formuldtias,alCompanion
to solve Advanced Placement (AP) Physics problems designetieb¥educational Testing
Service (ETS). Physics problem-solving is an important domaiméwming beyond traditional
approaches for model formulation, because, as on the BMCT, the proatenmsesented as
everyday scenarios. While the BMCT included spatial reasoningjcphysoblems include
guantitative as well as qualitative reasonirmgure 15provides four examples, illustrating types
of problems that the system learns to solve. Natural languagestsrttding is factored out by
using predicate calculus problem descriptions. Unlike previous systants as MECHO
(Bundy 1979) or ISSAC (Novak 1977), this translation process leavegdayeconcepts in
place. That is, balls, buildings, astronauts, boxes, baseball batg, figlling, and pulling all
appear in the formal problem descriptibnsTherefore, one must still overcome the everyday
breadth problem to determine the relevant abstractions and assumiptioeach physics
problem. The generalizations in any commonsense ontology are yribkelovide much help:
cats, coins, and pianos can all be considered as point massescugastiuations, but they are
not likely to be closely related in any non-trivial ontology. Furtiere, modeling decisions are
contextual. For example, a coin falling off a building can be coreid® be a point mass. But
the exact same coin spinning on a table cannot be considered a pessimce its shape and

size must be considered.

% The subset of the ResearchCyc ontology usedsnatbik contains over 30,000 concepts. See resegoctom
for details.
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1. A ball is released from rest from the top of a 2Q@ithbuilding on Earth and falls to the ground.air resistance
is negligible, which of the following is most neadqual to the distance the ball falls during tin&t #s after it is
released? (a) 20m; (b) 40m; (c) 80m; (d) 160m.

2. An astronaut on a planet with no atmosphere thimlwaseball bat upward from near ground level wittinéial
speed of 4.0m/s. If the baseball bat rises toximmam height of 5.0m, what is the acceleration ttugravity on
this planet? (a) 0.8nfis(b) 1.2m/$; (c) 1.6m/4; (d) 20m/$;

3. A box of mass 8Kkg is at rest on the floor whers ipulled vertically upward by a cord attached ® dhbject. If
the tension in the cord is 104N, which of the folilog describes the motion, if any, of the box?I{ajoes not
move; (b) It moves upward with constant velocity) [t moves upward with increasing velocity but stamt
acceleration; (d) It moves upward with increasiefpeity and increasing acceleration.

4. A block of mass M is released from rest at thedban inclined plane, which has length L and madesingle q
with the horizontal. Although there is frictiontben the block and the plane, the block slideb witreasing
speed. If the block has speed v when it reacheddiitom of the plane, what is the magnitude offtietional
force on the block as it slides? & Mgsin(g); (b) f = Mgcosg); (c) f = MgLsin(@)- ¥YaMv? ;(d) f = [MgLsin(g)-
MV /L.

Figure 15: Example AP Physics problems of the foutypes used in this work

While complex, there is ample evidence that people are ablevi® [@aysics problems stated in
everyday terms. The problems used throughout this work were geneyatied Bducational
Testing Service, which administers the AP Physics examinatidhe United States. High
school students take the AP Physics exam for college credlitder@s’ performance on this
exam indicates that they do learn to categorize everydagtshjeterms of domain abstractions,
determine what equations are relevant, infer parameter values feoaries, and assume default
circumstances when necessary. The problems used in this waglgemerated automatically,
from templates. The four problems, one from each problem type, shomigurig 15represent

roughly 20% of the typical Mechanics portion of the AP Physics examination.

Characterizing how well learned knowledge is transferred to prelWlems is complex. One
way involves identifying differenttransfer levels each representing a particular type of

relationship between a knovewurceproblem and a novéarget problem. This research uses an
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externally-developed set of six transfer le¥elslsing Problem 1 frormigure 15as an example of

a source problem, the following are representative examples of the sixrttansfe:

2.

4.

A ball is released from rest from the top of a 200m tall building on Earth and falls to the
ground. If air resistance is negligible, which of the following is most nearly equal to the

distance the ball falls during the first 4s after it is released?

ParameterizatianTarget problem has different parameter values, but the qualitative outcome

is the same.
A ball is released from rest from the top of a 500m tall building on Earth and falls to the
ground. If air resistance is negligible, which of the following is most nearly equal to the
distance the ball falls during the first 3s after it is released?

Extrapolation Target problem has parameter values that are so different that the gealitati

outcome changes as well.
A ball is released from rest from the top of an 80m tall building on Earth and falls to the
ground. If air resistance is negligible, which of the following is most nearly equal to the
distance the ball falls during the first 5s after it is released?

RestructuringThe target problem asks for a different parameter.
A ball is released from rest from the top of a 200m tall building on Earth and falls to the
ground. If air resistance is negligible, how long does it take to fall 80m?

Extending The target problem includes distracting information.

* These levels are from a 10-level catalog of trntfsks used in DARPA'’s Transfer Learning Program.
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A ball with density 5Nm/kg is released from rest from the top of a 100m tall building on
Earth and falls to the ground. If air resistance is negligible, which of the following is
most nearly equal to the distance the ball falls during the first 4s after it is eeleas

5. Restyling The target problem involves different types of everyday objects.
A crate is dropped off the edge of a 100m cliff on Earth and falls to the ground. If air
resistance is negligible, which of the following is most nearly equal to the distance the
crate falls during the first 4s after it is released?

6. Composing The target problem requires combining concepts from two different base

problems.

An astronaut on a planet with no atmosphere throws a ball upward from near ground
level with an initial speed of 4.0m/s. The ball rises to a maximughthaf 5.0m before
returning to the astronaut who then drops the ball from the top of a 100m tall building. If
air resistance is negligible, which of the following is most nearly equal to the digtence
ball falls during the first 4s after it is released? (ComposedSinrce Problem with

Problem 2 from Figure 15)

The rest of this chapter describes how a Companion using analogidal farmulation solves
AP Physics style problems, across these six transfetslev@/hile in the previous chapter
example sketches formed the basis of the explanations for arzlogydel formulation, here |
introduceworked solutions These are worked through example problems at the level of @letai
student would encounter in a textbook. A central hypothesis in andlaogydel formulation is

that it allows for robust problem-solving in everyday scenari@me measure of robustness
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comes directly from the transfer levels themselves. Usimdked solutions as explanations to
source problems, performance on problems from each transfer demabes a systematic
empirical measurement of the ability of adapt explanatiomevo situations. Additionally, the
system was initially evaluated externally by the Educatidmsting Service. This hands-off

evaluation provides additional evidence regarding the robustness of the system.

This chapter is organized as follows. After a brief summary of the Compagenss employed
here, the representations used in this work and how they were cieqiegsented. This is
followed by characterizing the model formulation challenges in Ajgsies and highlighting
how analogy can solve these problems. Then the analogical problengsohgthod is
described in detail. Next, the results of an experiment adeviadsty ETS are presented in
which a Companion using analogical model formulation achieved a 63.8&b improvement
across the six transfer levels. This is followed by ail@etaanalysis indicating that most
problem-solving failures were caused by human errors in the ireplaton and
representations, and not due to analogical model formulation. Afteesmillly these issues, a
second experiment was performed in which the Companion achieved dninmstiavement of
95.8% averaged across the six transfer levels. A final an&@ygissented which evaluates this
problem-solving method as a cognitive model. After the experimtmdse is a discussion of

future directions based upon these results.

5.1 Companions Cognitive Architecture

Once again, analogical model formulation is implemented on the Coomgar@ognitive

Architecture. Because this work involved an external evaluation and did not iskeltehing, a
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slightly different configuration of agents was employed. Foretteegeriments, the following

agents were used:

e Session ManageProvides facilities for user interaction

e Facilitator Manages sessions and directs communications between agents

e Executive Monitors the Companion's responsibilities and delegates work to the
appropriate agents (e.g. follows scripts describing experimeatsrds quiz results,
checkpoints KBs, etc.)

e Session ReasonePerforms domain reasoning, in this case physics problem-solving

e Similarity-based RetrieverProvides examples to the Session Reasoner based upon

similarity to the current problem.

The primary addition for this work is the Executive. In this configon, new problems can be
given either incrementally through the Session Manager or thraughript describing an
experiment uploaded to the Executive. This allowed the externdlatiem team at the
Educational Testing Service to initiate batch experiments. WHeeaxecutive finished with the
experiments, it would send the results back to the Session Managergram a machine at

ETS.

5.2 Representations of Problems and Worked Solutions

When students study for the AP Physics exam, one important way they |bgrthosg problem
sets. For feedback, students often \getked solutions These step-by-step explanations are

always used in textbooks to illustrate problem-solving. Worked solutaas typically



88

incomplete, outlining steps abstractly rather than at the tvdetail found in a proof. The
system is designed to use worked solutions as examples to ftermddels of new problems.
As in the BMCT experiment, all of the representations used invibik are in CycL, the
predicate calculus language of the ResearchCyc KB (Matusgelal. 2006). These
representations factored out the problem of natural language undergtawhile maintaining
the incomplete nature of worked solutions and the everyday scenatloes physics problems.
The ResearchCyc ontology is especially useful for repregeptiysics problems and worked
solutions because it includes over 30,000 distinct types of entities, overr8l@d@nships and
functions, and 1.2 million facts constraining them. Thus, the everyatagepts that appear in
physics problems like “astronaut” and “dropping” are alreadynddffor us, rather than us

generating them specifically for this project.

In addition to the templates used to create the problemigue 15 ETS and Cycorp developed
templates to generate problems and worked solutions representihg treasfer level.
Consequently, all the problems and worked solutions in this evaluatiorcreated externally.
The representations of the 460 physics problems used in this ewalwantained 4,973
instances from 108 conceptual types and 103 unique relations. When indiuelingprked
solutions, the representations include 11,230 instances from 110 types amdbfidAs: After
describing the worked solution conventions, an example problem and waokeobrs are

presented for concreteness.

5.2.1 Constructing Worked Solutions

Using physics textbooks as a guide, a classification of phgsarsple step types was developed
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in collaboration with ontologists at Cycorp. While this list is kelly to be exhaustive, it was
sufficient to cover the worked solutions to the problems in this workyedlsas the worked

solutions to the physics problems in Chapter 7 of this dissertation.

e Categorize the physics probler@iven that examples appear in certain sections of

physics textbooks, this is the first step of each worked solution.reBudts of this step
are statements placing the problem in an ontology of physics prayfess. (e.g.
Recognizing a problem as a linear kinematics problem and an incline planarproble

e Instantiate a physics equatiofhese steps were for when an equation was written out in

an example. The result was an equation tied directly to entitiege problem. (e.g. the
acceleration of a ball is equal to its change in velocity over the duration of anlipterva

e Determine a quantity value from the situatidrhese steps involve assumptions based

upon the situation. (e.g. Assuming a falling ball is accelerating at ) m/s

e Divide a whole into the sum of its pariBhis step involves taking a compound quantity

and breaking it into its component pieces. (e.g. Dividing thearee fon an object its
component forces)

e Solving a physics equatiofihis step computes the value of a particular quantity using an

instantiated equation. (e.g. Given f=10N and m=1kg, solve for a in f=ma)

e Sanity check a solutionthis step checks to make sure a computed answer is consistent
with the rest of the scenario. (e.g. If the computed distancall dalis off a 100m
building is 150m, then this step would say that the ball actually fell only 100m)

e Select the appropriate multiple choice answi#ris is the final step of each worked
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solution. Here the computed answers are used to select tleetcomwltiple choice
answer. (e.g. given a computed answer of 79.5m the answer chp#t@s,ab) 60m, c)

80m and d) 100m, the correct answer would be ‘c’.)

Worked solutions are sequences of steps. In addition to type infonmaach step has
preconditions and results. The preconditions are a collection of ffaatsthe problem and
background knowledge used in the step. These provide the context of thensstep. The

results are facts which are known as a result of the step.

5.2.2 Example Problem and Worked Solution

The problem representations are intended to be direct translattongredicate calculus from
natural language problem statements, without any abstracticgasoning. Figure 16 shows a
subset of the 37 facts used to represent Problem 2rigoina 15 The facts irFigure 16define the
planet with no atmosphere, the astronaut throwing the bat and tlsdoquasking for the

gravitational force of the planet. The average number of facts for each piekiém

(i sa Throw ng-1 Thr owi ngAnQbj ect)
(i sa Astronaut-1 Astronaut)
(isa Planet-1 Pl anet)

(i sa Basebal | Bat-1 Basebal | Bat)

(ground Planet-1 G ound-1)

(perfornedBy Throw ng-1 Astronaut-1)

(no- GenQuant Rel nFrom i n- I mrer sedFul |y Pl anet-1 At nosphere)

(event Gccur sNear Throwi ng-1 G ound-1)

(obj ect Thrown Throwi ng-1 Basebal | Bat - 1)

(querySentenceO™ Query Query-1 (valueOf (AccGavityFn Planet-1) Acc-1))

Figure 16: Part of the representation of Problem Zsimplified for readability)

The worked solutions are predicate calculus representations okdhgle problems found in

textbooks. They are not deductive proofs, nor problem-solving tracé® aperations of the
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Companion. They leave out many steps and characterize problemgsoperations in very

general ways. Here is an English rendering of the worked solution for Praldtem Figure 15

1. Categorize the physics problemThe problem is a distance-velocity problem under

constant acceleration

2. Instantiate a physics equationnstantiate the distance-velocity equation specific to the

quantities of this problem (e.g. the bat and the upward motion evefity \W + 2ad)

3. Determine a quantity value from the situatiGiven the projectile motion of the bat, lack

of atmosphere, and the maximum altitude of bat, infer that theeaatteh of the bat is
equal to the acceleration due to the gravity of the planet d® the distance the bat
travels during the upward motion event (d = 5m) and that the bat imawhg at the

maximum height (Y= 0m/s)

4. Solving a physics equationtUse the assumed values and the given parameters to solve

the equation for the acceleration due to gravity (g = -13m/s

5. Sanity check a solution: Determine if there is a relevant boundary condition, i.e.,

ascertain that the answer is consistent the scenario. (g = -3.6m/s

6. Select the appropriate multiple choice answ@&elect the appropriate multiple choice

answer (“c”)

The predicate calculus version of this worked solution consists of 104 facts.
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(stepType Step3 Determ ni ngVal ueFr omCont ext)
(stepUses Step3 (isa Throwi ng-1 Throw ngAnQhj ect))
(stepUses Step3 (occursNear Throwi ng-1 Gound-1))
(stepUses Step3
(no- GenQuant Rel nFrom i n- 1 nrersedFul | y Pl anet-1 Atnosphere))
(stepUses Step3 (objectMving Upward-1 Basebal | Bat-1))
(stepUses Step3 (direction Upward-1 Up-Directly))

(stepResult Step3
(val uex
(AtFn ((QPQuantityFn Speed) Basebal | Bat-1) (EndFn Upward-1))
(Met er sPer Second 0)))
(stepResult Step3
(val uer ((QPQuantityFn Di stanceTravell ed) Basebal | Bat-1 Upward- 1)
(Meter 3)))
(stepResult Step3
(val uer (AtFn ((QPQuantityFn Accel eration) Basebal |l Bat-1) Upward-1)
((QPQuantityFn Accel erati onDueToG avity) Planet-1)))

Figure 17: Problem 2 worked solution Step 3 (simpiied for readability)

Figure 17 shows part of the representation for Step 3. The first factatedicthat this is
determining value from the situation step. FlieepUses statements give the preconditions for
the step. The subset sf epUses statements displayed here state that there is no atmosphere
on the planet, the throwing event occurs near the ground and that theheadlgect moving in

the upward movement event. The last three facts contain the rektiits step, which are
values for specific parameters: the speed of the bat anthef the upward movement event,
the distance that bat travels during this event and the bagtesation during this eventigure

16 andFigure 17as well as the rest of the figures in this section use simplified ,gmtéglicate and
function names to improve the readability of the predicate calculuBhe complete
representations for the problem and worked solution of Problem 2 app&ppeéndix A. The

average number of facts across all the worked solutions is 163.

5.3 Analogical Model Formulation for AP Physics

Solving physics problems typically requires four types of modelingsias: relevance

reasoning, quantity value assumptions, default circumstances, andngaaladiractions. This
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section describes each of these in turn and how analogical rfaydallation uses worked

solutions to make modeling decisions in new problems, without a complete domain theory.

Relevance reasoning in physics problem-solving determines whidgitions are applicable for a
given situation. Even in a relatively constrained domain like APsisythe number of
potentially relevant equations can be quite large, due to specifbizad. For example, while
solving Problem 2, it would be a mistake for a system to considgnetia forces on the
baseball bat. Efficient problem-solvers must first determinechvi@quations are relevant.
Analogical model formulation uses the insight that similar probleredikely to involve similar
equations. All the equations for physics phenomena applied to a pratddound by searching
the candidate inferences produced by the analogy between the newnprabd worked

solution(s).

Quantity value assumptions occur when the problem-solver infers agiaravalue from the

scenario. For instance, in Problem 2, the problem-solver must reeadtpait the distance the
baseball bat travels is 5m and that its velocity at the enddeofipward motion event is Om/s.
Neither of these facts is given explicitly in the problem. While velocity at the end of the
upward motion event could be derived via calculus or a qualitative ntbdedlistance the bat
travels is necessarily an approximation, because the scenaripties states that the throwing
event occurs “near ground level” and the maximum altitude of thes Ban. Analogical model

formulation uses candidate inferences to suggest quantity values via analogy.
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Physics problems frequently require problem-solvers to assunagncarcumstances by default.
The most common of these in AP Physics is to assume thatselveppen on Earth and are
subject to Earth’s gravity. For example, Problem 3, the lifbog problem, requires this
assumption to determine the net force on the box. Again, analogdal formulation relies on

candidate inferences to find such default circumstances.

The last type of modeling decision involves categorizing everydagtslas abstractions. When
reasoning with a domain theory defined in abstract terms, itdsseary to move from the
everyday objects and events to this abstract vocabulary. This isearfotm of relevance
reasoning, because abstractions are a way of framing the probkerms of what phenomena
should be considered. Given the problem of a ball falling off the hgilddi problem-solver
would likely abstract the ball into a point mass and not an elacparticle, thus, pruning the
search space to the appropriate equations and relevant assumpgt®msdicated above, the
relevant equations and assumptions are suggested via analogy.orehabsitraction modeling

decisions are implicit in the other modeling decisions made by analogical foodalation

5.3.1 Example of Modeling Decisions via Analogy

This section shows how a Companion uses analogical model foromuleti make these

modeling decisions for the following restyling variation of Problem 2 frajme 15

“A physicist on an asteroid with no atmosphere throws a spoon upwardnieam
ground level with an initial speed of 4.0 m/s. If the spoon risasi@aximum height of

5.0 m, what is the acceleration due to gravity on this asteroi@8@)/$; (b) 1.2 m/$;
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(c) 1.6 m/$; (d) 20 m/§’

First, the Similarity-based Retriever, using MAC/FAC, providesworked solution to Problem
2 (outlined in Section 2.1) as a reminding. Then, the Session Reas@seSME to create an
analogy with this reminding as the base and the new problem gsrgleé The most relevant
correspondences from the best mapping are summarizedoikn 6 Recall that candidate
inferences are expressions from the base (here, the worke@mspthat are conjectured to hold
in the target, by virtue of the mapping’s correspondences. A numbeese arst epUses or

st epResul t statements representing worked solution steps and their confendse suggest
modeling decisions applicable for the problem. Analogical model fationl draws upon these

candidate inferences to incrementally build a scenario model for the problem.

Worked Solution Iltem Problem Scenario Item

Pl anet -1 Asteroi d-5
Basebal | Bat - 1 Spoon- 5
Astronaut -1 Physi ci st-5
Upwar d- 1 Upwar d- 5

(Start Fn Upward-1)

(Start Fn Upwar d- 5)

(EndFn Upwar d- 1)

( EndFn Upwar d- 5)

Table 6: Correspondences between the worked solati and the problem scenario

As an example of relevance reasoning, Step 2 of the worked solutiomsahtequation 7=
Vi? + 2ad in terms of the baseball bat and its upward movement eveatcafdidate inferences

generated from this step include a corresponding equation with thétgsaV;, Vi, a, and d in
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terms of the problem entitieSpoon-5 and Upwar d-5. Analogical model formulation

includes this equation in the model for the problem.

Analogical model formulation handles decisions concerning quantity valsiemgtions and
default circumstances in the same manner. The determining fralme situation worked
solution step type indicates one of these assumptions. As a residt ahalogical mapping,
these steps appear as candidate inferences in the problem. dheéskate inferences suggest
guantity value and default circumstance assumptions in the problenthisl mapping, the
candidate inferences suggest that the velocity of the spoon etdha its upward movement is
zero, the distance the spoon travels during the upward movement eBemeters, and the
acceleration of spoon during the upward movement event is the atioeletue to gravity of the
asteroid. While default circumstances do not occur in this exatheheare represented in the

same way in worked solutions and handled by analogical model formulation in the aamer.m

To provide a stringent test of analogical model formulation fexxamples, the only modeling
knowledge the system has concerns heuristics for evaluating atnditerences. Importantly,
the system has no general knowledge of physics equations, quealitys, or default
circumstances. Without a reminding, it cannot solve any problemss résulted in a useful
simplification: The system does not explicitly categorize reda@y objects in terms of
abstractions. Making such abstractions explicit is useful only e is abstract domain
knowledge that will trigger on it. Such information is implicit imetchoice of equations,

guantity value assumptions, and default circumstances. As theregp&ibelow indicate, this
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works well when the analogous problems are sufficiently simildris likely that explicit
categorization and abstract domain theories are required for nstaatdransfer. Consequently,
an important future direction involves learning such knowledge. Prelmnresults are reported

in (Klenk et al.2008).

5.4 Problem-solving Algorithm
This section describes the algorithm for solving AP Physide §tsoblems using analogical
model formulation. Figure 18outlines the algorithm. After describing each step in detail, the

implementation in the Companion cognitive architecture is presented aldngnétxample.

Given: a problemP, and a case librarg, of worked solutions,{s;...ws}
1. Retrieve analogvs using MAC/FAC with probeP and case libraryC
1.1. While there is unmapped event structure,
1.1.1.retrieve analogvs using MAC/FAC with probe:R — {facts covered by the currently mapped
structure}) and case libraryC(— {already retrieved worked solutions})
2. AnalyzeP to determine the sought after quantigyand problem typs,
3. Using analogical model formulation, solve fpby one of the following methods, usittp determine when
the answer is appropriate:
3.1. If the value ofg is given inP, use that value.
3.2. If the value ofg is mentioned in a candidate inference, use thadidate inference.
3.3. Search candidate inferences generated by analogs fequationg, mentioningg
3.3.1.Recursively solve for each of the other quantitigs,q; , mentioned ire
3.3.2.Solveefor q
4. If boundary condition check exists in candidateiahces,
4.1. Compare mapped valuesmrto determine correct value fqr
5. Use the computed value fqrto select the multiple choice answer For

Figure 18: Solving AP Physics problems via analogit model formulation

5.4.1 Step 1: Retrieve analogous worked solutions
The process of solving a physics problem begins by generatirepalogy with one or more
relevant worked solutions. With the problem as the probe, MAC/FAGsésl to retrieve a

relevant example from a case library of worked solutions. Thapimg between the worked
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solution (as the base) and the problem (as the target) is evaloagkquacy by the loop in
Step 1.1. Fundamentally, physics problems are about eventsevé@hiestructuref a problem
consists of the events that occur in it. If the analogy doesnaptall of the event structure,
additional analogues must be retrieved. Otherwise, there would be wtedge from which to
formulate a model for the unmapped ev&niSor each iteration in Step 1.1, the already-matched
parts of the probe are removed, so that retrievals are focusedrooases that are similar to the
unmatched aspects of the problem. This was essential for hatidinGomposing transfer
condition, since multiple source analogues are needed to solvel@amioblem. For example,

the following retrievals would be made while solving the Composing example iorsbct

An astronaut on a planet with no atmosphere thrawsll upward from near ground level with an initia
speed of 4.0m/s. The ball rises to a maximum heifjb.0m before returning to the astronaut whonthe
drops the ball from the top of a 100m tall buildinf air resistance is negligible, which of thdldaing is
most nearly equal to the distance the ball fallsmythe first 4s after it is released?

A possible first retrieval could be the worked solution for Prolleofi Figure 15 The resulting
mapping would include the release and falling events, but not the tigrawthprojectile motion
events. Because there are unmapped events, another retrieval would be ramidythe facts
pertaining to the throwing and projectile motion events as the probeA@MAC. This may
result in the retrieval of the worked solution for Problem 2 fragure 15 The resulting mapping
would include the throwing and projectile motion events. Because tine ewént structure of

the problem is accounted by the two analogies to the worked solutions, this step eteompl

5.4.2 Step 2: Problem analysis

Solving most physics problems eventually boils down to finding the valusdme quantity.

® The distracters added in the Extending transfadition never included events, only quantities entities.
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But which quantity, and what form of description is appropriate for lee, must be
ascertained by analyzing the problem. There are several different Yypeadt problems on the

AP Physics exam. The subset of the exam used in this workirsotit@ following problem

types:

¢ Numeric value problem®etermining the numeric value of a specific parameter

A ball is released from rest from the top of a 200m tall building on Earth and falls to the
ground. If air resistance is negligible, which of the following is most nearly equal to the
distance the ball falls during the first 4s after it is released? (a) 20m;Qim) 4c) 80m;

(d) 160m.

e Symbolic value problem®etermining the symbolic value of a specific parameter

A block of mass M is released from rest at the top of an inclirsaek plvhich has length
L and makes an angle q with the horizontal. Although there is frictiorebatthe block
and the plane, the block slides with increasing speed. If the block hed spehen it
reaches the bottom of the plane, what is the magnitude of the frictionaldorhe block
as it slides? (a) f = Mgsin(q); (b) f = Mgcos(q); (c) f MgLsin(q)- ¥2M¥ ;(d) f =
[MgLsin(q)- ¥2MV]/L.

e State elaboration problemBetermining which parameter value will produce a described

outcome

Which of the following tensions is required to move a box of mass@kgrést on the
floor upward with constant acceleration when it is pulled vertically upwaré cord

attached to the box? (a) 40N; (b) 60N; (c) 70N; (d) 120N.
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e Qualitative behavior problemBetermining the qualitative outcome of a situation

A box of mass 8kg is at rest on the floor when it is pulled vesticghvard by a cord
attached to the box. If the tension in the cord is 104N, which of the ifujl@lescribes
the motion, if any, of the box? (a) It does not move; (b) It moveardpmith constant
velocity; (c) It moves upward with increasing velocity but constantleration; (d) It

moves upward with increasing velocity and increasing acceleration.

This step identifies the problem type and sought quantity by zinglyhe facts describing the
guery of the problem and the multiple choice answers. If the qoapcems a quantity, then that
is considered to be the sought quantity. In that case, the problenistgatermined to be
numeric or symbolic based on the kinds of expressions found in the p@sshlers. Instead of
asking for specific quantity values, the query can concern a divalitdate. In these cases, if
the possible answers are quantity values then the problem iseaetdhbration problem,
otherwise the problem is a qualitative behavior problem. Foe sfaboration problems, the
sought quantity is determined by analyzing the event structuteeiproblem. In the example
above, the acceleration of the box is the sought parameter. Foatialiiehavior problems,
the sought quantity is found by domain-specific rules that detemwtiaé value(s) are needed to
distinguish between the possible answers. In the example above,témcesthe acceleration

and velocity of the box during the pulling event would be sought.

The basic problem-solving operation in physics problems is solvingiegsiab find values.

For numeric and symbolic value problems, this is sufficient. Fortgtiaé behavior problems,
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the values of the sought quantities are tested to see which ql#h&ative descriptions they
satisfy. For state elaboration problems,aasumption cases created for each answer choice.
The assumption case includes all the facts of the problem aagsamption of the value for the
parameter given in the answer choice (e.g., the tension in the example pabblai Then, for
each assumption case, the system solves for the sought quantityeanaroes if it is consistent

with the problem description. If it is, then that assumption case is the correetrans

5.4.3 Step 3: Solve for q via analogical model formulation

This step creates a scenario model incrementally, based on tlogyamath the worked
solution(s). The process starts by trying to find an approprédtes for the sought quantity

In general, this is a recursive process, so the general strategy isalbstoilv.

Given a quantity to be solved for, its value can be determined in one of three ways:

1. Itis already known as part of the problem. That is, therevesl aieOX statement in the
problem representation that provides an appropriate valug f6or symbolic problems,
the val ue statement must be expressed in symbolic terms compatibletiath
possible answers, as ascertained in the previous section. When acnamserer is
sought, theval ue statement must provide a numeric value. In these cases, the value
from the statement is used.

2. It is assumable. That is, there is a candidate infereantining ast epResul t
statement which provides a value f@r In this case the value from the analogy is

assumed.



102

3. It is mentioned in a relevant equation. That is, there is a datedinference which
contains an equation that mentias In this case, recursive subgoals are spawned to
solve for the other quantities in the equation, and once their valuésuag a value is

derived forg.

While the first case is straightforward, the second and ttasks make important modeling
decisions via analogy. The second case handles quantity valueptasssmand default
circumstances. The third case is a form of relevance regs@inte analogous situations are

assumed to be governed by similar equations.

Analogical modeling decisions, like all non-deductive inferendesuld be verified if possible
(Falkenhainer 1988). Thet epUses statements in the worked solution provide context for the
worked solution step. These statements can be thought of as precanflitidthe analogical
modeling decision. Currently, these preconditions are used in onhsitwaion. If these
statements mention a planetary body, which is not included in the mgapoid there is a
different planetary body in the problem, the analogical modelingsidesi based upon this
solution step are deemed unusable. This is a useful heuristidatamain because decisions
based on planetary bodies typically involve assumptions involving gramgtonstants, which

of course vary across planets. Currently, the rules that de Weeications are hand coded.
An important aspect of future work is to enable Companions to learrefine these rules with

experience.
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In addition to verifying the inference, it is important to understand mambers are handled in
the analogical mapping. Because these are all within-donratoges, when there is a
correspondence between number entities, it is likely spurious. exanple, if the problem
includes a ball moving at 1m/s and the worked solution includes anbalhg at 2m/s, then 1
could be placed in correspondence with 2. This is a spurious correspohdeaase there is no
reason to believe that all 2's in the worked solution should be consitlsred the problem.

Therefore when candidate inferences for equations include nunaguesy the number from the
worked solution is used. When the candidate inference concernsuamedsgalue, the target
value is used if units match; otherwise, the base value is usedrniRg to the example, if the
worked solution includes the distance-velocity equatiofi,=V/V;> — 2ad, then the resulting
mapping would include a candidate inference suggestiig- W;> — lad as an appropriate
equation for the problem. Because the number from the worked solutadwags used for

equations, even with the spurious correspondence, the correct equgtionV\? — 2ad is

instantiated in the problem.

The equation solving and algebraic simplification routines aaggbtforward, based on (Forbus

& de Kleer 1993).

5.4.4 Step 4: Checking boundary conditions

Doing “sanity checks” of answers is always a good problem-sojuiactice. In physics, this is
involves testing boundary conditions. For example, if a problem asked, f&toavball would
fall off a 200m building in 4s?”, its worked solution would include a saciitgcking step in

which the computed answer, 80m, was compared to the height of the hu2lddmy. Since this
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is less, the computed answer is okay. If the computed answeldavger than the height of the
building, it means that the boundary conditions of the equations are #iol&tece one ignores
the impact crater in these problems, the answer would then beigf bf the building, because

that is the point at which the behavior captured by the falling event ends.

This aspect of the scenario model is also dependant on the analogy. Marorditions are
recognized by candidate inferences involving ordinal relationships dr eat er Than or
| essThan) between parameters in the problem. Currently only boundary condé&sts
involving the sought quantity are processed. This is becauseliar how to resolve such a
failure, i.e. use the value compared against it instead, becawssstitutes a limit point (Forbus

1984) for that quantifyy

5.4.5 Step 5: Selecting the multiple choice answer

Finally, the appropriate multiple choice answer is selected. nkoreric and symbolic value
problems, the computed answer is compared against each of the ahewes and the closest
answer is selected. The closest answer is determined @sdollFor numeric value problems,
the closest answer is the simply the answer choice witrmihenum absolute value of the
difference between the computed answer and the answer choiceneitxception. If all the

answer choices have the same sign but the computed answer is theeapgosthen the closest
answer to the opposite of the answer choice is selected. Tl diguristic corrects when the

system orients the positive and negative directions differently tthteuproblem designer. For

® This heuristic is reasonable for mechanics butldvaot be appropriate for other domains, such as
thermodynamics.



105

symbolic value problems, the closest possible answer would be idetttidhe computed
answer. When none of the answer choices satisfy this criteriosysbem identifies answers
with the same quantities as the computed answer. By substitatidgm values for each of the
guantities, the system solves each equation and compares the. rdéuligy are within a
threshold the answer is selected. This heuristic alleviateésiions in the algebra manipulation

aspects of system.

For qualitative behavior problems, qualitative arithmetic is useeéléxtsthe consistent answer
choice. For instance, if there is a computed positive vertitatityg the object must be moving
upwards. In the example qualitative behavior problem of Section 3Re2Companion
determines that answer ‘c’, the box moves upward with constankeetaan and increasing
velocity, is the only consistent choice. This is because the bdwsityeat the beginning of the
event is Om/s and its computed acceleration during the event ié. 3ffds state elaboration
problems, the first assumed value that is consistent with the cahgmsever is selected. In the
state elaboration example from Section 5.4.2, the problem statébeHaix is moving upward
with constant acceleration, therefore, the consistent assumptionresgdés in a positive
acceleration for the box. The answer ‘d’ contains the only tensiomN, MBich results in a

positive acceleration, 5nfls

Importantly, the system is not allowed to guess if it cannot compute the answerdbieam.

5.4.6 Implementation in a Companion
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VWOiKEd SOiltiGiiis
Cluster nodes

Figure 19: Analogical model formulation implemented
on the Companion cognitive architecture

Figure 19shows how the steps of the algorithm are dividedragnvarious Compann’s agents.
Aside from retrieving worked solutions, the enfim®cess takes place on the Session Reas
The process begins with the Session Reasoner tegueslevant worked solution(s) from t
Similarity-based Retriever. After the Session Reer solves the problem and selects
answer, it is sent to the Session Manger for dysplia the user's machine. An alternat
method of interaction uses the Executive to rurclbaxperiments. This works in the sa
manner except the user interactiwith the Session Manager are scripted and thetseaut
recorded by the Executive. The algorithm frFigure 18is implemented using an AND/O
problem-solver drawifrom (Forbus & de Kleer 1993). The probl-solving knowledge consis

of 27 methods, 169 backchaining rules, and two amag sources, which are procedt
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attachments efficiently implementing analogical processing antraigeoperations.

For illustration, here is how a Companion employs the above algordlsalte the following

restyling problem:

A box is dropped from the top of a 300m cliff onrtBaand falls to the ground. If air resistance is
negligible, which of the following is most nearlgal to the distance the cliff falls during thesfir
7.3s after it is released? (a) 36.5m; (b) 73m26§.45m; (d) 532.9m

The problem is presented to the Companion as a case of 28 predicatasctacts. The

Companion begins by asking the Similarity-based Retriever fieglegant example, which in this

case is the worked solution for Problem 1 freigure 15 The Session Reasoner uses SME create

a mapping between the retrieved worked solution and the problem. Thestuetire of the

problem contains three events: the initial situation, the dropping, and the fallingre& events

are included in the correspondences of this mapping; therefof@othpanion does not retrieve

additional analogues. Next, it determines that this is a numalie problem based upon the

NoghsWNE

Targe

NogRwWNE

Base expressions:

(val uer ((QPQuantityFn DistanceTravelled) Ball-1 Interval-1) Distance-1)
(val ue ((QPQuantityFn Time-Quantity) Interval-1) (SecondsDuration 4))
(temporal | yCooriginating Fall-1 Interval-1)

(Timelnterval Interval-1)

(obj ect Act edOn Rel ease-1 Ball -1)

(primaryCbject Moving Fall-1 Ball-1)

(objectStationary Initial-Situation-1 Ball-1)

t Expressions:

(val ue ((QPQuantityFn DistanceTravel |l ed) Box-5 Interval -5) Distance-5)
(val uer ((QPQuantityFn Time-Quantity) Interval-5) (SecondsDuration 7.3))
(temporal | yCooriginating Fall-5 Interval -5)

(Timelnterval Interval-5)

(obj ect Act edOn Rel ease-5 Box-5)

(primaryQhj ect Moving Fal | -5 Box-5)

(objectStationary Initial-Situation-5 Box-5)

Figure 20: Expressions in alignment based upon itéical predicates
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guery statement and the answer choices. The query statem#ns foroblem indicates that the

distance the box travels over the 7.3 second interval is the sought quantity.

Next, the Companion proceeds to solve for the sought quantity, the dish@nbex travels.
Because there are neitheal ueOF statements concerning the distance the box travels nor
candidate inferences suggesting a quantity value or defaulhmstance modeling assumption,
the Companion searches for a relevant equation mentioning the souglityquéms is done by
searching the candidate inferences of the analagyure 20 contains the aligned expressions
which result in the entitieBal | - 1 andl nt er val - 1 from the worked solution corresponding
with Box- 5 andlI nt er val - 5 from the problem. These correspondences result in a candidate
inference for the applicable equation mentioning the distance stendeBox- 5 travels during

| nt er val - 5, d=vit+at, shown inFigure 21
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Figure 21: Candidate inference (dashed lines)
projected from the baseinto the target based upon
correspondences

In order to solve this equation for the distance llox travels, the Companion first solves
each of the other parameters in the equation: tination of the interval, the speed of the bo
the start of the interval, and the acceleratiorthef boxduring the interval. The duration
I nterval -5, 7.3s, is given directly in the problem. Using tAnalogy to make a quant
value assumption, the Companion infers the speédeBox- 5 at the start of the interval, Om
based on Step 5 of the worksolution. Step 5 states thBal | - 1 at the beginning ¢
| nt er val - 1 has a speed of Om/s because it starts at restibgesof the candidate inferenc
referring to this step are shownFigure 22 Recall from Section 2.1 thahal ogy Skol enfn
expressions represent entities which appear ibalse (i.e., worked solution) representation

do not have a corresponding entity in the target,(problem description). Because the vi
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from the base description is used for equationsAtted ogy Skol enfn is removed from the
expression when making this inference. This is reasonable becassatbgerforming within-
domain analogies; for cross-domain analogies, more work would be ckdainesolve the
analogy skolem into an appropriate constant for the target domaixt, tNis inference must be
verified. The Companion makes sure that the step does not rely upovortked solution
occurring on a different planetary body. TdteepUses statements, the context of the worked
solution step, do not include references to any planetary bodiesirresdday the ResearchCyc
ontology. Therefore, the Companion assumes Om/s as the speedbokthethe start of the

interval.

(stepUses (Anal ogySkol enfFn ETS- Wr kedSol uti on-1- 0-1- St ep5)
(primaryQCbj ect Moving Fall -5 Box-5))

(stepUses (Anal ogySkol enfFn ETS- Wr kedSol uti on-1- 0- 1- St ep5)
(objectStationary Initial-Situation-5 Box-5))
(stepUses (Anal ogySkol enfFn ETS- Wr kedSol uti on-1-0-1- St ep5)
(contiguousAfter Fall-5 Initial-Situation-5))
(stepUses (Anal ogySkol enfFn ETS- Wr kedSol uti on-1-0-1- St ep5)
(tenmporal | yCooriginating Fall-5 Interval -5))
(stepResult (Anal ogySkol enFn ETS- Wor kedSol ut i on- 1-0- 1- St ep5)

(val uet»
(Measurenment At Fn ((QPQuantityFn Speed) Box-5)
(StartFn Interval -5))
(Anal ogySkol enfn (Met ersPer Second 0))))

Figure 22: Candidate inferences permitting the quatity value modeling
assumption for the speed of the box

To solve for the acceleration of the box during the falling event/<0the Companion makes a
default circumstance modeling decision. This decision is madheirsdme manner as the
guantity value decision for the speed of the box at the beginning oaltimg fevent, with one

exception. Thest epUses statements for the worked solution step suggesting this decision
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mention Pl anet Eart h, a planetary body. Becaus$®# anet Eart h is unmapped in the
analogy, the Companion searches for any planetary bodies in themrobfhe Companion
accepts the inference because the problem does not mentionaaetapl bodies. This is an
example of the Companion making a default circumstance modelingnpissn. After

recursively solving for these three parameters, the Companioessthe equation for the

distanceBox- 5 traveled durindral | - 5, 266.45m.

Next, the Companion checks for a candidate inference concerning dappuwondition check.

In this case, step 7 from the worked solution is a boundary conditieok and results in
candidate inferences, shownHigure 23 Recall that these candidate inferences are produced by
the correspondences between the analogous worked solution and the prdibeamswer in the
worked solution, 161.312m, has no correspondence at the time of the analbgyaasjust
computed in the previous step. The first fact states that the bowaatiyion should be greater
than the computed answer. The next two facts indicate the boundatyicmo and computed
answer quantities for this comparison. The computed answer, 266.45ss, tisde the height of
Cliff-5, 300m, and therefore the Companion uses the computed answer whengéhecti

multiple choice option.
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(stepUses (Anal ogySkol enFn ETS- Wr kedSol uti on- 1- St ep7)
(great er ThanOr Equal To (Meter 300) (Anal ogySkol enFn (Meter 161.312))))
(stepUses (Anal ogySkol enFn ETS- Wr kedSol uti on- 1- St ep7)
(val ueOr (MeasurenentAtFn ((QPQuantityFn Height) diff-5) Fall-5)
(Meter 300)))
(stepUses (Anal ogySkol enFn ETS- Wr kedSol uti on- 1- St ep7)
(val ueOr ((QPQuantityFn DistanceTravelled) Box-5 Interval-5)
(Anal ogySkol enfFn (Meter 161.312))))

Figure 23: Candidate inferences indicating a boundy check condition

In the final phase of problem-solving, the Companion uses the computedr aossedect the
appropriate multiple choice option. Because this is a numeric problem, the ahswerclosest
to the computed answer, 266.45m, is selected. In this case, ansis€t66.45m exactly, and,
therefore, the Companion selects it. Solving this problem takesaimpahion approximately

35 seconds.

5.5 Evaluation

A series of experiments was conducted to evaluate a Companioiityg t@bitansfer knowledge
across physics problems via analogical model formulation aridiel#ty as a cognitive model.
The initial experiment was an external evaluation conductedebfzdiucational Testing Service
on largely unseen problems. The timing of this evaluation was dessnfiy an external,
funder-mandated timetable and included a code freeze. The rebuhis evaluation were
summarized in (Klenk & Forbus 2007a). Although the results, as dedchelow, showed
statistically significant transfer across all six leydlgere were a number of irregularities. An
analysis of these results led to the discovery of numerous refaese and implementation
errors. After fixing these bugs, a second experiment, with the si@sign as the first, was run.

This experiment confirms that the problems were not with anabgiodel formulation, and

" The Companion was running on 4 cluster nodes, witbhtwo 3.2 Ghz Pentium Xeon processors and 306B
RAM.
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provides evidence about the asymptotic performance of analogical favchulation. This
section discusses both experiments in turn, including the possanahd changes made to the
system and representations before the second experiment. lioraddithese performance
metrics, the operational data from the first experiment ispemed to human data presented by

van Lehn (1998) to evaluate this algorithm as a cognitive model.

5.5.1 Experiment 1

The first evaluation was carried out by the Educational TeSwmngice, who remotely accessed a
Companion running on a cluster at Northwestern University. The probdemdsworked
solutions in this experiment were generated from template@mges, in English, appear in
Figure 15 These templates represent approximately 20% of the typeahdnics portion of the
AP Physics exam. The system designers saw examplesldesnthan 50% of the templates

before the evaluation, and none of the templates themselves.

ETS measured the amount of transfer learning in the systeamsfé&r learning occurs when an
agent learns faster in the target domain given learning iragedesource domain. This is most
naturally measured as a difference in learning curves, whativates this experiment’s design.
The experiment was designed without knowledge of the analogma| formulation approach,

reducing the level of tailorability.

5.5.1.1 Methodology

To define transfer levels, source sets required. The source set consisted of 20 problems and
worked solutions, 5 from each of the problem types illustrateeyine 15 To generate learning

curves for each of the 6 transfer levels, ftaeget training setswvere created for each of the
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transfer levels. Each target training set consisted of 4 quizaéh one problem from each
problem type in each quiz. Each problem represented a systeéraagsformation, based upon
the transfer level, from a problem in the source set. = Thep@aion was given each target
training set as a sequence of quizzes. After a quiz was atiengd, the Companion was given
the worked solutions for the problems on that quiz. Thus, the worked soltroomsearlier
quizzes were available for use in solving later quizzes withirtafget training set. After each
target training set, the Companion’s memory was reset. The Campaas administered each
target training set twice, one for each experimental conditieinst, the Companion is given
each target training set without access to the problems and wakeidrss of the source set
(the no-transfercondition). Then, to measure transfer learning, the Companianes gach
target training set with access to the source set’s prokdewhsvorked solutions (thieansfer
condition). Comparing the learning curves for these two conditions proaide=asure of how

much was learned via transfer from the source set.

There are three ways for transfer to manifest itself. TfE) system may get a jump start, i.e., the
learning curve in the transfer condition has a higher y-intercept. h@¥ystem may learn faster.
(3) The system may reach a higher level of performance. eTéwes not mutually exclusive.
Given the direct application of examples in analogical model fotronlahe jump start transfer

results are central to the performance of the system.

5.5.1.2 Results
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Figure 24: Experiment 1 results, administered by tb Educational Testing Service

Figure 24 shows the learning curves for both the transfer and no-transfer icoadibr each

transfer level. TL-1, TL-3, TL-4, TL-5, and TL-6 all had 80 probéemTL-2 only had 40

problems as it was impossible to change the numeric paranretush a way to qualitatively
change the outcome for two Problem Types, 2 and 4. Recall thatien tor more precisely
measure the effectiveness of analogical learning, the CompakKiBrcentained no equations of
physics nor any other modeling knowledge about the domain. This nvbansver a problem
is solved, it is solved by analogical model formulation. Givendhatogical model formulation

requires worked solutions to solve problems, the no-transfer conditi@ysalegins at 0% and
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improves as the Companion accumulates worked solutions. All tramsfels Ishowed a
statistically significant jump start (p<.01). For TL-1,-#l_and TL-5, the jump start was 88%.
Other levels were not as high: TL-2 was 50%, TL-3 was 25%, and TL-6 was 44%. awhdepr
an average of 63.8% in jump-start performance, supporting the hypdtresamalogical model
formulation can be used to solve AP Physics style problems, incladimgjing these kinds of

transfer.

5.5.2 Post-analysis and system modifications

While the jump start results support the hypothesis, it is impottaohderstand whether the
performance failures are due to analogical model formulation, ortaw®me other factor.
Theoretically, there are many ways analogical model formoual&ian fail: The system can fail to
find a precedent when one exists, mappings could be incorrectydidate inferences could be
incorrectly analyzed. Surprisingly, these problems accounted foraostyall minority of the

problem-solving failures. As illustrated below, the vast majooitythe failures were due to

human error in representing the problems and implementing the system.

In TL-2 (extrapolation), there is negative transfer, in that therarsfer condition outperformed
the transfer condition in later quizzes. This occurred becaus€dhmgpanion was repeatedly
getting a problem correct for the wrong reasons in the no-traocsfelition. An error in the
worked solution representations for the target training set waskdions of Problem Type 3
caused the Companion to incorrectly assume a value for accelevetioh, coincidently led to
the correct answer. The failure of the system to detestaihd other recurring problems is

leading us to focus effort on improving the Executive.
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The low ceilings in the transfer condition in TL-2, and in both conditierid_-3 (restructuring)
and TL-6 (composing), are due to a combination of three limitatiotigeifixed components of
the Companion’s problem-solving strategies and a number of represenémtors. The

problem-solving strategy limitations were

1. The internal resource limit (i.e., maximum number of and/or graphshodes about 5%
too low for some of the composing problems.

2. The algebra system was unable to correctly handle all of thessery algebraic
manipulation and equation comparison (e.g. trigonometry and composing syarmblic
numeric problems).

3. The strategy of trying each value in turn for state elaborgtiobhlems, which make up

25% of TL-3, was grossly inefficient.

None of these problems concerns analogical model formulation, angsteensvas changed in
the following manner. To solve the first problem, the internal resdrdt was increased by
5%. Recall that learning modeling decisions is the focus ofwbik, not equation solving
strategies. Therefore the second problem was solved by siriplydeng the algebra system to
handle the necessary cases. The third problem was solved by deyedopnore efficient
strategy for state elaboration problems. This involved altehegtoblem analysis and answer

selection steps from the algorithm. Recall this example of a state elabqmatblem:
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Which of the following tensions is required to move a box of mass@kgrést on the
floor upward with constant acceleration when it is pulled vertically upway a cord

attached to the box? (a) 40N; (b) 60N; (c) 70N; (d) 120N.

During problem analysis (Step 2), the new strategy identiflesiapoint quantitywhose value
determines the consistency of a scenario. Here, the edamleof the box is a limit point
guantity. Using qualitative mechanics, the scenario is consistentifotile acceleration is
greater than Om?s Therefore, Omfsis selected as the limit point. Using the query, the sought
guantity is the tension of the cord. Next, the Companion assumésmiithpoint quantity value
and proceeds with the algorithm to solve for the sought after quankifter assuming an
acceleration of Omfgor the box, the Companion uses analogical model formulation to swlve f
the tension of the cord, 80N. Instead of solving for the accelefatiomifferent times, once for
each assumption case, the new strategy is considerably maiengffsolving for the tension

only once.

To select a multiple choice answer, the new strategy theescenario model to determine the
gualitative relationship between the limit point quantity and tlugist quantity. In this case, the
acceleration of the box is qualitatively proportional to the tensionhé cord (i.e., if the
acceleration of the box is increased then the tension of thescorcréased). Since the problem
indicates a consistent solution involves a positive acceleration, dngp&hion selects the
multiple choice answer that is greater than 80N, in this case, choice ‘d’, 120N\nevihgrategy

only applies to state elaboration problems, which make up 25% of TL-3, Restructuring.
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The only change to the analogical model formulation portion of the algorithmhevasldlition of

one rule for verifying modeling decisions. When inferring a nuergarameter in quantity value
assumptions, the Companion verifies that the units of the assumedaral applicable to the
guantity type. For instance, the Companion will not assume 5Smthdoacceleration of an
object. Enabling Companions to learn such verification rules is an tampa@lement of future

work on this project.

A close examination of the entire set of problems and worked@wutevealed two systematic

kinds of representation errors.

1. Facts were sometimes omitted from the problem representatimrsexample, in some
of the original representations, the correct answer was nal bksteone of the answer
choices, or the direction of a pulling event was not mentioned.

2. The agreed-upon conventions for representing worked solution steps weabvags

employed.

An example of the second type of error comes from the errongotsed solutions which
caused the negative transfer for TL-2. Given the question:

What will happen to a 10kg crate being pulled upwards by a stiithga tension

of 38N? a) remain stationary; b) move upwards with constant speedowe

upwards with constant acceleration; d) move upwards with inogasi
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acceleration

The worked solution for this problem calculates the acceleratidmeatrate to be -6.2nfls In
sanity checking step for this answer, the comparison with the bouodadytion was omitted.
The result of this step is that -6.2ffigsnot the acceleration of the crate. This step is followed by
a determining a value from the situation step, in which this ifaaised to infer that the
acceleration of the Crate is Ofh/sBoth of these steps violate the agreed upon conventions.
First, because the sanity checking step represents a cheoktagdioundary condition, there
should have been a comparison between -62ant0m/. The result of this step should have
been that the acceleration of the crate was On#gcond, the determination of a value from the
situation step is wrong, because the step does not depend upon the modéhamo but is
actually a sanity checking step. Because this inferencetisfpifae sanity checking step, it was

simply removed to create a worked solution which followed the conventions.

Recall that the problems and worked solutions were automatialigrgted from templates, so
these template-level bugs led to errors in all instances optbhatem type at that transfer level.
These systematic errors were corrected to generatepravied corpus of problems and worked

solutions.

5.5.3 Experiment 2

To test these explanations for the results of Experiment 1, aretperiment was conducted on

the same sets of problems after fixing the representation and impleoreetatirs.
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5.5.3.1 Method

The same the experimental procedure, problems and worked solutionpexsmient 1 were
used with the following changes. First, the experiment was ctedliternally, instead of the
Educational Testing Service, due to budget cuts. Second, the edroecpus of problems and
worked solutions was used. Third, the system changes described ianS&é&.2 were

implemented.

As in Experiment 1, the experimental hypothesis is that analagiedel formulation transfers
modeling knowledge across these six transfer levels. As béfaraing curves for each of the
six transfer levels were collected and the analysis focusettheojump starts in the transfer

condition.

5.5.3.2 Results of Experiment 2
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Figure 25: Final Evaluation Results
Figure 25 contains the learning curves for each of the six trdesfds. Across all the transfer

levels, the Companion achieved a 95.8% jump start due to the source prabi@msrked
solutions. TLs 1-5 all exhibited perfect transfer. The Companidorpeed at ceiling (100%)
given just the source set worked solutions. On TL-6, the Companion re@ideg start of

75%. Once again, all of the jump starts are statistically significant (< .01

These results illustrate that analogy can be used to formuladelsnin the domain of AP

Physics problem-solving over a broad range of problems. Thevadtrates and mapping rates
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were both 100%. That is, MAC/FAC always selected appropriateggmas worked solution(s)

if they were available and SME always created a usefubfsebrrespondences and candidate
inferences between the worked solutions and the problems. The onisedadf transfer
involved limitations in the rules for verifying analogical irdeces. In particular, the
verification rules prevented a necessary modeling decision frorg beade on a set of difficult
problems (25% of the composing problems). These composing problems inwoluesk
problems occurring on different planets and quantities referencinglanetary body of the
problem explicitly (e.g., the work done by the gravitational fos€en asteroid on a sliding
block). Therefore, the heuristic which prevents analogical iné&x® involving unmapped
planetary bodies fails because this inference concerns a definition obmegqguation and is not

dependant on the gravitational constant in the problem.

5.5.4 Evaluation as a Cognitive Model

The previous two experiments illustrate the Companion’s capabditgolve AP Physics
problems using analogical model formulation. Because much of tigation for this work

comes from cognitive science, it is important to evaluate howogical model formulation

performs as a cognitive model. For this section, | refer ® dki the AMF model. While
capability is certainly an important benchmark for cognitive modetsnparisons against
existing psychological data are important as well. In tree @d Newtonian physics-problem
solving, there has been extensive work studying aspects of the hurfampace. This section
contains a favorable qualitative comparison between the AMF nobgélysics problem-solving

with the most relevant previously published human data.
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This work was originally published in (Klenk & Forbus 2007b). The humaam cdanes from a
collection of verbal protocols presented first by €hal. (1989). These protocols were collected
from 9 subjects learning Newtonian Mechanics. The subjects taler¢o speak aloud while
they studied worked examples and solved a series of problems. prbéseols were used to
investigate the differences between good and poor problem-solvers. Ydéfé&eence in the
protocols was that good problem-solvers would explain the worked solutiotiemselves
whereas poor problem-solvers would simply read the examples. Jdwrakers called this the
self-explanatioreffectand created the Cascade system to model it (Vanteain1992). When
attempting to fit Cascade to this data, VanLehn and Jones (1993)\veibstiat people
sometimes used analogical reasoning even in situations when ttieyala first-principles
knowledge. Later, VanLehn (1998) reanalyzed the original protocotingeto a taxonomy of

analogy events:

e Initialization events — the subject sets up a mapping betweenxtrapkes and the
problems.
e Transfer events — the subject infers something about the soluionaft example. These

events were further divided by the type of inference made:

1. Line: The subject transferred a whole equation, vector, or diagram.
2. Part of a lineThe subject transferred a detail from a line, such as whethegjection
function was sine or cosine, or whether a vector went up or down.

3. Search controlThe subject made the decision on what steps to do by consulting the




125

example and seeing what steps it did.
4. Checking:The subject decided whether their most recent action or deewsi®rtorrect
by consulting the example.

5. Failure:The subject failed to find anything useful during this transfer event.

Initialization events were indicated by the subject flipping the ho@kworked solution, reading
some of the example and deciding if it will be useful to solvectheent problem. VanLehn
found that initialization events usually occur at the beginning optbbBlem-solving, consistent
with existing research (e.g. Bassok & Holyoak 1989; Faries &dRrRel988; Ross 1989).
Cascade did not model subjects’ retrieval process and used iatibenmapping algorithm

between the problem and the example (VanLehn & Jones 1993). TRendddel differs by

taking existing computational models of analogical mapping andasitpibased retrieval as
starting points, and building the problem-solving system on top of.thienthe AMF model,

initialization events occur at the beginning of problem-solving when Companion uses
MAC/FAC to retrieve a similar example(s) from memoryhe use of recursive retrievals for
complex analogs is consistent with VanLehn’s finding that for cexnptoblems, there could be

multiple initialization events.

Regarding transfer events, Cascade only accounted for line tramsfesearch control events
with its separate analogical mechanism and memory. apemoach is based on the notion that
analogy is invoked to resolve impasses reached by rule-basedingas The AMF model uses

analogy to inform all modeling decisions, as well as some dathgortant inferences such as
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checking boundary conditions. Most of the transfer events can basthapped to parts of the

AMF model.

Because the AMF model answers all problems using analogyies reeavily on the transfer
events from VanLehn’'s analysis. Line transfers are indidatéde AMF model in two ways:
(1) Using a candidate inference to map an equation from the wedketion onto the problem
and (2) inferring parameter values from the problem situation. €ensiwith VanLehn’s
findings, these events occur throughout the problem-solving processothirdransfer events
are modeled incompletely. The AMF model does not have anythingspomding to part-of-
line transfers. These events are extremely rare, accountimgst 3% of all transfer events in
the protocols. Analogical search control is implicit in thel@giaal model formulation process.
Therefore, it is difficult to identify these as individual evemishe AMF model. Checking
transfer events corresponds to employing a boundary condition chettie iAMF model.
Transfer failures are indicated when a precondition test fddskipng the use of a candidate

inference.

Given these differences, a quantitative comparison of the numbefferedi analogy events
would not be informative. However, in addition to the consistencies noted, @hexe should
be a qualitative pattern of consistency between the AMF model antuthan protocol data.
That is, the AMF model predicts more line transfer events thaanadasin protocols, since it is
at the extreme poverty end of assumptions about initial knowledgeon&eanalogical search

control is done implicitly; therefore the AMF model has no expsiedrch control events. Third,
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given the incompleteness of the AMF model in regards to modelwegking and transfer

failures, it should have fewer such events than in protocols.

Table 7: Analogy Events per Problem

Event Type | Companion’s Problems Protocols (n=24)
Correct (n=64) Failed (n=36)| Total (h=90D)

Initialization | 1.12 1.16 1.13 1.2

Transfer 6.72 9.39 6.72 4.9

Line 6.13 (91%) 9.33 (99%) 7.18 (95% 2.6 (54%)

Checking A7 (71%) .03 (<1%) .33 (4%) .75 (15%)

Failure 12 (2%) .03 (<1%) .09 (1%) .38 (8%)

Other N/A N/A N/A 1.17 (24%)

Using the results first experiment, analogy events wergaared using reasoning traces from
the first quiz in each transfer level. The first quiz onlyjump start, was used as these are
central to the AMF model and its claims. These events areagespinTable 7and broken down
by the result of the problem-solving episode. The “Other’ everdg tgntains the analogy
events not modeled, including search control and part of line transfewelli as the
miscellaneous events from the protocols. The Companion’s analogy ererfurther divided
depending on if the problem in which the event occurred was solvedcttpr Also,

percentages of total transfer events are supplied next to each transfen easht condition.

These results have a reasonable qualitative fit with VanLetmmsan protocols. VanlLehn
summarized the results concerning type of information trandfemrehe protocols by saying
“The basic result is simply that most students, both Good and Powfetr@d whole lines from
the example to the problem” (1998, p. 364). The AMF model was evendapendent on line

transfers for problem solving due to the fact that the vast magidrthe domain knowledge used



128

to solve these problems came from examples. The majority t®ther” transfers were search
control events, which motivates future work developing methods forlrseantrol. While the

AMF model checking and failed transfer events are incompietdy of these occurred more
frequently on correctly solved problems. This, in addition to thetfattthe protocols noted
even more of these types of events per problem, indicates that acongpéete model of these

events could lead to more robust problem-solving.

5.6 Discussion and Future Directions

These experiments support the claim that analogical model foromuiata robust method for
transferring knowledge across these six transfer levels andslgéacognitive model of human
problem-solving. First, the breadth of the materials and methodsdhration are noteworthy.
Drawn from four problem types, the 460 problems and worked solutiontedréar this
evaluation included entities of 110 conceptual types and 144 unique relaBaasnd, in an
experiment externally administered by ETS, a Companion achiegeghificant jump start on
all transfer levels (63.8% averaged across transfer levelsstingof largely unseen problems.
Finally, the second experiment provides a better understandihg effectiveness of analogical
model formulation across these six transfer levels. In thgerearent, the Companion
demonstrated perfect transfer across transfer levels 1-5. Tha@&8fer failures on composing
problems demonstrate a weakness of analogical model formulationcifily, while the
hand-coded verification rules were effective across a broad maingeenarios, they do not
handle all situations. The combination of these failures and thettat the additional
verification rule was added prior to Experiment 2 indicates #aahing and refining these rules

automatically is an important direction for future work.
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As in the previous chapter, this chapter’'s emphasis is on systéonnpemce on a human-level
test. While achievement is an important benchmark, the methodpertafular importance to
understanding cognition. The AMF model’'s favorable comparisoh dgiman protocol data
illustrates the cognitive plausibility of this approach. Peopeadle to overcome the challenges
posed by model formulation in this domain. Traditional model formulatepends on having a
complete domain theory and abstract input descriptions. In additionjsheyeccount for how
new domain knowledge is acquired. Analogical model formulation proaicesution to these
problems. First, model formulation by example does not requicenplete domain theory and
operates over descriptions containing broad ranges of entities th@wreveryday scenarios.
Second, additional domain knowledge can be added to the system througilesxais the
results from these experiments show, analogical model formulzdioenable a system to solve
hard problems (i.e., AP Physics style problems) without a complete domain thé&oow of no
other problem-solving experiments which demonstrate performanagalufgecal learning over

systematic variations of relationships between problems at this scale.

Clearly there is much work remaining to realize the full ptéd of analogical model
formulation, and the potential for analogical learning in problem-splmore generally. Even
in the realm of AP Physics, recall that this corpus of problerdsawn from roughly 20% of the
Mechanics portion of the AP Physics exam, of which Mechanigslijsone section. Expanding
the evaluation would further provide additional information regarding saintke underlying

assumptions of analogical model formulation: How does retrievale swith additional
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distracters? And where is the limit in differences betwemmce and target problems which

produces mapping failures?

As mentioned earlier, one limitation that must be overcome ysagebn hand-coded rules for
verifying analogical inferences and algebraic operations. Were ample signals to the system
that something was wrong with its knowledge (i.e., multiple rege#dilures in some of the
transfer conditions in the first experiment), but the currenimersf the architecture was unable
to exploit this information. Consequently, there are plans to exgendapabilities of the
Executive in the Companion architecture, enabling the system toesgensibility for learning
and refining its verification rules. By keeping track of succesafidl unsuccessful analogical
modeling decisions, a Companion could learn in what context diffeypet tof modeling
decisions are effective. Keeping and analyzing records gfraslem-solving successes and
failures should also provide the information needed for formulatingntslearning goals (Ram
& Leake 1995). To improve this work as a cognitive model, additionak woranalogically
checking boundary conditions is required. Instead of checking for bgundaditions at the
end of each problem-solving episode, the Companion should check the anakmgy ifoone
applies after solving each equation. These boundary conditions arefpéme modeling

knowledge associated the mathematical equations.

In addition to testing the system on more problem types anehdirg analogical model
formulation through learning verification rules and boundary conditions,r otiethods of

knowledge transfer are required for a more complete account atplpysblem-solving. First,
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as in the BMCT, analogical model formulation does not provide an acamuhbW examples
become more abstract domain theories. This is especially importAP Physics as equations
may be applicable in highly dissimilar situations. One promiglingction is to construct
generalizations of the physical phenomenarasapsulated historieg-orbus 1984) using SEQL
(Kuehneet al.2000). These abstract domain theories would require the systenkeceryicit
modeling abstraction decisions. Preliminary results from liresad rotational mechanics
indicate that SEQL generalization can be effective for leartongnake modeling abstraction
decisions (Klenket al. 2008). Integrating these techniques to learn abstract domain theories

would enable a Companion to transfer what it learns even more broadly.

Second, as a Companion accumulates generalizations in one area io$,pthys expertise

should be useful for learning new related domains. The second phi$ thidsis discussed in
Chapter 7 presents a model for cross-domain analogy. Cognitiveisisichave shown how
cross-domain analogies are useful for learning new areasysicp{Gentner & Gentner 1983;
Falkenhainer 1988). Chapter 7 describes the domain transfer Wayyamaodel and presents
results from linear and rotational kinematics as well as dyreamical analogies between

mechanical, electrical and thermal systems (Olsen 1943).



132

6 Analogical Model Formulation General Discussion

The last three chapters have discussed analogical model faonwdad provided evidence its
utility in two complex reasoning domains: problems from the Bennetchslnical
Comprehension Test and the AP Physics exam. In this chaptdt,review how different
techniques from Artificial Intelligence and models from Cognit8a@ence relate to analogical
model formulation. This chapter closes with a summary of my ibotibns and a review of

important open questions.

6.1 Related Work

From a theoretical perspective, the two closest areas @frcbs® analogical model formulation
are model formulation and case-based reasoning. It is also imptwtantnpare analogical
model formulation to other approaches for reasoning about the domasesiteck here: sketch-
based and AP Physics problem-solving. Finally, this researcbniparable to other transfer

learning techniques.

6.1.1 Model Formulation

An important contribution of the qualitative reasoning community has tieeformalization of
the model formulation process (Falkenhainer & Forbus 1991). Method$bkawmedeveloped to
efficiently identify what levels of detail should be included arfdciw perspectives should be
taken in a scenario model (Nayak 1994; Rickel & Porter 1994; letvgl. 1997). These

approaches have focused primarily on engineering and scientific domains.
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The motivation for analogical model formulation comes from thredlecigees posed to these
methods when using them to account for human common sense reasoningheyinsgquire a
complete and correct domain theory. This is a result of thesfoa industrial applications
where models of the systems components are known in advance. Gheh&and, humans
maintain contradictory domain theories, arrive at incorrect assveerd are able to generate
models outside their areas of expertise. Second, traditional nurdall&tion approaches do
very little reasoning about everyday descriptions. A typicaingia is Flores & Cerda (2000),
who formalized equivalent circuit configurations as rewrite rule@simplify circuit schematics
in a humanlike way in order to make analyses more tractable. These handygpaethes will
be difficult to scale to human-level knowledge, which includes tétisoosands of entity types.
Third, traditional approaches provide no account for learning new domain kiymwvléNVhile
encoding complete and correct human commonsense knowledge is extd#iiallt, people
are proficient at providing examples. Analogical model formulapimvides the capability to
formulate models of everyday scenarios without complete domain kahgevle Furthermore,

additional domain knowledge can be added to the system through examples.

6.1.2 Case-based Reasoning/Analogical Problem Solving

Analogical problem-solving systems take an approach similandatmgical model formulation,
e.g. (Veleso & Carbonell 1993; Melis & Whittle 1999; Ouyang &de@r 2006). These systems
solve new problems by transferring plans, rather than modeling kihgsyldrom previous
problem-solving episodes. Thus analogy is used as a means of dh&prg@blem-solver, but it
could, with more effort, solve the problems without analogy. By conttasisystems described

here cannot solve anything without a prior example. Another differsnibat the analogues for
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our system are worked examples, which are at a more aldstracthan the problem-solver’s
internals, whereas the analogues for these prior systemnasplams constructed by the problem-
solvers themselves. In regards to the AP Physics work, it igami¢ plan-based analogical
problem-solvers would do well on restructuring or composing problemsruBResing problems
require a different sequence of operations to solve for a new @@manur method of only
mining modeling information is agnostic with regard to the order irchvimformation was used
in worked solutions. Composing problems require combining concepts frotiplenpkoblems,

which makes choosing plan steps more complex.

As described in Section 5.5.4, Cascade is perhaps most similar dsiéotmus on learning from
examples and its domain of Newtonian physics (VanLehn 1999). Caseadevaluated for
problem-solving performance on handful of Newtonian physics probleins.addition to
analogical search control knowledge, Cascade learns throughimgsmpasses while studying
examples and solving problems. Primarily, Cascade uses ovenyafjgules to resolve an
impasse and learn new domain knowledge. If the impasse occurs dwaimgle explanation
and the overly general rules fail, Cascade allows this exatopbe used as a base for making
analogical modeling decisions. In Cascade’s evaluation, thiofus@alogy was employed
specifically for one particularly difficult problem (VanLehet al. 1992). Instead of using
analogy for modeling decisions as a last resort, analogical rfardalilation demonstrates that
analogy can play a primary role in model formulation. Additionaltyis intriguing that
analogical model formulation does as well as it does, and carbevesed to explain a number

of analogy event types found by VanLehn (1998) in protocol studies (iidrdcbus 2007b). It
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does seem likely that the best model of human reasoning (and mostgbraolution in
engineering terms) is to both use analogical model formulatnohlearning that goes beyond

accumulating examples.

In Case-Based Reasoning (CBR) systems, inferences are atadit problems based upon
previous cases. Most of today’s CBR systems are based orefeattors, and hence lack the
representational capacity to handle the types of problems eepgdshere. In CBR systems
which use relational representations (as used here), typedigavy emphasis is placed on
adapting the known case to the current problem (Kolodner 1993). This frequemtires
domain specific heuristics. In analogical model formulationatteptation is almost completely
handled via structure mapping. Structure mapping theory uses comratonggl structure to
constrain the inference process. The only domain specific hesirigtiadaptation are the rules
for evaluating the inferences and not for the matching proce#fs iteethe BMCT work, the
class of problem determined what types of inferences to makanaiagy. The Companion
would infer modeling abstractions and qualitative mechanicsiaetafor outcome problems,
and causal models and techniques for measuring spatial quantitiz@4oproblems. In the AP
Physics system, adaptation occurs when interpreting numberseirennés and through the
verification of analogical modeling decisions, which can resulihe rejection of inferences.
Like most CBR systems, these adaptation methods are currently-géaedited and
consequently limited in their scope. Another important differeeteden CBR and analogical
model formulation is in regards to the how cases are retrievettieWl systems for relational

CBR tend to use indexing schemes that are carefully desmgmeddomain-specific and task-
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specific basis. By contrast, MAC/FAC, which is used in boin BMCT and AP Physics
systems, is domain-independent and task-independent, and has been upkdnt@ eximber of

psychological results (Forbus 2001).

An important direction for intelligent agent research involvesgiatiing episodic memory
(Tulving 1972). Nuxoll (2007) argues that episodic memories (Tulving 1872umber

important cognitive capabilities including detecting significamput and sense of identity.
Specifically, Nuxoll implemented a domain independent episodic memorthe SOAR

cognitive architecture (Nuxoll & Laird 2007). The episodic memarghbéed SOAR agents to
use virtual sensing, perform action modeling, record previous succasdefilures, learn
retroactively, and boost other learning mechanisms in three difféoenains. Analogical model
formulation differs by using a cognitive model of the retrievakpss, MAC/FAC, and focusing
solely on the broad task of model formulation. Unlike the retrimedhanism used in SOAR,
MAC/FAC uses automatically computed feature vectors fromioektrepresentations allowing
for richer case representations. Both of these works take pitige @ognitive architectures and

attempt to provide domain-independent integrated solutions.

6.1.3 Sketch-based Problem-Solving and Visual Analogy

Several other researchers use diagrams and analogy in problemg.sdbketchlit (Stahovickt

al. 2000) used sketched input to compute qualitative rigid-body dynamicagiomd. Sketchlt
only allows a handful of idealized components (e.g., rigid objects spnidigs) as inputs.
Archytis (Yaner & Goel 2008) uses a method called compositianalogy to construct

structural models from unlabeled two dimensional line drawings. r Rystem recognizes
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shapes based upon similarities between the lines and intersatibagproblem and the labeled
example. These shapes then guide the transfer of component gbesrmections from the
example to the problem. Our system differs in a number of impostay$. First, they use
vector-graphics inputs, which are easier to process than the hamd-skatches we use with
sKEA. On the other hand, we require users to segment their glyyphise both systems rely to
some degree on hand-labeled conceptual information, we use automatic faroddation
during example creation to automatically add information, theredmucing tailorability.
Archytis does not address retrieval, and their analogies focusoantymilarities in depiction,
unlike our use of MAC/FAC for retrieval and the use of both visodl @nceptual information

in mapping.

6.1.4 Solving Textbook Problems

Textbook problem-solving has proven a frequent measuring stick feysdééms over the last 30
years. This research can be divided into roughly three differatg.g®he initial purpose of this
work has been to first determine if computers are capable ohgalektbook problems at all.
After it was established that computers were capable of tdsk, researchers sought to
understand the knowledge required to solve textbook problems. Given knowlkeskege df
textbook problem-solving knowledge, researchers have recently tbarseevaluating how

robustly their systems can perform on unseen problems.

Initial work on textbook problem solving includes with De Kleer's NEWN (1977), MECHO

(Bundy 1979) and ISAAC (Novak 1977). The primary result of NEWTCAS the importance
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in qualitative reasoning when determining which equations were apf@iéor a given scenario.
MECHO and ISAAC sought to understand equation solving strategieeeamiques. MECHO
and ISAAC take natural language input and move to structural efostis via collections of
hand-coded rules to solve the problems. The connection between the handidryafay
entities each system knew about and the abstractions of physedavel-coded, as was all of
the domain knowledge. These systems were aimed at exploring hoputessncould solve

physics problems at all.

These textbook problem-solving systems were successful becahsé éhbwledge about their
domains. Batali approached the problem of automatically extgaktiowledge from textbooks
(1991). He found that textbooks include much more than just the logicangagsn of the

domain laws. In particular, textbooks include numerous examples tratkigquations and
concepts. Perhaps the most thorough investigation of complex texthmam&mprsolving comes
from Pisan’'s TPS system (1998). TPS integrated the experttagwali quantitative and
diagrammatic knowledge necessary to solve 150 Problems from a nwhbesmmon

thermodynamics textbooks.

Up to this point, these systems were all evaluated on problems kndiwe $gstem architects.
More recently, the HALO project (Barkest al. 2004) built knowledge-based systems that
contained a few pages of hand-encoded textbook knowledge, to solvelessbsat of AP
Chemistry style problems. The three HALO teams were ateduby an external team on new

problems across a range of problem types: multiple choice and siaréra The teams were
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evaluated not just on the ability to produce the correct answerldmton producing human
readable explanations. The evaluations of analogical model formulation fhesis draw upon
previous research projects. First, ETS evaluated the AP Physibeem-solving system on
largely unseen problems. Second, in the AP Physics work, theetrdastls provide an
additional measure of the robustness of the reasoning system imdtgade performance
metrics. Third, the major point of departure between previous workexbibook problem-
solving and the analogical model formulation approach is the focusaomrig. Analogical
model formulation expects new domain knowledge to be added through examgéds m

provided in these evaluations as sketches and worked solutions.

6.1.5 Transfer Learning

The transfer learning framework is explicit attempt to otter&ze how well learned knowledge
transfers to new domains. There has been an increasing imtetesisfer learning within the
Al community. Hinrichs and Forbus (2007) describe how analogy can dxk tastransfer
learned qualitative models between scenarios in a turn baseehgtgame. The cognitive
architecture ICARUS achieves near transfer through goal dexstion (Choiet al. 2007) and
has been augmented with a representation mapping algorithm (Sbaik®2008) to handle
more distant types of transfer. In analogical model formulafioding domain mappings is
critical to successful transfer. ICARUS requires abstdadtamain theories in both the source
and target tasks in order to do transfer. By contrast, analogicdel formulation operates
directly on the problem and a specific example without abstractehmg knowledge of the

source or target task, making it more robust.
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Within the machine learning community, transfer learning efftotsis have also focused on
identifying mappings between scenarios and domains. This work ésrelevant to the Domain

Transfer via Analogy method discussed next. Therefore, it is discussed inrd€taglpter 8.

6.2 General Discussion

This dissertation seeks to provide Al systems with the fleiibdnd robustness of human
reasoning. People are able to construct useful models of a lamgel of scenarios. While an
astrophysicist's model of the Earth orbiting the sun would be quiiereit from a layperson’s,
both people are able to create a model, use it to make predictiorcgramainicate their results.
This task of model formulation has been formalized in the Quabkt&easoning community. In
this dissertation, | introduce the analogical model formulatiorhatet This method enables
model formulation in broad scenarios without complete and correct idonh&ories.

Furthermore, because the majority of the domain knowledge used ingiaahl model

formulation exists as examples, learning can be done by accumulatmglega

This method was evaluated on problems from two complex reasoning thsk®ennett
Mechanical Comprehension Test and AP Physics-style questiorss.aiir foremost, these tests
represent difficult reasoning tasks, and analogical model fotimul@rovided the necessary
scenario models to enable a Companion to solve problems. Second, ahalogiEh
formulation enabled Companions to learn by accumulating exampleshinoéghese domains.
Third, the evaluations of each included measures of robustness. In (B& Bdluation, three
different sets of example sketches were used. This providediigrian the representations of

the examples from which the Companion formulated models of new problémalogical
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model formulation successfully reasoned about scenarios drawn Ifierardi person than the
creators of the examples that formed the basis of the domain kiymwvlelhree aspects of the
AP Physics evaluation provide measures of the robustness of theyinglsylstem. 1) The first
evaluation was designed and administered by the Educational TeS@ingce without
knowledge of the system’s problem-solving approach. 2) The evaluation idcludeen
problems generated from templates. The system designers ampleg from less than 50% of
the templates used in the evaluation. 3) The evaluation systaltyagxplored robustness by

evaluating transfer across individual transfer levels.

These evaluations demonstrate that analogical model formulatianpremising method for
robustly creating the models necessary for complex reasonikg ftasn everyday scenarios.
Furthermore, unlike traditional model formulation algorithms, systesing analogical model

formulation are capable of expanding their domain knowledge by accumulatinglezam

6.2.1 Open Questions and Future Directions

There are three important open questions regarding analogical modellgbon and its
relationship to cognition. The first two directions involve redeanto the hand coded rules
which guide the retrieval process and inference evaluation. THeséoBion discusses moving

beyond example based reasoning through generalization.

6.2.1.1 Pragmatic Retrieval Constraints

Analogical model formulation creates scenario models for newtisiisabased upon similar
understood examples. This places a heavy burden on selecting tbgoasaexample. As

described in Chapter 3, this retrieval process allows for pragmettieval constraints. On
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comparative analysis problems from the Bennett Mechanical G&bmpsion Test, the mapping
of the retrieved example was evaluated to ensure that the mgsumtidel would constrain the
sought after parameters. For example, if the problem is agking comparison between the
stability of two ladders, and the model resulting from a retdeeample includes no
information concerning the stability of the two ladders, then thigeval is not considered. On
outcome questions from the same evaluation, incorrect retrievatstinecause of all problem-
solving failures. In the AP Physics evaluation, the Companion watlieve additional

analogues in situations when the entire event structure of the mprelds not included in the
mapping. This allowed the Companion to make use of multiple example mpsoiden

reasoning about a new situation. These constraints improved the Conipa@rformance in

both domains by allowing it to correctly answer questions it woule ledherwise answered

wrong or been unable to answer.

These pragmatic retrieval constraints were developed fbrg@moain independently. Ideally, a
system should be able to introduce new rules for evaluatingvaitthased upon its experiences
within the domain. First, to understand the space of possible rétcimvstraints, a taxonomy
should be created. The retrieval constraint in the AP Physstensyfocused on the mappings
relationship to the event structure of the problem. This is a dotepi@ndent heuristic which
takes advantage of the fact that Physics problems center on evimnssconstraint does not
apply to solving BMCT problems. Applying analogical model formalatio new domains will
improve our understanding of pragmatic retrieval constraints and prosggieation for methods

which learn these constraints automatically.
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6.2.1.2 Analogical Inference Evaluation and Adaptation

Another hand-coded aspect of analogical model formulation is the farl@nalogical inference
evaluation and adaptation. These rules are essential to thenaréer of analogical model
formulation and are currently not a subject of learning in thestersg. They are used for three
purposes: to determine which types of modeling decisions should be make analogy, to
verify analogical modeling decisions, and to adapt analogically stegenodeling decisions.
Which types of modeling decisions are made via analogy is hgsadthe amount of domain
knowledge available to the problem-solver. On outcome questions fronBMIGET, the
Companion had a qualitative mechanics domain theory. Therefore, thanahbgical modeling
decisions it made pertained to abstraction types for the scedgeiis and abstract relationships
between them. The Companion did not have an abstract domain theory tmmtparative
analysis or AP Physics problems. Consequently, analogical navdalltion relied completely

upon the analogy to construct the scenario model.

In regards to individual modeling decisions, the rules for verifying and adapéngdre domain
dependant. These rules represent important aspects of domain knowleiigigleat@a the
problem-solver. While no evaluation or adaptation rules were used onviGd Bvaluation,
they certainly would have helped. On certain outcome problems,ntiweract abstract
gualitative mechanics relationshipnmeshedGear s- Adj acent , would be inferred for two
gears side by side. A rule which recognized the spatial xtoote¢he objects involved in these
two relationships would be able to verify when these analogical Ingd#ecisions applied. On

comparative analysis problems, the Companion failed to arrive at answersh&reausal model
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involved unknown entities or surfaces. Rules which recognized theséiagis could provide

the problem-solver with three different options. The problem-solver canploy
rerepresentation (Yaet al. 2003) on the current analogue, retrieve a different analogue, or use
the spatial relationships from the base to posit where the swfaestity would exist in the

target.

Verification and adaptation rules were used in the AP Physigkiaion. There were two
verification rules. First, if the context of the modeling dixi involved an unmapped planetary
body and the problem included a different planetary body, then thenoéemas rejected.
Second, when a value was assumed for a quantity, the units of theedsgailoe had to be
applicable for the quantity type (e.g., m/s are applicable €mita velocity quantity). While
these verification rules were rejected a number of incorreeten€es in the evaluation from
Chapter 5, they incorrectly rejected a set of valid modeling idesion 25% of Composing
problems. An adaptation rule was employed when the candidatentdsrsuggesting equations
included numbers. In these cases, the problem-solver used the catimegpamber from the
base. While these rules were necessary to produce the mmidsed in this dissertation, they
are specific to this methods which propose and tweak these rules iricredibly important
for analogical model formulation systems which operate ovemger of domains and for an

extended period of time.

The application of domain knowledge during at this stage ofogital model formulation

involves a number of open questions. Endowing the problem-solver with saghitelf-
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modeling capabilities could allow it to determine what typesnotleling decisions should be
made via analogical model formulation. Regarding verification ralesdraightforward context
based generalization approach using SEQL appears very promisiog.eaEh analogical
inference, construct a case by gathering all of the fatish represent the context of the
inference. If the inference leads to positive results, then add the casenaligation of positive
inferences. If not, the case would be added to a negative geattwal Then when faced with
new analogically suggested modeling decisions, the problem-solveruseiits similarity to the
positive and negative generalizations as a measure of confideheemoBkt promising direction
for learning adaptation rules involves posing general heuristichwvebigld be programmed for
each domain via example. For example, the general version bédhnistic used in AP Physics

is to use the entity from the base in certain situations.

6.2.1.3 Generalization of Examples

Analogical model formulation illustrates the flexibility céasoning and learning directly from
examples. Many theories of learning and expertise notentheriance of extracting general
information from specific examples (e.g. Elio & Anderson 1984). Inlogiel model
formulation, the context of the example is used to verify theogiwl model decision. As
indicated throughout this work, an intelligent agent can improve upon tgrajzing across
similar modeling decisions. This will extract the necesaapects of the scenarios which enable
the modeling decision away from the specifics of each scemasalting in improved
verification rules. Using SEQL generalization (Kuelateal. 2000), | have completed initial
research on learning participant abstraction modeling decisions multiple examples in

Physics problem solving (Klerdt al. 2008).
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While using generalization to improving verification rules is ampartant direction for
analogical model formulation, additional theoretical work is requiweadhderstand how abstract
domain theories are acquired. One approach would look at directlyirapgleneralization
techniques to examples to extract schemas for the domain (e.gicpleguations or causal
models). The goal of this approach would be to learn abstract domain theories andlabgcal
model formulation allows for knowledge intensive reasoning about a donsamexamples, it
would represent a significant step forward in knowledge engineezs®arch to create abstract

domain theories directly from examples.

In the next chapter, | introduce domain transfer via analogghuises cross-domain analogy to

reuse known abstract domain theories in learning novel but similar domains.
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7 Domain Transfer via Analogy model of Cross-domain Analogy

While within-domain analogy is useful for understanding new sdnatibbased on examples,
cross-domain analogy allows for the understanding of new domains bassumnilar, well
understood domains. Cognitive science research has shown how cross-doaages are
useful to scientists in producing paradigm shifts (Gengteal. 1997) (Holyoak & Thagard
1989) (Falkenhainer 1987) and how students use cross-domain analageside domains
(Gentner & Gentner 1983). Textbook authors routinely exploit thiscp&ati aspect of human
adaptability when introducing new concepts. For example, a compimgics textbook has 11
example problems in linear kinematics and only two examples in rotational kicemab assist
the learner the author explains that “the dynamics of rotasi@analogous to the dynamics of
linear motion” (Giancoli 1991). Students are expected to levehégyartalogy to understand the

modeling decisions and phenomena in rotational mechanics.

An analogy is across-domain analogyf the correspondences between the domains include
different object types, quantities, and relations. The two reqamtror effective cross-domain
analogies are a known base domain andomain mappingwhich maps the object types,
guantities, and relationships between the base and the target doiffaimshapter presents the
Domain Transfer via Analog¢fDTA) model of cross-domain analogy. Using domain general
retrieval and matching algorithms, DTA constructs a domain magping pairs of examples
and transfers schemas and control knowledge from a known base doma@@atéoa new target

domain theory. Successful cross-domain analogies resplergistent mappings Persistent
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mappings are correspondences between the base and target domhlimgy BYfah to construct

complex analogies incrementally from successful matches.

The next section discusses previous cross-domain analogy reseancteidetail and motivates
the need for larger scale process models such as DTA. Neodeanew of the DTA algorithm

is presented. This is followed by a description of a kinematiperiment demonstrating how
DTA can enable faster learning than a baseline generatizaystem between the linear and
rotational kinematics domains. Next is a second evaluation eetttee dynamical analogy
domains (Olsen 1943) of linear, rotational, electrical and therys#tras. This chapter closes

with a discussion of related and future work.

7.1 Previous Cognitive Science Research
7.1.1 Evidence for Cross-Domain Analogy

Cognitive scientists have long argued that cross-domain analogy isiportant element in
people’s adaptability to new situations such as learning new demaickly (Gentner 2003).
Gentner & Gentner (1983) analyzed student's mental models ofi@tgctidentifying many
commonalities with models of flowing water and teeming crowd3onsistent with other
psychological findings (Spiret al. 1989), these analogies affect future inference and learning in

the electrical domain.

In addition to student learning, a number of researchers have sthdiedle of cross-domain
analogy in scientific discovery. Nersessian (1992) found extensseeof analogy in the

scientific discoveries of Maxwell and Faraday. Gentner agddolleagues (1997) studied
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writings from Kepler, tracing his extensive use of analogyevhd was developing his model of
the solar system. Analogy is an important aspect of contempscagce as well; Dunbar

(1995) found analogies prevalent among practicing biologists.

While cross-domain analogy allows for powerful inferences andleaeted learning, the
spontaneous generation of useful cross-domain analogies is quitérarseries of experiments
conducted by Gick and Holyoak (1983), human subjects were unable tcetransblution
schema between variations of the radiation problem. Not only didsdbgects fail to
spontaneously generate and exploit the analogy, they failed eeerpafforming a variety of
exercises to enhance the base scenarios accessibilitgemarization, abstraction and visual

depiction).

Given these findings, computational models of cross-domain analogy shiocdanpass the
following phenomena. First, cross-domain analogy supports complecerinée This goes
beyond answering questions about a given scenario. The cross-domagesnstudied above
result in new theories which people use to shape their reasoning altomain. Second,
spontaneous retrieval, generation and application of successful croasrdammalogies is rare.

Third, a provided base domain, feedback and advice often facilitate cross-domagyanal

7.1.2 Previous computational models

Drawing upon the evidence from cognitive psychology, a number odradsaas have created
computational models of cross-domain analogy. The most closelgdelark on cross-domain

analogical learning is Falkenhainer's PHINEAS (1988). PHISEAsed comparisons of
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(simulated) behavior to create an initial cross-domain mappirignths subsequently used to
create an explanation for the behavior in the new domain. DTAdiiflem PHINEAS in four
important ways. First, DTA transfers equation schemas and cdaiowledge. Control
knowledge guides the application of equation schemas, allowing ttemsys solve complex
guantitative problems. Second, DTA uses domain general models of ieallegrieval and
matching. While both PHINEAS and DTA use SME for analogicaiching, PHINEAS did not
have a psychologically plausible model of memory retrieval. ABmploys the MAC/FAC
model of similarity-based retrieval, which has been usedtouwamt for several psychological
phenomena and make new predictions concerning memory retrieval (Rofil)s Third, DTA
is evaluated across 32 problems from four different domains, represansignificant increase
in evaluation scale over previous systems. Finally, DTA usesispait mappings to
incrementally construct complex cross-domain analogies asatietezs new examples from the

target domain.

This chapter, and this thesis, argues for the integration and évalaftanalogical processes
within larger reasoning tasks. Here, DTA is integrated irCiipanions cognitive architecture
and evaluated on a range of quantitative physics problems. Prothtams from kinematics,
mechanics, electricity, and thermodynamics provide the ricbfsgbmains necessary to better
understand the effectiveness and implications of DTA for artifisigelligence and as a

cognitive model.
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7.2 Domain Transfer via Analogy Process Model

7.2.1 Overview

Domain Transfer via Analogy is a model of ci-domain analogical learning. DTA assume
known base domain and an example from the new dom#@he base domain consists of
abstract schemas and control knowledged in reasoning and examples, or worked soluti
which include instantiations of the domain theatfieamas. The process begins after the sy
fails to solve a problem in a new domain. Usingaked solution to this failed problem, D1
performs a crosdomain analogy to learn equation schemas and ddatoavledge in the targe
domain. The process is depictedFigure 26 and consists of four stepearning the domai
mapping, initializing the target domain theory, ending the target domain via cr-domain

analogy, and verifying the learned knowle

Base
Domain

Control
Knowledge

Equation
Schemas

l Worked
Solution

Step 1
Retrieval +

Mapping
Control Equation

Failed |Worked
Problem [Solution Knowledg Schemas

Figure 26: DTA algorithm
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Mappings
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DTA assumes domain theories consistinf structured predicate calculus representatic
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Therefore, any type of domain knowledge which can be stored & fénm should be
transferrable. In this thesis, the knowledge transferred t¢erdi®quation schemas, stored as

encapsulated historiggorbus 1984), and control knowledge.

This section begins with a discussion of the representations and prsdddeng system. This is

followed by a detailed description of the algorithm and an example.

7.2.2 Representations

Once again, the representations used are in CycL, the predamlatdus language of the
ResearchCyc knowledge base (KB) (Matusztkal. 2006). The representations use the
ontology of ResearchCyc, plus our own extensions. These concerta@elProcess theory
(Forbus 1984) and problem-solving strategies, and are small contpatesl 30,000+ concepts
and 8,000+ predicates already defined in the KB. Thus, objects, relamhevents that appear
in physics problems such as “rotor”, “car”, and “driving” are adrg defined in the ontology for
us, rather than being created specifically for this projebis feduces the degree of tailorability

in the experiments.

7.2.2.1 Example Problem and Worked Solution

The problems were selected from the following physics resouf&tseareret al. 1971),
(Giancoli 1991), (Ogata 1997), (Fogiel 1994) and ("Hooke's Law, Work arsficERotential
Energy" 2009). Unlike the AP Physics transfer learning exmetindescribed in Chapter 5,
these representations were created internally by hand. The mameiples were applied to
create the problem and worked solution representations. Specjfitladlyentities in the

problems were to be represented at the level described problem without abstraction. The
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problem representations are intended to be direct translations édiogie calculus from natural
language problem statements, without any abstraction or reaso@iagsider the problem of
“How long does it take a car to travel 30m if it accaksafrom rest at a rate of 2 %%
(Example problem 2-6, p. 26, Giancoli 1991). This problem is representad isystem as a
case of nine facts, shown in Figure 27. The first two factmelefie entities in the problem, a
transportation with land vehicle everdt;c- 2- 6, and an automobileZar - 2- 6. The next 4
facts describe the motion Ghr - 2- 6 duringAcc- 2- 6. The last 3 facts describe the question

of the problem and how these facts are grouped together in a case.

(isa Car-2-6 Autonobile)
(isa Acc-2-6 Transport Wt hMotori zedLandVehi cl e)
(objectStationary (StartFn Acc-2-6) Car-2-6)
(pri maryQhj ect Movi ng Acc-2-6 Car-2-6)
(val ue ((QPQuantityFn DistanceTravel |l ed) Car-2-6 Acc-2-6)
(Meter 30))
(val ue (Measurenent At Fn ((QPQuantityFn Accel eration) Car-2-6) Acc-2-6)
(Met er sPer SecondPer Second 2))
(isa G a-Query-2-6 PhysicsQuery)
(hypot heti cal M crot heoryOr Test G a- Query-2-6 G a-2-6)
(querySentenceX™ Query G a- Query-2-6
(val ueOr ((QPQuantityFn Tinme-Quantity) Acc-2-6) Duration-2-6)))

Figure 27: Example problem 2-6 representation

The worked solutions for these experiments use the same ontologpsfast the AP Physics
worked solutions in Chapter 5. Once again, the worked solutions areenei@c at the level of
explained examples found in textbooks. They are neither deductive pargisoblem-solving

traces produced by our solver. In instances where the problems didveotvbrked solutions,
they were created to conform to existing worked solutions. Bel@m English rendering of the

worked solution for example problem 2-6:
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1. Categorize the problem as a constant acceleration linear mechanicsproble

2. Instantiate the distance by velocity time equation (¢ * \5af)

3. Because the car is stationary at the start of the eventtivaeits velocity is zero (= 0
m/s)

4. Solve the equation for t (t = 5.8s)

(isa G a-2-6-Ws-Step-2 SubstitutingBindi ngsForVari abl es)
(hasSol utionSteps G a-2-6-WrkedSol ution G a-2-6- Ws- St ep- 2)
(priorSolutionStep G a-2-6-W5-Step-2 G a-2-6-W5-Step-1)
(stepUses G a-2-6-W5-Step-2 (primaryObject Movi ng Acc-2-6 Car-2-6))
(stepUses G a-2- 6- W5- St ep- 2 (abstracti onFor Qbj ect Car-2-6 PointMass))
(stepUses G a- 2-6-W5- St ep-2
(abstracti onFor Obj ect Acc-2-6 Constant Transl ati onAccel erati onEvent))

(stepUses G a-2-6-W5-Step-2 (isa G a-Query-2-6 PhysicsProbl em Const ant Accel eration))
(stepUses G a-2-6-W5- Step-2

(equati onFor nfFor Di stanceByVel ocityTi ne- 1DConst ant Accel erati on

(mat hEqual s ((QPQuantityFn Di stanceTravel |l ed) ?0BJ ?1 NTERVAL)
(Pl usFn
(Ti meskFn (Measurenent At Fn ((QPQuantityFn Speed) ?0BJ) (StartFn ?1 NTERVAL))
((QPQuantityFn Time-Quantity) 7?1 NTERVAL))
(TimesFn (Measurenent At Fn ((QPQuantityFn Accel eration) ?0BJ) ?I NTERVAL)
(SquaredFn ((QPQuantityFn Time-Quantity) ?INTERVAL)) 0.5)))))
(stepResult G a-2-6-W5- Step-2
(equati onFor Sol uti on G a- Query-2-6
(mat hEqual s ((QPQuantityFn Di stanceTravel | ed) Car-2-6 Acc-2-6)
(Pl usFn
(Ti meskFn (Measurenent At Fn ((QPQuantityFn Speed) Car-2-6) (StartFn Acc-2-6))
((QPQuantityFn Tinme-Quantity) Acc-2-6))
(TimesFn (Measurenent At Fn ((QPQuantityFn Accel eration) Car-2-6) Acc-2-6)
(SquaredFn ((QPQuantityFn Time-Quantity) Acc-2-6)) 0.5)))))

Figure 28: Representation for worked solution ste® from example problem 2-6

The entire worked solution consists of 38 facts. Figure 28 shows #ulicate calculus
representation for the second worked solution step. There are twenli#fe from the worked
solutions in Chapter 5. Thabstracti onFor Obj ect statements relate entities in the
problem with participant abstraction types in the domain theorythik caseCar - 2- 6 is
modeled as a Poi nt Mass and Acc-2-6 is considered a

Const ant Transl ati onAccel erati onEvent. Also, the first argument to
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equat i onFor nFor is the encapsulated history type from which the equation comethisIn
case, the encapsulated history representing the equation beingtiabsth in this step is
Di st anceByVel oci t yTi me- 1DConst ant Accel erati on. While these are additional
constraints on the worked solution representations, these connectionerbehee worked

solutions and domain theories function simply as an internal represerfta the explanations
of physics problem solutions. Recall that DTA uses analogiegeba worked solutions from
different domains to learn a domain mapping. This additional infoomdtelps structure the

domain theory for the target during transfer.

7.2.2.2 Domain Theories for Problem-solving

The domain theories consist of encapsulated histories represeiragioas and control
knowledge to guide problem-solving. Encapsulated histories act asoeqsahemas with
participants, conditions, and consequences. During problem solving, teensystantiates

applicable encapsulated histories to determine which equations are available

(def - encapsul at ed- hi story Vel oci t yByTi ne- 1DConst ant Accel er ati on
iparticipants
((theObj ect :type PointMass)
(theEvent :type Constant 1DAccel erati onEvent))

:condi tions
((primryQObj ect Movi ng theEvent theCbject))
: consequences
((equati onFor nfor Vel ocityByTi me
(mat hEqual s

(At Fn (Speed theCbject) (EndFn theEvent)
(PlusFn (AtFn (Speed theObject) (StartFn theEvent))
(Timeskn (AtFn (Acceleration the(oject) theEvent)
(Time-Quantity theEvent)))))))

Figure 29: Encapsulated history for y=v;+at in condensed form

Figure 29 shows the definition for the encapsulated history representing théoequav;+at,

velocity as a function of time. There are two participaniteCbj ect andt heEvent , which



156

must  satisfy  their type constraints, the  abstractionBoi nt Mass  and
Const ant 1DAccel er ati onEvent, respectively. Furthermore, the conditions of the
encapsulated history must be satisfied in order to instarttiael iconclude its consequences. In
this case, it is necessary thaheCbj ect be the object moving it heEvent. The
compositional modeling language (Bobretval. 1996) form shown irfrigure 29is automatically
translated into a set of predicate calculus facts for use irsytbm. This knowledge is

necessary for the physics problem-solver to successfully answer questions.

DTA enables the learning of domain theories that are repezsevith schema-like knowledge.
In these experiments, DTA learns the encapsulated historiese @omain via cross-domain
analogy, in terms of participants, conditions and consequences. alitlgyvof the learned
domain theories is evaluated by using it to solve physics probl€mssequently, it is necessary
to understand how the problem-solving system works. The physics prablémswork all ask
for the values of specific quantities. If there is an equation in which thaiokhown parameter
is the sought quantity, the system simply solves the equationetordie¢ the answer. For more

complicated problems, the problem solver makes use of control knowledge.

Pisan’s work on engineering thermodynamics problem-solving (1998)org#rated the
importance of control knowledge for producing expert-like solutions, whiemacessary for
intelligent tutoring systems and cognitive modeling experimentsawidg upon distinctions
from Pisan, the following equation selection and manipulation strategeze used: frame

eguations, decomposition of composite quantities, and symmetric substitution.
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The problem-solving strategies usame equationso set up problem-solving. Frame equations
are central to their domains and serve as starting points forepreddlving. For example, the
conservation of momentum,,ddre = Pater IS @ frame equation for mechanics. For this
evaluation, domain specific control knowledge concerning frame equatimhgraferences
between different frame equations has been added to the domain thdariaddition to the
encapsulated histories representing equations, this control knomeggde transferred as well
to solve problems in the target domain theorgigure 30 shows the facts indicating that
conservation of momentum and the linear mechanics work energgtheoe frame equations,

and conservation of momentum should be tried first in scenarios where both are applicable.

(franeEquati onType Conservati onOf Li near Monent un)
(frameEquat i onType Wor kEner gyTheorem LM

(preferFrameTypeOver ConservationCOf Li near Morment um Wor kEner gyTheor em LM

Figure 30: Control knowledge statements indicatingrame equations and preferences

After selecting a frame equation, the problem-solver usesgieat of symmetric substitution
(e.g., given the work energy equation, Wxke— Keniia, Substitute each of the Ke’s with
.5mV?) and decomposition (e.g., substitutg; With the sum of the component forces). Once the
only unknown in the equation is the sought quantity, the system invokesaatgekines based

on the system described in Forbus & De Kleer (1993).

As described in detail in Chapter 5, in addition to equations, solvingcghp®blems requires a

number of modeling decisions. While the preceding chapters describednadvgical model
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formulation enables a system to make these decisions in broad dothairsystems in these
experiments use hand coded rules to make approximations and assumfti@nsfore, the
system’s performance depends solely on the encapsulateddsigtod control knowledge of the
domain theories. While this is sufficient for the goals of #mperiment, analogical model
formulation and DTA could operate complementarily within a singleelligent agent.

Integrating analogical model formulation and DTA is an important direction farefutork.

7.2.3 Algorithm

Using worked solutions, DTA learns a domain mapping and transfersi@gsahemas and
control knowledge from a known base domain to a new target domain th&fbey.the system
fails to solve a problem from a new domain, DTA is invoked by providing the worked solution to
that problem. When DTA is successful, new encapsulated histodesoatrol knowledge are

added to the target domain theory along with a set of persistent mappingsiiéesvdemains.

7.2.3.1 Step 1: Learn Domain Mapping

Because different domains are represented with different pteslieead conceptual types, a
domain mapping is essential to successful cross-domain analoQiEA. learns the domain
mapping through an analogical mapping between worked solutions frortwthelomains.
Using the worked solution for the failed problem as a probe, MAC/B&IEcts an analogous
worked solution from a case library containing worked solutions frorkrtben domain. Next,
SME creates an analogy between the retrieved worked solutiorhamdotked solution to the
failed problem. If there has already been a successful-domsain analogy between these
domains, there will be persistent mappings. The persistent mappng required

correspondences between the base and target worked solutions duringtrigneal r and
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analogical matching process.

The analogy between the worked solutions results in up to thrppimga. Each mapping
contains a set of correspondences, which are used to form the donpgimgnaDTA sorts the
mappings by their structural evaluation scores. Beginning wieh best mapping, each
correspondence is added to the domain mapping when the base egtityngmbers, types,
guantities, and relations) is mentioned in the base domain theory.prbbesss continues with

the rest of the mappings by adding correspondences to the donmaéhat do not violate

the one-to-one constraint. For example, if the best mapping hadespmidence between
Poi nt Mass and Ri gi dObj ect and the second mapping had a correspondence between
Poi nt Mass and Bal | , the domain mapping would only include the mapping between
Poi nt Mass andRi gi dCbj ect. The reason for combining multiple mappings is that the

global mapping constraints in SME may preclude useful local correspondences.

7.2.3.2 Step 2: Initialize the Target Domain

DTA uses the domain mapping to initialize new domain theory elemétdr each encapsulated
history from the base domain mentioned in the domain mapping, DTA pteim create a
corresponding encapsulated history in the target domain. Befosdeinang the encapsulated
history, all of the quantities and types mentioned in the encapsulatedyhmust appear in the
domain mapping. If they do, then using the domain mapping, DTA procegesisbitituting
concepts in the base encapsulated history with the corresponding cofmoaptthe target

domain. The resulting encapsulated history is then added to the target domain theory.
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7.2.3.3 Step 3: Extend the Target Domain Theory

After initializing the target domain theory, DTA extends the domntheory through a second
cross-domain analogy. This time the analogy is between tleedvastarget domain theories
themselves. The domain theories consist of the facts represtmiencapsulated histories and
the control knowledge. DTA constrains this analogy with two setsagping constraints. To

ensure consistency, each element of the domain mapping beconmpsredreorrespondences
constraint. To prevent non-analogous target items from interfevitig the mapping, each

encapsulated history in the target which does not participate dothain mapping is prevented

from mapping to any of the base encapsulated histories.

This analogy results in a set of candidate inferences, i.e.,ctarge about the target, using
partially mapped expressions from the base. Because the base dbemay is made up of
encapsulated histories, these candidate inferences descritspondiag encapsulated histories
in the target domain theory. The corresponding encapsulated hisitorig® target are
represented bgkolem entitiesn the candidate inferences. Recall from Chapter 2 that SME
creates skolem entities for entities appearing in the basehwlaive no correspondence in the
mapping. To complete the cross-domain analogy, DTA adds corresp@mditigs to the target

and extends the mapping with these new target entities and correspondences.

Using the resulting candidate inferences, DTA constructs nevpsueded histories and control

knowledge for the target domain theory. Before adding the encagsiilistories to the target
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domain theory, it is necessary to resolve other skolem entiteegioned in the candidate
inferences concerning new encapsulated histories. If allrtba@psulated history’s participant
types and quantities are included in the domain mapping, then theraotvibe any other
skolems, and DTA adds these candidate inferences into the targahdbewy. The control
knowledge from the base domain also results in candidate inferelBaeb. candidate inference
without any skolem entities containing control knowledge is assumedhattarget domain

theory as well.

7.2.3.4 Step 4: Verification

While powerful, cross-domain analogies are risky and frequentlyaicomvalid inferences.
Therefore, DTA verifies the newly proposed knowledge by retryfregproblem whose failure
began the entire process. |If this problem is solved correctly, B§umes that the newly
acquired domain theory is correct. Otherwise, DTA forgets bothdtwedomain theory and the
domain mapping resulting from the worked solution comparison. At this, ploegsystem using
DTA could invoke the process again after removing the base workedosoftdm the case
library. This number of retrievals an agent should perform withA B&pends in principle on a
self-model of its own knowledge and a model of its interactions th@hworld. Currently, this

number is hardcoded for each system.

After a successful transfer, the encapsulated histories and ckntheledge are available for
reasoning about future problems in the target domain. Also, the nydppm the cross-domain
analogy is added to the domain mapping and stored as a persiggmhgn This will assist in

future cross-domain analogies between the base and target domains.
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7.2.4 Example

To better understand how DTA uses multiple cross-domain analogiggarisfer domain
theories, we describe an example of how it learns rotational kiesrthrough an analogy to
linear kinematics. The system begins with a linear kinemalrrain theory and worked
solutions. Because the system has no encapsulated historiegiohabtd@nematics, it fails to
solve the following problem, “Assuming constant angular accéerahrough how many turns
does a centrifuge rotor make when accelerating from rest to 260M 5 min?” Because the

system failed, DTA is invoked and the worked solution to this problem is provided.

In order to create a domain mapping between linear and rotationatdtine, DTA creates an
analogy between a linear kinematics worked solution and the providattbmad kinematics
worked solution. Using the provided rotational kinematics worked solutian @sbe, DTA
uses MAC/FAC to retrieve an analogue from the systems ldasey of linear kinematics
worked solutions. In this case, the analogous worked solution retrievied the problem
discussed previously, “How long does it take a car to travel 30iadcelerates from rest at a
rate of 2m/&?” DTA uses an analogy between these two worked solutions to préigeice
domain mapping necessary for cross-domain analogy. In this casematiematical
relationships are isomorphic, d 5t + .5af and 6=wit + .5ut?>, which places the quantities
between the domains into correspondence. It should be noted thateilEshpartial matches,
allowing correspondences to be created even when the mathemeéitahships in the worked
solutions being compared are not completely isomorphic. Making use KBthentology, the

minimal  ascension places pri maryQbj ect Moving in  correspondence  with
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obj ect Rot at i ng based upon the shared common ancestabpiect Movi ng. Next, the
mapping’s correspondences are extracted to create the domain gnapmabset of which

appears imable 8

Base Item Target ltem

Poi nt Mass Ri gi dObj ect

Const ant Li near - Const ant Rot at i onal -
Accel erati onEvent Accel erati onEvent
pri mar yQbj ect Movi ng obj ect Rot ati ng
Accel eration Angul ar Accel eration
Speed Rat eOF Rot ati on

D st anceTravel | ed Angul ar Di st Travel | ed
Ti me- Quantity Time- Quantity

Di st anceByVel oci tyTi me- | Di st anceTi ne-
1DConst ant Accel eration | Rotati onal

Table 8: Resulting Domain Mapping

After learning the domain mapping, the next step is to initiahieegarget domain theory. This is
done by searching the domain mapping for encapsulated histomeshie base domain. In this
example,Di st anceByVel oci t yTi me- 1DConst ant Accel erati on is found. In order

to transfer this encapsulated history to the rotational kinesmatomain theory, all of its
participant types and quantities must participate in the domain ntapprhis encapsulated
history contains two participant types,Poi nt Mass and Constant Li near -
Accel erati onEvent and four quantitiesAccel erati on, Speed, Ti ne- Quantity
andDi st anceTr avel | ed. All of these appear in the domain mapping, allowing DTA to
transfer this encapsulated history to the target domain. Fbrfaeicin the base domain theory
mentioning Di st anceByVel oci t yTi me- 1DConst ant Accel erati on, DTA

substitutes all subexpressions based upon the domain mapping. This mesalt®ew
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encapsulated history,Di st anceTi ne- Rot ati onal , which represent the rotational
kinematics equationf=mit + .5ut’>, and was mentioned in the rotational kinematics worked

solution. DTA initializes the target domain theory by adding this new encégushistory.

Next, DTA extends the new domain theory with a cross-domain anaktgyeen the base and
target domain theories themselves. To maintain consistency, thegyamaconstrained with the
domain mapping acting as required correspondence constraints. ThetsAtldsaribing the
linear mechanics encapsulated histories make up the base, andd¢hed the newly initialized
rotational mechanics domain theory are the target. As expdhtedple target encapsulated
history maps to the corresponding linear mechanics encapsulated. hiBbhigymapping includes
the quantities, conditions and types in these encapsulated histories. Thegmodereces result

in candidate inferences involving the facts of the other encapsuiaities from the base.
DTA uses these candidate inferences to infer rotational kinesnaticapsulated histories. For
example, the candidate inference shownrigare 31suggests that there is an encapsulated history
in the target analogous to théel ocit yByTi me- 1DConst ant Accel erati on linear
mechanics encapsulated history. This candidate inference tbi@t¢ise suggested encapsulated
history has the operating condition that the object must be rotdtirigg the event. The
Anal ogy Skol enfFn expression indicates that there was no corresponding entity iartes.
Therefore, to extend the target domain theory, DTA createtsesrfor all the analogy skolems,
i.e. turning (Anal ogySkol enFn Vel oci t yByTi me- 1DConst ant Accel erati on)

into EHType- 1523, and assumes these facts into the rotational mechanics domain. theory

During this step, three new encapsulated histories join the irgtlaéncapsulated history in the



165

rotational kinematics domain theory.

(gpCondi ti onCf Type
(Anal ogySkol enfn Vel oci t yByTi ne- 1DConst ant Accel erati on)
(objectRotating :theEvent :theCbject))

Figure 31: Candidate inference suggesting a condith of an encapsulated
history type

The final step is to verify the validity of the learned knowleddéis is done by attempting to
solve the original problem again. Since the worked solution contaireniveer, it is simply
compared against the computed answer. If they match, therathedeknowledge is assumed
to be valid. If the system gets the problem wrong, it takes tsyas s First, it erases the domain
mapping and the inferred encapsulated histories in the rotational mechiilomain theory.
Second, it repeats the entire process one more time, with theestxtrorked solution from the
case library. Abandoning, rather than debugging, a mapping may daistic. One aspect of
future work involves exploring diagnosis and repair of faults in learnedaitiotheories and
domain mappings. In this case, the learned encapsulated hislioretha system to answer the

problem correctly.

Recall at the beginning the system had zero encapsulated Bistoite rotational kinematics
domain theory. While the rotational kinematics worked solution containezka@ample of one
encapsulated history, after employing DTA, the system leasceeémas for four rotational
kinematics equations. This knowledge is now available for futurblgmmesolving episodes.

The next two sections describe evaluations of DTA across a variety oEphigsnains.
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7.3 Kinematics Experiment

The first experiment was conducted using the rotational and lineamhitics domains. This
experiment compares the learning rates of a system usingt®a/aselinspoon-fedsystem.
Each system uses the exact same problem-solver. At theotittes experiment, the DTA

algorithm had not been implemented on the Companions cognitive architecture.

Instead of providing the spoon-fed system with the worked solutionfaflieg a problem, it is
provided with the general encapsulated histories needed to solvesgéeific problem.
Therefore, after failing a problem, the baseline system ol shat problem and any other
problems which use the same equations. Both systems begin with db&sary rules for
problem-solving strategies and modeling decisions. The DTA syst@snallowed to try an
additional worked solution from the base domain theory, if it failecetdy domain knowledge

resulting from the first iteration of the algorithm.

The experiment consists of two parts: one to evaluate learningtaifonal kinematics by an
analogy with linear kinematics, and the other to evaluate learnitigeafr kinematics based

upon rotational kinematics.

7.3.1 Materials
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b)

Linear Kinematics

How long does it take a car to travel 30m if i)
accelerates from rest at a rate of Zf/s

We consider the stopping distances from a car,
which are important for traffic safety and traffid)
design. The problem is best deal with in two
parts: (1) the time between the decision to apply
the brakes and their actual application (th®
"reaction time"), during which we assume a=0;
and (2) the actual braking period when the
vehicle decelerates. Assuming the starting

Rotational Kinematics
Through how many turns does a centrifuge rotor
make when accelerating from rest to 20,000 rpm
in 5 min? Assume constant angular acceleratipn
A phonograph turntable reaches its rated speed
of 33 rpm after making 2.5 revolutions, what|is
its angular acceleration?
Through how many turns does a centrifuge rotor
make when accelerating from rest to 10,000 rpm
in 270 seconds? Assume constant angular
acceleration

velocity is 28m/s, the acceleration is -6.0m/sd)
and a reaction time of .5s, What is the stopping
distance?

c) A baseball pitcher throws a fastball with a speeg)
of 44m/s. It has been observed that pitchers
accelerate the ball through a distance of 3.5m.
What is the average acceleration during the
throwing motion?

d) Suppose a ball is dropped from a 70m tower
how far will it have fallen after 3 seconds?

e) A jetliner must reach a speed of 80m/s for
takeoff. The runway is 1500m long, what is the
constant acceleration required?

An automobile engine slows down from 3600
rpm to 1000 rpm in 5 seconds, how mapny
radians does the engine turn in this time?
A centrifuge rotor is accelerated from rest [to
20,000 rpm in 5 min, what is the averaged
angular acceleration?

Figure 32: Kinematics evaluation materials

The problems for both domains are listedFigure 32 The problem and worked solution
representations were created in the manner described in Section 7EhRlinear kinematics,

the representations for the problems and worked solutions had means ohd52 #acts

respectively. These representations included 38 different gpet52 unique relations. For
rotational kinematics, the problem and worked solution representatmha mean of 9.8 and
46.2 facts respectively. These representations included 21 types eeiatid®s. 9 types and 26
relations appear in problems and worked solutions from both domains.

Eaeim dbeory

consists of four encapsulated histories each representing a different kaseso@iation.

The design of this evaluation seeks to answer the following questiérst, can DTA transfer
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the encapsulated histories to solve problems in new domains? Seacorid] &Adearn better
than a baseline system which is incrementally given the ¢odmoain theory? Third, how
important is the verification of the learned domain theory and thityatnlretrieve additional

analogues affect performance?

7.3.2 Learning Rotational Kinematics from Linear Kinematics

In the first part, linear kinematics is the known base domainratadional kinematics is the
target domain. The problems from the target domain were presansedes 120 of trials
representing every possible ordering of the five rotational kinesngioblems. Because
rotational kinematics is the target domain, both systems begitridhevithout any rotational

kinematics encapsulated histories. Therefore, neither systenid be able to solve the first
problem on any of the trials. During each trial, when the DTAesydails to solve a problem,
the DTA method is invoked with the worked solution to that problem.TK Eails to verify the

learned knowledge on the first iteration, DTA is invoked again Wwihsecond retrieval from the

case library.

After each problem in the baseline condition, the system is ghemecessary encapsulated
histories to solve the problem. The encapsulated histories, étdr@red by cross-domain
analogy in the DTA system or provided to the baseline systemw #ike system to answer future

rotational kinematics questions. At the end of each trial, the system’s knowlesigeset
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Figure 33: Rotational mechanics learning curves

Figure 33compares the rotational kinematics learning rates for th& &nhd baseline conditions
averaged across 120 trials. The DTA system exhibited peréeddfér. That is, after studying
just one worked solution, the analogy system was able to score 100 restt of the problems.
Because the DTA system performed perfectly, there were D2lytransfer attempts, all of
which succeeded. Of these, 72 attempts (60%) required retri@ssagond worked solution to
generate a successful domain mapping. This highlights the emgertof verifying the
knowledge learned from the cross-domain analogy. The performante baseline condition
was markedly worse than DTA. After one problem, the baselistersywas only able to solve
the next problem 45 percent of the time. Also, the baseline sgstefting was at 80 percent.
This was due to the fact it was unable to solve rotational kitiesraroblem ‘b’ fromFigure 32
regardless of what problems it had already seen, because ntme ather problems use the
same equation. DTA overcomes this through the analogy betweedothain theories
themselves. This allows DTA to infer equations not mentioned ékplit the worked solution

from the target domain. After the first problem in each of B trails, all four linear
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kinematics encapsulated histories were transferred to theorathkinematics. Therefore, the

DTA system scored 100% on each of the subsequent problems.

7.3.3 Learning Linear Kinematics from Rotational Kinematics

This experiment followed the same form as the previous expetrioug with the opposite base
and target domains. Here, rotational kinematics is the base dandhimear kinematics is the
target domain. Once again, the learning rates between the bayslkies and the DTA system

are compared.
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Figure 34: Linear mechanics learning curves

Once again, the DTA system outperformed the baseline systejme 34graphs the learning
curves of the two conditions. After the first problem, the D3y&tem got the next problem
correct 60% of the time, compared with the 40% performance of tledireas After seeing two
worked solutions, the analogy system scored 90% on the third problere wieebaseline
system scored 80%. On the fourth and fifth problems of eachbioihl,systems performed at a
ceiling of 100%. The baseline condition was able to achieve ageilil00% as every equation
required was used by at least two problems. In the analmggiton, DTA was unable to
transfer the correct domain theory for two linear kinematioblpms. This led to 180 transfer
attempts, 120 after the first problem of the trial, 48 aftédur@s on the second problem and 12
after the third problem. Out of the 180 attempts, 120 (66%) were stidce®f the successful

attempts, none of them required using an additional retrieval.

7.3.4 Discussion

In both parts of the experiment, the domain transfer via anal@gmns outperformed the spoon-
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fed baseline system. DTA learned faster and achieved agctilt was the same or higher than
the baseline. An analysis of the linear kinematics transilerda indicates that increasing the
complexity of sub-event structures and time intervals increthsedifficulty in generating an
appropriate domain mapping. Linear kinematics problems ‘b’ and ‘d’ botitaimed such
structures. One requirement for successful transfer betweeer th@w®ains is that an
obj ect Rot at i ng statement in the rotational kinematics worked solution must pames
with apri mar yQbj ect Movi ng statement in the linear kinematics worked solution. In order
for this to occur, the entities which make up these expressionsaineady be in alignment.
Given the structure of linear mechanics problems ‘b’ and ‘d’,etrents listed in the step uses
statements may differ from the events referenced in theijaar@nd equations. Therefore, one
aspect of future work is to incorporat¥epresentatiorstrategies (Yaet al. 2003) to bring these
worked solutions into better alignment with the analogous rotationaimkihes worked
solutions. The added complexity of the linear kinematics probldésassiowed the baseline

learning system.

Another interesting phenomena illustrated by these experingetite difference in the utility of
retrieving an additional worked solution if the first one failg. tHese experiments, more than
one of the base worked solutions could potentially serve as an anatogreate the domain
mapping. In the learning rotational kinematics experiment, retgewdadditional worked
solutions was critical to the DTA system’s performance. @nother hand, in the experiment
learning linear kinematics, the additional retrievals never pradue® adequate domain

mapping. This provides evidence that the decision to retrieve addiioakigues should be
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controlled by the system based upon its goals. For example, slysthem did not have other
tasks requiring attention, then it could continue retrieving additioredbgues until it achieved a

successful transfer.

7.3.4.1 Limitations of the Kinematics experiment

While these results are very encouraging, there are a number of weakméisisesxperiment:

=

Linear and rotational kinematics are very similar domains

2. The domains were limited in depth to only kinematics

w

Only encapsulated histories were transferred

»

The domains did not contain any non-analogous aspects

These simplifications informed the investigation of applying DTAatdroader range of

phenomena in the next section.

7.4 Dynamical Analogies

To address the four limitations of the kinematics experiment, aaugpus of domains was
created use OlsenBynamical Analogie$1943) as a starting point. The following four domains
were used: linear mechanical, rotational mechanical, eldctaca thermal systems. The
dynamical analogy domains differ from the kinematics domainsinsi previous experiment
in several important dimensions. First, the new domains include sigdgridissimilar domains
such as mechanical and electrical systems. Second, the dghamatbgy domains cover more

phenomena than the kinematics scenarios. Therefore, a singlelonoas analogy between
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two worked solutions does not include all of the entities from the laasl target domain

theories. Third, the complexity of the problems was increased riregjgontrol knowledge to

be included in the domain theories. Fourth, each of these domainsrirasalogous elements
(e.g., equations to calculate the moment of inertia of a pointational mechanics and nothing

corresponds to kinetic energy in thermal systenTahle 9aligns the analogous quantities from

the domains. This will stress the verification aspects of DTA.

Table 9: Dynamical analogy domains aligned by anatmus quantities

Linear Rotational Electrical Thermal

Force [F] TorqueT] Voltage across [V] Temperature
difference[T]

Speed [v] Rate of rotatiom] Electrical current Heat flow rate [q]

level [i]

Linear deflection [x] Rotational deflectigrElectrical charge [q] Thermal energy [H]
[B]
Mass [F=ma] Moment of inertiginductance [V=Ldi/dt]| n/a
[T=Ja]
Linear momentum Rotational momentum n/a n/a
[p=mv] [P=J »]
Linear kinetic energy Rotational kinetig Inductance energy | n/a
[Ke=.5mV/] energy [Energy=.5Lf]
[Ke=.5 Jo?]
Linear compliance Rotational compliance Electrical capacitance Thermal capacitance
[F=x/C] [T=B/C] [V=qg/C] [T=H/C]
Translational elastic | Rotational elastic Capacitance energy | n/a
potential potential [Energy=.5(4)/C]

[EPE=.5(X)/C]

[EPE=.5(» %)/C]

Linear damping
[F=bv]

Rotational damping
[T=Dw]

Electrical resistance
[V=a/R]

Thermal resistance
[=T/R]

Power [P=FV]

Power [P=i]

Power [P=Vi]

n/a

7.4.1 Changes to the underlying system

The challenges introduced by the dynamical analogy domains r@guimember of alterations to

the system.
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7.4.1.1 Companions Cognitive Architecture

For this experiment, the DTA algorithm was implemented on the Caomsm Cognitive
Architecture (Forbugt al. 2008). Implementing DTA on a Companion provides two benefits.
First, as in the previous experiments, the separation of MAC/FA@ problem-solving
operations saves memory space allowing for additional debugging atform during
development. Second, this implementation allowed for the reuse of xiherireental
infrastructure created for the AP Physics evaluation. Theriex@etal scripts provide a concise

way of defining experiments and collecting data.

7.4.1.2 Control Knowledge

The problems from dynamical analogies domains require more comglelxraic manipulations
than those from the kinematics experiment. For example, the probielnde more entities,

leading to substantially larger models. More critically, straightforward recursive equation
solving strategies used in kinematics experiment are insuifid@ these problems. For
example, the rotational mechanics problem Gia-8-12 requires the prsbleen to cancel the
unspecified mass quantity from the momentum before and after. diegraf number of the
problems in this experiment require control knowledge for the probbdwersto arrive at the

correct solution.

7.4.1.3 Persistent Mappings

In the kinematics experiment, a successful interaction of DBAlted in the entire kinematics
domain theory being learned. Given the breadth of the dynamicalirdyma single worked
solution will include all of the quantities and abstraction typestmaned in that domain. This

evaluation employs persistent mappings to incrementally buil&nbsgs-domain analogy over
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multiple worked solutions. Persistent mappings consist of corresposdeateeen the base
and target domains which have proven useful in previous transfer episbdese mappings

have implications for future learning in the target domain. For eteness, consider use the
problems inFigure 35t0 learn about electrical systems via cross-domain analotyy liwear

mechanics.

Linear Mechanics Electrical Systems
Gia-4-1: Estimate the net for¢esia-21-37-P: A 75-V emf is
needed to accelerate a 1500kgduced in a .3 H coil by a current
race car at -5 mi8 that rises uniformly from O to | in
2ms. What is the value of I?
Phy-1: When a 13.2-kg mass|i&ia-17-24-P: How much charge
placed on top of a verticalflows from a 12-V battery when |t
spring, the spring compresses connected to a 7.5 microtF
5.93 cm. Find the force constantapacitor?
of the spring.
Figure 35: Example problems from the linear mechards and electrical system domains.

The Companion is provided a case library of worked solutions to treg lmechanics problems.
DTA begins after the Companion fails to solve the first problera;2&-37-P, because it does
not have any encapsulated histories about electrical systenfier rétrieving the worked
solution to problem Gia-4-1 from memory and transferring the equattema for the
definition of self inductance, V=L*di/dt, the Companion verifies the knowldagsuccessfully
solving Gia-21-37-P.  After a successful transfer, DTA sttiresmappings from the analogy
between the domain theories as persistent mappings. In #8s e persistent mappings
include correspondences between the domain theories including quan(digs,
ForceQuantity and Vol tageAcross), abstraction types (e.g.Poi nt Mass and

| nduct or -1 deal i zed), relations (e.g.pbj ect Transl ati ng and obj ect Act edOn)
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and encapsulated history types (e.g. Defini ti onOf Net For ce and

DefinitionO Sel fl nduct ance).

After this successful iteration of DTA, the Companion is presewitdd a new problem from
electrical systems, Gia-17-24-P. The Companion fails to artivtheacorrect solution and
invokes DTA. The first step of DTA is to retrieve an analogoasked solution from memory

and extract a domain mapping. DTA uses the persistent mapinggdred correspondence
constraints to SME during the retrieval process. This guidestheval process to select the
worked solution to problem Phy-1 and to construct a mapping building upon its knowledge about
the domains. The resulting domain mapping includes the persistent maggpidgshe
correspondences between the worked solutions to Phy-1 and Gia-17-24-P. This domaig mappin
constrains the analogy between the linear mechanics and tirecalesystems domain theories.

At this point, the electrical system domain theory consists ofetpeation schema for self
inductance and control knowledge indicating it is a frame equationA IFEs the candidate
inferences from the analogy between the domain theories to extend theltengén theory with

the equation schema for the definition of charge on a capacitori{eech&rge on a capacitor is
equal to the voltage across the capacitor multiplied by itscdapae). This knowledge is
verified by the Companion successfully solving Gia-17-24-P, and tistsfgnt mappings are

extended with the correspondences of the analogy between the domain theories.

As the example above illustrates, persistent mappings allow egropdss-domain analogies to

be incrementally constructed as additional knowledge about the target becavadadde.
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7.4.1.4 Non-analogous Base and Target Knowledge

The dynamical analogy domains include a number of non-analogousoequathese are items
for which there is no corresponding item in the other domain. Theessch thing as thermal
inductance, nor are there analogous items for the equations to compotent of inertia.

Including these elements in the analogy provides a number of challEmgascross-domain

analogy system. A non-analogous item in the base will be hgpiaed in the target. A non-
analogous target item could potentially match with a base it8imen the one-to-one constraint
of analogical matching, this would prevent the analogous targetfitem being suggested in

analogical inferences.

Three aspects of DTA prevent the non-analogous items in tieedmastarget from adversely
affecting the cross-domain analogy. First, encapsulated histoaesansferred only if all the
facts concerning participant types and quantities are mentioried domain mapping. Because
non-analogous base encapsulated histories will include quantitigmeitipant types, they will
only be transferred if there is a target worked solution which causes all of titéigsi@o appear
in the domain mapping. For example, a cross-domain analogy frormiogledo thermal
mechanics will not transfer an encapsulated history for inductaewause no worked solutions
from the target domain will include this non-existent quantity.coBd, the verification step
provides additional protection against non-analogous base knowledge besfgrteal into the
target. If a non-analogous base encapsulated history isamaatsto the target domain theory, it
may affect the problem-solving during the verification stepit dioes, then the newly inferred

target items and the domain mapping which produced them are &rgdthird, because of the
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assumption that knowledge about analogous encapsulated historietaigéteomes only from
the analogy, target encapsulated histories which are not includidé idomain mapping are

excluded from the cross-domain analogy.

7.4.1.5 Interactive Cross-Domain Analogies

The scope of the dynamical analogies domains requires that ¢fe¢ temmain be constructed
over a number of iterations of cross-domain analogy. The analogiaduced in pieces and
separated by non-analogous aspects of the domain. For exampleoliGia891) introduces
rotational motion over an entire chapter. The chapter begins wstusding kinematics
equations and their analogues with linear motion. Next, momentrbineintroduced, which
leads to a discussion of the non-analogous elements concerning thetattonpof moment of
inertia and radius of gyration for various idealized objects. Giamoalkes the analogy again
to introduce rotational kinetic energy and angular momentum. Text lamok&achers present
cross-domain analogies iteratively and provide students with correspasddetween the

domains.

Therefore, it is useful to view cross-domain analogical legrrda an interactive process.
Adapting DTA to take advice was done in two ways. One, the Compaamohecinstructed to
invoke DTA with a given set of correspondences serving as additp@raistent mappings,
constraining the retrieval and matching process between thkedvaolutions. Two, the
Companion can be instructed to invoke DTA with a given base wadletion. Retrieval is a
similarity based process and in cross-domain analogies them\idittle surface similarity.

Therefore, one would not expect MAC/FAC to be particularlyotife as the number of non-
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analogous base worked solutions grows. These pieces of advice aaroked together by

specifying a base worked solution and a set of correspondences.

7.4.2 Experiment

This experiment evaluates DTA’s performance on the dynaraitalogy domains addressing
the following questions:
e Can DTA transfer the analogous knowledge necessary to solve prabletwsamical
analogy domains?
e When retrieval fails, does providing the Companion with the analogoussbagen
lead to successful transfer?
e What are the effects of persistent mappings in learning domappings and aiding

retrieval?

7.4.2.1 Materials

The problems were selected from the physics resources withliinveing goals. First, each of
the dynamical analogy equations fraable 9should be included in the problem set. Second, the
problems were limited in complexity to requiring at most 3edédht physics equations. This is
consistent with using more basic problems when introducing subjects. plroldems were
favored which provided a worked solution. The problems which did not have adnswksion

had one created in the same manner as the proceeding experirmnth, problems were
selected based upon an ability to solve them using our exisjalgra system. Problems which
involved calculus were simplified to satisfy this requiremerible 10contains natural language

representations of the problems aligned by the underlying analogy.
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Table 10: Dynamical analogy problems aligned by céral equations®

Linear Rotational Electrical Thermal
Gia-4-1: Estimate the net force | Gia-8-9: A 15N force is applied | Gia-21-37-P: A 75-V emfis N/A
needed to accelerate a 1500kg | to a cord wrapped around a 4kb| induced in a .3 H coil by a
race car at -5 ni3 wheel with a radius of 33cm. current that rises uniformly from
The wheel is observed to 0tolin 2 ms. What is the value
accelerate uniformly from rest to| of 1?
reach an angular speed of 30
rad/s in 3s, if there is a frictional
torque of 1.1 Nm, determine the
moment of inertia of the wheel.
Gia-7-2: A 10,000kg railroad car| Gia-8-12: A mass attached to the N/A N/A
traveling at a speed of 24 m/s end of a string revolves in a circle
strikes an identical car at rest. If| on a frictionless tabletop. The
the cars lock together as a resulp other end of the string passes
of the collision, what is their through a hole in the table.
common speed afterwards? Initially, the ball rotates with a
speed of 2.4m/s in a circle of
radius .8m. The string is then
pulled through the hole so that
the radius is reduced to .48m.
What is the speed of the mass
now?
Gia-6-3: A 1459 baseball is Gia-8-40-P: A centrifuge rotor | Gia-21-46-P: How much energy| N/A

thrown with a speed of 25 m/s.
What is the work done if it is
starting from rest?

has a moment of inertia of 4610
kgr?. How much energy is
required to bring it from rest to
10,000 rpm?

is stored in 40mH inductor at an
instant when the current is 12 A

Phy-1: When a 13.2-kg mass is
placed on top of a vertical spring
the spring compresses 5.93 cm.
Find the force constant of the
spring.

She-2-16: A simple torsion bar i
formed by a cylindrical steel rod
has a diameter of .25 inch and
length of 3 inches and is fixed to
a rigid support at one end. The
end rotations 1 radian when a 2
N force is applied, Compute the
inertia of the rod?

1

Gia-17-24-P: How much charge
flows from a 12-V battery when

2 it is connected to a 7.5 micro-F
capacitor?

Gia-14-1: How much heat is
required to raise the temperaturg
of an empty 20-kg vat made of
iron from 10C to 90C?

h

Gia-6-28-P: A spring has a sprin
constant of 380 N/m. How muc
must this spring be compressed
store 60J?

g She-2-18: An ideal torsion sprin
is attached to the shaft of a gear|

tcA torque, T, is applied to the geg
twisting the spring. Assuming
that K=11 Nm/rad. Compute the
energy stored in the spring whe
it is displaced by 2 rads.

) Gia-17-7: A 12-V battery is

. connected to a 20 micro-F

r capacitor with uses a paper
dielectric, how much electric
energy can be stored in the
capacitor?

N/A

Oga-3-8: Given a speed of 20 m
what is the force applied by a

series of dampers with damping
constants of 7 Ns/m and 5 Ns/m

s0ga-6-12: A Cylinder is rotating
with a speed of 15 rad/s what is
the force applied from a dashpot
? (b = 2 Ns/rad)?

Gia-18-2: A plate on the bottom
of a small tape recorder specifie
that it should be connected to th
it should be connected to a 6V
and will draw 300 mA, what is
the resistance of the recorder?

Gia-14-8: A major source of heal
5 loss from a house is through the
atwindows. Calculate the rate of
heat flow through a glass windo
2m x 1.5m and 3.2mm thick if
the temperatures at the inner an|
out surfaces are 15C and 14C.

<

Gia-6-47-P: If a car generates
15hp when traveling at a steady
100 km/h, what must be the
average force exerted on the cal
due to friction and air resistance

Rea-286: The drive shaft of an
automobile rotates at 377rad/s
and transmits 59.6W from the
engine to the rear wheels.

? Compute the torque developed f
the engine.

Gia-18-6: An electric heater
draws 15 Aon a 120V line.
How much power does it use an
how much does it costs per
ymonth 30 days if it is operated 3
hrs/day and the electric compan

charges $.08 per Kwh?

N/A

8 Problem sources are indicated by their prefixBise first number indicates the chapter and therspooblem
indicates the example within that chapter. Thed®signation is used for problems from the endefahapter. Gia
are from (Giancoli 1991), Oga are from (Ogata 199he are from (Shearet al. 1971), Rea are from (Fogiel
1994) and Phy are from ("Hooke's Law, Work and ideBotential Energy” 2009)
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Predicate calculus representations for problems and worked solutevascreated for the 22
problems: 7 from linear mechanics, 7 from rotational mechanics,né éectrical systems, 2

from thermal systems.

As in the previous experiment, the rules for the problem-solving system are hand coded.

7.4.2.2 Method

The base domain for this experiment is linear mechanics, beitaasine dynamical analogy
domain most students learn first. The linear mechanics 7 prolaledhsiorked solutions were
added to the case library. The base domain theory consists eh¢hpsulated histories and
control knowledge necessary to solve these 7 problems. The targensidonahis experiment
are rotational, electrical, and thermal systems. Thelitaiget domain theory includes only the
non-analogous encapsulated histories necessary to solve the problgmeq(eations for

computing moment of inertia).

Instead of learning curves, the design of this experiment seeksmluate DTA’s performance
on a per problem basis. Therefore each problem was tested indepenuéour conditions.
First, the entire DTA algorithm was run on each problem. To isttateetrieval mechanism,
the Companion was only allowed one attempt to retrieve a workedosolfubm the base
domain. In the second condition, each problem was presented with the cetmiegal from
linear mechanics. The third and fourth conditions address the affgmssistent mappings. the

third condition provides each problem with the persistent mappisgding from a successful
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run of DTA on the most similar problem. For example, in condition tfoe&ia-21-37-P, the
persistent mappings were provided from a successful transferdre@®va-6-3 and Gia-21-46-P.

In the fourth condition, the persistent mappings and the correct retrieval wereeprovid

For each problem, DTA was scored correct if the Companion wadabblve the problem after
the transfer and retrievals were scored ugiage 10 Therefore each problem has only one

correct retrieval out of 7 worked solutions in the case library.

The goal of this experiment is to assess DTA'’s ability &mreotational mechanical, electrical,
and thermal systems through cross-domain analogy with linear meshaUsing the four
conditions, the retrieval, mapping and persistent mapping components adieatexla

independently.

7.4.2.3 Results

Table 11shows the results of the four trials for each of the three transfer domains.
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Condition Rotational Mechanical (7) Electrical Syst (6) Thermal Systems (2)
Correct(%) | Retrieval(%)| Correct(%) Retrieval(% @mt(%) | Retrieval(%)

1: Complete 2(29%) 3(43%) 1(17%) 2(33%) 0(0%) 0(0%)
DTA
2: Given base 6(86%) n/a 4(67%) n/a 2(100%) n/a
worked solution
3: Given 3(43%) 3(43%) 1(17%) 3(50%) 0(0%) 0(0%)
persistent
mapping
4: Given 7(100%) n/a 4(67%) n/a 2(100%) n/a
persistent
mapping and
base worked
solution

Table 11: DTA results by successful transfers andumber of retrievals using linear mechanics as thedse

domain

In condition 1, DTA transferred useful equation schemas and control knowte@geut of 15
problems from the target domains (20%). While the Companion solved problems from rotational
mechanical and electrical domains, it failed to solve eithehefthermal system problems.
These results are not as bad as they seem because, of the sauk®ns retrieved, only 5 out
of the 15 (33%) were analogous to the target worked solution. Compgeedst random
retrieval, this result is not statistically significant (8.1 In condition 2, where DTA was
provided the correct retrieval from memory, the Companion sucdgssfived problems from
all three of the domains. DTA transferred useful equation schemas and kootatgdge for 12
out of the 15 problems (80%) of the problems. In the third condition, the @ampaas
provided with the persistent mappings resulting from a succesafdfér of the closest target
problem. After retrieving 6 out of 15 (40%) correctly, DTA suctidgstransferred knowledge
to solve 4 (27%) of the problems. Unlike condition 1, the retrieval résultondition 3 is
statistically significant from random retrieval (p<.04). In fimal condition, DTA was provided

with both the persistent mappings and correct retrieval and the @Qanparrectly solved 13 of



185

the 15 (87%) problems.

7.4.3 Discussion

First, these results indicate DTA is able to transfer knoveddgn linear mechanical systems in
order to solve problems from related domains. In addition to succéissfafer to rotational
mechanics, DTA was able to transfer linear mechanical knowkedidpe superficially dissimilar
domains of electrical and thermal systems under certain conditiofisese cross-domain
analogies include non-analogous base and target elements. In adties,cross-domain
analogies required the transfer of not only equation schemas lutcatgrol knowledge
regarding how to employ the equations to solve problems in thettdognain. While the
analogous portion of these domains contains 7 equations relating 1ligsathére are 33 total
equations and 56 total quantities used in the 4 domain theories amori@l solutions. The
next sections discuss the retrieval, mapping, verification andsfgsimapping aspects of the

algorithm in detail.

7.4.3.1 Retreival

The primary cause for DTA'’s failures was the inabilitydtrieve an analogous worked solution.
This is consistent with psychological findings regarding thécdities in the spontaneous
retrieval of cross-domain analogies (Gick and Holyoak 1983). Given a kbhasa domain,
DTA retrieved the analogous worked solution only 33% of the timg.pmviding persistent
mappings, this performance improved to 40% which is statisticalyifisant compared to

chance.

An analysis of the retrieval failures indicates that eveiturfa occurred during the®Istage of
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MAC/FAC. Recall that the MAC stage consists of a fast rinretural comparison between
feature vectors for each of the cases in the case librartharmrobe case. The feature vectors
are automatically computed and each component has a strength iprgddd the number of
occurrences of individual predicates. Looking at the feature vatiors closely, the majority
of the highest weighted entries are relations concerning theitaefiof worked solution steps.
Therefore, the MAC stage is largely determined by the sizhe worked solution probe. Of the
rest of the entries, few are shared across the domains. Rdtatextanics shares some motion
predicates with the base domain, contributing to improved retrievislo, persistent mappings
improved retrieval slightly by altering the probe’s featureteeto include additional predicates
from the base domain. Every time the analogous worked solutioneledes in the MAC

stage, it was returned as the retrieval.

Combining the results from condition 1 and 3, retrieval performedtitatly better than chance
(37% p<.05). For this experiment, the Companion was only allowed orevaétttempt. One
method to improve performance would be by allowing multiple retrievale rigorous
verification of transferred knowledge prevents non-analogousvels from tainting the target
domain theory. As discussed earlier, the number of retriekraldds be under the control of the
agent. If the agent using DTA does not have other tasks requiring attention, then itevivak b
to make multiple retrievals. Otherwise, the agent should emtemather course of action, such
as interactive cross-domain analogy. In this case, the adentttes user for an analogous

worked solution from the base domain.
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7.4.3.2 Mapping and Transfer

Given the cross-domain nature of these analogies, the mapping ofvemlkéions to learn the
domain theory followed by the analogy between the domain theories wasueeessful. Of the
41 problems in which DTA used the correct retrieval, transfersuasessful on 32 (78%) of
them. Through analyzing the failures, we can better understandhtite &f DTA. The 9
transfer failures can be divided into three types of failuresge failures, one-to-one constraint

failures, and incomplete mapping failures.

The first cause of mapping failures occurs when the mappitg taiinclude a necessary
correspondence because another correspondence was already ippghmgmRecall that during
SME, local match hypothesis are merged into structurally st@mi global mappings. For
example, the worked solution of Gia-6-3 includes two relations connetttendoall to the
throwing event:obj ect Thr own and obj ect Transl ati ng. The analogous rotational
mechanics problem, Gia-8-40-P, has one relationship linking the tmtds rotation event:
obj ect Rot ati ng. Due to the one-to-one constraiohj ect Rot at i ng can only map to
obj ect Thr own or obj ect Transl ati ng. If it maps toobj ect Thr own, the subsequent
cross-domain analogy will fail becauebj ect Tr ansl at i ng is condition in the analogous

eguation schema.

The second cause of mapping failures is one-to-one constraint violaticth® analogous
equations. For example, the worked solution to problem Gia-6-3 usesuaton schema for

linear kinetic energy (Ke = .5mivwhich includes 3 participants: the object, the movement event,
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and the time point of the measurement. The three participarBalle 6- 3, Thr ow ng- 6-

3 and( EndFn Thr ow ng- 6- 3) respectively. The analogous electrical problem, Gia-21-46-
P, uses the equation schema for inductance energy (E =).8vhich also includes three
participants: the inductor, the induction event, and the time point of dasurement. In this
case, the induction event is the same entity as the time poiherefére, the one-to-one
constraint prevents the participant types for the events andrbebints for appearing in the
same mapping. Recall, if all of an equation schema’s gaatititypes are not in the domain

mapping, then the equation schema cannot be transferred via DTA.

The third cause of mapping failures is an incomplete mapping. othigs when the mapping
with the analogous worked solution transfers some of the equatiomashmequired to solve the
target problem. This error occurred during the analogy beteleetrical problem Gia-17-7 and
the linear mechanics problem Gia-6-28-P. Gia-17-7 requires equatiemas for both the
definition of electrical capacitance, V=q/C, and the definitionagfacitor energy, Ce=.5¢C.
The worked solution analogy between Gia-6-28-P and Gia-17-7 sucbeds@uisfers the
eguation schema for electrical capacitance, but not capacit@yen€herefore, the verification

step fails, and the transferred knowledge and domain mapping is forgotten.

The three types of mapping failures demonstrate the limitsTé& Dability to learn domain
mappings from the analogy between two worked solutions. As theseekbn describes,

persistent mappings allow DTA to overcome merge failures and incomplppengdailures.
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7.4.3.3 Persistent mappings

The results from conditions 3 and 4 of the dynamical analogipsriexent demonstrate that
persistent mappings support incremental learning of the tdogedin theory through multiple
cross-domain analogies. In condition three, persistent mappings crabkedditional correct
retrieval. Persistent mappings prevent worked solution mappingeil In the merge failure
between worked solutions Gia-6-3 and Gia-8-40-P, the persistent mappohgded a required
correspondence betweerj ect Tr ansl ati ng andobj ect Rot ati ng. This shows how

successful matches can assist future analogies betweendwsokdions. Also, persistent
mappings prevent incomplete mappings by already including asmpécthe cross-domain
analogy. In the incomplete failure between worked solution GiaB-28d Gia-17-7, the
persistent mapping and target domain theory already includesfihi#ale of capacitance. This
was the result of the analogy between Phy-1 and Gia-17-24-P. Therefore, wbgy hatween

Gia-17-7 and Gia-6-28-P transfers the definition of capacitamee, the Companion is able to
use both equations to successfully solve Gia-17-7. DTA is ablactementally construct

complex cross-domain analogies by storing persistent mappings from $uldtesgions.

An underlying assumption of persistent mappings is that the erb®s-domain analogy
satisfies the one-to-one constraint. That is, each elemem dlase domain theory corresponds
to at most one element in the target domain theory. This assump®mat valid in this
experiment. This caused DTA to fail on the electrical poweblpm, Gia-18-6, which it
succeeded on in previous conditions. The electrical power equation, Pwbives three

participants, a power supply, an electrical component, and anadectinduction event. In the
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first two conditions, the analogy between the worked solutions far6&i7-P and Gia-18-6
resulted in a domain mapping including a correspondence between pomtanth®lectrical
component. Using the resulting domain mapping, the power equatioms$etrad and the
Companion solves the problem. In conditions 3 and 4, the persistent maggitiopng from a
successful transfer for problem Gia-21-37-P includes a correspmnfetween point mass and
inductor. This is a required correspondence during the worked solutiaypietween Gia-6-
47-P and Gia-18-6 preventing the necessary domain mapping between pairanchadectrical
component. Therefore an important direction for future work involvesxirg persistent
mappings. Successful transfers would support persistent mappingsraasfer failures

involving persistent mappings would be evidence against them.

The dynamical analogy evaluation and the kinematic evaluation déatenthat DTA enables
the reuse of knowledge from an understood domain in new domains. Usiogiesnéletween
worked solutions, DTA learns a domain mapping which is used to consti@ossdomain
analogy. This cross-domain analogy transfers equation schemasoatrdl &knowledge.
Verified transfers result in persistent mappings which guidarduanalogies between the
domains. The next chapter presents related work on cross-domaigyaaal directions for

future research.
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8 Related and Future Work on Cross-domain Analogy

This chapter compares DTA with other methods not mentioned in previmsecs and

discusses future directions.

8.1 Related Work

The major threads of related work concern cognitive science modelsatdgy, Al transfer

learning, and other forms of example-based reasoning.

8.1.1 Cross-domain Analogy simulations from Cognitive Science

The differences between DTA and PHINEAS (Falkenhainer 1987) apeisdied in Section
7.1.2. Another analogical problem-solving and learning system is Holgod Thagard's Pl
(1989). PI used a pragmatic theory of analogy to model solving atigariof the radiation
problem through schema induction. After a successful analogical pra&dking episode, PI
induces a schema which is treated as a general rule which apiplié® two analogous
situations. Pl only used analogy during problem-solving, and its vatrreodel was never
extensively tested. On the other hand, DTA makes analogies bdiatbeexample problems as
well as analogies between domains themselves. The domain thetngyaeaables DTA to
transfer domain knowledge not explicitly referenced in the péatiovorked solutions used in
creating the domain mapping (e.g., the rest of the domain thedhe ikinematics experiment
and the control knowledge in the dynamical analogy experiment). dMereDTA tests its
learned knowledge, and uses it to solve new problems from thet thomain, whereas PI did

neither.



192

KUhnbergeret al's I-Cog (2007) explores the trade-offs between analogy and ativer
reasoning modules, all of which operate over noisy data, using thestiteDriven Theory
Projection (Gustet al. 2006) model of analogy. Schwerirgg al (2008) identifies the
importance of combining analogy with deductive and inductive techniquegtieeving human
level reasoning. These approaches emphasize ubiquity of analoggsoning and learning as
well as the integration of analogy with other reasoning proces&e®ajor point of departure
between the above simulations and DTA is the scale of the tég¢hkie the above systems have
explored similar domains to those explored here, they have not ketematically evaluated on
sets of problems and domains. Scaling up is a major chalfeng@alogical learning systems
(Forbus 2001). By learning physics domain theories, the resulie afdéss-domain analogy are

used in a large-scale reasoning task, solving physics problems.

8.1.2 Transfer Learning

Hinrichs & Forbus (2007) describe how analogy can be used to trdeafeed qualitative
models between scenarios in a turn based strategy game. A#jrekamples are used to find
the domain mapping between source and target domains. From a cogrotitecture
perspective, ICARUS achieves near transfer through goal decorapa€ifoiet al. 2007) and
has been augmented with a representation mapping algorithm (Skajgikd2008) to handle
more distant types of transfer. The methods employed by IGARIJuire abstracted domain
theories in both the source and target tasks. As demonstrateindimatics experiment, DTA
can transfer abstract knowledge from the source domain to the dargein using a domain

mapping learned from specific examples.
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Within the reinforcement learning (Sutton and Barto 1998) communitysfealearning efforts
have focused on using mappings between scenarios and domains. In thefflerRL the
transfer consists of learned state action policies. Lui and $260€) use a version of SME to
accelerate learning of state action policies in novel butasirtakks within the keep-away soccer
domain. Taylor (2008) emphasizes the importance of the mapping betiveestates and
actions of the source and target domains. In these systemmapipengs are one shot processes
to jump start learning in the target domain. After the inttahsfer, the mapping with the base
domain is ignored. By using persistent mappings, DTA is antiiter@rocess in which the
transferred target knowledge and the domain mapping are incremesaiafigd and extended.
Molineauxet al. (2008) use a Case-based Reasoning technique to use examplesnapioags
for use by a reinforcement learning system playing atm@&-strategy game. Unlike the above
reinforcement learning methods which use feature vectors, DTAtepareer predicate calculus
descriptions which facilitates the representation of episodesaretins and plans. These
structures provide additional context for the transfer and enabteatisferred knowledge to be
more broadly applicable. A transfer failure can be quickly ifledtiby failing to solve the
target problem. The kinematics and dynamical analogy experidentsnstrate how DTA can
transfer schemas and control knowledge using one example fra@argeé domain. For a more
direct comparison, it is necessary to integrate DTA withbéisteed domain learning techniques.

This is an important direction for future research.

8.2 Conclusions and Future Directions

Using domain general methods of similarity-based retrieval aatbgical matching, Domain
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Transfer via Analogy (DTA) enables the transfer of equation sakeand control knowledge
from an understood domain to a new domain. Persistent mappings suppqmtoti@ss by

building up a complex cross-domain analogy from successful local mappings.

These claims are supported by experimental results from domsain analogies between linear
and rotation kinematics as well as the dynamical analogy domglimgar, rotational, electrical,
and thermal mechanical systems. Given a known base domainvarritead solution from the
target domain, DTA transferred schemas representing domainispegifations and control
knowledge concerning preferences between equations useful for probleng.sol This

knowledge was then applied successfully to solve problems from the new domain.

These experiments open a number of interesting directions for fesgarch. Here, | focus on
four directions: integration with domain learning techniques, applicattomew domains,
extending DTA through diagnosis of errors in transferred knowledu®,irgeractive cross-

domain analogy.

8.2.1 Integration with Domain Learning Techniques

As discussed in the related work section, DTA has not been useteantied domain theories.
To perform transfer learning, DTA should be integrated withsterg domain learning
techniques. For Physics, a promising direction involves learningrglezations for participant
abstraction modeling decisions within each domain (Klenkl. 2008), then applying DTA to
transfer these generalizations to new domains. Because @fgfdrs schemas and predicate

calculus representations, it should be possible to transfer knowleddecpd by a variety of
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learning algorithms. In physics, it would be interesting toreggorcement learning to learn a
policy for the selection of operators during problem-solving withdomain. DTA should be
able to transfer this state action policy to new domains in additi the existing encapsulated

histories and control knowledge.

8.2.2 Application to New Domains

Another direction for future work is to apply DTA to new domains. Fam®le, simulation
game domains have a number of different properties than physicempsolsolving (e.g.,
incomplete knowledge, the integration of planning and action). Whils-cd@®ain analogies
between strategy games are not as well understood as thespagaiogies, it is a reasonable
assumption that an agent which performs well in one strategy gamiéuation could benefit
from transferring some aspects of its knowledge to a new garsiuation. Integrating with
existing learning techniques and applying DTA in new domains opergutistion of how an

agent adapts the newly acquired domain knowledge.

8.2.3 Debugging the Learned Knowledge

An underlying assumption of this work is that by identifying samiles between pairs of
domains, the domain mapping, DTA can transfer abstract domain knowledge betweeit lieem
existence of these underlying similarities does not necessarjly that the situations are
completely analogous. The cross-domain analogy may provide a ssaftithg point for
exploration of the new domain, but it may also introduce a number @bnusptions which
could prevent future learning in a domain. This is consistent withhp#ogical findings in
student learning (Burnstein 1986). Thus far, persistent mappingsbeawveconsidered hard

constraints for future analogies between the domains. Agdtadtin the dynamical analogy
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evaluation, this can have a negative effect of performance. AgpDTA in new domains and
over a greater period of learning will likely require rétexthis constraint. This provides an
opportunity to exploit either models of conceptual change (FriedmBarBus 2008) or model-
based diagnosis techniques (de Koning 1997) to identify and repair errtine persistent

mappings or the target domain theory.

8.2.4 Interactive Cross-domain Analogy

The fact that cross-domain analogies are used so frequentbxtinooks and explanatory
discourse implies that these are important communicative devMest cross-domain analogy
research views analogy as an isolated process within atigegragent. The analogy occurs, and
then the agent, or the research, evaluates the result. DTAerfgan important step toward
interactive analogy. Persistent mappings enable the reuse ahdlmyy and its expansion as
additional information becomes available. DTA currently acceptsgieces of advice: user
supplied mappings and worked solutions. User supplied mappings arel tiredtee same

manner as persistent mappings, informing both the retrieval gopimgaprocess. User supplied
worked solutions are a particularly effective form of feedbaskshown by conditions 2 and 4 in
the dynamical analogies experiment. Within this frameworksimaple extension involves

enabling the user to provide negative feedback regarding individual persistent mappings

Another potential advance in interactive cross-domain analogy woubdve the Companion
suggesting insights to the user. This would take the formgiested correspondences, from
which the user could draw new insights, and suggested predictionseaspaats of the target

domain. For example, in critiquing a course of action in a straggaegye, the Companion could
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express concerns about a particular plan. The ensuing discussion couldnuifsoities with
other games identifying correspondences between units (e.g., nflemelves) or strategies
(e.g., blitzkrieg— scorched earth). Also of importance would be the predictionsingstridm
the cross-domain analogies. If | consider my tanks in gam® ahalogous to the cavalry from
game B, then | should watch out for over extending them, a frequentre@oeirin my
experiences in game B. In interactive cross-domain analogy, the sysbemsniie user, and, as

previously described, the user informs the system.

Each of these directions contain a number of exciting researchiomsestiddressing them all

would require many more theses.
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9 C(losing Thoughts

Let us return to the original problem of alleviating the brittlen&fsé\l systems. A primary
cause of brittleness in knowledge based systems involves theioflaakility to reuse their
existing knowledge in new situations or domains. The approach tak#msimissertation
focuses on two methods, analogical model formulation and domain traresf@nalogy, which

employ domain general analogical processes into robustly reuse knowledge.

9.1 Analogical Model Formulation

Analogical model formulation enables the understanding of newtisitsabased on previous
examples. Through analogy with an understood example, analogical fowdelation infers
the assumptions, approximations, causal models, and equations necessagofting about the

new situation.

Analogical model formulation addresses the following shortcomings wfert model
formulation methods. First, by relying on examples, analogical hfodaulation does not
require a complete and correct domain theory. Second, analogidal farmulation can build
scenario models of everyday situations. The breadth of @gpis is limited only by the
underlying ontology. Third, systems using analogical model formuléarn incrementally by

accumulating new examples.

This method has been evaluated on the Bennett Mechanical ComprehensiandTpsoblems
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of the style found on the AP Physics exam. To construct models for BMCT probleahsgical
model formulation transferred the following kinds of modeling knowledgen fexamples:
gualitative mechanics abstractions, causal models, and instructionisioal quantity
measurements. In AP Physics, an external evaluation createsfer levels representing
systematic differences between examples and problems. ¥saimgples, analogical model
formulation successfully applied equations, modeling assumptions andtdeflaes to create

the models necessary to solve the new problems.

9.2 Domain Transfer via Analogy

Domain transfer via analogy (DTA) allows the reuse of absttactain theories through cross-
domain analogy. Using domain general retrieval and matchingithlps, DTA constructs a
domain mapping from pairs of explanations. This domain mapping is usediabze and
extend the target domain theory. The learned aspects of tbédargain theory are verified by
using them to solve new problems. When successful, DTA storest@etrsismppings to enable

the identified similarities between the domains to assist in future crossrdanaogies.

The DTA method makes the following contributions as a cognitivellsition of cross-domain
analogy. First, DTA transfers the equation schemas and control dohgevhecessary to solve
guantitative physics problems. Second, DTA uses persistent mappngncrementally
construct complex cross-domain analogies as it encounters new ezafmph the target

domain.

This model has been evaluated across a variety of physics doniaiksematics, the system
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using DTA out performed a spoon-fed baseline. In dynamical aesaloQITA transferred
equation schemas and control knowledge between the superficiallyithssdomains of
mechanical, electrical and thermal systems. Consisteéhtpsiychological findings, retrieving
analogous examples between domains was difficult. Persistgrginga enable the cross-
domain analogy to incrementally extend, based upon successful tsatsfaddress the depth of

the evaluation domains which required multiple cross-domain analogies.

9.3 Final Thoughts

To overcome brittleness, Al systems must be able to identify emsk rrelated knowledge.
Analogical processing seems central to this goal. By using dageaieral cognitive simulations
of analogical matching and retrieval, the methods describdusmbrk are two new ways of

reusing knowledge from examples and domains.

Once free from brittleness, Al systems will be able totexrer a long period of time, adapting

to new tasks through analogies with their existing knowledge.
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11 Appendices

11.1 Online
An on-line appendix to this dissertation may be found at
http://www.cs.northwestern.edu/~mek802/dissertation.html

This website includes archives of the following predicate calculus esgeg®NS:

The ETS generated problem and worked solutions for AP Physics-style problems
The corrected versions of the AP Physics-style problems

The kinematics problems and worked solutions

The dynamical analogy problem and worked solutions

11.2 Appendix A

Problem 2 Representation

(isa Hyp- MI- ETS- Query-2-0-1 M crotheory)
(genl M Hyp- MI- ETS- Query- 2-0-1 Physi csTest Taki ngAssunpti onsM)
(i sa Movenment-2-0-1 Projectil eMtion)
(i sa Upward- Movenent-2-0-1 Projectil eMtion)
(isa Astronaut-2-0-1 Astronaut)
(i sa Ground-2-0-1 SurfaceRegi on-Tangi bl e)
(isa Planet-2-0-1 Pl anet)
(i sa Throw ng-2-0-1 Thr owi ngAnChj ect)
(i sa Basebal | Bat - 2-0-1 Basebal | Bat)
(except (ist Physi csTest Taki ngAssunpt i onsM (relationAlllnstance event Qccur sAt Event
Pl anet Earth)))
(ground™ Pl anet-2-0-1 G ound-2-0-1)
(performedBy Throw ng-2-0-1 Astronaut-2-0-1)
(no- GenQuant Rel nFrom i n-| nmer sedFul |y Pl anet-2-0-1 Atnosphere)
(event Cccur sNear Throw ng-2-0-1 G ound-2-0-1)
(obj ect Thrown Throw ng-2-0-1 Basebal | Bat - 2-0-1)
(val ue* (Measurement At Fn ((QPQuantityFn Speed) Basebal | Bat-2-0-1) (StartFn Upward- Movenent - 2- 0-
1))
(Met er sPer Second 6.5))
(event Qut cones Throw ng-2-0-1 Mvenent-2-0-1)
(primaryQoj ect Movi ng Movenent - 2-0-1 Basebal | Bat - 2- 0- 1)
(firstSubEvents Myvenent-2-0-1 Upward- Movenent - 2-0- 1)
(maxi mumvbt i onl nDi recti on Movenent - 2-0-1 Upwar d- Movenent-2-0-1 Up-Directly)
(pri maryObj ect Movi ng Upwar d- Movenent - 2- 0- 1 Basebal | Bat - 2- 0- 1)
(directionOf Transl ati on- Thr oughout Upwar d- Movenent-2-0-1 Up-Directly)
(val uer (Measurerment At Fn ((QPQuantityFn Altitude) Baseball Bat-2-0-1) (EndFn Upward- Movenent - 2- 0-
1)) (Meter 3))
(isa Acceleration-2-0-1 Scal arOr Vectorlnterval)
(isa NU-ETS- Query-2-0-1 KBCont ent Test - Ful | ySpeci fi ed)
(i sa NU-ETS- Query-2-0-1 ETSPhysi csSanpl eQuery)
(hypot heti cal M crot heoryOf Test NU- ETS- Query-2-0-1 Hyp- M- ETS- Query- 2-0- 1)
(retainTerm (Test QueryFn NU- ETS- Query-2-0-1))
(test QuerySpecification NU-ETS-Query-2-0-1 (TestQueryFn NU-ETS- Query-2-0-1))
(querySentenceO Query (Test QueryFn NU-ETS- Query-2-0-1)
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(val ue* ((QPQuantityFn Accel erati onDueToGravity) Planet-2-0-1) Acceleration-2-0-1))
(termToSol veFor (Test QueryFn NU-ETS- Query-2-0-1)

(val uetx ((QPQuantityFn Accel erati onDueToG avi ty) Pl anet - 2-0-1) Accel eration-2-0-1)
Accel eration-2-0-1)
(i sa Hyp- M- ETS- Query-2-0-1-W5 M cr ot heory)
(genl M Hyp- M- ETS- Quer y- 2- 0- 1- W5 Hyp- MT- ETS- Quer
(rmul ti pl eChoi ceSi ngl eOpti onLi st NU- ETS- Query- 2-

ery-2-0-1)
0
(mul ti pl eChoi ceSi ngl eOpti onLi st NU-ETS- Query-2-0
0
0

(TheLi st ( Met er sPer SecondPer Second 2.2) "A"))
(TheLi st (Met ersPer SecondPer Second 0.5) "B"))
(TheLi st ( Met er sPer SecondPer Second 7.0) "C'))
(TheLi st ( Met er sPer SecondPer Second 19.5) "D'"))

(rmul ti pl eChoi ceSi ngl eOpti onLi st NU- ETS- Query- 2-

y_
1
1
1
(mul ti pl eChoi ceSi ngl eOpti onLi st NU-ETS- Query-2-0-1

Worked Solution for Problem 2 Representation

(isa ETS-WorkedSol uti on-2-0-1 I ndividual)
(i sa ETS-WorkedSol ution-2-0-1 Physi csWr kedSol uti on)
(coment ETS- Wor kedSol ution-2-0-1

"An instance of PhysicsWrkedSolution. ETS-WrkedSolution-2-0-1 is a worked solution for the
question posed by NU-ETS- Query-2-0-1.")
(wor kedSol ut i onFor KBCont ent Test NU- ETS- Query-2-0-1 ETS- Wr kedSol uti on-2-0-1)
(wor kedSol uti onM For Test M Hyp- MI- ETS- Query- 2-0-1 Hyp- MI- ETS- Query- 2- 0- 1- W\6)
(i sa ETS-WrkedSol ution-2-0-1-Stepl WrkedSol uti onSt ep)
(i sa ETS-WrkedSol ution-2-0-1-Step2 WrkedSol uti onSt ep)
(i sa ETS-WrkedSol ution-2-0-1-Step3 WorkedSol uti onSt ep)
(i sa ETS-WrkedSol ution-2-0-1-Step4 WrkedSol uti onSt ep)
(i sa ETS-WrkedSol uti on-2-0-1-Step5 WrkedSol uti onSt ep)
(i sa ETS-WrkedSol ution-2-0-1-Step6 WorkedSol uti onSt ep)
(i sa ETS-WrkedSol ution-2-0-1-Step7 WorkedSol uti onSt ep)
(i sa ETS-WrkedSol uti on-2-0-1-Step8 WrkedSol uti onSt ep)
(firstSolutionStep ETS-WrkedSol ution-2-0-1 ETS-WrkedSol uti on-2-0-1- Stepl)
(hasSol uti onSt eps ETS- Wor kedSol uti on-2-0-1 ETS-Wr kedSol uti on-2-0-1- St ep2)
(hasSol uti onSt eps ETS- Wor kedSol uti on-2-0-1 ETS-Wr kedSol uti on-2-0-1- St ep3)
(hasSol uti onSt eps ETS- Wor kedSol uti on-2-0-1 ETS-Wr kedSol uti on-2-0-1- St ep4)
(hasSol uti onSt eps ETS- Wor kedSol uti on-2-0-1 ETS-Wr kedSol uti on- 2- 0- 1- St ep5)
(1 ast Sol utionStep ETS-WrkedSol ution-2-0-1 ETS-Wr kedSol uti on-2-0-1- St ep6)
(priorSolutionStep ETS-WrkedSol ution-2-0-1-Step2 ETS-WrkedSol ution-2-0-1-Stepl)
(priorSolutionStep ETS-WrkedSol ution-2-0-1-Step3 ETS-WrkedSol uti on-2-0-1- Step2)
(priorSolutionStep ETS-Wr kedSol uti on-2-0-1-Step4 ETS-WrkedSol ution-2-0-1-Step3)
(priorSolutionStep ETS-WrkedSol ution-2-0-1-Step5 ETS-WrkedSol uti on-2-0-1- St ep4)
(priorSolutionStep ETS-WrkedSol ution-2-0-1-Step6 ETS-WrkedSol ution-2-0-1- St ep5)
(sol uti onSt epOperati onType ETS-WrkedSol ution-2-0-1-Stepl Categori zi ngAPhysi csProbl em)
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (isa Throw ng-2-0-1 Throw ngAnObj ect))
(sol utionStepUses ETS-Wr kedSol ution-2-0-1-Stepl (eventOccursNear Throw ng-2-0-1 G ound-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (grounddf Pl anet-2-0-1 G ound-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (isa Planet-2-0-1 Planet))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl

(no- GenQuant Rel nFrom i n-1 nrer sedFul | y Pl anet-2-0-1 At nosphere))

(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (object Thrown Throw ng-2-0-1 Basebal | Bat-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (eventQutconmes Throw ng-2-0-1 Mvenent-2-0-1))
(sol utionSt epUses ETS-Wor kedSol uti on-2-0-1-Stepl (isa Mvenent-2-0-1 Projectileltion))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (primaryQoj ect Moving Mouvenent-2-0-1 Basebal | Bat -
2-0-1))
(sol utionStepUses ETS-WirkedSol ution-2-0-1-Stepl (firstSubEvents Myvenent-2-0-1 Upward- Movenent -
2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Stepl (isa Upward-Movenent-2-0-1 ProjectileMtion))
(sol utionStepUses ETS-WrkedSol uti on-2-0-1-Stepl

(maxi mumbti onl nDi recti on Movenent-2-0-1 Upward- Movenent-2-0-1 Up-Directly))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Stepl

(pri maryQoj ect Movi ng Upwar d- Movenent - 2- 0- 1 Basebal | Bat - 2-0- 1))
(sol utionStepUses ETS-Wr kedSol ution-2-0-1-Stepl

(directionO Transl ati on- Thr oughout Upwar d- Movenent-2-0-1 Up-Directly))
(sol utionSt epUses ETS-WrkedSol uti on-2-0-1-Stepl
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(val uer (Measurenent AtFn ((QPQuantityFn Speed) Basebal | Bat-2-0-1) (StartFn Upward- Movenent - 2- 0-
1))
(Met er sPer Second 6.5)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Stepl
(val ue&* (Measurenment AtFn ((QPQuantityFn Altitude) Basebal |l Bat-2-0-1) (EndFn Upward- Movenent - 2-
0-1))
(Meter 3)))
(sol utionStepResult ETS-WrkedSol ution-2-0-1-Stepl
(isa NU-ETS-Query-2-0-1 Physi csProbl em D stanceVel ocity))
(sol utionStepResult ETS-WrkedSol ution-2-0-1-Stepl
(i sa NU-ETS- Query-2-0-1 Physi csProbl em Const ant Accel erati on))
(sol utionStepOperationType ETS-WrkedSol ution-2-0-1-Step2 SubstitutingBindi ngsForVari abl es)
(sol utionStepUses ETS- Wr kedSol uti on-2-0-1-Step2
(isa NU-ETS- Query-2-0-1 Physi csProbl em Const ant Accel eration))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Step2
(i sa NU-ETS-Query-2-0-1 Physi csProbl em D stanceVel ocity))
(sol utionStepUses ETS-WrkedSol uti on-2-0-1-Step2
(equati onFor nfFor Di st anceVel oci t yUnder Const ant Accel erati on
(mat hEqual s (Squar edFn (Measurenent At Fn ((QPQuantityFn Speed) ?0BJ) (EndFn ?I NTERVAL)))
(PlusFn (SquaredFn (Measurenment At Fn ((QPQuantityFn Speed) ?0BJ) (StartFn ?I NTERVAL)))
(TinmesFn 2 (Measurenent At Fn ((QPQuantityFn Accel eration) ?0BJ) ?I NTERVAL)
((QPQuantityFn Di stanceTravel | ed) ?0BJ ?I NTERVAL))))))
sol uti onSt epUses ETS- Wr kedSol uti on-2-0-1-Step2 (isa war d- Movenent - 2-0-1 Proj ectil eMdtion
Luti kedSol uti . d . il .
sol uti onSt epUses rke ution-2-0-1-Step2 (isa Baseba t-2-0- seba t
(sol utionStepUs ETS- Wor kedSol ut i 2-0-1-Step2 (i Basebal | Bat - 2-0-1 Basebal | Bat))
sol uti onSt epResul t rke ution-2-0-1-Step
(sol utionStepResult ETS-WrkedSol uti 2-0-1-Step2
(equat i onFor Sol uti on ETS-WrkedSol ution-2-0-1
(mat hEqual s (Measurenent At Fn ((QPQuantityFn Accel eration) Basebal | Bat-2-0-1) Upward- Movenent - 2-
0-1)
(QuotientFn
(DifferenceFn
(Squar edFn (Measurenent At Fn ((QPQuantityFn Speed) Basebal | Bat - 2-0-1)
(EndFn Upwar d- Movenent - 2-0-1)))
(Squar edFn (Measurenent At Fn ((QPQuantityFn Speed) Basebal | Bat - 2-0-1)
(StartFn Upwar d- Movenent-2-0-1))))
(TimeskFn 2 ((QPQuantityFn Di stanceTravel | ed) Basebal | Bat-2-0-1 Upward- Movenent-2-0-1))))))
sol uti onSt epQper ati onType rke ution-2-0-1-Step
(sol utionSt ionT ETS- Wor kedSol ut i 2-0-1-Step3
Det er mi ni ngSpeci fi cScal ar Or Vect or Val uesFr onCont ext )
sol uti onSt epUses ETS- Wor kedSol uti on-2-0-1-Step3 (i sa Throw ng-2-0-1 Throw ngAnChj ect
luti kedSol uti i hr owi hr owi Obj
sol uti onSt epUses rke ution-2-0-1-Step3 (event Qccur sNear rowi ng- 2- 0- ound- 2- 0-
(sol utionStepUs ETS- Wor kedSol ut i 2-0-1-Step3 ( Cc Near Thr ow 2-0-1 & d-2-0-1))
sol uti onSt epUses rke ution-2-0-1-Step3 (groun anet - 2- 0- ound- 2- 0-
(sol utionStepUs ETS- Wor kedSol ut i 2-0-1-Step3 ( dor Pl 2-0-1 & d-2-0-1))
sol uti onSt epUses ETS- Wr kedSol uti on-2-0-1-Step3 (isa Planet-2-0-1 Pl anet
luti kedSol uti i | |
sol uti onSt epUses rke ution-2-0-1-Ste
(sol utionStepUs ETS- Wr kedSol ut i 2-0-1-Step3
(no- GenQuant Rel nFrom i n-| nmer sedFul | y Pl anet-2-0-1 Atnosphere))
sol uti onSt epUses ETS- Wr kedSol uti on-2-0-1- St ep3 (obj ect Thrown Throw ng-2-0-1 Basebal | Bat -2-0-1
luti kedSol ut i bj h hr ow bal |
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step3 (eventQutconmes Throw ng-2-0-1 Mvenent-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step3 (isa Myvenent-2-0-1 ProjectilelMtion))
(sol utionSt epUses ETS-WorkedSol uti on-2-0-1-Step3 (prinmaryQhject Mving Mvenent-2-0-1 Basebal | Bat -
2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step3 (firstSubEvents Mvenent-2-0-1 Upward- Movenent -
2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step3 (isa Upward-Movenent-2-0-1 ProjectileMtion))
(sol utionStepUses ETS-WorkedSol uti on-2-0-1-Step3
p p
(maxi mumvbt i onl nDi recti on Movenent -2-0-1 Upwar d- Movenent-2-0-1 Up-Directly))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Step3
(pri maryObj ect Movi ng Upwar d- Movenent - 2- 0-1 Basebal | Bat-2-0-1))
(sol utionStepUses ETS-WrkedSol uti on-2-0-1-Step3
(directionO Transl ati on- Thr oughout Upwar d- Movenent-2-0-1 Up-Directly))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Step3
(val ue&* (Measurenment AtFn ((QPQuantityFn Altitude) Basebal |l Bat-2-0-1) (EndFn Upward- Movenent - 2-
0-1))
(Meter 3)))
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(sol utionStepUses ETS-Wr kedSol uti on-2-0-1-Step3
(val ue™* (Measurement At Fn ((QPQuantityFn Speed) Basebal | Bat-2-0-1) (StartFn Upward- Movenent - 2- 0-
1))
(Met er sPer Second 6.5)))
(sol utionStepResult ETS-WrkedSol uti on-2-0-1- St ep3
(val ueO ((QPQuantityFn Di stanceTravel | ed) Basebal | Bat-2-0-1 Upward- Movenent-2-0-1) (Meter 3)))
(sol utionStepResult ETS-WrkedSol ution-2-0-1-Step3
(val ued* (Measurement AtFn ((QPQuantityFn Speed) Baseball Bat-2-0-1) (EndFn Upward- Movenent - 2-0-
1))
(Met er sPer Second 0)))
(sol utionStepResult ETS-WrkedSol uti on-2-0-1- St ep3
(val uer (Measurenent At Fn ((QPQuantityFn Accel eration) Basebal | Bat-2-0-1) Upward- Movenent - 2-0-1)
((QPQuantityFn Accel erationDueToGravity) Planet-2-0-1)))
(sol utionSt epOperati onType ETS-WrkedSol ution-2-0-1-Step4 Sol vi ngAvat hemat i cal Equat i on)
(sol utionStepUses ETS-WrkedSol uti on-2-0-1- Step4
(equati onFor Sol uti on ETS- Wor kedSol uti on-2-0-1
(mat hEqual s (Measurenent At Fn ((QPQuantityFn Accel erati on) Basebal | Bat-2-0-1) Upward- Movenent - 2-
0-1)
(QuotientFn
(DifferenceFn
(Squar edFn (Measurenent At Fn ((QPQuantityFn Speed) Basebal | Bat - 2-0-1)
(EndFn Upwar d- Movenent - 2-0-1)))
(Squar edFn (Measurement At Fn ((QPQuantityFn Speed) Basebal | Bat - 2-0- 1)
(StartFn Upward- Movenent-2-0-1))))
(TimesFn 2 ((QPQuantityFn Di stanceTravel | ed) Basebal | Bat-2-0-1 Upward- Movenent-2-0-1))))))
(sol utionSt epUses ETS-WrkedSol uti on-2-0-1-Step4
(val uer ((QPQuantityFn Di stanceTravel | ed) Basebal | Bat-2-0-1 Upward- Movenent-2-0-1) (Meter 3)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- Step4
(val ue* (Measurement At Fn ((QPQuantityFn Speed) Basebal | Bat-2-0-1) (StartFn Upward- Movenent - 2- 0-
1))
(Met er sPer Second 6.5)))
(sol utionSt epUses ETS-Wr kedSol uti on-2-0-1-Step4
(val uer (MeasurenentAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (EndFn Upward- Movenent - 2-0-
1))
(Met er sPer Second 0)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- Step4
(val uer (Measurenent At Fn ((QPQuantityFn Accel eration) Basebal | Bat-2-0-1) Upward- Movenent - 2-0-1)
((QPQuantityFn Accel erationbDueToG avity) Planet-2-0-1)))
(sol utionStepResult ETS-WrkedSol ution-2-0-1-Step4
(val ue* ((QPQuantityFn Accel erati onDueToGravity) Planet-2-0-1)
(Met er sPer SecondPer Second (M nusFn 63.4))))
(sol utionStepOperationType ETS-WrkedSol ution-2-0-1-Step5 SanityChecki ngPhysi csProbl enSol uti on)
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (isa Throw ng-2-0-1 Throw ngAnObj ect))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (event CccursNear Throw ng-2-0-1 G ound-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (groundd Planet-2-0-1 G ound-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (isa Planet-2-0-1 Planet))
(sol utionStepUses ETS-WrkedSol uti on-2-0-1-Step5
(no- GenQuant Rel nFrom i n- | nmer sedFul |y Pl anet-2-0-1 Atnosphere))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (object Throwmn Throw ng-2-0-1 Basebal | Bat-2-0-1))
(sol utionSt epUses ETS-WrkedSol uti on-2-0-1-Step5 (event Qut comes Throw ng-2-0-1 Myvenent-2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (isa Myvenent-2-0-1 ProjectilelMtion))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (primaryQoj ect Movi ng Movenent - 2-0-1 Basebal | Bat -
2-0-1))
(sol utionStepUses ETS-WrkedSol ution-2-0-1-Step5 (firstSubEvents Mvenent-2-0-1 Upward- Movenent -
2-0-1))
(sol utionSt epUses ETS-Wr kedSol ution-2-0-1-Step5 (isa Upward- Movenent-2-0-1 Projectil eMtion))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- St ep5
(maxi mumbti onl nDi recti on Movenent-2-0-1 Upward- Movenent-2-0-1 Up-Directly))
(sol utionSt epUses ETS-Wr kedSol uti on-2-0-1-Step5
(pri maryObj ect Movi ng Upwar d- Movenent - 2- 0- 1 Basebal | Bat-2-0-1))
(sol utionStepUses ETS- Wr kedSol uti on-2-0-1- St ep5
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(directionO Transl ati on- Thr oughout Upwar d- Movenent-2-0-1 Up-Directly))
(sol utionStepUses ETS-WrkedSol uti on-2-0-1-Step5
(val uer (Measurenent AtFn ((QPQuantityFn Speed) Basebal | Bat-2-0-1) (StartFn Upward- Movenent - 2- 0-
1))
(Met er sPer Second 6.5)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- St ep5
(val uer (MeasurenentAtFn ((QPQuantityFn Altitude) Baseball Bat-2-0-1) (EndFn Upward- Movenent - 2-
0-1))
(Meter 3)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- St ep5
(val uex* ((QPQuantityFn Accel erati onDueToG avity) Planet-2-0-1)
(Met er sPer SecondPer Second (M nusFn 63.4))))
(sol utionStepResult ETS-WrkedSol ution-2-0-1- Step5
(consi stent
(val ue* ((QPQuantityFn Accel erati onDueToGravity) Planet-2-0-1)
(Met er sPer SecondPer Second (M nusFn 63.4)))))
(sol uti onSt epOperati onType ETS- Wr kedSol uti on-2-0- 1- St ep6
Det er mi ni ngTheBest Answer Fr omASet OF Choi ces)
(sol utionStepUses ETS- Wr kedSol uti on-2-0-1- St ep6
(mul ti pl eChoi ceSi ngl eOpti onLi st NU- ETS- Query-2-0-1  (Theli st (Met er sPer SecondPer Second 2. 2)
"A')))
(sol utionStepUses ETS- Wr kedSol uti on-2-0-1- Step6
(rmul ti pl eChoi ceSi ngl eOpti onLi st NU- ETS- Query-2-0-1  (Theli st (Met er sPer SecondPer Second  0.5)
"B")))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- Step6
(rmul ti pl eChoi ceSi ngl eOpti onLi st NU- ETS- Query-2-0-1  (Theli st (Met er sPer SecondPer Second 7. 0)
"C)))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- Step6
(rmul ti pl eChoi ceSi ngl eOptionList NU ETS-Query-2-0-1 (TheList (MetersPerSecondPer Second 19.5)
"D')))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- Step6
(val uex* ((QPQuantityFn Accel erati onDueToGravity) Planet-2-0-1)
(Met er sPer SecondPer Second (M nusFn 63.4))))
(sol utionStepUses ETS-Wr kedSol uti on-2-0-1- St ep6
(consi stent
(val ue>* ((QPQuantityFn Accel erati onDueToGravity) Pl anet-2-0-1)
(Met er sPer SecondPer Second (M nusFn 63.4)))))
(sol utionStepResult ETS-WrkedSol uti on-2-0-1- St ep6
(test Answers- Si ngl eCorrect Mul ti pl eChoi ce NU-ETS-Query-2-0-1 "C"))



