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ABSTRACT 
 

Using Analogy to Overcome Brittleness in AI Systems 
 

Matthew Evans Klenk 
 
 

One of the most important aspects of human reasoning is our ability to robustly adapt to new 

situations, tasks, and domains.  Current AI systems exhibit brittleness when faced with new 

situations and domains.  This work explores how structure mapping models of analogical 

processing allow for the robust reuse of domain knowledge.  This work focuses on two 

analogical methods to reuse existing knowledge in novel situations and domains. 

 

The first method, analogical model formulation, applies analogy to the task of model 

formulation.  Model formulation is the process of moving from a scenario or system description 

to a formal vocabulary of abstractions and causal models that can be used effectively for 

problem-solving.  Analogical model formulation uses prior examples to determine which 

abstractions, assumptions, quantities, equations, and causal models are applicable in new 

situations within the same domain.  By employing examples, the range of an analogical model 

formulation system is extendable by adding additional example-specific models.  The robustness 

of this method for reasoning and learning is evaluated in a series of experiments in two domains, 

everyday physical reasoning with sketches and textbook physics problem-solving. 

 

The second method, domain transfer via analogy, is a task-level model of cross-domain 

analogical learning.  DTA helps overcome brittleness by allowing abstract domain knowledge, in 

this case equation schemas and control knowledge, to be transferred to new domains.  DTA 
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learns a domain mapping between the entities and relations of the new domain and the 

understood domain, through comparisons between structures of explanations.  Then, using this 

mapping, a new domain theory can be inferred and extended through an analogy between the 

domain theories themselves.  This model is evaluated across a variety of physics domains (e.g., 

mechanics, electricity and heat flow).  Successful cross-domain analogies result in persistent 

mappings, which support incremental learning of the target domain theory through multiple 

cross-domain analogies. 
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1 Introduction 

 

One of the most important aspects of human reasoning is our ability to robustly adapt to new 

situations, tasks, and domains.  Current AI systems fall far short of exhibiting this flexibility.  

While modern cars have sophisticated diagnostic systems, one would not expect the system 

designed for a Ford Focus to work in Chevy Malibu.  Consequently, AI system developers 

frequently design whole new systems from scratch for each problem and task.  On the other 

hand, people learn new tasks and domains all the time.  In fact, they do this with limited external 

feedback and without anyone reaching inside their heads and reprogramming them.  When 

presented with faulty Chevy, an experienced Ford mechanic would be able to apply his or her 

knowledge to diagnose the problem.  This flexibility is the subject of this dissertation. 

1.1 Problems of Brittleness 

Most large-scale AI systems rely on a knowledge base (KB) of rules and facts relevant for the 

domain.  These KBs attempt to capture the knowledge and reasoning of human experts.  

Therefore, to build an AI system for a domain, the system designers encode domain knowledge 

from human experts into the KB.  Given a query, the AI system uses inference rules and facts 

from the KB to arrive at an answer.  In a perfect world, the AI system can answer the same 

questions about the domain as human experts.  

 

Unfortunately, this perfect world is rarely realized outside of narrow domains.  Frequently, AI 

systems fail to extrapolate to unseen problems from the domain.  A common source of this 

brittleness is either incorrect or missing knowledge in the KB.  This could be because the domain 
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expert failed to provide some piece of reasoning, or the system designer failed to encode all the 

ways in which a piece of knowledge could be used.  This results in the AI system failing to come 

up with solutions for questions in which humans answer with ease. 

 

The TacAir-Soar system (Jones et al. 1999) is a great example of a successful AI systems using a 

knowledge base.  TacAir-Soar was designed to provide realistic simulated aircraft for military 

training exercises.  It generated “human like” behavior for simulated air combat missions, which 

represented a significant advance over the previous state of the art for automated entity behaviors 

in simulations.  While this was a great success for AI, these agents were unable to use a variety 

of weapons and sensors because the system designers did not have sufficient time to build 

intelligent behaviors for them.  Even though this is within the same domain, air combat, adapting 

the system to handle new sensors and weapons requires adding significant knowledge to the 

agent.  Given a new weapons and sensor systems, human pilots likely reuse their knowledge and 

experiences to determine how best to employ them.   

 

An analysis of two recent AI research projects demonstrate the magnitude of this problem in 

regards to broad domains and unanticipated problems.  In the High Performance Knowledge 

Base (HPKB) project, teams constructed knowledge bases to answer questions about 

international responses to crises (Cohen et al. 1999).  Tracking the development of the SRI/CYC 

system illustrates how brittleness affects knowledge system development.  SRI required 1703 

new axioms to answer the sample questions and be ready for the Phase 1 test.  On 110 unseen 

questions about a crisis management scenario, the SRI/CYC system was able to produce at least 
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a partially correct answer only 30% of the time.  The system developers were then given 4 days 

to improve performance.  By adding 123 axioms, the system answered at least partially correct 

45% of the questions.  Next, the domain was expanded.  This required the system designers to 

add another 1485 axioms to the system.  But when given a new scenario and a new set of 

questions, the system was only able to achieve a score of 40% partially correct.  This 

performance was improved to 65% with the addition of 304 axioms.  This failure to perform well 

on unseen problems and the need for large scale KB changes to be made to expand the scope of 

problems covered within the same domain demonstrate the brittleness of current AI systems. 

 

In the HALO project, three teams attempted to build AI systems to answer AP Chemistry 

questions from a subset of a chemistry textbook (Barker et al. 2004).  The three systems were 

evaluated on unseen problems.  None of the teams scored over 70% on the multiple choice 

section.  This represented only half the exam, the other sections were more difficult.  On the 

exam as a whole, none of the systems scored above 50%.  Once again, the AI systems failed to 

operate robustly on unseen questions. 

 

These projects represent the traditional approach to overcoming brittleness.  They seek to 

overcome brittleness by constructing larger KBs with increasingly general knowledge about the 

world (Newell & Ernst 1965).  The general knowledge would allow the system to perform even 

when the domain specific knowledge is not available.  This approach is the motivation of the 

CYC project, which seeks to build a KB representing human common sense reasoning (Lenat 

1995).  While these approaches have had many successes, the brittleness evident in current AI 
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systems requires searching for new solutions to this problem. 

1.2 Analogy for Robustness 

This dissertation explores using computational models of analogy to overcome this brittleness by 

reusing existing knowledge.  While numerous researchers have proposed analogy as a solution to 

this problem (e.g., Lenat & Feigenbaum 1991; Forbus & Gentner 1997), little progress has been 

made in terms of realizing this goal.  Analogy here includes both within-domain and cross-

domain analogies.  For example, when reasoning about how a hot cup of tea will cool sitting by 

your desk, you could use your experiences with other cups of hot liquids.  This is an example of 

a within-domain analogy.  Researchers also emphasize the need for cross-domain analogies in 

which superficially dissimilar but systematically related pieces of knowledge allow inferences in 

new domains (Gentner & Gentner 1983).  When trying to understand why the hot cup of tea is 

cooling, an analogy between heat flow and fluid flow would suggest that heat is flowing out of 

the tea and into the air. 

 

Unfortunately, like the idea of more general knowledge, analogy alone is not enough to 

overcome this problem of brittleness.  The AI system needs to know when and how to use 

analogy.  A basic approach is to invoke analogical reasoning whenever deductive reasoning fails.  

This is inadequate because as our KBs grow in size, queries take hours or even days to fail.  

Therefore, it is necessary to integrate analogy directly into the reasoning process.  In addition, 

most analogical reasoning methods involve comparisons between two cases to generate 

inferences about one of them.  In these methods, it is important to understand what kind of 

knowledge is being transferred between the cases.  Other analogical reasoning methods use the 
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correspondences resulting from analogical comparison for generalization and learning.  Because 

of these different uses of analogy, more investigations are required to improve our understanding 

of how analogy can be used to alleviate brittleness. 

1.3 Claims and Contributions 

This dissertation outlines two methods, analogical model formulation and domain transfer via 

analogy (DTA), which use analogy to robustly reuse knowledge from previous situations and 

domains. 

 

The first method, analogical model formulation, applies analogy to the task of model 

formulation.  Model formulation is the process of moving from a scenario or system description 

to a scenario model.  The scenario model consists of assumptions, abstractions, and causal 

models that can be used effectively for problem-solving.  Given the everyday physical reasoning 

problem in Figure 1 asking, “Which crane is more stable?”, the problem-solver must make a 

number of modeling decision.  While many things can potentially affect stability of objects, a 

useful model for this problem connects the stability of each crane to the horizontal distance 

between the crane and the boat it is carrying.  Then, using this model, one can determine that the 

crane on the right is more stable. 
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Analogical model formulation uses prior examples to determine which abstractions, assumptions, 

and causal models are applicable in new situations.  The process begins by retrieving a similar 

precedent from memory.  An analogy is created between the precedent and the current situation.  

Using analogical inferences concerning the applicable abstractions, assumptions and causal 

relationships, the problem-solver creates a model from which it derives the solution.  The 

robustness of this method for reasoning and learning is evaluated in a series of experiments from 

two multiple choice test domains, everyday physical reasoning with sketches and AP Physics 

problem-solving. 

 

The second method, domain transfer via analogy, is a task-level model of cross-domain analogy.  

These analogies are frequently employed when one is trying to gain an understanding of a new 

domain.  For example, when students are learning about electricity, they frequently make use of 

analogies to flowing water and moving crowds (Gentner & Gentner 1983).  These cross-domain 

analogies generate conceptual inferences concerning electricity.  Frequently, teachers and 

textbook authors appeal directly to their students to make these analogies.  For example, in an 

introduction to electricity, Koff (1961) writes “The idea that electricity flows as water does is a 

good analogy.”  Providing AI systems with this capability to reuse their knowledge through 

cross-domain analogies would greatly improve their flexibility. 

Figure 1: Which crane is more stable? 
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Domain Transfer via Analogy (DTA) models this process of cross-domain analogy.  DTA helps 

overcome brittleness by allowing knowledge previously learned in other domains to be applied 

to new domains.  Cognitive science research on cross-domain analogy has emphasized the 

importance of a domain mapping between the vocabularies of the new and understood domains 

(Gentner 1983).  DTA learns a domain mapping through comparisons between structures of 

explanations in the two domains.  Then, using this mapping, a new domain theory can be 

inferred and extended through an analogy between the domain theories themselves.  This model 

is evaluated across a variety of physics domains (e.g., mechanics, electricity and heat flow). 

 

This work fits into the following high level view of learning and reasoning by intelligent agents.  

In the initial stages, the agent has limited domain knowledge and reasons directly from 

experiences and examples.  To account for this ability, we introduce the cognitive process of 

analogical model formulation.  With these examples and experiences, the agent constructs 

generalizations of domain principles as it develops expertise within the domain (Forbus and 

Gentner 1986).  While this dissertation does not provide an account for how this abstraction 

process occurs, a number of promising methods are discussed in future work sections.  The 

application of this abstracted knowledge to new but similar domains through cross-domain 

analogies enables the agent to quickly learn new domain theories.  The domain transfer via 

analogy method provides this functionality.  Taking this view of domain expertise, these 

methods occur under very different circumstances dictated by the types of domain knowledge 

available to the agent. 
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1.4 Organization 

Chapter 2 provides the relevant background on analogical processing.  Included in this 

discussion is an overview of the structure mapping theory of analogy, the cognitive simulations 

of analogical processes used in this work, and the Companions Cognitive Architecture on which 

the systems presented here are built.  

 

Chapter 3 describes the foundations of analogical model formulation.  After arguing that 

traditional model formulation has critical limitations for accounting for human reasoning about 

the real world, I describe how analogical processing can be used to overcome these challenges. 

 

Chapters 4 and 5 evaluate analogical model formulation in two test-taking domains: everyday 

physical reasoning and AP Physics problem-solving. 

 

Chapter 6 contains related work and a general discussion of analogical model formulation. 

 

Chapter 7 describes in detail domain transfer via analogy.  This chapter includes the cognitive 

science foundations of cross-domain analogy, the domain transfer via analogy algorithm, a pilot 

study between linear and rotational kinematics, and a more rigorous evaluation between four 

physics domains: linear mechanics, rotational mechanics, electricity, and thermodynamics. 

 

Chapter 8 contains related work on cross-domain analogy and a discussion of domain transfer via 

analogy. 
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Chapter 9 recaps the central claims of this thesis and discusses some important future directions. 
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2 Background 

 

This dissertation builds upon ideas from cognitive psychology and artificial intelligence.  This 

chapter presents the background concerning the analogical processes used in this work.  This 

chapter begins with a description of the underlying psychological theory.  Next, I describe 

computational models analogy and similarity-based retrieval based upon this theory and 

continued psychological research.  These models have been integrated in the Companions 

Cognitive Architecture (Forbus et al. 2008).  The central hypothesis of Companions is that 

structure-mapping operations are central to human reasoning and learning abilities. 

2.1 Analogical Processing 

Over the past 30 years, there has been an explosion of interest in analogy.  This research has 

brought together computer scientists, philosophers, linguists, and neuroscientists as well as 

psychologists from a number of disciplines including cognitive, developmental, and animal 

psychology (Penn et al. 2008).  These researchers have documented extensive use of analogy 

throughout the human experience.  These domains include student learning (Gentner and 

Gentner 1983), scientific discovery (Gentner et al. 1997; Nersessian 1992), legal arguments 

(Holyoak and Simon 1999), and decision-making (Markman and Medin 2002).  In cognitive 

science, structure mapping theory (SMT; Gentner 1983) has become an important framework for 

understanding analogy.  This dissertation uses computational models of analogical processing 

based upon SMT.  
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In SMT, analogy is based on a structural alignment between two representations (the base and 

the target).  These representations are collections of predicate calculus facts made up of entities, 

attributes, relations between entities, and higher-order relations between propositions.  The 

alignment process constructs the maximal structurally consistent match.  A structurally 

consistent match is one that satisfies the following three constraints: tiered-identicality, parallel 

connectivity, and one-to-one mapping.  The tiered-identicality constraint provides a strong 

preference for only allowing identical predicates to match, but allows for rare exceptions.  For 

example, minimal ascension (Falkenhainer 1988) allows non-identical predicates to match if they 

are part of a larger mapped structure and share a close common ancestor in the ontology.  

Parallel connectivity states that if two predicates are matched then their arguments must also 

match.  The one-to-one mapping constraint requires that each element in the base corresponds to 

at most one element in the target and vice versa.  To explain why some analogies are better than 

others, structure-mapping uses the principle of systematicity: Mappings that are highly 

interconnected and contain deep chains of higher order relations are preferred over mappings 

with an equal number of relations which are independent from each other.  Such nested 

structures indicate explanations, which provide context to help evaluate analogical inferences. 

 

The Structure-Mapping Engine (SME; Falkenhainer et al. 1989) is a cognitive simulation of the 

analogical matching process.  Given two structured representations as input (the base and target), 

SME produces one or more mappings, each representing a construal of what items (entities and 

expressions) in the base go with what items in the target.  Each mapping is represented by a set 

of correspondences.  Mappings also include candidate inferences which are conjectures about 
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the target using expressions from the base which, while unmapped in their entirety, have 

subcomponents that participate in the mapping’s correspondences.  Based upon the systematicity 

constraint, a structural evaluation score is computed to estimate the match quality.  SME 

operates in polynomial time, using a greedy algorithm (Forbus et al.1994; Forbus & Oblinger 

1990).  At a high level, mapping in SME consists of the following steps: 

 

• Step 1: In parallel, create local correspondences called match hypotheses between 

expressions in the base and target using tiered-identicality 

o Determine inconsistencies 

� Mark match hypotheses inconsistent which violate parallel connectivity 

� Mark pairs of match hypotheses mutually inconsistent that would violate 

the one-to-one constraint 

o Assign scores to each correspondence using a local score for each match 

hypothesis and then using trickle-down to add to the scores of the arguments. 

• Step 2: Create kernel mappings forming maximally structurally consistent collections of 

match hypotheses. 

• Step 3: Combine kernel mappings using a greedy merge algorithm to create between one 

and three global mappings. 

 

To illustrate this more concretely, let us examine SME’s operation over the example base and 

target representations from Table 1.  The base description contains six facts describing a ball 

being released and falling.  The target description describes a box getting released.  In the first 
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step, two match hypothesis are created by matching identical predicates in the expressions, ‘d’ ↔ 

‘i’ and ‘c’ ↔ ‘h’.  Because these match hypothesis are consistent, they form a kernel mapping.  

Because there is only one kernel mapping, it becomes the global mapping with the following 

correspondences Release-1 ↔ Release-2 and Ball-1 ↔ Box-1.  Due to its 

participation in both expressions in the mapping, the support score for the Release-1 ↔ 

Release-2 correspondence is greater than the score for the Ball-1 ↔ Box-1 

correspondence.  SME computes the structural evaluation score by adding together the support 

scores of the mapping.  Partially matched expressions from the base become candidate inferences 

by replacing the parts of the base expression which participate in the correspondences with the 

target items.  In this case, expression ‘b’ becomes (Ball Box-1), expression ‘e’ becomes 

(causes-EventEvent Release-2 (AnalogySkolemFn Fall-1)) and expression 

‘f’ becomes (primaryObjectMoving (AnalogySkolemFn Fall-1) Box-1).  The 

expression AnalogySkolemFn is used to represent unmapped entities from the base.  

Candidate inferences are conjectures about the target.  Some of which are plausible.  For 

example, the Release-2 event causes something like the Fall-1 event from the base, and 

the Box-1 is the object moving of this event.  Some of which are not. Such as, Box-1 is a Ball.  

The correspondences and candidate inferences are central to analogical model formulation and 

domain transfer via analogy. 
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Base “A ball is released and falls” Target “A box is released” 
Entities - Fall-1, Ball-1, Release-1 Entities - Box-1, Release-2 
Expressions 
a) (FallingEvent Fall-1) 
b)(Ball Ball-1) 
c) (ReleaseOfSupport Release-1) 
d)(objectActedOn                         

Release-1 Ball-1) 
e) (causes-EventEvent              

Release-1 Fall-1) 
f) (primaryObjectMoving         

Fall-1 Ball-1) 
 

Expressions 
g)(BoxTheContainer Box-1) 
h)(ReleaseOfSupport Release-2) 
i) (objectActedOn          

Release-2 Box-1) 
 

Table 1: Example base and target descriptions 

 

The other cognitive simulation used throughout this work is the MAC/FAC (Forbus et al. 1995) 

model of similarity-based retrieval.  It takes as input a probe and a case library.  The probe is a 

structured description, representing what is currently being worked on by some system.  The case 

library is a set of cases, each a structured description, representing the set of available examples.  

MAC/FAC selects a case from the case library based upon similarity with the probe.  It does this 

in two stages.  The first stage (MAC) computes a special kind of feature vector for the probe and 

each case in the case library, whose components have a strength proportional to the number of 

occurrences of individual predicates in each structured representation.  The case from the case 

library with the highest (or up to three, if very close) dot product with the probe is returned from 

the MAC stage.  Using the examples from Table 1, the content vectors for the base and target 

contain six and three entries respectively.  In this example, each content vector the entries are 

weighted equally because each predicate occurs only once in each description.  The second 

(FAC) stage uses SME to compare these candidates to the probe.  The candidate with the highest 
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structural evaluation score is returned by the algorithm as its reminding.  (If others are very 

close, up to three can be returned, but in the work discussed here, only the most similar 

reminding is used.) 

 

SME and MAC/FAC do not completely simulate all aspects of human analogy.  Building upon 

structure-mapping principles, other cognitive scientists have explored a variety of psychology 

phenomena related to analogy.  LISA  explores the effects of working memory limitations and is 

implemented on a neural network (Hummel & Holyoak 2003).  LISA currently only handles 

descriptions significantly smaller than those used in this dissertation.  Kokinov and others have 

developed AMBR with an emphasis on integrating analogical reasoning modules with other 

reasoning modules (Kokinov & Petrov 2001).  This is consistent with the integration constraint 

as specified in Forbus (2001) which states that “a cognitive simulation of an analogical process, 

such as matching or retrieval, should be able to serve as a component in larger-scale cognitive 

processes.”  My research looks at how analogical processes can be used into two large-scale 

reasoning tasks: model formulation and cross-domain learning. 

2.2 Companions 

Building upon the integration constraint, I have been involved in developing the Companions 

Cognitive Architecture (Forbus & Hinrichs 2004).  The underlying hypothesis of Companions is 

that the flexibility and breadth of human common sense reasoning and learning arises from 

analogical reasoning and learning from experience.  Companions is a distributed agent 

architecture.  Each agent has its own knowledge base (KB), whose contents are periodically 

updated and synchronized.  Communication between agents occurs through KQML messages 
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(Labrou & Finin 1997).  This section describes the project vision and the agents which make up 

the architecture configurations used in this work. 

2.2.1 Project Vision 

The motivating vision of Companions is to create software systems which can be treated as a 

collaborator (Forbus & Hinrichs 2004).  In order to realize this vision, Companions focuses on 

three important problems for human-level AI: 

 

• Robust reasoning and learning – Companions should learn about their domains, users 

and themselves. 

• Longevity – Companions should operate continuously over weeks and months at a time. 

• Interactivity – Companions should have high-bandwidth interaction with their users. 

 

The work in this dissertation focuses primarily on the first problem.  Analogical model 

formulation and domain transfer via analogy are advances in state of the art for learning and 

reasoning techniques.  They are evaluated here solely on domain learning, but I believe that the 

methods are applicable to learning about users and self-modeling.  Issues concerning longevity, 

performance, and evaluation of progress will be discussed in future work sections.  Chapter 4 

includes new ideas concerning sketch-based interaction increasing the bandwidth of 

communication between the Companion and the user. 

2.2.2 Agent Architecture 

The Companions’ project is still in its infancy and underlying agents have evolved over the past 
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four years.  For the systems describe in this dissertation, the following agents were used: 

 

• Session Manager: Provides facilities for user interaction 

• Sketching Agent: Provides an interface between our sketch understanding system, sKEA 

(Forbus & Usher 2002), and other Companions agents  

• Facilitator: Manages sessions and directs communications between agents 

• Executive: Monitors the Companion's responsibilities and delegates work to the 

appropriate agents (e.g. follows scripts describing experiments, records quiz results, 

checkpoints KBs, etc.) 

• Session Reasoner:  Performs domain reasoning, in this case physics problem-solving 

• Similarity-based Retriever: Monitors the working memory of the Session Reasoner, and 

provides similar prior cases when there is a close match.  

 

The Session Manager and Sketch Agent run locally on the user’s machine, the rest of the agents 

run on cluster nodes.  New problems are given either individually through the Session Manager, 

or by a script describing an experiment which is uploaded to the Executive.  The Executive 

hands the problem to the Session Reasoner, which implements all but the retrieval portion of the 

analogical model formulation and problem-solving processes.  While the MAC/FAC algorithm 

used in the Retriever is efficient, distributing it reduces the memory load on the Session 

Reasoner as the size of case libraries rises.  The next chapters describe the analogical model 

formulation and domain transfers via analogy methods and how Companions use these methods 

in a variety of domains. 
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3 Analogical Model Formulation 

 

Modeling is a central activity in scientific and everyday reasoning.  A model enables predictions 

about the world around us.  A given situation could have a variety of different models.  Take a 

ball dropped off a building.  Suppose we wish to know the position of the ball after its release.  

The simplest model merely states that objects fall downwards, therefore after its release the 

ball’s height decreases.  Kinematics provides a mathematical model of this situation, Y = vit -

9.8* t2.  Each model is useful in a variety of tasks and requires a number of assumptions. 

 

This chapter explains the method of analogical model formulation.  I begin with a description of 

the task of model formulation and an example.  Next, I describe the current approaches to this 

task along with their limitations.  These limitations are particularly constraining in comparison 

with the flexibility of human reasoning.  Analogical model formulation overcomes these 

limitations by using analogy during model formulation. 

3.1 Model Formulation 

Creating systems capable of the breadth and flexibility of human reasoning is one of the central 

problems of artificial intelligence.  The qualitative reasoning community has offered progress 

toward this goal by providing formalisms for reasoning with incomplete knowledge.  An 

important contribution of this community is formalizing the task of model formulation 

(Falkenhainer & Forbus 1991).  Given a scenario description, a domain theory, and a query, 

model formulation produces a scenario model, which consists of the relevant abstractions, 



33 
 
processes, and causal relationships useful for answering the query. 

 

Model formulation is not just applicable in qualitative reasoning, but it is central for quantitative 

reasoning as well.  Consider the following question from Mathematics in Nature (Adams 2003):  

“Half of a snowball melts in an hour. How long will it take for the remainder to melt?”  To arrive 

at a coherent answer for this problem, the following simplifying assumptions are extremely 

helpful: 

 

• Assume the snowball is a uniform sphere at all times.  Therefore, the surface area of the 

snowball is a function of the radius. 

• Assume the density of the snowball is uniform throughout.  Therefore, the mass of the 

snowball is directly proportional to its volume. 

• Assume the mass of the snowball decreases at a rate directly proportional to its surface 

area, and that no other process affects the melting of the snowball. 

 

While each of the assumptions makes sense from a problem-solving perspective, none of these 

are deductively valid.  As any child will tell you, snowballs are hand-packed making a uniform 

density spherical snowball is virtually impossible.  Also, once the snowball begins melting, 

certain parts of the snowball will melt faster than others.  However, using the above assumptions, 

it is possible to formulate a model which allows one to answer that it will take 4.8 hours for the 

snowball to melt.  There are other potential models.  An even simpler model would be that the 

melting rate is constant throughout the entire process.  But this simpler model would likely be 
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more erroneous than the model constructed here.  Model formulation is the task of constructing a 

scenario model to provide a useful answer to a query about a given situation while minimizing 

extraneous detail. 

3.2 Traditional Approaches to Model Formulation 

The initial approach to model formulation has been to create scenario models by hand.  When 

engineers needed to monitor or make predictions about a particular mechanical system, they 

would manually construct special purpose simulators.  Changing the mechanical system or the 

purpose of the simulator required rewriting all or part of the simulator. 

 

To improve the reusability, one could construct a domain theory to describe a class of systems.  

The core of the domain theory consists of model fragments (Falkenhainer and Forbus 1991), 

each describing a single phenomenon.  Answering a particular query about a scenario can be 

automated by (1) finding applicable model fragments, (2) instantiating them within the scenario 

context, and (3) composing a scenario model.  This compositional modeling formalism is a vast 

improvement over manually encoding a custom model for every of scenario and query.  By 

explicitly reasoning about assumptions, compositional modeling considers multiple levels of 

detail and mutually exclusive models for the same phenomena (e.g. relativistic versus Newtonian 

motion).  Falkenhainer and Forbus (1991) demonstrated that compositional modeling can reason 

with large scale multi-grain, multi-perspective models of engineering thermodynamics.  Domain 

experts provide the domain theory, including knowledge about the model fragments, 

assumptions and approximations.  Further compositional modeling research provides methods 

for identifying the level of detail and perspectives to take in a scenario model.  In the domain of 
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electrical circuits, Nayak (1994) introduced causal approximations which provide a monotonic 

ordering between different models of the same object.  This ordering enables tractable model 

formulation.  To lessen the burden on the knowledge engineer, Rickel and Porter’s TRIPEL 

(1994) builds scenario models using a domain theory consisting solely of the domain variables 

and influences between them.  Then using domain-independent constants, TRIPEL constructs the 

simplest adequate model to answer a given prediction question about plant physiology.   

 

Can these techniques account for the flexibility people show in their abilities to formulate models 

about the world?  I believe not, for three reasons.  First, traditional model formulation relies on 

having a complete and correct domain theory.  Even in engineering and science applications, 

complete and correct domain theories can be difficult to construct.  This problem becomes much 

more difficult when accounting for people’s ability to reason about the world around them where 

the number of model fragments and entity types is orders of magnitude larger than engineering 

domains.  The process is even more difficult as new conceptual types are created all the time.  

For example, before the year 2005, no knowledge base would have a concept for a WiiMote.  

Second, work in model formulation tends to start with fairly abstract scenario descriptions, e.g. 

circuit schematics (Flores & Cerda 2000), instead of everyday entities.  While this is fine for 

engineering applications, the ability to create qualitative and quantitative models of everyday 

situations is a hallmark of the flexibility of human problem-solving.  Third, also due to an 

emphasis on engineering domains, model formulation research has largely ignored learning.  

Humans are constantly learning about new domains and applying their knowledge to reason 

about the world.  These limitations make it unlikely that traditional model formulation 
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techniques can account for human-level domain reasoning.  The next section describes a method 

to mitigate these problems of inflexibility by integrating analogical reasoning within the model 

formulation process. 

3.3 Analogical Model Formulation 

The solution proposed here is to use analogy to drive the model formulation process.  By 

analogy, I do not mean cross-domain analogies, such as understanding an electrical circuit in 

terms of mechanical systems.  Instead, within-domain analogies allow a new situation to be 

understood in terms of a prior example.  For example, given instructions for estimating the 

melting time of an ice cube, one could apply similar modeling assumptions, approximations, and 

abstractions to model the above scenario of the melting snowball.  Specifically, if assuming 

uniform density and a perfect cube shape proved useful to solving the melting time of the ice 

cube, the problem-solver would be wise to assume the snowball is also of uniform density and a 

perfect sphere.  There are reasons to believe that this kind of within-domain analogical reasoning 

is ubiquitous during human common sense reasoning (Forbus & Gentner 1997).  When faced 

with a new problem, one is reminded of similar experiences.  The explanations for these prior 

experiences can be used to formulate a model for the new situation.   The process of using an 

analogy with a prior example to construct a model is called analogical model formulation. 



 

 

Figure 2 describes this process of analogical model formulation.  Given a problem description, the 

process begins by retrieving an analogous example or examples using the computational mod

of analogy and similarity-based retrieval discussed in Chapter 2.  This process is guided 

pragmatically to retrieve the sufficient analogue(s).  E.g., if the retrieval does not provide the 

means to understand the entire scenario, retrieve additional an

aspects of the problem description.  Next, the model formulation step uses inferences suggested 

by the analogy between the example(s) and the problem scenario to make modeling decisions 

concerning abstractions, assumptions, 

between the problem scenario and any available domain knowledge.  For example, if an agent 

has an abstract qualitative mechanics domain theory, but does not know how to map everyday 

objects into the technical vocabulary of the domain theory, then the agent uses the analogy to 

decide which abstractions are applicable to which objects in the problem scenario.  On the other 

Figure 2: Overview of Analogical Model Formulation (blue items are 
inputs, purple items are processes, and orange items are results)

describes this process of analogical model formulation.  Given a problem description, the 

process begins by retrieving an analogous example or examples using the computational mod

based retrieval discussed in Chapter 2.  This process is guided 

pragmatically to retrieve the sufficient analogue(s).  E.g., if the retrieval does not provide the 

means to understand the entire scenario, retrieve additional analogs focusing on the unmatched 

aspects of the problem description.  Next, the model formulation step uses inferences suggested 

by the analogy between the example(s) and the problem scenario to make modeling decisions 

concerning abstractions, assumptions, and causal models.  Here, analogy bridges the gap 

between the problem scenario and any available domain knowledge.  For example, if an agent 

has an abstract qualitative mechanics domain theory, but does not know how to map everyday 

al vocabulary of the domain theory, then the agent uses the analogy to 

decide which abstractions are applicable to which objects in the problem scenario.  On the other 

: Overview of Analogical Model Formulation (blue items are 
inputs, purple items are processes, and orange items are results) 
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describes this process of analogical model formulation.  Given a problem description, the 

process begins by retrieving an analogous example or examples using the computational models 

based retrieval discussed in Chapter 2.  This process is guided 

pragmatically to retrieve the sufficient analogue(s).  E.g., if the retrieval does not provide the 

alogs focusing on the unmatched 

aspects of the problem description.  Next, the model formulation step uses inferences suggested 

by the analogy between the example(s) and the problem scenario to make modeling decisions 

and causal models.  Here, analogy bridges the gap 

between the problem scenario and any available domain knowledge.  For example, if an agent 

has an abstract qualitative mechanics domain theory, but does not know how to map everyday 

al vocabulary of the domain theory, then the agent uses the analogy to 

decide which abstractions are applicable to which objects in the problem scenario.  On the other 
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hand, if the agent does not have any domain knowledge, then the entire scenario model is 

constructed by analogy with the example.  Finally, the agent uses rule based problem-solving 

over the model to determine the solution for the query. 

 

Analogical model formulation addresses the shortcomings of traditional model formulation 

systems as follows.  First, by relying on examples, analogical model formulation alleviates the 

need for a complete and correct domain theory.  It is well-known in the knowledge acquisition 

community that getting domain experts to tell stories (i.e., concrete examples) is considerably 

easier than getting experts to articulate complete and correct domain theories.  Second, 

analogical model formulation can build scenario models of everyday situations.  The breadth of 

entity types is limited only by the underlying ontology.  Third, analogical model formulation 

provides a way to create systems that can incrementally learn by making effective use of what 

knowledge they have, even when it is incomplete.  Extending the range of scenarios or domains 

over which the system can reason requires only adding new examples. 

3.4 Benefits of Integrating Analogy 

While qualitative reasoning has made many advances in generating and reasoning about models, 

automating the model construction process is still a difficult task.  This is especially true for 

broad domains.  The fact that people are able to form useful models about the world all the time 

highlights the importance of this problem.  The use of experience in model formulation was first 

proposed by Falkenhainer (1992).  Falkenhainer’s credibility extrapolation used error measured 

in prior scenarios to bound the error of a current model.  Through analogies with previous 

experience, the model formulation process was informed about the consequences of the 
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approximations and assumptions under consideration from its domain theory.  Like other 

compositional modeling efforts, Falkenhainer’s work still focused on engineering problems, and 

the domain theory included the complete set of model fragments, assumptions and 

approximations for the domain. 

 

Analogical model formulation places analogy at the center of the model formulation process.  

The examples provide the scenario model with the assumptions, approximations, causal 

relationships and equations.  Analogical model formulation offers a promising approach to 

account for the human ability to form models about the world around them.  This method 

integrates existing analogical processing and model-based reasoning techniques.  The systems 

presented in the proceeding chapters utilize qualitative reasoning to derive solutions from 

models, and leverage analogical reasoning as described above to make modeling decisions that 

are otherwise difficult in broad domains. 

  

In the next two chapters, I will present support for the hypothesis that analogical model 

formulation provides a robust method for reasoning and learning in two domains with relatively 

unconstrained scenarios: everyday physical reasoning and AP Physics. The evaluations are 

designed evaluate to what extent analogical model formulation allows a Companion with limited 

domain knowledge to use examples to solve new problems. 



40 
 

4 Everyday Physical Reasoning with Analogical Model Formulation 

 

Evaluating the claims of analogical model formulation requires broad domains.  Finding domains 

which test the breadth of AI systems, while still allowing for progress, is difficult.  The Bennett 

Mechanical Comprehension Test (BMCT; Bennett 1969) is one such domain.  The BMCT is 

used to evaluate applicants for technical positions.  BMCT problems consist of diagrams 

depicting physical situations with multiple choice questions about their qualitative properties.  

For concreteness, two examples of BMCT questions are illustrated in Figure 31.  The BMCT is 

broad in two ways.  First, it involves a variety of domains, including statics, dynamics, acoustics, 

heat, and electricity. This is the domain breadth problem.  Second, it involves a variety of 

everyday objects and systems: Bicycles, railroad cars, cranes, hoists, boats, and many others.  

This is everyday breadth problem. This makes it a valuable domain for assessing everyday 

physical reasoning, which is an important part of human common sense. 

  

                                                 
1 To protect the security of the test, we cannot provide a full list of the problems used in this evaluation. 
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Outcome Problem: 
Which way will the ball go? 

A) down, B) right, or C) down and 
right 

Comparative Analysis Problem: 
Which crane is more stable?  

A) the left one, B) the right one, or C) equally stable 

Figure 3: Bennett Mechanical Comprehension Test problems 

Figure 3 illustrates the two general types of problems that appear on the BMCT.  The ball problem 

is an example of an outcome problem, which asks for a prediction about a property of a system.  

The crane problem is an example of a comparative analysis problem, where the question 

concerns a comparison between two (or three) situations, or two aspects of the same situation.  

To solve either of these problems requires moving from these everyday descriptions to a formal 

model.  Once the model has been formulated, these problems are straightforward.  The ball 

problem requires the addition of forces applied by the people, and the crane problem requires 

comparing the horizontal distances between the bases of the cranes and their loads.  The hard 

part is formulating the right model.  For both of these examples, many other parameters were 

potentially relevant (e.g. the materials of the objects involved, the types of connections between 

them, the kinds of surfaces they are resting on, etc).  In the outcome problem, the types of objects 

play a central role in determining the relevant abstractions.  For example, if the ball was instead a 

lake, the answer would be drastically different.  In the comparative analysis problem, one must 

focus on the differences that are visible between the two scenarios, which requires understanding 
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how conceptual properties (like stability) depend on visual properties (like distances).  To be 

successful on the BMCT, one must be able to form a broad range of models, integrating spatial 

and conceptual reasoning, over a wide range of input descriptions.  This makes the BMCT a 

great domain for evaluating analogical model formulation. 

 

This chapter describes how analogical model formulation allows a Companion to construct 

models about a diverse group of everyday scenarios.  This enables a Companion to perform 

model formulation without a complete domain theory, as required for traditional first-principles 

only qualitative reasoning.  In addition to analogical model formulation, this chapter presents 

two additional contributions: Sketch annotations communicate linkages between visual and 

conceptual properties in sketches, and analogical reference frames enable comparative analysis 

to operate over a broader range of problems than prior techniques. 

 

This chapter describes an experiment to see how well a Companion using analogical model 

formulation could perform on a subset of the BMCT.  The subset was chosen to minimize 

encoding efforts while still allowing us to evaluate the performance of analogical model 

formulation.  The subset design and the analogical model formulation approach, which will be 

covered in detail later in the chapter, pose both the everyday and domain breath challenges to the 

Companion.  In addition to simply evaluating the Companion’s ability to solve BMCT problems, 

it is necessary to evaluate the claim that analogical model formulation is a robust solution.  To 

evaluate robustness, three people were used to provide the Companion with three different sets 

of examples for analogical model formulation.  Evaluating each set independently illustrates that 
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this variation is important (i.e. the Companion is able to solve more problems with some sets of 

examples than others).  By combining the sets of examples, we can evaluate the robustness in the 

face of poor examples. 

 

I begin by describing the software systems and research this work draws upon: the sKEA sketch 

understanding system (Forbus & Usher 2002) and qualitative mechanics from Nielsen (1988) 

and Kim (1990).  The next section describes sketch annotations and how the examples are 

created. This is followed by a detailed explanation of how analogical model formulation is 

applied to BMCT problems.  Before describing the problem-solving algorithm, I introduce 

analogical reference frames to extend the range of applicable problems for comparative analysis 

(Weld 1988).  This chapter closes with a description of the experiment and a discussion of the 

results. 

4.1 System Components 

4.1.1 Sketch Understanding with sKEA 

Sketching is a powerful way to work out and communicate ideas.  The nuSketch model (Forbus 

et al. 2004) takes sketching to be a combination of interactive drawing and conceptual labeling.  

While most sketch understanding systems focus on the problem of recognition, nuSketch 

systems are based on the insight that recognition is not necessary in human-to-human sketching.  

The sketching Knowledge Entry Associate (sKEA) was the first open-domain sketch 

understanding system.  Anything that can be described in terms of sKEA's knowledge base can 

be used in a sketch.  For this evaluation, sKEA's knowledge base consists of a 1.2 million fact 

subset of Cycorp's Cyc Knowledge Base, which includes over 38,000 concepts, over 8,000 
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relations, and over 5,000 logical functions.    The KB for this evaluate also includes 

representations for qualitative physics, visual properties and relationships, spatial knowledge, 

and analogical reasoning.  The breadth of this KB makes it an excellent platform for exploring 

reasoning in a broad domains such as the Bennett Mechanical Comprehension Test, because the 

entity types and relations necessary to define problems, such as “crane” and “wheelbarrow”, are 

already defined, as opposed to having to generate them specifically for this project. 

 

Glyphs are the basic constituent of sketches.  A glyph consists of its ink, representing its visual 

properties, and its content, representing the conceptual entity depicted by the glyph.  The content 

can be instances of any of the concepts in the KB.  Each sketch is divided into layers, which 

decompose a sketch into pieces.  For example, two systems being compared side by side would 

be drawn in the same sketch, but drawn on different layers.  Sometimes systems must be viewed 

at different levels of abstraction.  In understanding how a wheelbarrow works, for example, it 

makes sense to draw the individual parts, since each contributes differently to how it functions.  

But if we are considering how hard it will be to lift a wheelbarrow, we need to consider the 

wheelbarrow as a single rigid object.  sKEA includes group glyphs, which introduce a new entity 

to represent a selected set of entities, to handle such situations. 

 

Using the electronic ink, sKEA computes the following visual relationships between glyphs 

(Forbus et al. 2003): 
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• Qualitative topological relationships:  sKEA uses the RCC8 algebra (Cohn 1996) to 

describe the topological relationships between glyphs in a sketch.  In RCC8, two glyphs 

might be disjoint (DC), touching exactly on their boundaries (EC), partially overlapping 

(PO), equal (EQ), one completely inside the other (NTPP), or one inside the other but 

their boundaries touching (TPP).  With inverses for NTPP and TPP, these eight 

relationships completely characterize the possible connectivity relationships between two 

2D regions.   

 

• Positional relationships:  Relationships such as above/below and left/right are computed 

for pairs of glyphs that are adjacent.  Adjacency is determined via a Voronoi diagram.   

 

• Visual grouping relations:  The RCC8 relationships naturally impose two visual grouping 

relationships.  Connected glyph groups consist of sets of glyphs that are pairwise PO or 

EC with each other.  Contained glyph groups consist of the set of glyphs which are TPP 

or NTPP with some larger glyph (called the container for the group). 

 

• Orientations:  An axis is computed for each glyph, which is characterized as primarily 

vertical or horizontal, as appropriate. 

 

• Sizes:  Each glyph in the sketch is classified as one of five qualitative categories, from 

tiny to very large, depending on the distribution of glyph sizes in the sketch.  This is done 
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by computing the minimum bounding rectangle of each glyph normalized against the 

minimum bounding rectangle of entire sketch. 

 

Sometimes the visual relationship between a pair of glyphs and the nature of their contents 

implies a conceptual relationship between their contents.  For example, if a glyph representing a 

wheel is Edge Connected (EC) to a glyph representing the ground, then it is reasonable to 

assume that the wheel is touching the ground.  These visual-conceptual relationships represent 

commonly used conventions for depicting situations in sketches (Forbus et al. 2005).  sKEA 

automatically infers a large candidate set of relationships, and provides an interface for users to 

select which of them, if any, is appropriate.  Figure 4 contains a screen shot of a user selecting the 

enmeshedGears-Adjacent relationship for a pair of gears.  The selected conceptual 

relationship is added to the predicate calculus representation for the sketch. 

 

The result of drawing in sKEA is a sketch which contains the ink of the glyphs and a 

corresponding case of predicate calculus facts.  These facts include the spatial relationships 

concerning the glyphs as well as the conceptual relationships concerning the conceptual entities 

depicted by the sketch.  In addition, when reasoning about the sketch, sKEA accepts queries for 

additional facts to be computed on demand.  For example, the Companion asks sKEA when it 

Figure 4: sKEA allows the user to specify the conceptual relationship between sketched 
entities 
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needs to know the outside normal direction of a surface, the overlapping parts of two glyphs, or 

the distance between two points.  sKEA responds to these queries by creating a conceptual 

representation that is tied directly to the ink of the glyphs.  Given the spatial and conceptual 

components of the BMCT, sKEA is an excellent platform for this task. 

4.1.2 Qualitative Mechanics 

Mechanics is traditionally concerned with forces, motion, and how bodies interact.  Qualitative 

mechanics provides a set of abstractions (e.g., rigid body, surface normal, qualitative 

descriptions of angle, etc.) that support qualitative reasoning about traditional mechanics 

phenomena.  The technical vocabulary and model fragments of qualitative mechanics are part of 

the starting endowment of the system, rather than as something to be learned.  The qualitative 

mechanics domain theory is drawn from (Nielsen 1988; Kim 1993).  Specifically, their 

qualitative representations of objects, surfaces, force transfers, and centers of rotation are 

included.  The key aspects of the domain theory are summarized here.  

 

The Companion’s domain theory consists of five model fragments, XForceTransfer, 

YForceTransfer, TorqueTransfer, TorqueEquilibrium, and 

ForceDistribution.  Figure 5 contains the CML descriptions (Bobrow et al. 1996) for 

XForceTransfer and TorqueEquilibrium.  The XForceTransfer model fragment 

has five participants, the forcer, the object, each of their surfaces and the direction of the force.  

This model fragment is active when the forcer is applying a force on the object’s surface and 

results in the force being added to the net force on the object.  The TorqueEquilibrium 

model fragment has seven participants and is active when there are two applied torques in 
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opposite directions.  While this definition is a simplification2, it is sufficient for these problems.  

When a TorqueEquilibrium model fragment is active, its consequences are believed.  

These consequences are qualitative proportionalities describing causal functional dependencies 

between quantities.  Since the Cyc KB uses a relational form for quantities, the function 

QpQuantityFn converts them to an equivalent fluent.  Here two functions are used to 

represent the four quantities affected by the model fragment.  The function (QpQuantityFn 

ForceAppliedToSurfaceBy) takes two arguments and denotes the amount of force 

applied to a surface (its first argument) by an object (its second argument).  The function 

(QpQuantityFn DistanceToOrigin) denotes the distance from a surface to the point it 

rotates around.  When instantiated, these model fragments provide causal relationships (i.e., 

qualitative proportionalities) needed to solve BMCT problems.   

                                                 
2 Torque equilibrium also requires that the opposing torques be equal.  The system currently assumes this by default. 
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Notice that the qualitative mechanics domain theory is defined in terms of a technical vocabulary 

of abstract concepts, including RigidObject, Surface, and Fulcrum as well as the 

relationships xforceApplied and torqueApplied.  The domain theory includes inference 

rules which, given conceptual relationships between sketched objects (e.g., canPivotAround, 

touchesDirectly, and on-Physical), can conclude the xforceApplied and 

torqueApplied relationships.  However, since problems on the BMCT are given in terms of 

everyday situations, the appropriate abstractions must be inferred in order to determine which 

model fragments are applicable.  Section 4.3 describes how this is done via analogical model 

formulation. 

 
(defModelFragment XForceTransfer 
  :participants ((TheObject :type RigidObject) 
    (TheForcer :type RigidObject) 
    (TheSurface1 :type Surface :constraints ((hasSurface TheObject TheSurface1))) 
          (TheSurface2 :type Surface 
         :constraints ((hasSurface TheForcer2 TheSurface2) 
          (surfaceContact TheSurface1 TheSurface2))) 
    (TheXDir1 :type Sense)) 
  :conditions ((xForceApplied TheSurface1 TheXDir1 TheForcer)) 
  :consequences ((c+ ((QpQuantityFn XNetForce) TheObject) 
       ((QpQuantityFn XForceAt) TheSurface1)))) 
 
(defModelFragment TorqueEquilibrium 
  :participants ((TheObject :type RigidObject) 
    (TheForcer1 :type RigidObject) 
    (TheForcer2 :type RigidObject) 
    (TheSurface1 :type Surface :constraints ((hasSurface TheObject TheSurface1))) 
    (TheSurface2 :type Surface :constraints ((hasSurface TheObject TheSurface2))) 
    (TheRotDir1 :type RotDirection) 
    (TheRotDir2 :type RotDirection 
        :constraints ((inverseRotDirection TheRotDir1 TheRotDir2)))) 
  :conditions ((torqueApplied TheSurface1 TheRotDir1 TheForcer1) 
        (torqueApplied TheSurface2 TheRotDir2 TheForcer2)) 
  :consequences ((qprop ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)  
                        ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface2 TheForcer2)) 
                 (qprop ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)   
                        ((QpQuantityFn DistanceToOrigin)  TheSurface2)) 
                 (qprop- ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)   
                         ((QpQuantityFn DistanceToOrigin)  TheSurface1)))) 

Figure 5: Example model fragments from the qualitative mechanics domain theory 
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4.2 Sketch Annotations 

In sketching, people annotate sketches of physical entities with conceptual information that 

would not appear in the actual situation.  In architectural drawings, annotations indicate distances 

between walls and the widths of windows.  In sketches explaining principles, annotations 

indicate important spatial properties, such as the radius of a gear and where forces are applied.  

Annotation glyphs provide this capability in sKEA.  Figure 6 contains sketches that illustrate each 

type of annotation.  Like other glyphs, an annotation glyph consists of its ink and its content, i.e., 

the entity it is representing.  However, annotation glyphs also refer to one or more other glyphs 

in the sketch, indicating the entity (or entities) about which they are providing information.  

These glyphs are the references for the annotation glyph.   

 

  

Figure 6: The gear has a rotational annotation indicating counter-clockwise motionan and a linear annotation 
indicating its radius.  The wheelbarrow has a force annotation indicating an applied force upward on the 

handle and a length annotation indicating the diameter of its wheel. 

This work introduces three types of annotation glyphs.  Force annotations indicate the location 

and direction of an applied force on a reference.  sKEA computes the direction and application 

surface of a force annotation from its ink and referenced glyphs.  If there are two references, 

sKEA uses the direction of the arrow and the relative positions of the references to determine 

which object is applying the force.  If there is only one reference (e.g., the handle from the 
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wheelbarrow example), sKEA assumes a new object which is applying a force at the point of the 

arrow onto the reference.  Rotational annotations indicate a reference’s direction of rotation.  

sKEA assumes the qualitative rotational motion of the reference as either clockwise or counter-

clockwise.  Linear annotations indicate linear distances, either along a single reference or 

between two references.  Two special subclasses of linear annotations are X-coordinate and Y-

coordinate annotations, which refer to the projection of the measurement onto the appropriate 

axis.  sKEA computes distance measurements using the closest anchor points on the reference(s) 

to the endpoints of the linear annotation.  Anchor points are used to specify which parts of the 

reference(s) that the annotation is tied to.  Each glyph has nine anchor points: the centroid, the 

rightmost top, leftmost top, top rightmost, and so on clockwise around the glyph.  Anchor points 

provide symbolic descriptions that can be projected as candidate inferences from an example to a 

new situation (e.g., the distance from the left bottommost point to the right bottommost point of a 

reference). 

4.2.1 Creating Examples using Annotation Glyphs 

Examples in the Companion’s case library represent its experience.  Users create examples of 

physical scenarios using sKEA and a concept map system.  The concept map system allows users 

to enter predicate calculus expressions about the sketched entities.  The process begins with the 

user drawing the scenario, labeling their glyphs with the everyday concepts used to describe the 

entities depicted.  Next, the user sketches force and rotation annotations where applicable in the 

sketch.  They use sKEA’s conceptual labeling interface to identify all of the appropriate 

qualitative mechanics abstractions (e.g.,  RigidObject) and sKEA’s visual/conceptual 

relationships interface to identify the appropriate conceptual relationships between entities (e.g., 
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touchesDirectly).  At any time the user can invoke a traditional model formulation 

algorithm (Forbus & Falkenhainer 1991) to see if the appropriate qualitative mechanics model 

fragments are instantiated.  Once they are satisfied with the resulting qualitative mechanics 

model, the final step is to create causal models that describe conceptual quantities in terms of 

visual quantities.  For each relevant conceptual quantity (e.g., the revolution rate of a gear), the 

user draws a linear annotation for the causally related visual quantity (e.g., the distance from the 

center of the gear to its top right most point).  Next, using the concept map system, the user adds 

a qualitative proportionality linking the conceptual quantity to the visual quantity (e.g., that the 

revolution rate is qualitatively proportional to the radius of the gear).  This completes the process 

of constructing the scenario model for the example.  Note that the model fragments, if any, are 

instantiated from an incomplete domain theory, while conceptual/visual quantity causal 

relationships are defined in an example-specific manner.  All of the visual and conceptual 

representations for the example are stored as a case in a library, to be used for subsequent 

analogical model formulation. 

 

To illustrate this process more concretely, the following steps are required to construct the 

example wheelbarrow in Figure 6.  First, a user draws the wheelbarrow in sKEA.  To do this, the 

user draws seven glyphs representing the wheel, axle, bin, frame, support, handle and rock.  

Next, a group glyph is created representing the wheelbarrow including all the glyphs except the 

rock.  The wheelbarrow’s handle is annotated with a force arrow indicating that there is an 

assumed force in the upward direction.  Then, the user adds qualitative mechanics abstractions 

by labeling the wheelbarrow group glyph and the rock as instances of the type RigidObject 
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and the axle as a Fulcrum.  sKEA’s visual/conceptual relations interface is then used to add 

some of the conceptual relationships needed by the qualitative mechanics domain theory.  Here, 

the user stated that the rock is on-Physical the bin.  The domain theory includes rules to 

determine that the on-Physical relationship results in a downward force from the rock onto 

the bin.  A standard model formulation algorithm instantiates whatever model fragments are 

appropriate, based on these abstractions and relationships.  This results in the instantiation of a 

ForceDistribution and two TorqueEquilibrium model fragments.  The 

ForceDistribution consists of the rock pushing down on the wheel and the assumed object 

in contact with the handle.  The two TorqueEquilibrium model fragments are symmetric.  

In one, theForcer2 is the assumed object in contact with the handle, and theForcer1 is the 

rock.  In the other TorqueEquilibrium model fragment, the participants are reversed.  The 

consequences of the first model fragment appear in Figure 7.  The first qualitative proportionality 

states that the force applied by the rock on the surface between the rock and the bin is 

proportional to the force applied on the handle by the assumed force.  Surfaces are defined using 

the function ContactSurfaceFn which takes two arguments.  The term denotes the surface 

of the first argument that is in contact with the second argument.  For example, 

(ContactSurfaceFn Bin-110 Rock-111) denotes the surface of Bin-110 which is 

in contact with Rock-111.  (ContactObjectFn Handle-109) denotes the assumed 

object in contact with the handle.  The next two statements say that the force applied on the 

handle is proportional to the distance from the surface of the rock to the origin of rotation and 

inversely proportional to its distance from the origin of rotation. 
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Before the example is complete, any causal dependencies of conceptual quantities on visual 

quantities must be entered.  All of the entities and quantities in the scenario model are 

automatically added to the concept map interface.  Similarly, every time an annotation glyph is 

used to create a visual quantity, that quantity is automatically added to the concept map interface.  

In this example, the user might want to convey that the wheelbarrow’s smoothness of the ride is 

determined in part by the diameter of its wheel.  To do this, they first add a linear annotation to 

the wheel.  Next, using the concept map interface, they enter the qualitative proportionality 

between the quantity representing the wheel’s diameter and the wheelbarrow’s smoothness of 

ride.  Figure 8 shows a portion of the symbolic representation for the annotation glyph and the 

qualitative proportionality entered via the concept map.  The first fact links the visual quantity, 

named “Wheel Diameter” by the user, to the annotation glyph.  The next two facts indicate the 

start and end points of the annotation glyph, in terms of anchor points on the reference glyph.  In 

this case, the start and end points are the bottom right point and the top left point of Wheel-

103, respectively.  The final fact shows the qualitative proportionality between the quantity 

representing the wheel’s diameter and the wheelbarrow’s smoothness of ride. 

 (qprop 
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109  

(ContactObjectFn Handle-109)) 
             (ContactObjectFn Handle-109)) 
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Bin-110 Rock-111) Rock-111)) 
(qprop 
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109  

(ContactObjectFn Handle-109)) 
            (ContactObjectFn Handle-109)) 
  ((QpQuantityFn DistanceToOrigin) (ContactSurfaceFn Bin-110 Rock-111))) 
(qprop- 
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109  

      (ContactObjectFn Handle-109)) 
                (ContactObjectFn Object-109)) 
  ((QpQuantityFn DistanceToOrigin) (ContactSurfaceFn Handle-109  

(ContactObjectFn Handle-109)))) 

Figure 7: Resulting qualitative proportionalities from the torque equilibrium model fragment 
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To summarize, examples include three types of information: 

1. The everyday entities represented in the sketch. 

2. Instances of model fragments, constructed automatically from the sketched entities and 

relationships, using the conceptual labeling and the visual/conceptual relationship 

interfaces to provide the necessary abstractions for model formulation. 

3. Example-specific causal relationships between visual quantities (measurable in the 

sketch) and conceptual quantities. 

 

The next section shows how these examples can be used via analogy to construct scenario 

models in new situations. 

4.3 Analogical Model Formulation 

Analogical model formulation creates a scenario model for a new situation by analogy with a 

previously understood example.  The process begins with MAC/FAC being used to retrieve a 

relevant example.  SME then creates a mapping between the example and new situation.  This 

Figure 8: A subset of the facts (simplified for readability) to represent the wheel diameter 
annotation and the causal relationship between the wheel diameter and the wheelbarrow's 

smoothness of ride 

Automatically added by sKEA 
(visualRepresentationOfQuantity 
  ((ConceptKnownAsFn "WheelDiameter") 
     (GlyphFn Wheelbarrow-114 User-Drawn-Sketch-Layer-114)) 
  (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114))  
(startPointOf 

    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114) 
    (RightmostBottomPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 

(endPointOf 
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114) 
    (LeftmostTopPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 

 
Entered manually through the Concept Map 

(qprop ((QPQuantityFn RideSmoothness) Wheelbarrow-114) 
    ((ConceptKnownAsFn "WheelDiameter") 
      (GlyphFn Wheelbarrow-114 User-Drawn-Sketch-Layer-114))) 
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mapping includes a set of candidate inferences which suggest modeling decisions for the new 

situation.  For BMCT problems, candidate inferences provide qualitative mechanics abstractions 

and relationships, definitions for visual quantities, and causal relationships.  Together, this 

information provides the basis for a scenario model which can be used to solve BMCT problems. 

This section presents how analogical model formulation constructs a scenario model for the 

wheelbarrow shown in Figure 9 using the example wheelbarrow from Section 4.2.1.  SME creates 

a mapping, a portion of which is shown in Table 2, between the predicate calculus representations 

of the problem and the example.  Because SME is guided by shared relational structure, the 

resulting mapping does not necessarily include all of the entities in the problem and example.  

Expressions from the example that do not participate fully in the mapping become candidate 

inferences, in which the mapped portions are replaced by the corresponding expressions in the 

problem.  Analogical model formulation depends upon these candidate inferences to make 

modeling decisions in the problem scenario. 

  

Figure 9: A wheelbarrow from a problem sketch 
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Example entities (Base) Problem situation entities 
(Target) 

Wheelbarrow-114 Wheelbarrow-22 
Rock-111 Boulder-15 
Handle-109 Handle-13 
Frame-107 Chassis-12 
Bin-110 Bin-14 
Axle-104 Axle-11 
Wheel-103 Wheel-10 
Lift-113 AssumedForceArrow-19 
Support-108 -- 
Wheeldiameter-203 -- 
-- Ground-9 

Table 2: Mapping between the problem and example entities 

Analogical model formulation uses the example to infer three types of information about the 

problem scenario: causal models, qualitative mechanics abstractions and relationships, and 

information regarding the measurement of visual quantities.  Causal models are inferred from the 

example as follows.  The qualitative proportionalities in Figure 7 and Figure 8 become candidate 

inferences with the entities for Wheelbarrow-114, Handle-109, Wheel-103, Bin-110 

and Rock-111 replaced with Wheelbarrow-22, Handle-13, Wheel-10, Bin-14 and 

Boulder-15 respectively.  The system searches the candidate inferences for qualitative 

proportionalities and assumes them into the problem representation.  Qualitative mechanics 

abstractions and relations are inferred in the same way.  Candidate inferences concerning 

abstractions and relations are assumed into the problem (e.g., (isa Axle-11 Fulcrum) 

and (on-Physical Bin-14 Boulder-15)).  Visual quantity measurement information is 

imported in two ways.  First, measuring DistanceToOrigin quantities requires qualitative 

mechanics knowledge about the center of rotation.  For example, the distance to the origin from 

the surface between the boulder and the bin requires knowing that the axle is the fulcrum.  The 

second type of visual quantity concerns user defined annotations, such as WheelDiameter-
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203.  In this case, the expressions in the example concerning the annotation become candidate 

inferences.  The Companion uses these candidate inferences to automatically create a 

corresponding annotation in the problem.  Figure 10 contains the candidate inferences which 

define the wheel diameter quantity and provide instructions as to how to draw the annotation 

based upon anchor points.  Since the entity for the annotation WheelDiameter-203 does not 

participate in the mapping, these candidate inferences contain AnalogySkolemFn 

expressions.  These expressions represent entities which appear in the base but do not have a 

corresponding entity in the target.  Using this automatically constructed annotation, the scenario 

model includes information concerning the measurement of a visual quantity that was defined 

only in terms of the example. 

 

The next section describes how analogy is used to frame comparative analyses allowing for its 

application between scenario models necessary for solving BMCT problems. 

4.4 Analogical Reference Frames for Comparative Analysis 

Comparative analysis, and in particular comparative analysis, seeks to understand how and why 

Figure 10: Candidate inferences concerning the wheel diameter visual quantity 

(visualRepresentationOfQuantity 
  ((ConceptKnownAsFn "WheelDiameter") 
    (GlyphFn Wheelbarrow-22 User-Drawn-Sketch-Layer-114)) 
  (AnalogySkolemFn 
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114))) 
(startPointOf 
  (AnalogySkolemFn  
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114)) 
  (RightmostBottomPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 
(endPointOf 
  (AnalogySkolemFn  
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114)) 
  (LeftmostTopPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 
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the behavior of a system will change given some changes to its parameters (Weld 1988).  For 

example, comparative analysis can explain why the period of an oscillating block system would 

increase if the mass of the block was increased.  A CA value is a qualitative description of how 

one particular parameter in a system will change given other parameter changes.  There are four 

possible CA values: unchanged, increased, decreased and ambiguous.  The comparative analysis 

problems on the BMCT do not fit directly into the traditional perturbed system framework.  First, 

they involved comparisons between scenarios, rather than describing a perturbation in a single 

scenario.  Second, some of the problems require comparisons between different parts of the same 

system.  For example, the BMCT problem in Figure 11 asks “which wheel of a railcar presses 

harder on the rail?”   

 

Analogy provides a general mechanism for framing comparative analyses.  Using SME, an 

analogical reference frame is created to determine correspondences between either two systems, 

or different aspects of the same system.  These correspondences frame a comparative analysis 

Figure 11: A comparative analysis problem concerning aspects of the same system, "which wheel of the 
railcar presses harder on the rail?" 
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problem by defining what each parameter is compared against.    In problems with multiple 

systems, SME creates an analogy between the systems with one of them as the base and the other 

as the target.  In the case of single system problems, the system is compared with itself while 

constraining the entities being compared to match each other.  For instance, in the rail car 

problem from Figure 11, SME matches the scenario to itself but requires that Wheel-1181 

correspond with Wheel-1182. 

 

The analogical reference frame lines up quantities whose differences can be reasoned about via 

standard comparative analysis.  Returning to Figure 11, we want to find the CA value of the force 

applied to the rail at Wheel-1181 through a comparison with its corresponding quantity, the 

force applied to the rail at Wheel-1182.  The causal models indicate that the force on each 

wheel is inversely qualitatively proportional to the distance between the surface of the boulder in 

contact with the cart and that wheel.  Since the two distances are aligned by the analogical 

reference frame, we determine that the CA value for the distance concerning Wheel-1181 is 

decreased.  Since the relationship to force is inversely qualitatively proportional this distance, the 

CA value for the force applied at Wheel-1181 is increased, i.e., Wheel-1182 is pressing 

harder on the rail.  Analogical reference frames are important because they allow a wider class of 

systems to be analyzed, since the correspondences between aspects of a problem are computed 

dynamically. 

 

4.5 Solving BMCT Problems via Analogy 

This section describes how sketch annotations, analogical model formulation, and analogical 
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reference frames come together to allow a Companion to solve BMCT problems from examples.  

Problems are presented as sketches of the situation and a query.  The session reasoner solves 

these problems using the AND/OR suggestion architecture from (Forbus & De Kleer 1994).  The 

problem-solving knowledge consists of 19 methods and 136 backchaining rules.  The entire 

process is implemented on the Companions cognitive architecture with the following agent 

configuration: 

 

• Facilitator: Manages sessions, starts up other agents, and helps set up communication 

channels between agents. 

• Session Manager: Provides generic facilities for user interaction, including startup, 

shutdown, and making queries 

• Sketching Agent: Provides an interface between sKEA and other Companion’s agents 

• Session Reasoner: Responsible for the domain reasoning, in this case solving BMCT 

problems. 

• Similarity-based Retriever: Provides analogical remindings to the session reasoner based 

upon the current contents of working memory. 

 

The agent architecture allows specialized reasoning to be distributed to different agents across 

the entire Companion.  For example, when the session is started, subscriptions brokered by the 

Facilitator are set up between the Session Reasoner and the Retriever, so that the Retriever 

receives updates in the Session Reasoner’s working memory.  Using these updates, the Retriever 

runs MAC/FAC to retrieve a case from its case library as an analogical match to the working 



62 
 
memory contents of the Session Reasoner.  When the user makes changes to the sketch altering 

the Sketching Agent’s working memory, subscriptions update the working memory contents in 

the Session Reasoner.  These brokered subscriptions basically become remote procedure calls 

once set up: If the Session Reasoner needs to know the distance between two points, the query is 

automatically forwarded to the Sketching Agent, which measures the distance on the sketch and 

sends the result back to the Session Reasoner. 

 

Solving BMCT problems using analogical model formulation involves three steps.  First, the 

Companion retrieves a relevant example.  Second, the Companion creates a scenario model 

based upon the example using analogical model formulation.  Third, the Companion uses the 

model to compute the answer.  Figure 12 shows how analogical model formulation is implemented 

on the Companion cognitive architecture. 

 

 

Figure 12: Solving BMCT problems on a Companion 

The Session Reasoner performs the majority of the reasoning.  It relies on the Retriever to find 
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relevant analogs, and the Sketching Agent to perform visual quantity measurements.   In addition 

to running sKEA, the Sketching Agent also maintains the concept map used in example entry. 

 

As previously discussed, there are two types of questions on the BMCT: outcome questions and 

comparative analysis (CA) questions.  Figure 13 contains an example of each type and the 

associated query stored with each problem.  The predicate of the query indicates the type of 

problem.  Because the ball problem is a single situation, it is sketched on a single layer.  The 

predicate solveQMOneSketchProblem designates that this is an outcome question.  The 

first argument is the query for the outcome question, “what is the net force on the ball?”  In CA 

problems with comparisons between scenarios, the sketch consists of two layers, one for each 

scenario (e.g., one layer for each wheelbarrow).  The predicate of the query in the wheelbarrow 

problem, solveCAProblem, indicates that this is a comparative analysis problem.  The first 

argument is the context containing the facts representing the sketch.  The next two arguments are 

the objects being compared, in the case the wheelbarrows.  The next argument is the quantity 

being compared between these situations, the force applied to the handle of the top wheelbarrow.  

The last argument is the answer, which is the CA value indicating the change in the quantity 

from one situation to the other.  The correct answer to this problem is increasing (i.e., 

IncreasedCA) indicating that the force applied to the handle increases from the top 

wheelbarrow to the bottom wheelbarrow. 

  



64 
 
 

  
(solveQMOneSketchProblem  
 (and  
  (valueOf  
   ((QpQuantityFn XNetForce) 
       Ball-1301) 
   ?x-dir) 
  (valueOf  
   ((QpQuantityFn YNetForce) 
       Ball-1301) 
   ?y-dir))) 

(solveCAProblem 
  BMCT-S-1-MEK 
  Wheelbarrow-21 
  Wheelbarrow-22 
  ((QpQuantityFn                 
         ForceAppliedToSurfaceBy) 
    (ContactSurfaceFn Handle-7 
        (ContactObjectFn Handle-7)) 
    (ContactObjectFn Handle-7)) 
  ?value) 

Figure 13: BMCT problems and predicate calculus queries - "Which direction will the ball travel?" 
(Outcome Problem) and "Which wheelbarrow is easier to carry?" (CA Problem) 

 

4.5.1 Retrieve Analogous Example 

The first step of problem-solving is retrieving an analogous example.  The Companion does this 

for each layer in the problem sketch.  To retrieve a relevant example, the Retriever uses 

MAC/FAC to generate a reminding for the situation depicted by the layer.  MAC/FAC 

determines the most similar example from its case library using the situation with the low level 

visual properties removed (i.e.  visual groupings, glyph orientations, and relative sizes) as the 

probe.  For outcome problems, the first retrieval is used.  For CA questions, the retrieval must 

also contain candidate inferences that causally constrain the goal quantity.  For the wheelbarrow 

problem, the candidate inferences must include qualitative proportionalities constraining the 

force applied to Handle-7.  This is a useful heuristic, because without these candidate 
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inferences, the Companion will not be able to construct a useful scenario model for solving the 

problem.  Should the first retrieval prove unsatisfactory, a second retrieval is performed with the 

unsatisfactory case removed from the case library.  If that, too, fails, the low level visual 

properties are added back into the probe and up to two more retrieval attempts are made.  The 

multiple retrievals enable different aspects of the problem scenario (i.e. the conceptual and visual 

aspects) to guide the retrieval and mapping process. 

4.5.2 Perform Analogical Model Formulation 

As described in Section 4.3, analogical model formulation creates a scenario model for the 

problem, consisting of causal models, qualitative mechanics abstractions and relationships, and 

information regarding the measurement of visual quantities.  Consider for example the ball 

problem.  Analogical model formulation infers that the ball and the two people are instances of 

the collection RigidObject, and the ball touches-directly each of the people.  These 

facts allow the Companion to formulate a qualitative mechanics model of the problem using its 

domain theory and a standard model formulation algorithm.  This scenario model consists of two 

model fragments: XForceTransfer and YForceTransfer.  Turning to the wheelbarrow 

problem, the results of analogical model formulation for each situation are described in detail in 

Section 4.3.  For this particular problem, the qualitative proportionality between the force applied 

at the handle and the distance between the rock and the center of rotation is the crucial aspect of 

each resulting scenario model. 

4.5.3 Solving Outcome Problems 

Solving an outcome problem involves standard qualitative reasoning.  For example, in the ball 

problem, the Companion calculates the net force, down and to the right, from the consequences 
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of the force transfer model fragments. 

4.5.4 Solving Comparative analysis Problems 

Solving a comparative analysis problem requires the additional step of constructing an analogical 

reference frame.  The Companion uses the causal model and analogical reference frame to 

ascertain the relevant visual properties to compare.  These visual properties are measured and 

their numerical values compared to produce CA values for the causally independent parameters.  

These CA values are then propagated through the causal model to derive a CA value for the 

query parameter.  These problems can be quite difficult: One problem on the BMCT involves 

comparisons between aspects of three situations.  In this case, the Companion sets up three 

reference frames, one for each pair of situations, and carries out the same analysis for each 

reference frame in order to derive the correct answer 

4.5.4.1 Creating the Analogical Reference Frame 

As described in Section 4.4, the Companion creates an analogical reference frame for the 

problem.  It uses SME to create a mapping between the two scenarios, or the scenario with itself.  

In the latter case, the mapping is constrained by requiring a correspondence between the aspects 

of the scenarios being compared by the query.  The resulting correspondences indicate how 

quantities should be compared.  Specifically, the CA value for a parameter refers to a 

comparison between its value and that of the parameter corresponding to it in the mapping.  In 

the wheelbarrow problem, the Companion sets up the analogical reference frame by mapping the 

top wheelbarrow onto the bottom wheelbarrow. 
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4.5.4.2 Backward Chaining through the Causal Model 

Once the reference frame is set up, comparative analysis proceeds by chaining backward from 

the sought quantity through the causal model.  Non-visual quantities that are either not causally 

constrained by other parameters or are not known to be different are assumed to be the same 

across the scenarios, i.e., a CA value of unchanged.  For example, in the wheelbarrow problem in 

Figure 13, the Companion assumes that the rocks apply the same amount of force on the 

wheelbarrow’s bins because force applied is not a visual quantity.  CA values for visual 

quantities are computed by comparing measurements between the corresponding quantities in the 

sketch.  In the wheelbarrow problem, the Companion determines that the force applied on the 

handle is proportional to the distance from the rock to the wheelbarrow’s origin of rotation.  

Therefore, since the CA value for distance from the surface of the bin touching the rock to the 

wheelbarrow’s origin of rotation increases, the force applied on the handle also increases from 

the top wheelbarrow to the bottom wheelbarrow. 

4.5.4.3 Measuring Visual Quantities 

The Companion uses the Sketching Agent to measure visual quantities.  In this work, there are 

three types of visual quantities: DistanceBetweenSurfaces, DistanceToOrigin, and 

example-specific visual quantities defined by a linear annotation.  The 

DistanceBetweenSurfaces quantity represents the distance between two surfaces.  sKEA 

reduces each surface to a point by averaging the X and Y coordinates of the surface’s endpoints 

and computes the distance between these points.  The DistanceToOrigin quantity 

represents the distance from a surface to the center of rotation of the object the surface is on.  

The center of rotation is determined by two methods, each of which depends upon the results of 
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analogical model formulation.  First, the object may participate in the conceptual relationship, 

canPivotAround, with another object.  In this case, the surface between these objects would 

be the center of rotation.  Second, the object may be part of a conceptual glyph group.  In this 

case, if there is another glyph also in the group who is an instance of the collection Fulcrum, 

the centroid of this glyph is the center of rotation.  Example-specific visual quantities created by 

annotations are measured from the anchor points transferred via candidate inferences.  Linear 

annotations measure the distance between anchor points, while X-coordinate and Y-coordinate 

annotations measure distance between the anchor points along the appropriate axis. 

 

In the wheelbarrow problem, the Companion uses the causal model to determine that the distance 

to the origin of rotation from the surface on the wheelbarrow’s bin, defined by the contact with 

the rock, is a relevant visual quantity.  sKEA uses the ink of the bin and rock glyphs to determine 

the line segment of the bin which represents the surface.  sKEA averages the endpoints of this 

line segment to calculate one end of the distance measurement.  The center of rotation of this 

wheelbarrow depends upon the qualitative mechanics abstraction Fulcrum.  Because the 

wheelbarrow is a group glyph and the axle is an instance of the Fulcrum collection, the 

Companion selects the centroid of the axle as the center of rotation for the wheelbarrow.   Next, 

sKEA computes the distance between these points and provides the Session Reasoner with the 

results.  The same process occurs for the other wheelbarrow.  Recall that not only was the 

relevance of this quantity established via analogy, its measurement also depended upon the 

qualitative mechanics abstraction inferred during analogical model formulation. 
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4.6 Experiment 

The purpose of this experiment was to determine how well a Companion performs on problems 

from the Bennett Mechanical Comprehension Test using analogical model formulation.  A subset 

of the test was chosen to minimize domain encoding efforts and to focus on what could be 

achieved via analogical model formulation.  I selected 13 of the 68 problems on the BMCT, 

focusing on problems involving net force, revolution rate, stability, and smoothness of ride.  

Given that all of the problems include real world objects, this subset is an example of the 

everyday breath problem.  By including problems not handled by pre-existing qualitative 

mechanics theories, this subset is useful for evaluating the domain breadth problem as well. 

 

Eleven problems involved differential qualitative analyses, six of which involved phenomena not 

covered by the Companion’s qualitative mechanics domain theory.  The other two problems 

were outcome problems.  The experiment and analyses below provide evidence concerning three 

questions: 

 

1. Can a Companion using analogical model formulation solve Bennett Mechanical 

Comprehension Test questions?   

2. How does a Companion perform when the number of explanations increases?  This is 

important for assessing how well learning by adding examples scales. 

3. How well do the retrieval and mapping mechanisms perform?  That is, when there are 

errors, how often are these mechanisms the cause, as opposed to some other part of the 

system? 
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4.6.1 Method 

A central assumption concerning analogical model formulation is that intelligent agents have 

access to explanations of situations similar to the current problem.  These explanations may have 

been given to agent or just inferred from experience.  To model these explanations, a list of 18 

example situations was created.  15 examples were intended to be good analogs for specific test 

questions, with each problem from the BMCT subset having at least one relevant example.   The 

other three examples provided additional distracters.  Three graduate students, with varying 

degrees of familiarity with sKEA, served as knowledge enterers (KEs) to create the examples.  

Each example was described to the KEs by a short English phrase, e.g. “a tricycle”.   They were 

instructed to draw each example in two dimensions, avoiding perspective projections.  They 

were also instructed to break objects into separate glyphs whenever they were going to be 

referring to a named part in describing how that example worked.  For example, because a 

wheelbarrow is lifted at its handle and rotates around its axle, the handle and axle would be 

separate glyphs.  While drawing, they used sKEA’s conceptual labeling interface to apply 

appropriate domain abstractions from a list provided to them.  They also used sKEA’s 

visual/conceptual relationship interface to select relevant relationships.   KEs were also given a 

list of physical quantities that were relevant in this subset of the BMCT (i.e., smoothness of ride, 

revolution rate, and stability).  When one of these quantities was relevant, they were instructed to 

include it in their example, and explain what other properties of the system that it depends on, 

using annotation glyphs as necessary to define physical quantities in terms of visual 

measurements.  To evaluate their progress, they ran a standard qualitative mechanics model 

formulation system to derive model fragment instances.  If there were missing or inappropriate 
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instances of model fragments, they were encouraged to modify their sketch until they were 

satisfied with the model fragments generated.  For example, in a sketch depicting two meshed 

gears where one of the gears is rotating (as indicated by an annotation), the KE would know that 

something was wrong if there was no mention of torque transfer in the active model fragment 

list.  Once finished, each example sketch was stored in a case library for that particular KE. 

 

The 13 problems were drawn by a fourth graduate student, an experienced sKEA user.  The 

problem sketches did not include any qualitative mechanics structural abstractions or conceptual 

relationships.  Thus, all the problems required analogical model formulation to arrive at the 

correct answer.  Every answer the Companion provided had to be justified by its own model of 

the scenario.  No guessing was allowed. 

 

The problems were presented to the Companion in a series of seven trials.  In the first three trials, 

the Companion had access to each KE’s case library individually.  In the next three trials, the 

Companion was given each pair wise combination of case libraries, and in the final trial, the 

Companion had all the examples from the three cases libraries. 

 

While the 13 problems represent a subset of the test, they still cover a broad range of situations.  

The predicate calculus generated for the sketches of these problems contains 164 entities of 84 

different types.  These entities are related to each other by 37 unique relations.  The problem 

representations contain on average 182 facts, with the largest and smallest problems having 397 

and 40 facts respectively.  Because annotations and conceptual relationships were added to the 
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examples, the example representations are slightly larger, ranging from 52 to 467 facts with an 

average of 201.  They include 100 conceptual types and 212 unique relations. 

4.6.2 Results 

Library # of Correct 
Retrievals 
(out of 13) 

# of Correct 
Answers 

(out of 13) 
KE1 7 6 (p < .24) 
KE2 10 10 (p < .001) 
KE3 5 2 (p < .96) 
KE1+2 11 9 (p < .008) 
KE1+3 9 6 (p < .24) 
KE2+3 10 10 (p < .001) 
KE1+2+3 12 10 (p < .001) 

Table 3: Problem-solving results by case library 

A summary of the results appears in Table 3.  The correct retrieval column lists the number of 

times the system retrieved one of the appropriate analogues for the problem sketch.  Given the 

large number of distracters, 16 or 17 depending on the problem, all of the retrieval results are 

statistically significant (p < 0.001).  The correct answer column lists the number of times the 

system provided the correct answer.  In four of the seven trials, the Companion produced the 

correct answer on a statistically significant number of problems (P < 0.05).  Every problem was 

solved in at least one of the trials.  KE2 had the most experience with sKEA, leading to similar 

representations to the problems, and KE3 had the least experience, providing some serious 

variability.  Table 3 demonstrates that Companions can indeed solve BMCT problems via 

analogical model formulation: 77% correct, under the best conditions.  Furthermore, as the 

number of available examples grows, the Companion’s performance improves. Notice that every 

combination of KEs except for KE2+KE3 provides an improvement in correct retrievals. This is 

important because it means greater breadth can be achieved to some degree by increasing the 
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system’s experience.  A close inspection of the results reveals that in each of the combination 

trials, example sketches from at least two of the case libraries were used to formulate correct 

answers.  This indicates that the methods have some degree of robustness across examples 

entered by multiple people. 

Question Type (number) # Answers 
Produced 

# Correct 
Retrievals 

# Answers 
Correct 

BMCT Questions (91) 71 (78%) 65 (71%) 53 (58%) 
  Outcome Questions (14) 14 (100%) 10 (71%) 10 (71%) 
  CA Questions (77) 57 (74%) 55 (71%) 43 (56%) 
     Net Force Questions (35) 24 (68%) 23 (65%) 15 (42%) 
     Other Questions (42) 33 (78%) 32 (76%) 28 (66%) 

Table 4: Companion's performance by question type 

Table 4 looks at the same data, but broken down by question type, to get a better understanding of 

the Companion’s performance.  Overall, the Companion answered correctly 58% of the time 

across all problem/memory conditions.  However, since errors in the fixed components of the 

system have been ruled out via by-hand analysis, the difference between the number of answers 

produced (78%) and correct retrievals (71%) suggests that there are occasional problems in 

mapping or in using candidate inferences.  This was not the case for the outcome questions – if 

the retrieval was correct, the Companion derived the correct result.  Recall in outcome questions, 

the Companion always uses first analog retrieved.   Finding a criterion for testing the 

analogically derived model would make a difference here.  This problem was worse in the CA 

problems, despite the use of a relevance heuristic to filter retrievals.  In 20 of the CA questions 

(26%), the Companion was unable to find an example that causally constrained the sought 

quantity, and thus was unable to produce an answer.  Also, when the Companion retrieved a 

relevant example, it still missed 12 out of 55 problems (22%).  These failures are examined more 
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closely below. 

Analogical model formulation’s performance without a complete domain theory is evaluated by 

distinguishing between different types of CA questions.  In net force questions, the Companion 

transferred causal models from examples that were generated from the qualitative mechanics 

domain theory.  The Companion performed slightly worse on these problems averaged across all 

memory conditions.  It retrieved a relevant example 65% of the time and answered the problem 

correctly on 42% of the problems across all memory conditions.  The other questions concern the 

phenomena not covered in the Companion’s qualitative mechanics domain theory: stability, 

revolution rate, and ride smoothness.  The causal models required to solve these problems were 

defined in an example-specific manner via linear annotations.  The Companion answered 66% of 

these problems correctly across all memory conditions, supporting the hypothesis that analogical 

model formulation is a promising approach to addressing the domain breadth problem posed by 

the BMCT. 

To better evaluate the retrieval heuristic used in CA problems, Table 5 organizes the CA results 

based upon which retrieval strategy produced the answer.  While the majority of the answers 

were based upon the first retrieval, 24 answers across all memory conditions required additional 

retrievals.  Of these, the Companion retrieved an appropriate analogue 22 times and answered the 

question correctly 15 times.  These results support the hypothesis that the retrieval method is 

useful in for solving BMCT problems from examples. 
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CA Retrieval Strategy Type # Uses # Correct 
Retrieval 

# Correct 
Answer 

1st retrieval: No spatial 
relations, full case library 

33 32 28 

2nd retrieval: No spatial 
relations, case library – 1st 
retrieval 

5 5 3 

3rd retrieval:  including 
spatial relations, full case 
library 

11 11 8 

4th retrieval: including 
spatial relations, case 
library – 3rd retrieval 

8 6 4 

Total: 57 54 43 

Table 5: CA results by retrieval number and strategy 

4.6.3 Analysis of failures 

It is useful to understand why systems fail.  First, failures in outcome problems are analyzed 

followed by a discussion of the failures in CA problems. 

 

The four failures on outcome problems occurred because the Companion failed to retrieve the 

correct example from memory.  The Companion confused a gear rotating inside another gear 

with two gears rotating side by side, due to annotation glyph placement.  This results in incorrect 

qualitative mechanics abstractions and relationships being assumed in the problem, which in turn 

leads to the Companion constructing an incorrect scenario model.  Currently, the problem 

solving method does not have a method for evaluating the retrieval on outcome problems.  

People seem to handle this problem by recognizing contradictions in their reasoning.  

Recognizing contradictions is difficult in analogical model formulation because the mapping 

with the example is assumed to provide the correct structural abstraction and conceptual 
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relationships.  A promising direction for overcoming this problem is to explore ways of 

combining reasoning from multiple examples. 

 

The failures on CA problems occurred during both the retrieval and mapping stages of the 

algorithm.  As noted above, the retrieval must yield a mapping which causally constrains the 

quantity in question.  For 20 of the 77 problem/memory condition pairs, such an example could 

not be found.  Frequently, this was because the KEs sketched the example at a different level of 

abstraction than the problem.  Even when an example is found that constrains the goal quantity, 

there are still two failure modes for mapping.  First, the causal model may include surfaces or 

objects which do not exist in the problem sketch.  Figure 14 illustrates this problem.  The problem 

sketch contains glyphs for the ground and the axle, but the example does not.  Furthermore, the 

chassis in the problem sketch is conceptually labeled as a leg in the example.  While SME 

handles incomplete matches, significant differences in depiction, such as divergence in number 

of glyphs, can cause mapping failures.   In this case, the bin in the example maps to the chassis in 

the problem.  The candidate inferences postulate surfaces and/or glyphs that do not exist (e.g, the 

surface between the boulder and the chassis), which sKEA is unable to reason about.  The 

Companion fails whenever a candidate inference for a necessary causal relationship includes 

references to either surfaces or glyphs that do not exist.   

 

The second kind of mapping failures in CA problems are errors in measurements of user defined 

visual quantities.  When measuring the wheel diameter in the problem scenario of Figure 14, if the 

wheel in the example was mapped to the axle in the problem, then the visual measurement for 
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the wheel diameter would be the width of the axle in the problem.  These mapping failures lead 

the Companion to produce incorrect answers.  

 
 

Figure 14: Example wheelbarrow (left) and problem wheelbarrow (right) 

People seem to have several methods for dealing with such problems.  First, they try other 

examples, going back to memory to find an example that is more productive.  A simple version 

of this is already implemented in the retrieval method.  Also, people use rerepresentation (Yan et 

al. 2003) to bring the base and target into closer alignment.  Knowledge about depiction seems 

crucial: If two sketches are misaligned, simplifying the more complex one, or postulating new 

glyphs in the simplified one, seems to be a promising strategy. 

 

As illustrated in Table 5, the Companion performed slightly worse on net force CA problems 

which relied on causal models generated by its qualitative mechanics domain theory than on 

problems which relied upon example-specific causal models.  These causal models from the 

qualitative mechanics domain theory were larger which increases the likelihood of mapping 

failures.  The net force causal models contained more entities than the example-specific causal 

models.  This is evident in the example wheelbarrow in Figure 14.  The causal model concerning 

the force applied at the handle references the following entities: Handle-4, 
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(ContactObjectFn Object-4), Rock-7, Bin-3, and Wheel-5.  All five of these 

objects must map appropriately to the problem to create the necessary scenario model.  On the 

other hand, the example-specific explanation for the wheelbarrow’s ride smoothness references 

only two entities: Wheel-5 and Wheelbarrow-12.  While the causal models concerning net 

force CA problems are more complex, the Companion does have access to a qualitative 

mechanics domain theory.  One avenue for future work is to develop a theory which uses the 

first-principles explanation to verify and repair these analogically inferred causal models. 

4.7 Summary and Future Directions 

In this chapter, I have argued that qualitative reasoning combined with analogical processing is a 

promising avenue for addressing the problems of domain breadth and everyday breadth that must 

be solved for human-like reasoning.  The Companion’s performance on a subset of the Bennett 

Mechanical Comprehension Test provides important evidence for this claim.  Analogical model 

formulation enables a Companion to build scenario models over a broad range of input 

descriptions, even with an incomplete domain theory.  Sketch annotations provide a means for 

defining visual quantities in examples, which can be used in example-specific causal 

explanations and applied via analogy to new situations.  This extends the Companion’s reach by 

enabling it to reason about phenomena for which it does not have a corresponding domain 

theory.  Analogical reference frames extend the scope of comparative analysis to include the 

types of problems found on the BMCT. 

 

This work opens a number of promising directions for future research.  Within the analogical 

model formulation framework, there are two important places for improvement: learning 
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evaluation rules for analogical inferences and representation to improve mappings.  As indicated 

in the results section, more methods for evaluating analogical inferences would have benefitted 

analogical model formulation on outcome problems.  Specifically, as an agent accumulates 

multiple examples of a scenario, there is the potential to abstract commonalities between them.  

For example, regarding analogical inferences concerning the qualitative mechanics abstractions 

and relationships, one could observe that qualitative mechanics abstraction touches-

directly only occurs when the glyphs representing the two objects spatially intersect.  

Therefore, when the system encounters an analogical inference suggesting this relationship for 

two objects, it could reject the inference.  This knowledge could also be a trigger for 

rerepresentation (Yan et al. 2003).  Similar relationships between objects result in the model 

fragments for net force CA problems, such as the problem wheelbarrow in Figure 14.  Recall that 

this problem failed because the mapping resulted in a causal model which included a non-

existent surface between the boulder and the chassis of the wheelbarrow.  One strategy would be 

to merge glyphs in the problem until the proper spatial relationship held for the analogically 

inferred qualitative mechanics relationship.  For example, merging the chassis with the bin 

would create a spatial intersection between with the boulder.  This intersection would then allow 

the Companion to reason inferred causal model.  This repair would allow the Companion to 

successfully reason about a problem scenario where analogical model formulation initially 

produced a flawed model. 

 

Another direction for future research on analogical model formulation is to explore how new 

abstract domain theories are learned from examples.  In this work, the majority of the 
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Companion’s domain knowledge is in either examples or the qualitative mechanics domain 

theory.  A common hypothesis in cognitive science is that people are able to generalize from 

examples into a more abstract domain theory.  Taking the examples from this work, the 

Companion could create generalizations across causal models concerning the same quantities.  

This could lead to rules such as “things with wider bases are more stable.”  There are still many 

open questions regarding how this knowledge gets formed and how it is applied in future 

problem-solving episodes. 

 

An important aspect of this evaluation is using the multi-modal reasoning requirement of the 

BMCT.  While sketch annotations provided an excellent way to tie visual and conceptual 

information together in sketches, the linear distance annotations are tied to the reference glyphs 

by anchor points.  While the nine anchor points were sufficient for this work, experience with 

everyday sketch points out a number of other important areas.  Ink intersections, either within an 

individual or between a pair of glyphs, represent an additional type of reference point.  Also, 

additional research is required to understand the types of annotations which are used in everyday 

sketching.  For example, sketches of simple machines frequently include hashing to indicate 

solid regions and sketches of military plans include circles indicating regions of importance.  An 

important lesson from this work is that qualitative representations provide a useful bridge 

between symbolic representations necessary for analogy and complex reasoning and the spatial 

representation given as input in the problem. 

 

By employing the BMCT to evaluate the system, this work falls within the umbrella of 
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Psychometric AI (Bringsjord & Schimanski 2003).  Psychometric AI holds human intelligence 

tests as an important progress meter for AI.  Building a system that could ace the BMCT would 

be a substantial achievement.  While tests are an important way for measuring progress, how the 

system accomplishes its performance is of particular interest to the AI and cognitive science 

community.  In this work, analogical processing, comparative analysis, qualitative reasoning and 

sketch understanding all played integral roles in achieving this result.  Continuing in this 

direction, the next chapter describes how a Companion uses analogical model formulation to 

solve AP Physics problems. 

 

To overcome the brittleness of AI systems, the robustness and flexibility of the system is very 

important.  In this evaluation, robustness was evaluated by having multiple knowledge enterers 

provide the Companion with a broad range of inputs.  A failure analysis indicated some of the 

representational differences that are difficult for the Companion to overcome. Specifically, 

analogical model formulation was insufficient when the situations were depicted at different 

levels of abstraction.  This motivates future work to incorporate rerepesentation strategies (Yan 

et al. 2003) to better align the sketches.  Also, the Companion’s performance as measured with 

different combinations of examples provides information concerning the robustness with both 

good and bad examples.  In the next chapter, two other measures of robustness are employed: 

external evaluation and systematic differences between problems and examples. 
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5 AP Physics problem-solving with analogical model formulation 

 

This chapter describes how the same method, analogical model formulation, allows a Companion 

to solve Advanced Placement (AP) Physics problems designed by the Educational Testing 

Service (ETS).  Physics problem-solving is an important domain for moving beyond traditional 

approaches for model formulation, because, as on the BMCT, the problems are presented as 

everyday scenarios.  While the BMCT included spatial reasoning, physics problems include 

quantitative as well as qualitative reasoning.  Figure 15 provides four examples, illustrating types 

of problems that the system learns to solve.  Natural language understanding is factored out by 

using predicate calculus problem descriptions.  Unlike previous systems such as MECHO 

(Bundy 1979) or ISSAC (Novak 1977), this translation process leaves everyday concepts in 

place.  That is, balls, buildings, astronauts, boxes, baseball bats, flying, falling, and pulling all 

appear in the formal problem descriptions3.  Therefore, one must still overcome the everyday 

breadth problem to determine the relevant abstractions and assumptions for each physics 

problem.  The generalizations in any commonsense ontology are unlikely to provide much help: 

cats, coins, and pianos can all be considered as point masses in particular situations, but they are 

not likely to be closely related in any non-trivial ontology.  Furthermore, modeling decisions are 

contextual.  For example, a coin falling off a building can be considered to be a point mass.  But 

the exact same coin spinning on a table cannot be considered a point mass since its shape and 

size must be considered. 

                                                 
3 The subset of the ResearchCyc ontology used in this work contains over 30,000 concepts.  See research.cyc.com 
for details.   
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While complex, there is ample evidence that people are able to solve physics problems stated in 

everyday terms.  The problems used throughout this work were generated by the Educational 

Testing Service, which administers the AP Physics examination in the United States.  High 

school students take the AP Physics exam for college credit.  Students’ performance on this 

exam indicates that they do learn to categorize everyday objects in terms of domain abstractions, 

determine what equations are relevant, infer parameter values from scenarios, and assume default 

circumstances when necessary.  The problems used in this work were generated automatically, 

from templates.  The four problems, one from each problem type, shown in Figure 15 represent 

roughly 20% of the typical Mechanics portion of the AP Physics examination. 

 

Characterizing how well learned knowledge is transferred to new problems is complex.  One 

way involves identifying different transfer levels, each representing a particular type of 

relationship between a known source problem and a novel target problem.  This research uses an 

1. A ball is released from rest from the top of a 200m tall building on Earth and falls to the ground.  If air resistance 
is negligible, which of the following is most nearly equal to the distance the ball falls during the first 4s after it is 
released? (a) 20m; (b) 40m; (c) 80m; (d) 160m. 

2. An astronaut on a planet with no atmosphere throws a baseball bat upward from near ground level with an initial 
speed of 4.0m/s.  If the baseball bat rises to a maximum height of 5.0m, what is the acceleration due to gravity on 
this planet? (a) 0.8m/s2; (b) 1.2m/s2; (c) 1.6m/s2; (d) 20m/s2; 

3. A box of mass 8kg is at rest on the floor when it is pulled vertically upward by a cord attached to the object.  If 
the tension in the cord is 104N, which of the following describes the motion, if any, of the box? (a) It does not 
move; (b) It moves upward with constant velocity; (c) It moves upward with increasing velocity but constant 
acceleration; (d) It moves upward with increasing velocity and increasing acceleration. 

4. A block of mass M is released from rest at the top of an inclined plane, which has length L and makes an angle q 
with the horizontal.  Although there is friction between the block and the plane, the block slides with increasing 
speed.  If the block has speed v when it reaches the bottom of the plane, what is the magnitude of the frictional 
force on the block as it slides?  (a) f = Mgsin(q); (b) f = Mgcos(q); (c) f = MgLsin(q)- ½Mv2 ;(d) f = [MgLsin(q)- 
½Mv2]/L. 

 Figure 15: Example AP Physics problems of the four types used in this work 
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externally-developed set of six transfer levels4.  Using Problem 1 from Figure 15 as an example of 

a source problem, the following are representative examples of the six transfer levels: 

 

A ball is released from rest from the top of a 200m tall building on Earth and falls to the 

ground.  If air resistance is negligible, which of the following is most nearly equal to the 

distance the ball falls during the first 4s after it is released? 

   

1. Parameterization: Target problem has different parameter values, but the qualitative outcome 

is the same.   

A ball is released from rest from the top of a 500m tall building on Earth and falls to the 

ground.  If air resistance is negligible, which of the following is most nearly equal to the 

distance the ball falls during the first 3s after it is released? 

2. Extrapolation:  Target problem has parameter values that are so different that the qualitative 

outcome changes as well. 

A ball is released from rest from the top of an 80m tall building on Earth and falls to the 

ground.  If air resistance is negligible, which of the following is most nearly equal to the 

distance the ball falls during the first 5s after it is released? 

3. Restructuring: The target problem asks for a different parameter. 

A ball is released from rest from the top of a 200m tall building on Earth and falls to the 

ground.  If air resistance is negligible, how long does it take to fall 80m? 

4. Extending: The target problem includes distracting information. 

                                                 
4 These levels are from a 10-level catalog of transfer tasks used in DARPA’s Transfer Learning Program. 
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A ball with density 5Nm/kg is released from rest from the top of a 100m tall building on 

Earth and falls to the ground.  If air resistance is negligible, which of the following is 

most nearly equal to the distance the ball falls during the first 4s after it is released? 

5. Restyling: The target problem involves different types of everyday objects. 

A crate is dropped off the edge of a 100m cliff on Earth and falls to the ground.  If air 

resistance is negligible, which of the following is most nearly equal to the distance the 

crate falls during the first 4s after it is released? 

6. Composing:  The target problem requires combining concepts from two different base 

problems. 

An astronaut on a planet with no atmosphere throws a ball upward from near ground 

level with an initial speed of 4.0m/s.  The ball rises to a maximum height of 5.0m before 

returning to the astronaut who then drops the ball from the top of a 100m tall building.  If 

air resistance is negligible, which of the following is most nearly equal to the distance the 

ball falls during the first 4s after it is released?   (Composed the Source Problem with 

Problem 2 from Figure 15) 

 

The rest of this chapter describes how a Companion using analogical model formulation solves 

AP Physics style problems, across these six transfer levels.  While in the previous chapter 

example sketches formed the basis of the explanations for analogical model formulation, here I 

introduce worked solutions.  These are worked through example problems at the level of detail a 

student would encounter in a textbook.  A central hypothesis in analogical model formulation is 

that it allows for robust problem-solving in everyday scenarios.  One measure of robustness 
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comes directly from the transfer levels themselves.  Using worked solutions as explanations to 

source problems, performance on problems from each transfer level provides a systematic 

empirical measurement of the ability of adapt explanations to new situations.  Additionally, the 

system was initially evaluated externally by the Educational Testing Service.  This hands-off 

evaluation provides additional evidence regarding the robustness of the system. 

 

This chapter is organized as follows.  After a brief summary of the Companions agents employed 

here, the representations used in this work and how they were created is presented.  This is 

followed by characterizing the model formulation challenges in AP Physics and highlighting 

how analogy can solve these problems.  Then the analogical problem-solving method is 

described in detail.  Next, the results of an experiment administered by ETS are presented in 

which a Companion using analogical model formulation achieved a 63.8% initial improvement 

across the six transfer levels.  This is followed by a detailed analysis indicating that most 

problem-solving failures were caused by human errors in the implementation and 

representations, and not due to analogical model formulation.  After addressing these issues, a 

second experiment was performed in which the Companion achieved an initial improvement of 

95.8% averaged across the six transfer levels.  A final analysis is presented which evaluates this 

problem-solving method as a cognitive model.  After the experiments, there is a discussion of 

future directions based upon these results. 

5.1 Companions Cognitive Architecture 

Once again, analogical model formulation is implemented on the Companions Cognitive 

Architecture.  Because this work involved an external evaluation and did not involve sketching, a 
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slightly different configuration of agents was employed.  For these experiments, the following 

agents were used: 

 

• Session Manager: Provides facilities for user interaction 

• Facilitator: Manages sessions and directs communications between agents 

• Executive: Monitors the Companion's responsibilities and delegates work to the 

appropriate agents (e.g. follows scripts describing experiments, records quiz results, 

checkpoints KBs, etc.) 

• Session Reasoner:  Performs domain reasoning, in this case physics problem-solving 

• Similarity-based Retriever: Provides examples to the Session Reasoner based upon 

similarity to the current problem.  

 

The primary addition for this work is the Executive.  In this configuration, new problems can be 

given either incrementally through the Session Manager or through a script describing an 

experiment uploaded to the Executive.  This allowed the external evaluation team at the 

Educational Testing Service to initiate batch experiments.  When the executive finished with the 

experiments, it would send the results back to the Session Manager running on a machine at 

ETS. 

5.2 Representations of Problems and Worked Solutions 

When students study for the AP Physics exam, one important way they learn is by doing problem 

sets.  For feedback, students often get worked solutions.  These step-by-step explanations are 

always used in textbooks to illustrate problem-solving.  Worked solutions are typically 
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incomplete, outlining steps abstractly rather than at the level of detail found in a proof.  The 

system is designed to use worked solutions as examples to formulate models of new problems.  

As in the BMCT experiment, all of the representations used in this work are in CycL, the 

predicate calculus language of the ResearchCyc KB (Matuszek et al. 2006). These 

representations factored out the problem of natural language understanding, while maintaining 

the incomplete nature of worked solutions and the everyday scenarios in the physics problems.  

The ResearchCyc ontology is especially useful for representing physics problems and worked 

solutions because it includes over 30,000 distinct types of entities, over 8,000 relationships and 

functions, and 1.2 million facts constraining them.  Thus, the everyday concepts that appear in 

physics problems like “astronaut” and “dropping” are already defined for us, rather than us 

generating them specifically for this project. 

 

In addition to the templates used to create the problems in Figure 15, ETS and Cycorp developed 

templates to generate problems and worked solutions representing each transfer level.  

Consequently, all the problems and worked solutions in this evaluation were created externally.  

The representations of the 460 physics problems used in this evaluation contained 4,973 

instances from 108 conceptual types and 103 unique relations.  When including the worked 

solutions, the representations include 11,230 instances from 110 types and 144 relations.  After 

describing the worked solution conventions, an example problem and worked solution are 

presented for concreteness. 

5.2.1 Constructing Worked Solutions 

Using physics textbooks as a guide, a classification of physics example step types was developed 
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in collaboration with ontologists at Cycorp.  While this list is unlikely to be exhaustive, it was 

sufficient to cover the worked solutions to the problems in this work, as well as the worked 

solutions to the physics problems in Chapter 7 of this dissertation. 

 

• Categorize the physics problem: Given that examples appear in certain sections of 

physics textbooks, this is the first step of each worked solution.  The results of this step 

are statements placing the problem in an ontology of physics problem types.  (e.g. 

Recognizing a problem as a linear kinematics problem and an incline plane problem. 

• Instantiate a physics equation: These steps were for when an equation was written out in 

an example.  The result was an equation tied directly to entities in the problem.   (e.g. the 

acceleration of a ball is equal to its change in velocity over the duration of an interval.) 

• Determine a quantity value from the situation: These steps involve assumptions based 

upon the situation.  (e.g. Assuming a falling ball is accelerating at 10 m/s2) 

• Divide a whole into the sum of its parts: This step involves taking a compound quantity 

and breaking it into its component pieces.  (e.g. Dividing the net force on an object its 

component forces) 

• Solving a physics equation: This step computes the value of a particular quantity using an 

instantiated equation.  (e.g. Given f=10N and m=1kg, solve for a in f=ma) 

• Sanity check a solution: This step checks to make sure a computed answer is consistent 

with the rest of the scenario.  (e.g. If the computed distance a ball falls off a 100m 

building is 150m, then this step would say that the ball actually fell only 100m)  

• Select the appropriate multiple choice answer: This is the final step of each worked 
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solution.  Here the computed answers are used to select the correct multiple choice 

answer. (e.g. given a computed answer of 79.5m the answer choices a) 40m, b) 60m, c) 

80m and d) 100m, the correct answer would be ‘c’.) 

 

Worked solutions are sequences of steps.  In addition to type information, each step has 

preconditions and results.  The preconditions are a collection of facts from the problem and 

background knowledge used in the step.  These provide the context of the solution step.  The 

results are facts which are known as a result of the step. 

5.2.2 Example Problem and Worked Solution 

The problem representations are intended to be direct translations into predicate calculus from 

natural language problem statements, without any abstraction or reasoning.  Figure 16 shows a 

subset of the 37 facts used to represent Problem 2 from Figure 15.  The facts in Figure 16 define the 

planet with no atmosphere, the astronaut throwing the bat and the question asking for the 

gravitational force of the planet.  The average number of facts for each problem is 44. 

 

 

The worked solutions are predicate calculus representations of the example problems found in 

textbooks.  They are not deductive proofs, nor problem-solving traces of the operations of the 

Figure 16: Part of the representation of Problem 2 (simplified for readability) 

… 
(isa Throwing-1 ThrowingAnObject) 
(isa Astronaut-1 Astronaut) 
(isa Planet-1 Planet) 
(isa BaseballBat-1 BaseballBat) 
(groundOf Planet-1 Ground-1) 
(performedBy Throwing-1 Astronaut-1) 
(no-GenQuantRelnFrom in-ImmersedFully Planet-1 Atmosphere) 
(eventOccursNear Throwing-1 Ground-1) 
(objectThrown Throwing-1 BaseballBat-1)  
(querySentenceOfQuery Query-1 (valueOf (AccGravityFn Planet-1) Acc-1)) 
 



91 
 
Companion.  They leave out many steps and characterize problem-solving operations in very 

general ways.  Here is an English rendering of the worked solution for Problem 2 from Figure 15:    

 

1. Categorize the physics problem:  The problem is a distance-velocity problem under 

constant acceleration  

2. Instantiate a physics equation:  Instantiate the distance-velocity equation specific to the 

quantities of this problem (e.g. the bat and the upward motion event)  (Vf
2 = Vi

2 + 2ad)  

3. Determine a quantity value from the situation: Given the projectile motion of the bat, lack 

of atmosphere, and the maximum altitude of bat, infer that the acceleration of the bat is 

equal to the acceleration due to the gravity of the planet (a = g), the distance the bat 

travels during the upward motion event (d = 5m) and that the bat is not moving at the 

maximum height (Vf = 0m/s) 

4. Solving a physics equation:  Use the assumed values and the given parameters to solve 

the equation for the acceleration due to gravity (g = -1.6m/s2) 

5. Sanity check a solution:  Determine if there is a relevant boundary condition, i.e., 

ascertain that the answer is consistent the scenario. (g = -1.6m/s2) 

6. Select the appropriate multiple choice answer:  Select the appropriate multiple choice 

answer (“c”) 

 

The predicate calculus version of this worked solution consists of 104 facts.   
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Figure 17 shows part of the representation for Step 3.  The first fact indicates that this is 

determining value from the situation step.  The stepUses statements give the preconditions for 

the step.  The subset of stepUses statements displayed here state that there is no atmosphere 

on the planet, the throwing event occurs near the ground and that the bat is the object moving in 

the upward movement event.  The last three facts contain the results of this step, which are 

values for specific parameters:  the speed of the bat at the end of the upward movement event, 

the distance that bat travels during this event and the bat’s acceleration during this event.  Figure 

16 and Figure 17 as well as the rest of the figures in this section use simplified entity, predicate and 

function names to improve the readability of the predicate calculus.  The complete 

representations for the problem and worked solution of Problem 2 appear in Appendix A.  The 

average number of facts across all the worked solutions is 163. 

5.3 Analogical Model Formulation for AP Physics 

Solving physics problems typically requires four types of modeling decisions: relevance 

reasoning, quantity value assumptions, default circumstances, and modeling abstractions.  This 

Figure 17: Problem 2 worked solution Step 3 (simplified for readability) 

(stepType Step3 DeterminingValueFromContext) 
(stepUses Step3 (isa Throwing-1 ThrowingAnObject)) 
(stepUses Step3 (occursNear Throwing-1 Ground-1)) 
(stepUses Step3  

(no-GenQuantRelnFrom in-ImmersedFully Planet-1 Atmosphere)) 
(stepUses Step3 (objectMoving Upward-1 BaseballBat-1)) 
(stepUses Step3 (direction Upward-1 Up-Directly)) 
...  
(stepResult Step3  
   (valueOf  
      (AtFn ((QPQuantityFn Speed) BaseballBat-1) (EndFn Upward-1)) 
      (MetersPerSecond 0))) 
(stepResult Step3  
   (valueOf ((QPQuantityFn DistanceTravelled) BaseballBat-1 Upward-1) 

(Meter 3))) 
(stepResult Step3 
   (valueOf (AtFn ((QPQuantityFn Acceleration) BaseballBat-1) Upward-1) 

((QPQuantityFn AccelerationDueToGravity) Planet-1))) 
 



93 
 
section describes each of these in turn and how analogical model formulation uses worked 

solutions to make modeling decisions in new problems, without a complete domain theory. 

 

Relevance reasoning in physics problem-solving determines which equations are applicable for a 

given situation.  Even in a relatively constrained domain like AP Physics, the number of 

potentially relevant equations can be quite large, due to specialized forms.  For example, while 

solving Problem 2, it would be a mistake for a system to consider magnetic forces on the 

baseball bat.  Efficient problem-solvers must first determine which equations are relevant.  

Analogical model formulation uses the insight that similar problems are likely to involve similar 

equations.  All the equations for physics phenomena applied to a problem are found by searching 

the candidate inferences produced by the analogy between the new problem and worked 

solution(s).   

 

Quantity value assumptions occur when the problem-solver infers a parameter value from the 

scenario.  For instance, in Problem 2, the problem-solver must recognize that the distance the 

baseball bat travels is 5m and that its velocity at the end of the upward motion event is 0m/s.  

Neither of these facts is given explicitly in the problem.  While the velocity at the end of the 

upward motion event could be derived via calculus or a qualitative model, the distance the bat 

travels is necessarily an approximation, because the scenario description states that the throwing 

event occurs “near ground level” and the maximum altitude of the bat is 5m. Analogical model 

formulation uses candidate inferences to suggest quantity values via analogy. 
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Physics problems frequently require problem-solvers to assume certain circumstances by default.  

The most common of these in AP Physics is to assume that events happen on Earth and are 

subject to Earth’s gravity.   For example, Problem 3, the lifting box problem, requires this 

assumption to determine the net force on the box.  Again, analogical model formulation relies on 

candidate inferences to find such default circumstances. 

 

The last type of modeling decision involves categorizing everyday objects as abstractions.  When 

reasoning with a domain theory defined in abstract terms, it is necessary to move from the 

everyday objects and events to this abstract vocabulary.  This is another form of relevance 

reasoning, because abstractions are a way of framing the problem in terms of what phenomena 

should be considered.  Given the problem of a ball falling off the building, a problem-solver 

would likely abstract the ball into a point mass and not an electrical particle, thus, pruning the 

search space to the appropriate equations and relevant assumptions.  As indicated above, the 

relevant equations and assumptions are suggested via analogy.  Therefore abstraction modeling 

decisions are implicit in the other modeling decisions made by analogical model formulation 

5.3.1 Example of Modeling Decisions via Analogy 

This section shows how a Companion uses analogical model formulation to make these 

modeling decisions for the following restyling variation of Problem 2 from Figure 15: 

“A physicist on an asteroid with no atmosphere throws a spoon upward from near 

ground level with an initial speed of 4.0 m/s.  If the spoon rises to a maximum height of 

5.0 m, what is the acceleration due to gravity on this asteroid? (a) 0.8 m/s2; (b) 1.2 m/s2; 
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(c) 1.6 m/s2; (d) 20 m/s2” 

First, the Similarity-based Retriever, using MAC/FAC, provides the worked solution to Problem 

2 (outlined in Section 2.1) as a reminding.  Then, the Session Reasoner uses SME to create an 

analogy with this reminding as the base and the new problem as the target.  The most relevant 

correspondences from the best mapping are summarized in Table 6.  Recall that candidate 

inferences are expressions from the base (here, the worked solution) that are conjectured to hold 

in the target, by virtue of the mapping’s correspondences.  A number of these are stepUses or 

stepResult statements representing worked solution steps and their contexts.  These suggest 

modeling decisions applicable for the problem.  Analogical model formulation draws upon these 

candidate inferences to incrementally build a scenario model for the problem. 

 

Worked Solution Item Problem Scenario Item 

Planet-1 Asteroid-5 

BaseballBat-1 Spoon-5 

Astronaut-1 Physicist-5 

Upward-1 Upward-5 

(StartFn Upward-1) (StartFn Upward-5) 

(EndFn Upward-1) (EndFn Upward-5) 

... ... 

 Table 6: Correspondences between the worked solution and the problem scenario 

As an example of relevance reasoning, Step 2 of the worked solution contains the equation Vf
2 = 

V i
2 + 2ad in terms of the baseball bat and its upward movement event.  The candidate inferences 

generated from this step include a corresponding equation with the quantities Vf
 , Vi, a, and d in 
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terms of the problem entities: Spoon-5 and Upward-5.  Analogical model formulation 

includes this equation in the model for the problem. 

 

Analogical model formulation handles decisions concerning quantity value assumptions and 

default circumstances in the same manner.  The determining value from situation worked 

solution step type indicates one of these assumptions.  As a result of the analogical mapping, 

these steps appear as candidate inferences in the problem.  These candidate inferences suggest 

quantity value and default circumstance assumptions in the problem.  In this mapping, the 

candidate inferences suggest that the velocity of the spoon at the end of its upward movement is 

zero, the distance the spoon travels during the upward movement event is 3 meters, and the 

acceleration of spoon during the upward movement event is the acceleration due to gravity of the 

asteroid.  While default circumstances do not occur in this example, they are represented in the 

same way in worked solutions and handled by analogical model formulation in the same manner. 

 

To provide a stringent test of analogical model formulation from examples, the only modeling 

knowledge the system has concerns heuristics for evaluating candidate inferences.  Importantly, 

the system has no general knowledge of physics equations, quantity values, or default 

circumstances.  Without a reminding, it cannot solve any problems.  This resulted in a useful 

simplification: The system does not explicitly categorize everyday objects in terms of 

abstractions.  Making such abstractions explicit is useful only when there is abstract domain 

knowledge that will trigger on it.  Such information is implicit in the choice of equations, 

quantity value assumptions, and default circumstances.  As the experiments below indicate, this 
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works well when the analogous problems are sufficiently similar.  It is likely that explicit 

categorization and abstract domain theories are required for more distant transfer.  Consequently, 

an important future direction involves learning such knowledge.  Preliminary results are reported 

in (Klenk et al. 2008). 

5.4 Problem-solving Algorithm 

This section describes the algorithm for solving AP Physics style problems using analogical 

model formulation.  Figure 18 outlines the algorithm.  After describing each step in detail, the 

implementation in the Companion cognitive architecture is presented along with an example.  

 

5.4.1 Step 1: Retrieve analogous worked solutions 

The process of solving a physics problem begins by generating an analogy with one or more 

relevant worked solutions.  With the problem as the probe, MAC/FAC is used to retrieve a 

relevant example from a case library of worked solutions.  The mapping between the worked 

Figure 18: Solving AP Physics problems via analogical model formulation 

Given: a problem, P, and a case library, C, of worked solutions, {ws1…wsn} 
1. Retrieve analog wsi using MAC/FAC with probe: P and case library: C 

1.1. While there is unmapped event structure, 
1.1.1. retrieve analog wsj using MAC/FAC with probe: (P – {facts covered by the currently mapped 

structure}) and case library: (C – {already retrieved worked solutions}) 
2. Analyze P to determine the sought after quantity, q, and problem type, t. 
3. Using analogical model formulation, solve for q by one of the following methods, using t to determine when 

the answer is appropriate: 
3.1. If the value of q is given in P, use that value. 
3.2. If the value of q is mentioned in a candidate inference, use that candidate inference. 
3.3. Search candidate inferences generated by analogs for an equation, e, mentioning q 

3.3.1. Recursively solve for each of the other quantities, q1...q i , mentioned in e 
3.3.2. Solve e for q 

4. If boundary condition check exists in candidate inferences, 
4.1. Compare mapped values in P to determine correct value for q 

5. Use the computed value for q to select the multiple choice answer for P 
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solution (as the base) and the problem (as the target) is evaluated for adequacy by the loop in 

Step 1.1.  Fundamentally, physics problems are about events.  The event structure of a problem 

consists of the events that occur in it.  If the analogy does not map all of the event structure, 

additional analogues must be retrieved.  Otherwise, there would be no knowledge from which to 

formulate a model for the unmapped events5.  For each iteration in Step 1.1, the already-matched 

parts of the probe are removed, so that retrievals are focused only on cases that are similar to the 

unmatched aspects of the problem.  This was essential for handling the Composing transfer 

condition, since multiple source analogues are needed to solve a single problem.  For example, 

the following retrievals would be made while solving the Composing example in Section 5: 

 
An astronaut on a planet with no atmosphere throws a ball upward from near ground level with an initial 
speed of 4.0m/s.  The ball rises to a maximum height of 5.0m before returning to the astronaut who then 
drops the ball from the top of a 100m tall building.  If air resistance is negligible, which of the following is 
most nearly equal to the distance the ball falls during the first 4s after it is released? 

 

A possible first retrieval could be the worked solution for Problem 1 of Figure 15.  The resulting 

mapping would include the release and falling events, but not the throwing and projectile motion 

events.  Because there are unmapped events, another retrieval would be made, with only the facts 

pertaining to the throwing and projectile motion events as the probe to MAC/FAC.  This may 

result in the retrieval of the worked solution for Problem 2 from Figure 15.  The resulting mapping 

would include the throwing and projectile motion events.  Because the entire event structure of 

the problem is accounted by the two analogies to the worked solutions, this step is complete. 

5.4.2 Step 2: Problem analysis 

Solving most physics problems eventually boils down to finding the value for some quantity.  

                                                 
5 The distracters added in the Extending transfer condition never included events, only quantities and entities. 
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But which quantity, and what form of description is appropriate for the value, must be 

ascertained by analyzing the problem.  There are several different broad types of problems on the 

AP Physics exam.  The subset of the exam used in this work contains the following problem 

types: 

 

• Numeric value problems: Determining the numeric value of a specific parameter 

A ball is released from rest from the top of a 200m tall building on Earth and falls to the 

ground.  If air resistance is negligible, which of the following is most nearly equal to the 

distance the ball falls during the first 4s after it is released? (a) 20m; (b) 40m; (c) 80m; 

(d) 160m. 

• Symbolic value problems: Determining the symbolic value of a specific parameter 

A block of mass M is released from rest at the top of an inclined plane, which has length 

L and makes an angle q with the horizontal.  Although there is friction between the block 

and the plane, the block slides with increasing speed.  If the block has speed v when it 

reaches the bottom of the plane, what is the magnitude of the frictional force on the block 

as it slides?  (a) f = Mgsin(q); (b) f = Mgcos(q); (c) f = MgLsin(q)- ½Mv2 ;(d) f = 

[MgLsin(q)- ½Mv2]/L. 

• State elaboration problems: Determining which parameter value will produce a described 

outcome 

Which of the following tensions is required to move a box of mass 8kg from rest on the 

floor upward with constant acceleration when it is pulled vertically upward by a cord 

attached to the box? (a) 40N; (b) 60N; (c) 70N; (d) 120N. 
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• Qualitative behavior problems: Determining the qualitative outcome of a situation 

A box of mass 8kg is at rest on the floor when it is pulled vertically upward by a cord 

attached to the box.  If the tension in the cord is 104N, which of the following describes 

the motion, if any, of the box? (a) It does not move; (b) It moves upward with constant 

velocity; (c) It moves upward with increasing velocity but constant acceleration; (d) It 

moves upward with increasing velocity and increasing acceleration. 

 

This step identifies the problem type and sought quantity by analyzing the facts describing the 

query of the problem and the multiple choice answers.  If the query concerns a quantity, then that 

is considered to be the sought quantity.  In that case, the problem type is determined to be 

numeric or symbolic based on the kinds of expressions found in the possible answers.  Instead of 

asking for specific quantity values, the query can concern a qualitative state.  In these cases, if 

the possible answers are quantity values then the problem is a state elaboration problem, 

otherwise the problem is a qualitative behavior problem.  For state elaboration problems, the 

sought quantity is determined by analyzing the event structure in the problem.  In the example 

above, the acceleration of the box is the sought parameter.  For qualitative behavior problems, 

the sought quantity is found by domain-specific rules that determine what value(s) are needed to 

distinguish between the possible answers.  In the example above, for instance, the acceleration 

and velocity of the box during the pulling event would be sought. 

 

The basic problem-solving operation in physics problems is solving equations to find values.  

For numeric and symbolic value problems, this is sufficient.  For qualitative behavior problems, 
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the values of the sought quantities are tested to see which of the qualitative descriptions they 

satisfy.  For state elaboration problems, an assumption case is created for each answer choice.  

The assumption case includes all the facts of the problem and an assumption of the value for the 

parameter given in the answer choice (e.g., the tension in the example problem above).  Then, for 

each assumption case, the system solves for the sought quantity and determines if it is consistent 

with the problem description.  If it is, then that assumption case is the correct answer. 

5.4.3 Step 3: Solve for q via analogical model formulation 

This step creates a scenario model incrementally, based on the analogy with the worked 

solution(s).   The process starts by trying to find an appropriate value for the sought quantity q.  

In general, this is a recursive process, so the general strategy is describe below.   

 

Given a quantity q to be solved for, its value can be determined in one of three ways: 

 

1. It is already known as part of the problem.  That is, there is a valueOf statement in the 

problem representation that provides an appropriate value for q.  For symbolic problems, 

the valueOf statement must be expressed in symbolic terms compatible with the 

possible answers, as ascertained in the previous section.  When a numeric answer is 

sought, the valueOf statement must provide a numeric value.  In these cases, the value 

from the statement is used. 

2. It is assumable.  That is, there is a candidate inference containing a stepResult 

statement which provides a value for q.  In this case the value from the analogy is 

assumed. 
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3. It is mentioned in a relevant equation.  That is, there is a candidate inference which 

contains an equation that mentions q.  In this case, recursive subgoals are spawned to 

solve for the other quantities in the equation, and once their values are found, a value is 

derived for q.   

 

While the first case is straightforward, the second and third cases make important modeling 

decisions via analogy.  The second case handles quantity value assumptions and default 

circumstances.  The third case is a form of relevance reasoning, since analogous situations are 

assumed to be governed by similar equations. 

 

Analogical modeling decisions, like all non-deductive inferences, should be verified if possible 

(Falkenhainer 1988).  The stepUses statements in the worked solution provide context for the 

worked solution step.  These statements can be thought of as preconditions for the analogical 

modeling decision.  Currently, these preconditions are used in only one situation.  If these 

statements mention a planetary body, which is not included in the mapping, and there is a 

different planetary body in the problem, the analogical modeling decisions based upon this 

solution step are deemed unusable.  This is a useful heuristic for this domain because decisions 

based on planetary bodies typically involve assumptions involving gravitational constants, which 

of course vary across planets.   Currently, the rules that do these verifications are hand coded.  

An important aspect of future work is to enable Companions to learn and refine these rules with 

experience. 
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In addition to verifying the inference, it is important to understand how numbers are handled in 

the analogical mapping.  Because these are all within-domain analogies, when there is a 

correspondence between number entities, it is likely spurious.  For example, if the problem 

includes a ball moving at 1m/s and the worked solution includes a ball moving at 2m/s, then 1 

could be placed in correspondence with 2.  This is a spurious correspondence because there is no 

reason to believe that all 2’s in the worked solution should be considered 1’s in the problem.  

Therefore when candidate inferences for equations include numeric values, the number from the 

worked solution is used.  When the candidate inference concerns an assumed value, the target 

value is used if units match; otherwise, the base value is used.  Returning to the example, if the 

worked solution includes the distance-velocity equation, Vf
2 = Vi

2 – 2ad, then the resulting 

mapping would include a candidate inference suggesting Vf
2 = Vi

2 – 1ad as an appropriate 

equation for the problem.  Because the number from the worked solution is always used for 

equations, even with the spurious correspondence, the correct equation Vf
2 = Vi

2 – 2ad is 

instantiated in the problem. 

 

The equation solving and algebraic simplification routines are straightforward, based on (Forbus 

& de Kleer 1993).   

5.4.4 Step 4: Checking boundary conditions 

Doing “sanity checks” of answers is always a good problem-solving practice.  In physics, this is 

involves testing boundary conditions.  For example, if a problem asked, “How far a ball would 

fall off a 200m building in 4s?”, its worked solution would include a sanity checking step in 

which the computed answer, 80m, was compared to the height of the building, 200m.  Since this 
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is less, the computed answer is okay.  If the computed answer were larger than the height of the 

building, it means that the boundary conditions of the equations are violated.  Since one ignores 

the impact crater in these problems, the answer would then be the height of the building, because 

that is the point at which the behavior captured by the falling event ends. 

 

This aspect of the scenario model is also dependant on the analogy.  Boundary conditions are 

recognized by candidate inferences involving ordinal relationships (i.e., greaterThan or 

lessThan) between parameters in the problem.  Currently only boundary condition tests 

involving the sought quantity are processed.  This is because it is clear how to resolve such a 

failure, i.e. use the value compared against it instead, because it constitutes a limit point (Forbus 

1984) for that quantity6. 

5.4.5 Step 5: Selecting the multiple choice answer 

Finally, the appropriate multiple choice answer is selected.  For numeric and symbolic value 

problems, the computed answer is compared against each of the answer choices and the closest 

answer is selected.  The closest answer is determined as follows.  For numeric value problems, 

the closest answer is the simply the answer choice with the minimum absolute value of the 

difference between the computed answer and the answer choice with one exception.  If all the 

answer choices have the same sign but the computed answer is the opposite sign, then the closest 

answer to the opposite of the answer choice is selected.  This simple heuristic corrects when the 

system orients the positive and negative directions differently than the problem designer.  For 

                                                 
6 This heuristic is reasonable for mechanics but would not be appropriate for other domains, such as 
thermodynamics. 
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symbolic value problems, the closest possible answer would be identical to the computed 

answer.  When none of the answer choices satisfy this criterion, the system identifies answers 

with the same quantities as the computed answer.  By substituting random values for each of the 

quantities, the system solves each equation and compares the results.  If they are within a 

threshold the answer is selected.  This heuristic alleviates limitations in the algebra manipulation 

aspects of system. 

 

For qualitative behavior problems, qualitative arithmetic is used to select the consistent answer 

choice.  For instance, if there is a computed positive vertical velocity, the object must be moving 

upwards.  In the example qualitative behavior problem of Section 5.4.2, the Companion 

determines that answer ‘c’, the box moves upward with constant acceleration and increasing 

velocity, is the only consistent choice.  This is because the box’s velocity at the beginning of the 

event is 0m/s and its computed acceleration during the event is 3m/s2.  For state elaboration 

problems, the first assumed value that is consistent with the computed answer is selected.  In the 

state elaboration example from Section 5.4.2, the problem states that the box is moving upward 

with constant acceleration, therefore, the consistent assumption case results in a positive 

acceleration for the box.  The answer ‘d’ contains the only tension, 120N, which results in a 

positive acceleration, 5m/s2. 

 

Importantly, the system is not allowed to guess if it cannot compute the answer for a problem.   

5.4.6 Implementation in a Companion 

 



 
 

 

 

Figure 19 shows how the steps of the algorithm are divided among various Companio

Aside from retrieving worked solutions, the entire process takes place on the Session Reasoner.  

The process begins with the Session Reasoner requesting relevant worked solution(s) from the 

Similarity-based Retriever.  After the Session Reason

answer, it is sent to the Session Manger for display on the user’s machine.  An alternative 

method of interaction uses the Executive to run batch experiments.  This works in the same 

manner except the user interactions 

recorded by the Executive.  The algorithm from 

problem-solver drawn from (Forbus & de Kleer 1993).  The problem

of 27 methods, 169 backchaining rules, and two reasoning sources, which are procedural 

Figure 

shows how the steps of the algorithm are divided among various Companio

Aside from retrieving worked solutions, the entire process takes place on the Session Reasoner.  

The process begins with the Session Reasoner requesting relevant worked solution(s) from the 

based Retriever.  After the Session Reasoner solves the problem and selects an 

answer, it is sent to the Session Manger for display on the user’s machine.  An alternative 

method of interaction uses the Executive to run batch experiments.  This works in the same 

manner except the user interactions with the Session Manager are scripted and the results are 

recorded by the Executive.  The algorithm from Figure 18 is implemented using an AND/OR 

from (Forbus & de Kleer 1993).  The problem-solving knowledge consists 

of 27 methods, 169 backchaining rules, and two reasoning sources, which are procedural 

Figure 19: Analogical model formulation implemented 
on the Companion cognitive architecture 
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shows how the steps of the algorithm are divided among various Companion’s agents.  

Aside from retrieving worked solutions, the entire process takes place on the Session Reasoner.  

The process begins with the Session Reasoner requesting relevant worked solution(s) from the 

er solves the problem and selects an 

answer, it is sent to the Session Manger for display on the user’s machine.  An alternative 

method of interaction uses the Executive to run batch experiments.  This works in the same 

with the Session Manager are scripted and the results are 

is implemented using an AND/OR 

solving knowledge consists 

of 27 methods, 169 backchaining rules, and two reasoning sources, which are procedural 
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attachments efficiently implementing analogical processing and algebraic operations. 

 

For illustration, here is how a Companion employs the above algorithm to solve the following 

restyling problem:  

 

A box is dropped from the top of a 300m cliff on Earth and falls to the ground.  If air resistance is 
negligible, which of the following is most nearly equal to the distance the cliff falls during the first 
7.3s after it is released? (a) 36.5m; (b) 73m; (c) 266.45m; (d) 532.9m 

 

The problem is presented to the Companion as a case of 28 predicate calculus facts.  The 

Companion begins by asking the Similarity-based Retriever for a relevant example, which in this 

case is the worked solution for Problem 1 from Figure 15.  The Session Reasoner uses SME create 

a mapping between the retrieved worked solution and the problem.  The event structure of the 

problem contains three events: the initial situation, the dropping, and the falling.  All three events 

are included in the correspondences of this mapping; therefore the Companion does not retrieve 

additional analogues.  Next, it determines that this is a numeric value problem based upon the 

Figure 20: Expressions  in alignment based upon identical predicates 

Base expressions: 
1. (valueOf ((QPQuantityFn DistanceTravelled) Ball-1 Interval-1) Distance-1) 
2. (valueOf ((QPQuantityFn Time-Quantity) Interval-1) (SecondsDuration 4)) 
3. (temporallyCooriginating Fall-1 Interval-1) 
4. (TimeInterval Interval-1) 
5. (objectActedOn Release-1 Ball-1) 
6. (primaryObjectMoving Fall-1 Ball-1) 
7. (objectStationary Initial-Situation-1 Ball-1) 

Target Expressions: 
1. (valueOf ((QPQuantityFn DistanceTravelled) Box-5 Interval-5) Distance-5) 
2. (valueOf ((QPQuantityFn Time-Quantity) Interval-5) (SecondsDuration 7.3)) 
3. (temporallyCooriginating Fall-5 Interval-5) 
4. (TimeInterval Interval-5) 
5. (objectActedOn Release-5 Box-5) 
6. (primaryObjectMoving Fall-5 Box-5) 
7. (objectStationary Initial-Situation-5 Box-5) 
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query statement and the answer choices.  The query statement for this problem indicates that the 

distance the box travels over the 7.3 second interval is the sought quantity. 

 

Next, the Companion proceeds to solve for the sought quantity, the distance the box travels.  

Because there are neither valueOf statements concerning the distance the box travels nor 

candidate inferences suggesting a quantity value or default circumstance modeling assumption, 

the Companion searches for a relevant equation mentioning the sought quantity.  This is done by 

searching the candidate inferences of the analogy.  Figure 20 contains the aligned expressions 

which result in the entities Ball-1 and Interval-1 from the worked solution corresponding 

with Box-5 and Interval-5 from the problem.  These correspondences result in a candidate 

inference for the applicable equation mentioning the distance the distance Box-5 travels during 

Interval-5, d=vit+at2, shown in Figure 21.  

 



 

 

In order to solve this equation for the distance the box travels, the Companion first solves for 

each of the other parameters in the equation: the duration of the interval, the speed of the box at 

the start of the interval, and the acceleration of the box 

Interval-5, 7.3s, is given directly in the problem.  Using the analogy to make a quantity 

value assumption, the Companion infers the speed of the 

based on Step 5 of the worked 

Interval-1 has a speed of 0m/s because it starts at rest.  A subset of the candidate inferences 

referring to this step are shown in 

expressions represent entities which appear in the base (i.e., worked solution) representation and 

do not have a corresponding entity in the target (i.e., problem description).  Because the value 

Figure 21
projected from the base 

In order to solve this equation for the distance the box travels, the Companion first solves for 

each of the other parameters in the equation: the duration of the interval, the speed of the box at 

the start of the interval, and the acceleration of the box during the interval.  The duration of 

, 7.3s, is given directly in the problem.  Using the analogy to make a quantity 

value assumption, the Companion infers the speed of the Box-5 at the start of the interval, 0m/s, 

based on Step 5 of the worked solution.  Step 5 states that Ball-1 at the beginning of 

has a speed of 0m/s because it starts at rest.  A subset of the candidate inferences 

referring to this step are shown in Figure 22.  Recall from Section 2.1 that AnalogySkolemFn 

expressions represent entities which appear in the base (i.e., worked solution) representation and 

do not have a corresponding entity in the target (i.e., problem description).  Because the value 

21: Candidate inference (dashed lines) 
projected from the base into the target based upon 

correspondences 
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In order to solve this equation for the distance the box travels, the Companion first solves for 

each of the other parameters in the equation: the duration of the interval, the speed of the box at 

during the interval.  The duration of 

, 7.3s, is given directly in the problem.  Using the analogy to make a quantity 

at the start of the interval, 0m/s, 

at the beginning of 

has a speed of 0m/s because it starts at rest.  A subset of the candidate inferences 

AnalogySkolemFn 

expressions represent entities which appear in the base (i.e., worked solution) representation and 

do not have a corresponding entity in the target (i.e., problem description).  Because the value 
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from the base description is used for equations, the AnalogySkolemFn is removed from the 

expression when making this inference.  This is reasonable because these are performing within-

domain analogies; for cross-domain analogies, more work would be required to resolve the 

analogy skolem into an appropriate constant for the target domain.  Next, this inference must be 

verified.  The Companion makes sure that the step does not rely upon the worked solution 

occurring on a different planetary body.  The stepUses statements, the context of the worked 

solution step, do not include references to any planetary bodies as defined by the ResearchCyc 

ontology.  Therefore, the Companion assumes 0m/s as the speed of the box at the start of the 

interval. 

 

 

To solve for the acceleration of the box during the falling event, 10m/s2, the Companion makes a 

default circumstance modeling decision.  This decision is made in the same manner as the 

quantity value decision for the speed of the box at the beginning of the falling event, with one 

exception.  The stepUses statements for the worked solution step suggesting this decision 

Figure 22: Candidate inferences permitting the quantity value modeling 
assumption for the speed of the box 

(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-0-1-Step5) 
(primaryObjectMoving Fall-5 Box-5)) 

(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-0-1-Step5) 
(objectStationary Initial-Situation-5 Box-5)) 

(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-0-1-Step5) 
(contiguousAfter Fall-5 Initial-Situation-5)) 

(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-0-1-Step5) 
(temporallyCooriginating Fall-5 Interval-5)) 

(stepResult (AnalogySkolemFn ETS-WorkedSolution-1-0-1-Step5) 
(valueOf 

    (MeasurementAtFn ((QPQuantityFn Speed) Box-5) 
      (StartFn Interval-5)) 
    (AnalogySkolemFn (MetersPerSecond 0)))) 
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mention PlanetEarth, a planetary body.  Because PlanetEarth is unmapped in the 

analogy, the Companion searches for any planetary bodies in the problem.  The Companion 

accepts the inference because the problem does not mention any planetary bodies.  This is an 

example of the Companion making a default circumstance modeling assumption.  After 

recursively solving for these three parameters, the Companion solves the equation for the 

distance Box-5 traveled during Fall-5, 266.45m. 

 

Next, the Companion checks for a candidate inference concerning a boundary condition check.  

In this case, step 7 from the worked solution is a boundary condition check and results in 

candidate inferences, shown in Figure 23.  Recall that these candidate inferences are produced by 

the correspondences between the analogous worked solution and the problem.  The answer in the 

worked solution, 161.312m, has no correspondence at the time of the analogy as it was just 

computed in the previous step.  The first fact states that the boundary condition should be greater 

than the computed answer.  The next two facts indicate the boundary condition and computed 

answer quantities for this comparison.  The computed answer, 266.45m, is less than the height of 

Cliff-5, 300m, and therefore the Companion uses the computed answer when selecting the 

multiple choice option. 
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In the final phase of problem-solving, the Companion uses the computed answer to select the 

appropriate multiple choice option.  Because this is a numeric problem, the answer choice closest 

to the computed answer, 266.45m, is selected.  In this case, answer ‘c’ is 266.45m exactly, and, 

therefore, the Companion selects it.  Solving this problem takes the Companion approximately 

35 seconds.7 

5.5 Evaluation 

A series of experiments was conducted to evaluate a Companion’s ability to transfer knowledge 

across physics problems via analogical model formulation and its fidelity as a cognitive model.  

The initial experiment was an external evaluation conducted by the Educational Testing Service 

on largely unseen problems.  The timing of this evaluation was determined by an external, 

funder-mandated timetable and included a code freeze.  The results of this evaluation were 

summarized in (Klenk & Forbus 2007a).  Although the results, as described below, showed 

statistically significant transfer across all six levels, there were a number of irregularities.  An 

analysis of these results led to the discovery of numerous representation and implementation 

errors.  After fixing these bugs, a second experiment, with the same design as the first, was run.  

This experiment confirms that the problems were not with analogical model formulation, and 

                                                 
7 The Companion was running on 4 cluster nodes, each with two 3.2 Ghz Pentium Xeon processors and 3 GB of 
RAM. 

(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-Step7) 
  (greaterThanOrEqualTo (Meter 300) (AnalogySkolemFn (Meter 161.312)))) 
(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-Step7) 
  (valueOf (MeasurementAtFn ((QPQuantityFn Height) Cliff-5) Fall-5) 
    (Meter 300))) 
(stepUses (AnalogySkolemFn ETS-WorkedSolution-1-Step7) 
  (valueOf ((QPQuantityFn DistanceTravelled) Box-5 Interval-5) 
    (AnalogySkolemFn (Meter 161.312)))) 
 
 

Figure 23: Candidate inferences indicating a boundary check condition 
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provides evidence about the asymptotic performance of analogical model formulation.  This 

section discusses both experiments in turn, including the post-analysis and changes made to the 

system and representations before the second experiment.  In addition to these performance 

metrics, the operational data from the first experiment is compared to human data presented by 

van Lehn (1998) to evaluate this algorithm as a cognitive model.  

5.5.1 Experiment 1 

The first evaluation was carried out by the Educational Testing Service, who remotely accessed a 

Companion running on a cluster at Northwestern University.  The problems and worked 

solutions in this experiment were generated from templates.  Examples, in English, appear in 

Figure 15.  These templates represent approximately 20% of the typical Mechanics portion of the 

AP Physics exam.  The system designers saw examples from less than 50% of the templates 

before the evaluation, and none of the templates themselves. 

 

ETS measured the amount of transfer learning in the system.  Transfer learning occurs when an 

agent learns faster in the target domain given learning in a related source domain.  This is most 

naturally measured as a difference in learning curves, which motivates this experiment’s design.  

The experiment was designed without knowledge of the analogical model formulation approach, 

reducing the level of tailorability. 

5.5.1.1 Methodology 

To define transfer levels, a source set is required.  The source set consisted of 20 problems and 

worked solutions, 5 from each of the problem types illustrated in Figure 15.  To generate learning 

curves for each of the 6 transfer levels, five target training sets were created for each of the 
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transfer levels.  Each target training set consisted of 4 quizzes, with one problem from each 

problem type in each quiz.  Each problem represented a systematic transformation, based upon 

the transfer level, from a problem in the source set.    The Companion was given each target 

training set as a sequence of quizzes.  After a quiz was administered, the Companion was given 

the worked solutions for the problems on that quiz.  Thus, the worked solutions from earlier 

quizzes were available for use in solving later quizzes within the target training set.  After each 

target training set, the Companion’s memory was reset.  The Companion was administered each 

target training set twice, one for each experimental condition.  First, the Companion is given 

each target training set without access to the problems and worked solutions of the source set 

(the no-transfer condition).  Then, to measure transfer learning, the Companion is given each 

target training set with access to the source set’s problems and worked solutions (the transfer 

condition).  Comparing the learning curves for these two conditions provides a measure of how 

much was learned via transfer from the source set. 

 

There are three ways for transfer to manifest itself.  (1) The system may get a jump start, i.e., the 

learning curve in the transfer condition has a higher y-intercept.  (2) The system may learn faster.  

(3) The system may reach a higher level of performance.  These are not mutually exclusive.  

Given the direct application of examples in analogical model formulation, the jump start transfer 

results are central to the performance of the system. 

5.5.1.2 Results 
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Figure 24 shows the learning curves for both the transfer and no-transfer conditions for each 

transfer level.  TL-1, TL-3, TL-4, TL-5, and TL-6 all had 80 problems.  TL-2 only had 40 

problems as it was impossible to change the numeric parameters in such a way to qualitatively 

change the outcome for two Problem Types, 2 and 4.  Recall that in order to more precisely 

measure the effectiveness of analogical learning, the Companion’s KB contained no equations of 

physics nor any other modeling knowledge about the domain.   This means whenever a problem 

is solved, it is solved by analogical model formulation.  Given that analogical model formulation 

requires worked solutions to solve problems, the no-transfer condition always begins at 0% and 

Figure 24: Experiment 1 results, administered by the Educational Testing Service 
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improves as the Companion accumulates worked solutions.  All transfer levels showed a 

statistically significant jump start (p<.01).  For TL-1, TL-4, and TL-5, the jump start was 88%.  

Other levels were not as high: TL-2 was 50%, TL-3 was 25%, and TL-6 was 44%.  This provides 

an average of 63.8% in jump-start performance, supporting the hypothesis that analogical model 

formulation can be used to solve AP Physics style problems, including handling these kinds of 

transfer. 

5.5.2 Post-analysis and system modifications 

While the jump start results support the hypothesis, it is important to understand whether the 

performance failures are due to analogical model formulation, or due to some other factor.  

Theoretically, there are many ways analogical model formulation can fail: The system can fail to 

find a precedent when one exists, mappings could be incorrect, or candidate inferences could be 

incorrectly analyzed.  Surprisingly, these problems accounted for only a small minority of the 

problem-solving failures. As illustrated below, the vast majority of the failures were due to 

human error in representing the problems and implementing the system. 

 

In TL-2 (extrapolation), there is negative transfer, in that the no-transfer condition outperformed 

the transfer condition in later quizzes.  This occurred because the Companion was repeatedly 

getting a problem correct for the wrong reasons in the no-transfer condition.  An error in the 

worked solution representations for the target training set worked solutions of Problem Type 3 

caused the Companion to incorrectly assume a value for acceleration, which coincidently led to 

the correct answer.  The failure of the system to detect this and other recurring problems is 

leading us to focus effort on improving the Executive. 
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The low ceilings in the transfer condition in TL-2, and in both conditions in TL-3 (restructuring) 

and TL-6 (composing), are due to a combination of three limitations in the fixed components of 

the Companion’s problem-solving strategies and a number of representation errors.  The 

problem-solving strategy limitations were 

 

1. The internal resource limit (i.e., maximum number of and/or graph nodes) was about 5% 

too low for some of the composing problems. 

2. The algebra system was unable to correctly handle all of the necessary algebraic 

manipulation and equation comparison (e.g. trigonometry and composing symbolic and 

numeric problems). 

3. The strategy of trying each value in turn for state elaboration problems, which make up 

25% of TL-3, was grossly inefficient.   

 

None of these problems concerns analogical model formulation, and the system was changed in 

the following manner.  To solve the first problem, the internal resource limit was increased by 

5%.  Recall that learning modeling decisions is the focus of this work, not equation solving 

strategies.  Therefore the second problem was solved by simply extending the algebra system to 

handle the necessary cases.  The third problem was solved by developing a more efficient 

strategy for state elaboration problems.  This involved altering the problem analysis and answer 

selection steps from the algorithm.  Recall this example of a state elaboration problem: 
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Which of the following tensions is required to move a box of mass 8kg from rest on the 

floor upward with constant acceleration when it is pulled vertically upward by a cord 

attached to the box? (a) 40N; (b) 60N; (c) 70N; (d) 120N. 

 

During problem analysis (Step 2), the new strategy identifies a limit point quantity whose value 

determines the consistency of a scenario.  Here, the acceleration of the box is a limit point 

quantity.  Using qualitative mechanics, the scenario is consistent only if the acceleration is 

greater than 0m/s2..  Therefore, 0m/s2 is selected as the limit point.  Using the query, the sought 

quantity is the tension of the cord.  Next, the Companion assumes the limit point quantity value 

and proceeds with the algorithm to solve for the sought after quantity.  After assuming an 

acceleration of 0m/s2 for the box, the Companion uses analogical model formulation to solve for 

the tension of the cord, 80N.  Instead of solving for the acceleration four different times, once for 

each assumption case, the new strategy is considerably more efficient, solving for the tension 

only once. 

 

To select a multiple choice answer, the new strategy uses the scenario model to determine the 

qualitative relationship between the limit point quantity and the sought quantity.  In this case, the 

acceleration of the box is qualitatively proportional to the tension in the cord (i.e., if the 

acceleration of the box is increased then the tension of the cord is increased).  Since the problem 

indicates a consistent solution involves a positive acceleration, the Companion selects the 

multiple choice answer that is greater than 80N, in this case, choice ‘d’, 120N.  This new strategy 

only applies to state elaboration problems, which make up 25% of TL-3, Restructuring. 
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The only change to the analogical model formulation portion of the algorithm was the addition of 

one rule for verifying modeling decisions.  When inferring a numeric parameter in quantity value 

assumptions, the Companion verifies that the units of the assumed value are applicable to the 

quantity type.  For instance, the Companion will not assume 5m/s for the acceleration of an 

object.  Enabling Companions to learn such verification rules is an important element of future 

work on this project.   

 

A close examination of the entire set of problems and worked solutions revealed two systematic 

kinds of representation errors.  

  

1. Facts were sometimes omitted from the problem representations.  For example, in some 

of the original representations, the correct answer was not listed as one of the answer 

choices, or the direction of a pulling event was not mentioned. 

2. The agreed-upon conventions for representing worked solution steps were not always 

employed. 

 

An example of the second type of error comes from the erroneous worked solutions which 

caused the negative transfer for TL-2.  Given the question: 

What will happen to a 10kg crate being pulled upwards by a string with a tension 

of 38N? a) remain stationary; b) move upwards with constant speed; c) move 

upwards with constant acceleration; d) move upwards with increasing 
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acceleration 

 

The worked solution for this problem calculates the acceleration of the crate to be -6.2m/s2.  In 

sanity checking step for this answer, the comparison with the boundary condition was omitted.  

The result of this step is that -6.2m/s2 is not the acceleration of the crate.  This step is followed by 

a determining a value from the situation step, in which this fact is used to infer that the 

acceleration of the Crate is 0m/s2.  Both of these steps violate the agreed upon conventions.  

First, because the sanity checking step represents a check against a boundary condition, there 

should have been a comparison between -6.2m/s2 and 0m/s2.  The result of this step should have 

been that the acceleration of the crate was 0m/s2.  Second, the determination of a value from the 

situation step is wrong, because the step does not depend upon the problem scenario but is 

actually a sanity checking step.  Because this inference is part of the sanity checking step, it was 

simply removed to create a worked solution which followed the conventions.   

 

Recall that the problems and worked solutions were automatically generated from templates, so 

these template-level bugs led to errors in all instances of that problem type at that transfer level.  

These systematic errors were corrected to generate an improved corpus of problems and worked 

solutions. 

5.5.3 Experiment 2 

To test these explanations for the results of Experiment 1, another experiment was conducted on 

the same sets of problems after fixing the representation and implementation errors. 
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5.5.3.1 Method 

The same the experimental procedure, problems and worked solutions as Experiment 1 were 

used with the following changes.  First, the experiment was conducted internally, instead of the 

Educational Testing Service, due to budget cuts.  Second, the corrected corpus of problems and 

worked solutions was used.  Third, the system changes described in Section 5.5.2 were 

implemented.   

 

As in Experiment 1, the experimental hypothesis is that analogical model formulation transfers 

modeling knowledge across these six transfer levels.  As before, learning curves for each of the 

six transfer levels were collected and the analysis focused on the jump starts in the transfer 

condition. 

5.5.3.2 Results of Experiment 2 
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Figure 25 contains the learning curves for each of the six transfer levels.  Across all the transfer 

levels, the Companion achieved a 95.8% jump start due to the source problems and worked 

solutions.  TLs 1-5 all exhibited perfect transfer.  The Companion performed at ceiling (100%) 

given just the source set worked solutions.  On TL-6, the Companion recorded a jump start of 

75%.  Once again, all of the jump starts are statistically significant (p < .01). 

  

These results illustrate that analogy can be used to formulate models in the domain of AP 

Physics problem-solving over a broad range of problems.  The retrieval rates and mapping rates 

Figure 25: Final Evaluation Results 
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were both 100%.  That is, MAC/FAC always selected appropriate analogous worked solution(s) 

if they were available and SME always created a useful set of correspondences and candidate 

inferences between the worked solutions and the problems.  The only failures of transfer 

involved limitations in the rules for verifying analogical inferences.  In particular, the 

verification rules prevented a necessary modeling decision from being made on a set of difficult 

problems (25% of the composing problems).  These composing problems involved source 

problems occurring on different planets and quantities referencing the planetary body of the 

problem explicitly (e.g., the work done by the gravitational force of an asteroid on a sliding 

block).  Therefore, the heuristic which prevents analogical inferences involving unmapped 

planetary bodies fails because this inference concerns a definition of net work equation and is not 

dependant on the gravitational constant in the problem. 

5.5.4 Evaluation as a Cognitive Model 

The previous two experiments illustrate the Companion’s capability to solve AP Physics 

problems using analogical model formulation.  Because much of the motivation for this work 

comes from cognitive science, it is important to evaluate how analogical model formulation 

performs as a cognitive model.  For this section, I refer to this as the AMF model.  While 

capability is certainly an important benchmark for cognitive models, comparisons against 

existing psychological data are important as well.  In the case of Newtonian physics-problem 

solving, there has been extensive work studying aspects of the human performance.  This section 

contains a favorable qualitative comparison between the AMF model of physics problem-solving 

with the most relevant previously published human data. 

 



124 
 
This work was originally published in (Klenk & Forbus 2007b).  The human data comes from a 

collection of verbal protocols presented first by Chi et al. (1989).  These protocols were collected 

from 9 subjects learning Newtonian Mechanics.  The subjects were told to speak aloud while 

they studied worked examples and solved a series of problems.  These protocols were used to 

investigate the differences between good and poor problem-solvers.  One key difference in the 

protocols was that good problem-solvers would explain the worked solutions to themselves 

whereas poor problem-solvers would simply read the examples.  The researchers called this the 

self-explanation effect and created the Cascade system to model it (VanLehn et al. 1992).  When 

attempting to fit Cascade to this data, VanLehn and Jones (1993) observed that people 

sometimes used analogical reasoning even in situations when they had valid first-principles 

knowledge.  Later, VanLehn (1998) reanalyzed the original protocols, leading to a taxonomy of 

analogy events: 

 

• Initialization events – the subject sets up a mapping between the examples and the 

problems. 

• Transfer events – the subject infers something about the solution from an example.  These 

events were further divided by the type of inference made: 

 

1. Line: The subject transferred a whole equation, vector, or diagram. 

2. Part of a line: The subject transferred a detail from a line, such as whether a projection 

function was sine or cosine, or whether a vector went up or down. 

3. Search control: The subject made the decision on what steps to do by consulting the 
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example and seeing what steps it did. 

4. Checking: The subject decided whether their most recent action or decision was correct 

by consulting the example. 

5. Failure: The subject failed to find anything useful during this transfer event. 

 

Initialization events were indicated by the subject flipping the book to a worked solution, reading 

some of the example and deciding if it will be useful to solve the current problem.  VanLehn 

found that initialization events usually occur at the beginning of the problem-solving, consistent 

with existing research (e.g. Bassok & Holyoak 1989; Faries & Reiser 1988; Ross 1989).  

Cascade did not model subjects’ retrieval process and used a heuristic mapping algorithm 

between the problem and the example (VanLehn & Jones 1993).  The AMF model differs by 

taking existing computational models of analogical mapping and similarity-based retrieval as 

starting points, and building the problem-solving system on top of them.  In the AMF model, 

initialization events occur at the beginning of problem-solving when the Companion uses 

MAC/FAC to retrieve a similar example(s) from memory.  The use of recursive retrievals for 

complex analogs is consistent with VanLehn’s finding that for complex problems, there could be 

multiple initialization events. 

 

Regarding transfer events, Cascade only accounted for line transfer and search control events 

with its separate analogical mechanism and memory.  Their approach is based on the notion that 

analogy is invoked to resolve impasses reached by rule-based reasoning.  The AMF model uses 

analogy to inform all modeling decisions, as well as some other important inferences such as 
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checking boundary conditions.  Most of the transfer events can easily be mapped to parts of the 

AMF model. 

 

Because the AMF model answers all problems using analogy, it relies heavily on the transfer 

events from VanLehn’s analysis.  Line transfers are indicated in the AMF model in two ways: 

(1) Using a candidate inference to map an equation from the worked solution onto the problem 

and (2) inferring parameter values from the problem situation.  Consistent with VanLehn’s 

findings, these events occur throughout the problem-solving process.  The other transfer events 

are modeled incompletely.  The AMF model does not have anything corresponding to part-of-

line transfers.  These events are extremely rare, accounting for just 3% of all transfer events in 

the protocols.  Analogical search control is implicit in the analogical model formulation process.  

Therefore, it is difficult to identify these as individual events in the AMF model.  Checking 

transfer events corresponds to employing a boundary condition check in the AMF model.  

Transfer failures are indicated when a precondition test fails, blocking the use of a candidate 

inference. 

  

Given these differences, a quantitative comparison of the number of different analogy events 

would not be informative.  However, in addition to the consistencies noted above, there should 

be a qualitative pattern of consistency between the AMF model and the human protocol data.  

That is, the AMF model predicts more line transfer events than observed in protocols, since it is 

at the extreme poverty end of assumptions about initial knowledge.  Second, analogical search 

control is done implicitly; therefore the AMF model has no explicit search control events.  Third, 
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given the incompleteness of the AMF model in regards to modeling checking and transfer 

failures, it should have fewer such events than in protocols. 

Table 7: Analogy Events per Problem 

Event Type Companion’s Problems Protocols (n=24) 
Correct (n=64) Failed (n=36) Total (n=90)  

Initialization 1.12 1.16 1.13 1.2  
Transfer 6.72 9.39 6.72 4.9 
Line 6.13 (91%) 9.33 (99%) 7.18 (95%) 2.6 (54%) 
Checking .47 (7%) .03 (<1%) .33 (4%) .75 (15%) 
Failure .12 (2%) .03 (<1%) .09 (1%) .38 (8%) 
Other N/A N/A N/A 1.17 (24%) 

 

Using the results first experiment, analogy events were categorized using reasoning traces from 

the first quiz in each transfer level.  The first quiz only, or jump start, was used as these are 

central to the AMF model and its claims.  These events are displayed in Table 7 and broken down 

by the result of the problem-solving episode.  The “Other” event type contains the analogy 

events not modeled, including search control and part of line transfer as well as the 

miscellaneous events from the protocols.  The Companion’s analogy events are further divided 

depending on if the problem in which the event occurred was solved correctly.  Also, 

percentages of total transfer events are supplied next to each transfer event in each condition. 

 

These results have a reasonable qualitative fit with VanLehn’s human protocols.  VanLehn 

summarized the results concerning type of information transferred in the protocols by saying 

“The basic result is simply that most students, both Good and Poor, transferred whole lines from 

the example to the problem” (1998, p.  364).  The AMF model was even more dependent on line 

transfers for problem solving due to the fact that the vast majority of the domain knowledge used 
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to solve these problems came from examples.  The majority of the “Other” transfers were search 

control events, which motivates future work developing methods for search control.  While the 

AMF model checking and failed transfer events are incomplete, both of these occurred more 

frequently on correctly solved problems.  This, in addition to the fact that the protocols noted 

even more of these types of events per problem, indicates that a more complete model of these 

events could lead to more robust problem-solving. 

5.6 Discussion and Future Directions 

These experiments support the claim that analogical model formulation is a robust method for 

transferring knowledge across these six transfer levels and a plausible cognitive model of human 

problem-solving.  First, the breadth of the materials and methods for evaluation are noteworthy.  

Drawn from four problem types, the 460 problems and worked solutions created for this 

evaluation included entities of 110 conceptual types and 144 unique relations.  Second, in an 

experiment externally administered by ETS, a Companion achieved a significant jump start on 

all transfer levels (63.8% averaged across transfer levels) consisting of largely unseen problems.  

Finally, the second experiment provides a better understanding of the effectiveness of analogical 

model formulation across these six transfer levels.  In this experiment, the Companion 

demonstrated perfect transfer across transfer levels 1-5.  The 25% transfer failures on composing 

problems demonstrate a weakness of analogical model formulation.  Specifically, while the 

hand-coded verification rules were effective across a broad range of scenarios, they do not 

handle all situations.  The combination of these failures and the fact that the additional 

verification rule was added prior to Experiment 2 indicates that learning and refining these rules 

automatically is an important direction for future work. 
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As in the previous chapter, this chapter’s emphasis is on system performance on a human-level 

test.  While achievement is an important benchmark, the method is of particular importance to 

understanding cognition.  The AMF model’s favorable comparison with human protocol data 

illustrates the cognitive plausibility of this approach.  People are able to overcome the challenges 

posed by model formulation in this domain.  Traditional model formulation depends on having a 

complete domain theory and abstract input descriptions.  In addition, there is no account for how 

new domain knowledge is acquired.  Analogical model formulation provides a solution to these 

problems.  First, model formulation by example does not require a complete domain theory and 

operates over descriptions containing broad ranges of entities drawn from everyday scenarios.  

Second, additional domain knowledge can be added to the system through examples.  As the 

results from these experiments show, analogical model formulation can enable a system to solve 

hard problems (i.e., AP Physics style problems) without a complete domain theory.  I know of no 

other problem-solving experiments which demonstrate performance of analogical learning over 

systematic variations of relationships between problems at this scale. 

 

Clearly there is much work remaining to realize the full potential of analogical model 

formulation, and the potential for analogical learning in problem-solving more generally.  Even 

in the realm of AP Physics, recall that this corpus of problems is drawn from roughly 20% of the 

Mechanics portion of the AP Physics exam, of which Mechanics is only one section.  Expanding 

the evaluation would further provide additional information regarding some of the underlying 

assumptions of analogical model formulation: How does retrieval scale with additional 
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distracters? And where is the limit in differences between source and target problems which 

produces mapping failures? 

 

As mentioned earlier, one limitation that must be overcome is relying on hand-coded rules for 

verifying analogical inferences and algebraic operations.  There were ample signals to the system 

that something was wrong with its knowledge (i.e., multiple repeated failures in some of the 

transfer conditions in the first experiment), but the current version of the architecture was unable 

to exploit this information.  Consequently, there are plans to expand the capabilities of the 

Executive in the Companion architecture, enabling the system to take responsibility for learning 

and refining its verification rules.  By keeping track of successful and unsuccessful analogical 

modeling decisions, a Companion could learn in what context different types of modeling 

decisions are effective.  Keeping and analyzing records of its problem-solving successes and 

failures should also provide the information needed for formulating its own learning goals (Ram 

& Leake 1995).  To improve this work as a cognitive model, additional work on analogically 

checking boundary conditions is required.  Instead of checking for boundary conditions at the 

end of each problem-solving episode, the Companion should check the analogy to see if one 

applies after solving each equation.  These boundary conditions are part of the modeling 

knowledge associated the mathematical equations. 

 

In addition to testing the system on more problem types and extending analogical model 

formulation through learning verification rules and boundary conditions, other methods of 

knowledge transfer are required for a more complete account of physics problem-solving.  First, 



131 
 
as in the BMCT, analogical model formulation does not provide an account for how examples 

become more abstract domain theories.  This is especially important in AP Physics as equations 

may be applicable in highly dissimilar situations.  One promising direction is to construct 

generalizations of the physical phenomena as encapsulated histories (Forbus 1984) using SEQL 

(Kuehne et al. 2000).  These abstract domain theories would require the system to make explicit 

modeling abstraction decisions.  Preliminary results from linear and rotational mechanics 

indicate that SEQL generalization can be effective for learning to make modeling abstraction 

decisions (Klenk et al. 2008).  Integrating these techniques to learn abstract domain theories 

would enable a Companion to transfer what it learns even more broadly. 

 

Second, as a Companion accumulates generalizations in one area of physics, this expertise 

should be useful for learning new related domains.  The second part of this thesis discussed in 

Chapter 7 presents a model for cross-domain analogy.  Cognitive scientists have shown how 

cross-domain analogies are useful for learning new areas of physics (Gentner & Gentner 1983; 

Falkenhainer 1988).  Chapter 7 describes the domain transfer via analogy model and presents 

results from linear and rotational kinematics as well as the dynamical analogies between 

mechanical, electrical and thermal systems (Olsen 1943). 
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6 Analogical Model Formulation General Discussion 

 

The last three chapters have discussed analogical model formulation and provided evidence its 

utility in two complex reasoning domains: problems from the Bennett Mechanical 

Comprehension Test and the AP Physics exam.  In this chapter, I will review how different 

techniques from Artificial Intelligence and models from Cognitive Science relate to analogical 

model formulation.  This chapter closes with a summary of my contributions and a review of 

important open questions. 

6.1 Related Work 

From a theoretical perspective, the two closest areas of research to analogical model formulation 

are model formulation and case-based reasoning.  It is also important to compare analogical 

model formulation to other approaches for reasoning about the domains presented here: sketch-

based and AP Physics problem-solving.  Finally, this research is comparable to other transfer 

learning techniques. 

6.1.1 Model Formulation 

An important contribution of the qualitative reasoning community has been the formalization of 

the model formulation process (Falkenhainer & Forbus 1991).  Methods have been developed to 

efficiently identify what levels of detail should be included and which perspectives should be 

taken in a scenario model (Nayak 1994; Rickel & Porter 1994; Levy et al. 1997).  These 

approaches have focused primarily on engineering and scientific domains. 

 



133 
 
The motivation for analogical model formulation comes from three challenges posed to these 

methods when using them to account for human common sense reasoning.  First, they require a 

complete and correct domain theory.  This is a result of the focus on industrial applications 

where models of the systems components are known in advance.  On the other hand, humans 

maintain contradictory domain theories, arrive at incorrect answers, and are able to generate 

models outside their areas of expertise.  Second, traditional model formulation approaches do 

very little reasoning about everyday descriptions.  A typical example is Flores & Cerda (2000), 

who formalized equivalent circuit configurations as rewrite rules, to simplify circuit schematics 

in a humanlike way in order to make analyses more tractable.  These hand-coded approaches will 

be difficult to scale to human-level knowledge, which includes tens of thousands of entity types.  

Third, traditional approaches provide no account for learning new domain knowledge.  While 

encoding complete and correct human commonsense knowledge is extremely difficult, people 

are proficient at providing examples.  Analogical model formulation provides the capability to 

formulate models of everyday scenarios without complete domain knowledge.  Furthermore, 

additional domain knowledge can be added to the system through examples.  

6.1.2 Case-based Reasoning/Analogical Problem Solving 

Analogical problem-solving systems take an approach similar to analogical model formulation, 

e.g. (Veleso & Carbonell 1993; Melis & Whittle 1999; Ouyang & Forbus 2006).  These systems 

solve new problems by transferring plans, rather than modeling knowledge, from previous 

problem-solving episodes.  Thus analogy is used as a means of guiding the problem-solver, but it 

could, with more effort, solve the problems without analogy.  By contrast, the systems described 

here cannot solve anything without a prior example.  Another difference is that the analogues for 
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our system are worked examples, which are at a more abstract level than the problem-solver’s 

internals, whereas the analogues for these prior systems were plans constructed by the problem-

solvers themselves.  In regards to the AP Physics work, it is unclear if plan-based analogical 

problem-solvers would do well on restructuring or composing problems.  Restructuring problems 

require a different sequence of operations to solve for a new parameter; our method of only 

mining modeling information is agnostic with regard to the order in which information was used 

in worked solutions.  Composing problems require combining concepts from multiple problems, 

which makes choosing plan steps more complex.   

 

As described in Section 5.5.4, Cascade is perhaps most similar due to its focus on learning from 

examples and its domain of Newtonian physics (VanLehn 1999). Cascade was evaluated for 

problem-solving performance on handful of Newtonian physics problems.  In addition to 

analogical search control knowledge, Cascade learns through resolving impasses while studying 

examples and solving problems.  Primarily, Cascade uses overly general rules to resolve an 

impasse and learn new domain knowledge.  If the impasse occurs during example explanation 

and the overly general rules fail, Cascade allows this example to be used as a base for making 

analogical modeling decisions.  In Cascade’s evaluation, this use of analogy was employed 

specifically for one particularly difficult problem (VanLehn et al. 1992).  Instead of using 

analogy for modeling decisions as a last resort, analogical model formulation demonstrates that 

analogy can play a primary role in model formulation.  Additionally, It is intriguing that 

analogical model formulation does as well as it does, and can even be used to explain a number 

of analogy event types found by VanLehn (1998) in protocol studies (Klenk & Forbus 2007b).  It 
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does seem likely that the best model of human reasoning (and most practical solution in 

engineering terms) is to both use analogical model formulation and learning that goes beyond 

accumulating examples.  

 

In Case-Based Reasoning (CBR) systems, inferences are made about problems based upon 

previous cases.   Most of today’s CBR systems are based on feature-vectors, and hence lack the 

representational capacity to handle the types of problems represented here.  In CBR systems 

which use relational representations (as used here), typically a heavy emphasis is placed on 

adapting the known case to the current problem (Kolodner 1993).  This frequently requires 

domain specific heuristics.  In analogical model formulation, the adaptation is almost completely 

handled via structure mapping.  Structure mapping theory uses common relational structure to 

constrain the inference process.  The only domain specific heuristics for adaptation are the rules 

for evaluating the inferences and not for the matching process itself.  In the BMCT work, the 

class of problem determined what types of inferences to make via analogy.  The Companion 

would infer modeling abstractions and qualitative mechanics relations for outcome problems, 

and causal models and techniques for measuring spatial quantities for DQA problems.  In the AP 

Physics system, adaptation occurs when interpreting numbers in inferences and through the 

verification of analogical modeling decisions, which can result in the rejection of inferences.  

Like most CBR systems, these adaptation methods are currently hand-generated and 

consequently limited in their scope.  Another important difference between CBR and analogical 

model formulation is in regards to the how cases are retrieved.  Retrieval systems for relational 

CBR tend to use indexing schemes that are carefully designed on a domain-specific and task-
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specific basis.  By contrast, MAC/FAC, which is used in both the BMCT and AP Physics 

systems, is domain-independent and task-independent, and has been used to explain a number of 

psychological results (Forbus 2001). 

 

An important direction for intelligent agent research involves integrating episodic memory 

(Tulving 1972).  Nuxoll (2007) argues that episodic memories (Tulving 1972) a number 

important cognitive capabilities including detecting significant input and sense of identity.  

Specifically, Nuxoll implemented a domain independent episodic memory in the SOAR 

cognitive architecture (Nuxoll & Laird 2007).  The episodic memory enabled SOAR agents to 

use virtual sensing, perform action modeling, record previous successes and failures, learn 

retroactively, and boost other learning mechanisms in three different domains.  Analogical model 

formulation differs by using a cognitive model of the retrieval process, MAC/FAC, and focusing 

solely on the broad task of model formulation.  Unlike the retrieval mechanism used in SOAR, 

MAC/FAC uses automatically computed feature vectors from relational representations allowing 

for richer case representations.  Both of these works take place within cognitive architectures and 

attempt to provide domain-independent integrated solutions.   

6.1.3 Sketch-based Problem-Solving and Visual Analogy 

Several other researchers use diagrams and analogy in problem-solving.  SketchIt (Stahovich et 

al. 2000) used sketched input to compute qualitative rigid-body dynamic simulations.  SketchIt 

only allows a handful of idealized components (e.g., rigid objects and springs) as inputs.  

Archytis (Yaner & Goel 2008) uses a method called compositional analogy to construct 

structural models from unlabeled two dimensional line drawings.  Their system recognizes 
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shapes based upon similarities between the lines and intersections in the problem and the labeled 

example.  These shapes then guide the transfer of component types and connections from the 

example to the problem.  Our system differs in a number of important ways.   First, they use 

vector-graphics inputs, which are easier to process than the hand-drawn sketches we use with 

sKEA.  On the other hand, we require users to segment their glyphs.  While both systems rely to 

some degree on hand-labeled conceptual information, we use automatic model formulation 

during example creation to automatically add information, thereby reducing tailorability.  

Archytis does not address retrieval, and their analogies focus only on similarities in depiction, 

unlike our use of MAC/FAC for retrieval and the use of both visual and conceptual information 

in mapping. 

 

6.1.4 Solving Textbook Problems 

Textbook problem-solving has proven a frequent measuring stick for AI systems over the last 30 

years.  This research can be divided into roughly three different goals.  The initial purpose of this 

work has been to first determine if computers are capable of solving textbook problems at all.  

After it was established that computers were capable of this task, researchers sought to 

understand the knowledge required to solve textbook problems.  Given knowledge bases of 

textbook problem-solving knowledge, researchers have recently focused on evaluating how 

robustly their systems can perform on unseen problems. 

 

Initial work on textbook problem solving includes with De Kleer’s NEWTON (1977), MECHO 

(Bundy 1979) and ISAAC (Novak 1977).  The primary result of NEWTON was the importance 
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in qualitative reasoning when determining which equations were applicable for a given scenario.  

MECHO and ISAAC sought to understand equation solving strategies and techniques.  MECHO 

and ISAAC take natural language input and move to structural abstractions via collections of 

hand-coded rules to solve the problems.  The connection between the handful of everyday 

entities each system knew about and the abstractions of physics were hand-coded, as was all of 

the domain knowledge.  These systems were aimed at exploring how computers could solve 

physics problems at all. 

 

These textbook problem-solving systems were successful because of their knowledge about their 

domains.  Batali approached the problem of automatically extracting knowledge from textbooks 

(1991).  He found that textbooks include much more than just the logical presentation of the 

domain laws.  In particular, textbooks include numerous examples to illustrate equations and 

concepts.  Perhaps the most thorough investigation of complex textbook problem-solving comes 

from Pisan’s TPS system (1998).  TPS integrated the expert qualitative, quantitative and 

diagrammatic knowledge necessary to solve 150 Problems from a number of common 

thermodynamics textbooks. 

 

Up to this point, these systems were all evaluated on problems known to the system architects.  

More recently, the HALO project (Barker et al. 2004) built knowledge-based systems that 

contained a few pages of hand-encoded textbook knowledge, to solve a small subset of AP 

Chemistry style problems.   The three HALO teams were evaluated by an external team on new 

problems across a range of problem types: multiple choice and short answer.  The teams were 
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evaluated not just on the ability to produce the correct answer but also on producing human 

readable explanations.   The evaluations of analogical model formulation in this thesis draw upon 

previous research projects.  First, ETS evaluated the AP Physics problem-solving system on 

largely unseen problems.  Second, in the AP Physics work, the transfer levels provide an 

additional measure of the robustness of the reasoning system instead of pure performance 

metrics.  Third, the major point of departure between previous works on textbook problem-

solving and the analogical model formulation approach is the focus on learning.  Analogical 

model formulation expects new domain knowledge to be added through example models 

provided in these evaluations as sketches and worked solutions. 

6.1.5 Transfer Learning 

The transfer learning framework is explicit attempt to characterize how well learned knowledge 

transfers to new domains.  There has been an increasing interest in transfer learning within the 

AI community.  Hinrichs and Forbus (2007) describe how analogy can be used to transfer 

learned qualitative models between scenarios in a turn based strategy game.  The cognitive 

architecture ICARUS achieves near transfer through goal decomposition (Choi et al. 2007) and 

has been augmented with a representation mapping algorithm (Shapiro et al. 2008) to handle 

more distant types of transfer.  In analogical model formulation, finding domain mappings is 

critical to successful transfer.  ICARUS requires abstracted domain theories in both the source 

and target tasks in order to do transfer.  By contrast, analogical model formulation operates 

directly on the problem and a specific example without abstract modeling knowledge of the 

source or target task, making it more robust. 
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Within the machine learning community, transfer learning efforts focus have also focused on 

identifying mappings between scenarios and domains.  This work is more relevant to the Domain 

Transfer via Analogy method discussed next.  Therefore, it is discussed in detail in Chapter 8. 

6.2 General Discussion  

This dissertation seeks to provide AI systems with the flexibility and robustness of human 

reasoning.  People are able to construct useful models of a broad range of scenarios.  While an 

astrophysicist’s model of the Earth orbiting the sun would be quite different from a layperson’s, 

both people are able to create a model, use it to make predictions, and communicate their results.  

This task of model formulation has been formalized in the Qualitative Reasoning community.  In 

this dissertation, I introduce the analogical model formulation method.  This method enables 

model formulation in broad scenarios without complete and correct domain theories.   

Furthermore, because the majority of the domain knowledge used in analogical model 

formulation exists as examples, learning can be done by accumulating examples. 

 

This method was evaluated on problems from two complex reasoning tasks: the Bennett 

Mechanical Comprehension Test and AP Physics-style questions.  First and foremost, these tests 

represent difficult reasoning tasks, and analogical model formulation provided the necessary 

scenario models to enable a Companion to solve problems.  Second, analogical model 

formulation enabled Companions to learn by accumulating examples in each of these domains.  

Third, the evaluations of each included measures of robustness.  In the BMCT evaluation, three 

different sets of example sketches were used.  This provided variability in the representations of 

the examples from which the Companion formulated models of new problems.  Analogical 
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model formulation successfully reasoned about scenarios drawn by a different person than the 

creators of the examples that formed the basis of the domain knowledge.  Three aspects of the 

AP Physics evaluation provide measures of the robustness of the underlying system.  1) The first 

evaluation was designed and administered by the Educational Testing Service without 

knowledge of the system’s problem-solving approach.  2) The evaluation included unseen 

problems generated from templates.  The system designers saw examples from less than 50% of 

the templates used in the evaluation.  3) The evaluation systematically explored robustness by 

evaluating transfer across individual transfer levels. 

 

These evaluations demonstrate that analogical model formulation is a promising method for 

robustly creating the models necessary for complex reasoning tasks from everyday scenarios.  

Furthermore, unlike traditional model formulation algorithms, systems using analogical model 

formulation are capable of expanding their domain knowledge by accumulating examples. 

6.2.1 Open Questions and Future Directions 

There are three important open questions regarding analogical model formulation and its 

relationship to cognition.  The first two directions involve research into the hand coded rules 

which guide the retrieval process and inference evaluation.  The final section discusses moving 

beyond example based reasoning through generalization. 

6.2.1.1 Pragmatic Retrieval Constraints 

Analogical model formulation creates scenario models for new situations based upon similar 

understood examples.  This places a heavy burden on selecting the analogous example.  As 

described in Chapter 3, this retrieval process allows for pragmatic retrieval constraints.  On 
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comparative analysis problems from the Bennett Mechanical Comprehension Test, the mapping 

of the retrieved example was evaluated to ensure that the resulting model would constrain the 

sought after parameters.  For example, if the problem is asking for a comparison between the 

stability of two ladders, and the model resulting from a retrieved example includes no 

information concerning the stability of the two ladders, then this retrieval is not considered.  On 

outcome questions from the same evaluation, incorrect retrievals were the cause of all problem-

solving failures.  In the AP Physics evaluation, the Companion would retrieve additional 

analogues in situations when the entire event structure of the problem was not included in the 

mapping.  This allowed the Companion to make use of multiple example problems when 

reasoning about a new situation.  These constraints improved the Companion’s performance in 

both domains by allowing it to correctly answer questions it would have otherwise answered 

wrong or been unable to answer. 

 

These pragmatic retrieval constraints were developed for each domain independently.  Ideally, a 

system should be able to introduce new rules for evaluating retrieval based upon its experiences 

within the domain.  First, to understand the space of possible retrieval constraints, a taxonomy 

should be created.  The retrieval constraint in the AP Physics system focused on the mappings 

relationship to the event structure of the problem.  This is a domain dependent heuristic which 

takes advantage of the fact that Physics problems center on events.  This constraint does not 

apply to solving BMCT problems.  Applying analogical model formulation to new domains will 

improve our understanding of pragmatic retrieval constraints and provide inspiration for methods 

which learn these constraints automatically. 
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6.2.1.2 Analogical Inference Evaluation and Adaptation 

Another hand-coded aspect of analogical model formulation is the rules for analogical inference 

evaluation and adaptation.  These rules are essential to the performance of analogical model 

formulation and are currently not a subject of learning in these systems.  They are used for three 

purposes: to determine which types of modeling decisions should be made by the analogy, to 

verify analogical modeling decisions, and to adapt analogically suggested modeling decisions.  

Which types of modeling decisions are made via analogy is based upon the amount of domain 

knowledge available to the problem-solver.  On outcome questions from the BMCT, the 

Companion had a qualitative mechanics domain theory.  Therefore, the only analogical modeling 

decisions it made pertained to abstraction types for the scenario objects and abstract relationships 

between them.  The Companion did not have an abstract domain theory for the comparative 

analysis or AP Physics problems.  Consequently, analogical model formulation relied completely 

upon the analogy to construct the scenario model. 

 

In regards to individual modeling decisions, the rules for verifying and adapting them are domain 

dependant.  These rules represent important aspects of domain knowledge available to the 

problem-solver.  While no evaluation or adaptation rules were used on the BMCT evaluation, 

they certainly would have helped.  On certain outcome problems, the incorrect abstract 

qualitative mechanics relationship, enmeshedGears-Adjacent, would be inferred for two 

gears side by side.  A rule which recognized the spatial context of the objects involved in these 

two relationships would be able to verify when these analogical modeling decisions applied.  On 

comparative analysis problems, the Companion failed to arrive at answers when the causal model 
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involved unknown entities or surfaces.  Rules which recognized these situations could provide 

the problem-solver with three different options.  The problem-solver could employ 

rerepresentation (Yan et al. 2003) on the current analogue, retrieve a different analogue, or use 

the spatial relationships from the base to posit where the surface or entity would exist in the 

target. 

 

Verification and adaptation rules were used in the AP Physics evaluation.  There were two 

verification rules.  First, if the context of the modeling decision involved an unmapped planetary 

body and the problem included a different planetary body, then the inference was rejected.  

Second, when a value was assumed for a quantity, the units of the assumed value had to be 

applicable for the quantity type (e.g., m/s are applicable units for a velocity quantity).  While 

these verification rules were rejected a number of incorrect inferences in the evaluation from 

Chapter 5, they incorrectly rejected a set of valid modeling decisions on 25% of Composing 

problems.  An adaptation rule was employed when the candidate inferences suggesting equations 

included numbers.  In these cases, the problem-solver used the corresponding number from the 

base. While these rules were necessary to produce the results contained in this dissertation, they 

are specific to this methods which propose and tweak these rules would be incredibly important 

for analogical model formulation systems which operate over a range of domains and for an 

extended period of time. 

 

The application of domain knowledge during at this stage of analogical model formulation 

involves a number of open questions.  Endowing the problem-solver with significant self-
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modeling capabilities could allow it to determine what types of modeling decisions should be 

made via analogical model formulation.  Regarding verification rules, a straightforward context 

based generalization approach using SEQL appears very promising.  For each analogical 

inference, construct a case by gathering all of the facts which represent the context of the 

inference.  If the inference leads to positive results, then add the case to generalization of positive 

inferences.  If not, the case would be added to a negative generalization.  Then when faced with 

new analogically suggested modeling decisions, the problem-solver could use its similarity to the 

positive and negative generalizations as a measure of confidence.  The most promising direction 

for learning adaptation rules involves posing general heuristics which could be programmed for 

each domain via example.  For example, the general version of the heuristic used in AP Physics 

is to use the entity from the base in certain situations. 

6.2.1.3 Generalization of Examples 

Analogical model formulation illustrates the flexibility of reasoning and learning directly from 

examples.  Many theories of learning and expertise note the importance of extracting general 

information from specific examples (e.g. Elio & Anderson 1984).  In analogical model 

formulation, the context of the example is used to verify the analogical model decision.  As 

indicated throughout this work, an intelligent agent can improve upon by generalizing across 

similar modeling decisions.  This will extract the necessary aspects of the scenarios which enable 

the modeling decision away from the specifics of each scenario resulting in improved 

verification rules.  Using SEQL generalization (Kuehne et al. 2000), I have completed initial 

research on learning participant abstraction modeling decisions from multiple examples in 

Physics problem solving (Klenk et al. 2008). 
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While using generalization to improving verification rules is an important direction for 

analogical model formulation, additional theoretical work is required to understand how abstract 

domain theories are acquired.  One approach would look at directly applying generalization 

techniques to examples to extract schemas for the domain (e.g., physics equations or causal 

models).  The goal of this approach would be to learn abstract domain theories.  While analogical 

model formulation allows for knowledge intensive reasoning about a domain from examples, it 

would represent a significant step forward in knowledge engineering research to create abstract 

domain theories directly from examples. 

 

In the next chapter, I introduce domain transfer via analogy which uses cross-domain analogy to 

reuse known abstract domain theories in learning novel but similar domains. 
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7 Domain Transfer via Analogy model of Cross-domain Analogy 

 

While within-domain analogy is useful for understanding new situations based on examples, 

cross-domain analogy allows for the understanding of new domains based on similar, well 

understood domains.  Cognitive science research has shown how cross-domain analogies are 

useful to scientists in producing paradigm shifts (Gentner et al. 1997) (Holyoak & Thagard 

1989) (Falkenhainer 1987) and how students use cross-domain analogies learn new domains 

(Gentner & Gentner 1983).  Textbook authors routinely exploit this particular aspect of human 

adaptability when introducing new concepts.  For example, a common physics textbook has 11 

example problems in linear kinematics and only two examples in rotational kinematics.  To assist 

the learner the author explains that “the dynamics of rotation is analogous to the dynamics of 

linear motion” (Giancoli 1991).  Students are expected to leverage this analogy to understand the 

modeling decisions and phenomena in rotational mechanics. 

 

An analogy is a cross-domain analogy if the correspondences between the domains include 

different object types, quantities, and relations.  The two requirements for effective cross-domain 

analogies are a known base domain and a domain mapping, which maps the object types, 

quantities, and relationships between the base and the target domains.  This chapter presents the 

Domain Transfer via Analogy (DTA) model of cross-domain analogy.  Using domain general 

retrieval and matching algorithms, DTA constructs a domain mapping from pairs of examples 

and transfers schemas and control knowledge from a known base domain to create a new target 

domain theory.  Successful cross-domain analogies result in persistent mappings.  Persistent 
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mappings are correspondences between the base and target domains, enabling DTA to construct 

complex analogies incrementally from successful matches. 

 

The next section discusses previous cross-domain analogy research in more detail and motivates 

the need for larger scale process models such as DTA.  Next, an overview of the DTA algorithm 

is presented.  This is followed by a description of a kinematics experiment demonstrating how 

DTA can enable faster learning than a baseline generalization system between the linear and 

rotational kinematics domains.  Next is a second evaluation between the dynamical analogy 

domains (Olsen 1943) of linear, rotational, electrical and thermal systems.  This chapter closes 

with a discussion of related and future work. 

7.1 Previous Cognitive Science Research 

7.1.1 Evidence for Cross-Domain Analogy 

Cognitive scientists have long argued that cross-domain analogy is an important element in 

people’s adaptability to new situations such as learning new domains quickly (Gentner 2003).  

Gentner & Gentner (1983) analyzed student’s mental models of electricity, identifying many 

commonalities with models of flowing water and teeming crowds.  Consistent with other 

psychological findings (Spiro et al. 1989), these analogies affect future inference and learning in 

the electrical domain. 

 

In addition to student learning, a number of researchers have studied the role of cross-domain 

analogy in scientific discovery.  Nersessian (1992) found extensive use of analogy in the 

scientific discoveries of Maxwell and Faraday.  Gentner and her colleagues (1997) studied 



149 
 
writings from Kepler, tracing his extensive use of analogy while he was developing his model of 

the solar system.  Analogy is an important aspect of contemporary science as well; Dunbar 

(1995) found analogies prevalent among practicing biologists. 

 

While cross-domain analogy allows for powerful inferences and accelerated learning, the 

spontaneous generation of useful cross-domain analogies is quite rare.  In a series of experiments 

conducted by Gick and Holyoak (1983), human subjects were unable to transfer a solution 

schema between variations of the radiation problem.  Not only did the subjects fail to 

spontaneously generate and exploit the analogy, they failed even after performing a variety of 

exercises to enhance the base scenarios accessibility (e.g. summarization, abstraction and visual 

depiction). 

 

Given these findings, computational models of cross-domain analogy should encompass the 

following phenomena.  First, cross-domain analogy supports complex inference.  This goes 

beyond answering questions about a given scenario.  The cross-domain analogies studied above 

result in new theories which people use to shape their reasoning about a domain.  Second, 

spontaneous retrieval, generation and application of successful cross-domain analogies is rare.  

Third, a provided base domain, feedback and advice often facilitate cross-domain analogy. 

7.1.2 Previous computational models 

Drawing upon the evidence from cognitive psychology, a number of researchers have created 

computational models of cross-domain analogy.  The most closely related work on cross-domain 

analogical learning is Falkenhainer’s PHINEAS (1988).  PHINEAS used comparisons of 
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(simulated) behavior to create an initial cross-domain mapping that was subsequently used to 

create an explanation for the behavior in the new domain.  DTA differs from PHINEAS in four 

important ways.  First, DTA transfers equation schemas and control knowledge.  Control 

knowledge guides the application of equation schemas, allowing the system to solve complex 

quantitative problems.  Second, DTA uses domain general models of analogical retrieval and 

matching.  While both PHINEAS and DTA use SME for analogical matching, PHINEAS did not 

have a psychologically plausible model of memory retrieval.  DTA employs the MAC/FAC 

model of similarity-based retrieval, which has been used to account for several psychological 

phenomena and make new predictions concerning memory retrieval (Forbus 2001).  Third, DTA 

is evaluated across 32 problems from four different domains, representing a significant increase 

in evaluation scale over previous systems.  Finally, DTA uses persistent mappings to 

incrementally construct complex cross-domain analogies as it encounters new examples from the 

target domain. 

 

This chapter, and this thesis, argues for the integration and evaluation of analogical processes 

within larger reasoning tasks.  Here, DTA is integrated in the Companions cognitive architecture 

and evaluated on a range of quantitative physics problems.  Problems drawn from kinematics, 

mechanics, electricity, and thermodynamics provide the rich set of domains necessary to better 

understand the effectiveness and implications of DTA for artificial intelligence and as a 

cognitive model. 



 

7.2 Domain Transfer via Analogy Process Model

7.2.1 Overview 

Domain Transfer via Analogy is a model of cross

known base domain and an example from the new domain.  The base domain consists of the 

abstract schemas and control knowledge use

which include instantiations of the domain theory schemas.  The process begins after the system 

fails to solve a problem in a new domain.  Using a worked solution to this failed problem, DTA 

performs a cross-domain analogy to learn equation schemas and control knowledge in the target 

domain.  The process is depicted in 

mapping, initializing the target domain theory, extending the target domain via cross

analogy, and verifying the learned knowledge.

 

 

DTA assumes domain theories consisting o

via Analogy Process Model 

Domain Transfer via Analogy is a model of cross-domain analogical learning.  DTA assumes a 

known base domain and an example from the new domain.  The base domain consists of the 

abstract schemas and control knowledge used in reasoning and examples, or worked solutions, 

which include instantiations of the domain theory schemas.  The process begins after the system 

fails to solve a problem in a new domain.  Using a worked solution to this failed problem, DTA 

domain analogy to learn equation schemas and control knowledge in the target 

domain.  The process is depicted in Figure 26 and consists of four steps: learning the domain 

mapping, initializing the target domain theory, extending the target domain via cross

analogy, and verifying the learned knowledge. 

 

Figure 26: DTA algorithm 

DTA assumes domain theories consisting of structured predicate calculus representations.  
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Therefore, any type of domain knowledge which can be stored in this form should be 

transferrable.  In this thesis, the knowledge transferred consists of equation schemas, stored as 

encapsulated histories (Forbus 1984), and control knowledge. 

 

This section begins with a discussion of the representations and problem-solving system.  This is 

followed by a detailed description of the algorithm and an example. 

7.2.2 Representations 

Once again, the representations used are in CycL, the predicate calculus language of the 

ResearchCyc knowledge base (KB) (Matuszek et al. 2006).  The representations use the 

ontology of ResearchCyc, plus our own extensions.  These concern Qualitative Process theory 

(Forbus 1984) and problem-solving strategies, and are small compared to the 30,000+ concepts 

and 8,000+ predicates already defined in the KB.  Thus, objects, relations, and events that appear 

in physics problems such as “rotor”, “car”, and “driving” are already defined in the ontology for 

us, rather than being created specifically for this project.  This reduces the degree of tailorability 

in the experiments. 

7.2.2.1 Example Problem and Worked Solution 

The problems were selected from the following physics resources: (Shearer et al. 1971), 

(Giancoli 1991), (Ogata 1997), (Fogiel 1994) and ("Hooke's Law, Work and Elastic Potential 

Energy" 2009).  Unlike the AP Physics transfer learning experiment described in Chapter 5, 

these representations were created internally by hand.  The same principles were applied to 

create the problem and worked solution representations.  Specifically, the entities in the 

problems were to be represented at the level described in the problem without abstraction.  The 
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problem representations are intended to be direct translations into predicate calculus from natural 

language problem statements, without any abstraction or reasoning.  Consider the problem of 

“How long does it take a car to travel 30m if it accelerates from rest at a rate of 2 m/s2?” 

(Example problem 2-6, p. 26, Giancoli 1991).  This problem is represented in our system as a 

case of nine facts, shown in Figure 27.  The first two facts define the entities in the problem, a 

transportation with land vehicle event, Acc-2-6, and an automobile, Car-2-6.  The next 4 

facts describe the motion of Car-2-6 during Acc-2-6.  The last 3 facts describe the question 

of the problem and how these facts are grouped together in a case. 

 

The worked solutions for these experiments use the same ontology of steps as the AP Physics 

worked solutions in Chapter 5.  Once again, the worked solutions are represented at the level of 

explained examples found in textbooks.  They are neither deductive proofs nor problem-solving 

traces produced by our solver.  In instances where the problems did not have worked solutions, 

they were created to conform to existing worked solutions.  Below is an English rendering of the 

worked solution for example problem 2-6: 

  

Figure 27: Example problem 2-6 representation 

 (isa Car-2-6 Automobile) 
 (isa Acc-2-6 TransportWithMotorizedLandVehicle) 
 (objectStationary (StartFn Acc-2-6) Car-2-6) 
 (primaryObjectMoving Acc-2-6 Car-2-6) 
 (valueOf ((QPQuantityFn DistanceTravelled) Car-2-6 Acc-2-6) 
   (Meter 30)) 
 (valueOf (MeasurementAtFn ((QPQuantityFn Acceleration) Car-2-6) Acc-2-6) 
   (MetersPerSecondPerSecond 2)) 
 (isa Gia-Query-2-6 PhysicsQuery) 
 (hypotheticalMicrotheoryOfTest Gia-Query-2-6 Gia-2-6) 
 (querySentenceOfQuery Gia-Query-2-6 
    (valueOf ((QPQuantityFn Time-Quantity) Acc-2-6) Duration-2-6))) 
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1. Categorize the problem as a constant acceleration linear mechanics problem 

2. Instantiate the distance by velocity time equation (d = vit + .5at2) 

3. Because the car is stationary at the start of the event infer that its velocity is zero (vi = 0 

m/s) 

4. Solve the equation for t (t = 5.8s) 

 

 

The entire worked solution consists of 38 facts.  Figure 28 shows the predicate calculus 

representation for the second worked solution step.  There are two differences from the worked 

solutions in Chapter 5.  The abstractionForObject statements relate entities in the 

problem with participant abstraction types in the domain theory.  In this case, Car-2-6 is 

modeled as a PointMass and Acc-2-6 is considered a 

ConstantTranslationAccelerationEvent.  Also, the first argument to 

Figure 28: Representation for worked solution step 3 from example problem 2-6 

(isa Gia-2-6-WS-Step-2 SubstitutingBindingsForVariables) 
(hasSolutionSteps Gia-2-6-WorkedSolution Gia-2-6-WS-Step-2) 
(priorSolutionStep Gia-2-6-WS-Step-2 Gia-2-6-WS-Step-1) 
(stepUses Gia-2-6-WS-Step-2 (primaryObjectMoving Acc-2-6 Car-2-6)) 
(stepUses Gia-2-6-WS-Step-2 (abstractionForObject Car-2-6 PointMass)) 
(stepUses Gia-2-6-WS-Step-2 
          (abstractionForObject Acc-2-6 ConstantTranslationAccelerationEvent)) 
(stepUses Gia-2-6-WS-Step-2 (isa Gia-Query-2-6 PhysicsProblem-ConstantAcceleration)) 
(stepUses Gia-2-6-WS-Step-2 
  (equationFormFor DistanceByVelocityTime-1DConstantAcceleration 
   (mathEquals ((QPQuantityFn DistanceTravelled) ?OBJ ?INTERVAL) 
    (PlusFn 
     (TimesFn (MeasurementAtFn ((QPQuantityFn Speed) ?OBJ) (StartFn ?INTERVAL)) 
              ((QPQuantityFn Time-Quantity) ?INTERVAL)) 
     (TimesFn (MeasurementAtFn ((QPQuantityFn Acceleration) ?OBJ) ?INTERVAL) 
              (SquaredFn ((QPQuantityFn Time-Quantity) ?INTERVAL)) 0.5))))) 
 (stepResult Gia-2-6-WS-Step-2 
  (equationForSolution Gia-Query-2-6 
   (mathEquals ((QPQuantityFn DistanceTravelled) Car-2-6 Acc-2-6) 
    (PlusFn 
     (TimesFn (MeasurementAtFn ((QPQuantityFn Speed) Car-2-6) (StartFn Acc-2-6)) 
              ((QPQuantityFn Time-Quantity) Acc-2-6)) 
     (TimesFn (MeasurementAtFn ((QPQuantityFn Acceleration) Car-2-6) Acc-2-6) 
              (SquaredFn ((QPQuantityFn Time-Quantity) Acc-2-6)) 0.5))))) 



155 
 
equationFormFor is the encapsulated history type from which the equation comes.  In this 

case, the encapsulated history representing the equation being instantiated in this step is 

DistanceByVelocityTime-1DConstantAcceleration.  While these are additional 

constraints on the worked solution representations, these connections between the worked 

solutions and domain theories function simply as an internal representation for the explanations 

of physics problem solutions.  Recall that DTA uses analogies between worked solutions from 

different domains to learn a domain mapping.  This additional information helps structure the 

domain theory for the target during transfer. 

7.2.2.2 Domain Theories for Problem-solving 

The domain theories consist of encapsulated histories representing equations and control 

knowledge to guide problem-solving.  Encapsulated histories act as equation schemas with 

participants, conditions, and consequences.  During problem solving, the system instantiates 

applicable encapsulated histories to determine which equations are available. 

 

Figure 29 shows the definition for the encapsulated history representing the equation vf=vi+at, 

velocity as a function of time.  There are two participants, theObject and theEvent, which 

Figure 29: Encapsulated history for vf=vi+at in condensed form 

(def-encapsulated-history VelocityByTime-1DConstantAcceleration 
  :participants  
  ((theObject :type PointMass) 
   (theEvent  :type Constant1DAccelerationEvent)) 
  :conditions 
  ((primaryObjectMoving theEvent theObject)) 
  :consequences 
  ((equationFormFor VelocityByTime 
   (mathEquals  
    (AtFn (Speed theObject) (EndFn theEvent) 
    (PlusFn (AtFn (Speed theObject) (StartFn theEvent)) 
            (TimesFn (AtFn (Acceleration theObject) theEvent) 
                     (Time-Quantity theEvent))))))) 
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must satisfy their type constraints, the abstractions PointMass and 

Constant1DAccelerationEvent, respectively.  Furthermore, the conditions of the 

encapsulated history must be satisfied in order to instantiate it and conclude its consequences.  In 

this case, it is necessary that theObject be the object moving in theEvent.  The 

compositional modeling language (Bobrow et al. 1996) form shown in Figure 29 is automatically 

translated into a set of predicate calculus facts for use in the system.  This knowledge is 

necessary for the physics problem-solver to successfully answer questions. 

 

DTA enables the learning of domain theories that are represented with schema-like knowledge.  

In these experiments, DTA learns the encapsulated histories of a new domain via cross-domain 

analogy, in terms of participants, conditions and consequences.  The validity of the learned 

domain theories is evaluated by using it to solve physics problems.  Consequently, it is necessary 

to understand how the problem-solving system works.  The physics problems in this work all ask 

for the values of specific quantities.  If there is an equation in which the only unknown parameter 

is the sought quantity, the system simply solves the equation to determine the answer.  For more 

complicated problems, the problem solver makes use of control knowledge. 

 

Pisan’s work on engineering thermodynamics problem-solving (1998) demonstrated the 

importance of control knowledge for producing expert-like solutions, which are necessary for 

intelligent tutoring systems and cognitive modeling experiments.  Drawing upon distinctions 

from Pisan, the following equation selection and manipulation strategies were used: frame 

equations, decomposition of composite quantities, and symmetric substitution. 
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The problem-solving strategies use frame equations to set up problem-solving.  Frame equations 

are central to their domains and serve as starting points for problem-solving.  For example, the 

conservation of momentum, pbefore = pafter, is a frame equation for mechanics.  For this 

evaluation, domain specific control knowledge concerning frame equations and preferences 

between different frame equations has been added to the domain theories.  In addition to the 

encapsulated histories representing equations, this control knowledge must be transferred as well 

to solve problems in the target domain theory.  Figure 30 shows the facts indicating that 

conservation of momentum and the linear mechanics work energy theorem are frame equations, 

and conservation of momentum should be tried first in scenarios where both are applicable. 

 

After selecting a frame equation, the problem-solver uses strategies of symmetric substitution 

(e.g., given the work energy equation, W=Kefinal – Keinitial, substitute each of the Ke’s with 

.5mv2) and decomposition (e.g., substitute Fnet with the sum of the component forces).  Once the 

only unknown in the equation is the sought quantity, the system invokes algebra routines based 

on the system described in Forbus & De Kleer (1993). 

 

As described in detail in Chapter 5, in addition to equations, solving physics problems requires a 

number of modeling decisions.  While the preceding chapters described how analogical model 

(frameEquationType ConservationOfLinearMomentum) 
(frameEquationType WorkEnergyTheorem-LM) 
 
(preferFrameTypeOver ConservationOfLinearMomentum WorkEnergyTheorem-LM) 

 
Figure 30: Control knowledge statements indicating frame equations and preferences 
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formulation enables a system to make these decisions in broad domains, the systems in these 

experiments use hand coded rules to make approximations and assumptions.  Therefore, the 

system’s performance depends solely on the encapsulated histories and control knowledge of the 

domain theories.  While this is sufficient for the goals of this experiment, analogical model 

formulation and DTA could operate complementarily within a single intelligent agent.  

Integrating analogical model formulation and DTA is an important direction for future work. 

7.2.3 Algorithm 

Using worked solutions, DTA learns a domain mapping and transfers equation schemas and 

control knowledge from a known base domain to a new target domain theory.  After the system 

fails to solve a problem from a new domain, DTA is invoked by providing the worked solution to 

that problem.  When DTA is successful, new encapsulated histories and control knowledge are 

added to the target domain theory along with a set of persistent mappings between the domains. 

7.2.3.1 Step 1: Learn Domain Mapping 

Because different domains are represented with different predicates and conceptual types, a 

domain mapping is essential to successful cross-domain analogies.  DTA learns the domain 

mapping through an analogical mapping between worked solutions from the two domains.  

Using the worked solution for the failed problem as a probe, MAC/FAC selects an analogous 

worked solution from a case library containing worked solutions from the known domain.  Next, 

SME creates an analogy between the retrieved worked solution and the worked solution to the 

failed problem.  If there has already been a successful cross-domain analogy between these 

domains, there will be persistent mappings.  The persistent mappings are required 

correspondences between the base and target worked solutions during the retrieval and 
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analogical matching process. 

 

The analogy between the worked solutions results in up to three mappings.  Each mapping 

contains a set of correspondences, which are used to form the domain mapping.  DTA sorts the 

mappings by their structural evaluation scores.  Beginning with the best mapping, each 

correspondence is added to the domain mapping when the base entity (e.g., numbers, types, 

quantities, and relations) is mentioned in the base domain theory.  This process continues with 

the rest of the mappings by adding correspondences to the domain mapping that do not violate 

the one-to-one constraint.  For example, if the best mapping had a correspondence between 

PointMass and RigidObject and the second mapping had a correspondence between 

PointMass and Ball, the domain mapping would only include the mapping between 

PointMass and RigidObject.  The reason for combining multiple mappings is that the 

global mapping constraints in SME may preclude useful local correspondences. 

7.2.3.2 Step 2: Initialize the Target Domain 

DTA uses the domain mapping to initialize new domain theory elements.  For each encapsulated 

history from the base domain mentioned in the domain mapping, DTA attempts to create a 

corresponding encapsulated history in the target domain.  Before transferring the encapsulated 

history, all of the quantities and types mentioned in the encapsulated history must appear in the 

domain mapping.  If they do, then using the domain mapping, DTA proceeds by substituting 

concepts in the base encapsulated history with the corresponding concepts from the target 

domain.  The resulting encapsulated history is then added to the target domain theory. 
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7.2.3.3 Step 3: Extend the Target Domain Theory 

After initializing the target domain theory, DTA extends the domain theory through a second 

cross-domain analogy.  This time the analogy is between the base and target domain theories 

themselves.  The domain theories consist of the facts representing the encapsulated histories and 

the control knowledge.  DTA constrains this analogy with two sets of mapping constraints.  To 

ensure consistency, each element of the domain mapping becomes a required correspondences 

constraint.  To prevent non-analogous target items from interfering with the mapping, each 

encapsulated history in the target which does not participate in the domain mapping is prevented 

from mapping to any of the base encapsulated histories.   

 

This analogy results in a set of candidate inferences, i.e., conjectures about the target, using 

partially mapped expressions from the base.  Because the base domain theory is made up of 

encapsulated histories, these candidate inferences describe corresponding encapsulated histories 

in the target domain theory.  The corresponding encapsulated histories in the target are 

represented by skolem entities in the candidate inferences.  Recall from Chapter 2 that SME 

creates skolem entities for entities appearing in the base which have no correspondence in the 

mapping.  To complete the cross-domain analogy, DTA adds corresponding entities to the target 

and extends the mapping with these new target entities and correspondences. 

 

 

Using the resulting candidate inferences, DTA constructs new encapsulated histories and control 

knowledge for the target domain theory.  Before adding the encapsulated histories to the target 
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domain theory, it is necessary to resolve other skolem entities mentioned in the candidate 

inferences concerning new encapsulated histories.  If all the encapsulated history’s participant 

types and quantities are included in the domain mapping, then there will not be any other 

skolems, and DTA adds these candidate inferences into the target domain theory.  The control 

knowledge from the base domain also results in candidate inferences.  Each candidate inference 

without any skolem entities containing control knowledge is assumed into the target domain 

theory as well. 

7.2.3.4 Step 4: Verification 

While powerful, cross-domain analogies are risky and frequently contain invalid inferences.  

Therefore, DTA verifies the newly proposed knowledge by retrying the problem whose failure 

began the entire process.  If this problem is solved correctly, DTA assumes that the newly 

acquired domain theory is correct.  Otherwise, DTA forgets both the new domain theory and the 

domain mapping resulting from the worked solution comparison.  At this point, the system using 

DTA could invoke the process again after removing the base worked solution from the case 

library.  This number of retrievals an agent should perform with DTA depends in principle on a 

self-model of its own knowledge and a model of its interactions with the world.  Currently, this 

number is hardcoded for each system. 

 

After a successful transfer, the encapsulated histories and control knowledge are available for 

reasoning about future problems in the target domain.  Also, the mapping from the cross-domain 

analogy is added to the domain mapping and stored as a persistent mapping.  This will assist in 

future cross-domain analogies between the base and target domains.  
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7.2.4 Example 

To better understand how DTA uses multiple cross-domain analogies to transfer domain 

theories, we describe an example of how it learns rotational kinematics through an analogy to 

linear kinematics.  The system begins with a linear kinematics domain theory and worked 

solutions.  Because the system has no encapsulated histories of rotational kinematics, it fails to 

solve the following problem, “Assuming constant angular acceleration, through how many turns 

does a centrifuge rotor make when accelerating from rest to 20,000 rpm in 5 min?”  Because the 

system failed, DTA is invoked and the worked solution to this problem is provided. 

 

In order to create a domain mapping between linear and rotational kinematics, DTA creates an 

analogy between a linear kinematics worked solution and the provided rotational kinematics 

worked solution.  Using the provided rotational kinematics worked solution as a probe, DTA 

uses MAC/FAC to retrieve an analogue from the systems case library of linear kinematics 

worked solutions.  In this case, the analogous worked solution retrieved is for the problem 

discussed previously, “How long does it take a car to travel 30m if it accelerates from rest at a 

rate of 2m/s2?”  DTA uses an analogy between these two worked solutions to produce the 

domain mapping necessary for cross-domain analogy.  In this case, the mathematical 

relationships are isomorphic, d = vit + .5at2 and θ=ωit + .5αt2, which places the quantities 

between the domains into correspondence.  It should be noted that SME handles partial matches, 

allowing correspondences to be created even when the mathematical relationships in the worked 

solutions being compared are not completely isomorphic.  Making use of the KB’s ontology, the 

minimal ascension places primaryObjectMoving in correspondence with 
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objectRotating based upon the shared common ancestor of objectMoving.  Next, the 

mapping’s correspondences are extracted to create the domain mapping, a subset of which 

appears in Table 8. 

 
 

Base Item Target Item 
PointMass RigidObject 
ConstantLinear-
AccelerationEvent 

ConstantRotational-
AccelerationEvent 

primaryObjectMoving objectRotating 
Acceleration AngularAcceleration 
Speed RateOfRotation 
DistanceTravelled AngularDistTravelled 
Time-Quantity Time-Quantity 
DistanceByVelocityTime-
1DConstantAcceleration 

DistanceTime-
Rotational 

Table 8: Resulting Domain Mapping 

After learning the domain mapping, the next step is to initialize the target domain theory.  This is 

done by searching the domain mapping for encapsulated histories from the base domain.  In this 

example, DistanceByVelocityTime-1DConstantAcceleration is found.  In order 

to transfer this encapsulated history to the rotational kinematics domain theory, all of its 

participant types and quantities must participate in the domain mapping.  This encapsulated 

history contains two participant types, PointMass and ConstantLinear-

AccelerationEvent and four quantities, Acceleration, Speed, Time-Quantity 

and DistanceTravelled.  All of these appear in the domain mapping, allowing DTA to 

transfer this encapsulated history to the target domain.  For each fact in the base domain theory 

mentioning DistanceByVelocityTime-1DConstantAcceleration, DTA 

substitutes all subexpressions based upon the domain mapping.  This results in a new 
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encapsulated history, DistanceTime-Rotational, which represent the rotational 

kinematics equation, θ=ωit + .5αt2, and was mentioned in the rotational kinematics worked 

solution.  DTA initializes the target domain theory by adding this new encapsulated history. 

 

Next, DTA extends the new domain theory with a cross-domain analogy between the base and 

target domain theories themselves.  To maintain consistency, this analogy is constrained with the 

domain mapping acting as required correspondence constraints.  The 41 facts describing the 

linear mechanics encapsulated histories make up the base, and the 6 facts of the newly initialized 

rotational mechanics domain theory are the target.  As expected, the sole target encapsulated 

history maps to the corresponding linear mechanics encapsulated history.  This mapping includes 

the quantities, conditions and types in these encapsulated histories.  These correspondences result 

in candidate inferences involving the facts of the other encapsulated histories from the base.  

DTA uses these candidate inferences to infer rotational kinematics encapsulated histories.  For 

example, the candidate inference shown in Figure 31 suggests that there is an encapsulated history 

in the target analogous to the VelocityByTime-1DConstantAcceleration linear 

mechanics encapsulated history.  This candidate inference states that the suggested encapsulated 

history has the operating condition that the object must be rotating during the event.  The 

AnalogySkolemFn expression indicates that there was no corresponding entity in the target.  

Therefore, to extend the target domain theory, DTA creates entities for all the analogy skolems, 

i.e. turning (AnalogySkolemFn VelocityByTime-1DConstantAcceleration) 

into EHType-1523, and assumes these facts into the rotational mechanics domain theory.  

During this step, three new encapsulated histories join the initialized encapsulated history in the 
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rotational kinematics domain theory. 

 

 

The final step is to verify the validity of the learned knowledge.  This is done by attempting to 

solve the original problem again.  Since the worked solution contains the answer, it is simply 

compared against the computed answer.  If they match, then the learned knowledge is assumed 

to be valid.  If the system gets the problem wrong, it takes two steps.  First, it erases the domain 

mapping and the inferred encapsulated histories in the rotational mechanics domain theory.  

Second, it repeats the entire process one more time, with the next-best worked solution from the 

case library.  Abandoning, rather than debugging, a mapping may be unrealistic.  One aspect of 

future work involves exploring diagnosis and repair of faults in learned domain theories and 

domain mappings.  In this case, the learned encapsulated histories allow the system to answer the 

problem correctly. 

 

Recall at the beginning the system had zero encapsulated histories in its rotational kinematics 

domain theory.  While the rotational kinematics worked solution contained an example of one 

encapsulated history, after employing DTA, the system learned schemas for four rotational 

kinematics equations.  This knowledge is now available for future problem-solving episodes.  

The next two sections describe evaluations of DTA across a variety of physics domains. 

  (qpConditionOfType 
   (AnalogySkolemFn VelocityByTime-1DConstantAcceleration) 
   (objectRotating :theEvent :theObject)) 

Figure 31: Candidate inference suggesting a condition of an encapsulated 
history type 
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7.3 Kinematics Experiment 

The first experiment was conducted using the rotational and linear kinematics domains.  This 

experiment compares the learning rates of a system using DTA to a baseline spoon-fed system.  

Each system uses the exact same problem-solver.  At the time of this experiment, the DTA 

algorithm had not been implemented on the Companions cognitive architecture. 

 

Instead of providing the spoon-fed system with the worked solution after failing a problem, it is 

provided with the general encapsulated histories needed to solve that specific problem.  

Therefore, after failing a problem, the baseline system can solve that problem and any other 

problems which use the same equations.  Both systems begin with the necessary rules for 

problem-solving strategies and modeling decisions.  The DTA system was allowed to try an 

additional worked solution from the base domain theory, if it failed to verify domain knowledge 

resulting from the first iteration of the algorithm.   

 

The experiment consists of two parts: one to evaluate learning of rotational kinematics by an 

analogy with linear kinematics, and the other to evaluate learning of linear kinematics based 

upon rotational kinematics.   

7.3.1 Materials 
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The problems for both domains are listed in Figure 32.  The problem and worked solution 

representations were created in the manner described in Section 7.2.2.1.  For linear kinematics, 

the representations for the problems and worked solutions had means of 15.4 and 52 facts 

respectively.  These representations included 38 different types and 52 unique relations.  For 

rotational kinematics, the problem and worked solution representations had a mean of 9.8 and 

46.2 facts respectively.  These representations included 21 types and 33 relations.  9 types and 26 

relations appear in problems and worked solutions from both domains.  Each domain theory 

consists of four encapsulated histories each representing a different kinematics equation. 

 

The design of this evaluation seeks to answer the following questions.  First, can DTA transfer 

Figure 32: Kinematics evaluation materials 

Linear Kinematics Rotational Kinematics 
a) How long does it take a car to travel 30m if it 

accelerates from rest at a rate of 2m/s2? 
b) We consider the stopping distances from a car, 

which are important for traffic safety and traffic 
design. The problem is best deal with in two 
parts: (1) the time between the decision to apply 
the brakes and their actual application (the 
"reaction time"), during which we assume a=0; 
and (2) the actual braking period when the 
vehicle decelerates. Assuming the starting 
velocity is 28m/s, the acceleration is -6.0m/s2, 
and a reaction time of .5s, What is the stopping 
distance? 

c) A baseball pitcher throws a fastball with a speed 
of 44m/s. It has been observed that pitchers 
accelerate the ball through a distance of 3.5m. 
What is the average acceleration during the 
throwing motion? 

d) Suppose a ball is dropped from a 70m tower 
how far will it have fallen after 3 seconds? 

e) A jetliner must reach a speed of 80m/s for 
takeoff.  The runway is 1500m long, what is the 
constant acceleration required? 

a) Through how many turns does a centrifuge rotor 
make when accelerating from rest to 20,000 rpm 
in 5 min? Assume constant angular acceleration 

b) A phonograph turntable reaches its rated speed 
of 33 rpm after making 2.5 revolutions, what is 
its angular acceleration? 

c) Through how many turns does a centrifuge rotor 
make when accelerating from rest to 10,000 rpm 
in 270 seconds? Assume constant angular 
acceleration 

d) An automobile engine slows down from 3600 
rpm to 1000 rpm in 5 seconds, how many 
radians does the engine turn in this time? 

e) A centrifuge rotor is accelerated from rest to 
20,000 rpm in 5 min, what is the averaged 
angular acceleration? 
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the encapsulated histories to solve problems in new domains?  Second, can DTA learn better 

than a baseline system which is incrementally given the correct domain theory?  Third, how 

important is the verification of the learned domain theory and the ability to retrieve additional 

analogues affect performance? 

7.3.2 Learning Rotational Kinematics from Linear Kinematics 

In the first part, linear kinematics is the known base domain and rotational kinematics is the 

target domain.  The problems from the target domain were presented a series 120 of trials 

representing every possible ordering of the five rotational kinematics problems.  Because 

rotational kinematics is the target domain, both systems begin the trial without any rotational 

kinematics encapsulated histories.  Therefore, neither system should be able to solve the first 

problem on any of the trials.  During each trial, when the DTA system fails to solve a problem, 

the DTA method is invoked with the worked solution to that problem.  If DTA fails to verify the 

learned knowledge on the first iteration, DTA is invoked again with the second retrieval from the 

case library. 

 

After each problem in the baseline condition, the system is given the necessary encapsulated 

histories to solve the problem.  The encapsulated histories, either learned by cross-domain 

analogy in the DTA system or provided to the baseline system, allow the system to answer future 

rotational kinematics questions.  At the end of each trial, the system’s knowledge was reset. 
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Figure 33 compares the rotational kinematics learning rates for the DTA and baseline conditions 

averaged across 120 trials.  The DTA system exhibited perfect transfer.  That is, after studying 

just one worked solution, the analogy system was able to score 100% on the rest of the problems.  

Because the DTA system performed perfectly, there were only 120 transfer attempts, all of 

which succeeded.  Of these, 72 attempts (60%) required retrieving a second worked solution to 

generate a successful domain mapping.  This highlights the importance of verifying the 

knowledge learned from the cross-domain analogy.  The performance in the baseline condition 

was markedly worse than DTA.  After one problem, the baseline system was only able to solve 

the next problem 45 percent of the time.  Also, the baseline system’s ceiling was at 80 percent.  

This was due to the fact it was unable to solve rotational kinematics problem ‘b’ from Figure 32 

regardless of what problems it had already seen, because none of the other problems use the 

same equation.  DTA overcomes this through the analogy between the domain theories 

themselves.  This allows DTA to infer equations not mentioned explicitly in the worked solution 

from the target domain.  After the first problem in each of the DTA trails, all four linear 
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kinematics encapsulated histories were transferred to the rotational kinematics.  Therefore, the 

DTA system scored 100% on each of the subsequent problems. 

7.3.3 Learning Linear Kinematics from Rotational Kinematics 

This experiment followed the same form as the previous experiment but with the opposite base 

and target domains.  Here, rotational kinematics is the base domain and linear kinematics is the 

target domain.  Once again, the learning rates between the baseline system and the DTA system 

are compared. 
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Once again, the DTA system outperformed the baseline system.  Figure 34 graphs the learning 

curves of the two conditions.  After the first problem, the DTA system got the next problem 

correct 60% of the time, compared with the 40% performance of the baseline.  After seeing two 

worked solutions, the analogy system scored 90% on the third problem where the baseline 

system scored 80%.  On the fourth and fifth problems of each trial, both systems performed at a 

ceiling of 100%.  The baseline condition was able to achieve a ceiling of 100% as every equation 

required was used by at least two problems.  In the analogy condition, DTA was unable to 

transfer the correct domain theory for two linear kinematics problems.  This led to 180 transfer 

attempts, 120 after the first problem of the trial, 48 after failures on the second problem and 12 

after the third problem.  Out of the 180 attempts, 120 (66%) were successful.  Of the successful 

attempts, none of them required using an additional retrieval. 

7.3.4 Discussion 

In both parts of the experiment, the domain transfer via analogy system outperformed the spoon-
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fed baseline system.  DTA learned faster and achieved a ceiling that was the same or higher than 

the baseline.  An analysis of the linear kinematics transfer failures indicates that increasing the 

complexity of sub-event structures and time intervals increases the difficulty in generating an 

appropriate domain mapping.  Linear kinematics problems ‘b’ and ‘d’ both contained such 

structures.  One requirement for successful transfer between these domains is that an 

objectRotating statement in the rotational kinematics worked solution must correspond 

with a primaryObjectMoving statement in the linear kinematics worked solution.  In order 

for this to occur, the entities which make up these expressions must already be in alignment.  

Given the structure of linear mechanics problems ‘b’ and ‘d’, the events listed in the step uses 

statements may differ from the events referenced in the quantities and equations.  Therefore, one 

aspect of future work is to incorporate rerepresentation strategies (Yan et al. 2003) to bring these 

worked solutions into better alignment with the analogous rotational kinematics worked 

solutions.  The added complexity of the linear kinematics problems also slowed the baseline 

learning system. 

 

Another interesting phenomena illustrated by these experiments is the difference in the utility of 

retrieving an additional worked solution if the first one fails.  In these experiments, more than 

one of the base worked solutions could potentially serve as an analogue to create the domain 

mapping.  In the learning rotational kinematics experiment, retrieving additional worked 

solutions was critical to the DTA system’s performance.  On the other hand, in the experiment 

learning linear kinematics, the additional retrievals never produced an adequate domain 

mapping.  This provides evidence that the decision to retrieve additional analogues should be 
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controlled by the system based upon its goals.  For example, if the system did not have other 

tasks requiring attention, then it could continue retrieving additional analogues until it achieved a 

successful transfer. 

7.3.4.1 Limitations of the Kinematics experiment 

While these results are very encouraging, there are a number of weaknesses in this experiment: 

 

1. Linear and rotational kinematics are very similar domains 

2. The domains were limited in depth to only kinematics 

3. Only encapsulated histories were transferred 

4. The domains did not contain any non-analogous aspects 

 

These simplifications informed the investigation of applying DTA to a broader range of 

phenomena in the next section. 

7.4 Dynamical Analogies 

To address the four limitations of the kinematics experiment, a new corpus of domains was 

created use Olsen’s Dynamical Analogies (1943) as a starting point.  The following four domains 

were used: linear mechanical, rotational mechanical, electrical, and thermal systems.  The 

dynamical analogy domains differ from the kinematics domains used in the previous experiment 

in several important dimensions.  First, the new domains include superficially dissimilar domains 

such as mechanical and electrical systems.  Second, the dynamical analogy domains cover more 

phenomena than the kinematics scenarios.  Therefore, a single cross-domain analogy between 
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two worked solutions does not include all of the entities from the base and target domain 

theories.  Third, the complexity of the problems was increased, requiring control knowledge to 

be included in the domain theories.  Fourth, each of these domains has non-analogous elements 

(e.g., equations to calculate the moment of inertia of a point in rotational mechanics and nothing 

corresponds to kinetic energy in thermal systems).  Table 9 aligns the analogous quantities from 

the domains.  This will stress the verification aspects of DTA. 

 

Table 9: Dynamical analogy domains aligned by analogous quantities 

Linear Rotational Electrical Thermal 
Force [F] Torque [Τ] Voltage across [V] Temperature 

difference[T] 
Speed [v] Rate of rotation [ω] Electrical current 

level [i] 
Heat flow rate [q] 

Linear deflection [x] Rotational deflection 
[β] 

Electrical charge [q] Thermal energy [H] 

Mass [F=ma] Moment of inertia 
[T=Jα] 

Inductance [V=Ldi/dt] n/a 

Linear momentum  
[p=mv] 

Rotational momentum 
[p=J ω] 

n/a n/a 

Linear kinetic energy 
[Ke=.5mv2] 

Rotational kinetic 
energy 
[Ke=.5 J ω2] 

Inductance energy 
[Energy=.5Li2] 

n/a 

Linear compliance 
[F=x/C] 

Rotational compliance 
[T= β/C] 

Electrical capacitance 
[V=q/C] 

Thermal capacitance  
[T=H/C] 

Translational elastic 
potential 
[EPE=.5(x2)/C] 

Rotational elastic 
potential 
[EPE=.5(ω 2)/C] 

Capacitance energy 
[Energy=.5(q2)/C] 

n/a 

Linear damping  
[F=bv] 

Rotational damping  
[T=Dω] 

Electrical resistance 
[V=q/R] 

Thermal resistance 
[q=T/R] 

Power [P=Fv] Power [P=Tω] Power [P=Vi] n/a 

7.4.1 Changes to the underlying system 

The challenges introduced by the dynamical analogy domains required a number of alterations to 

the system. 
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7.4.1.1 Companions Cognitive Architecture 

For this experiment, the DTA algorithm was implemented on the Companions Cognitive 

Architecture (Forbus et al. 2008).  Implementing DTA on a Companion provides two benefits.  

First, as in the previous experiments, the separation of MAC/FAC from problem-solving 

operations saves memory space allowing for additional debugging information during 

development.  Second, this implementation allowed for the reuse of the experimental 

infrastructure created for the AP Physics evaluation.  The experimental scripts provide a concise 

way of defining experiments and collecting data. 

7.4.1.2 Control Knowledge 

The problems from dynamical analogies domains require more complex algebraic manipulations 

than those from the kinematics experiment.  For example, the problems include more entities, 

leading to substantially larger models.  More critically, the straightforward recursive equation 

solving strategies used in kinematics experiment are insufficient for these problems.  For 

example, the rotational mechanics problem Gia-8-12 requires the problem-solver to cancel the 

unspecified mass quantity from the momentum before and after.  Therefore, a number of the 

problems in this experiment require control knowledge for the problem-solver to arrive at the 

correct solution. 

7.4.1.3 Persistent Mappings 

In the kinematics experiment, a successful interaction of DTA resulted in the entire kinematics 

domain theory being learned.  Given the breadth of the dynamical domains, no single worked 

solution will include all of the quantities and abstraction types mentioned in that domain.  This 

evaluation employs persistent mappings to incrementally build the cross-domain analogy over 
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multiple worked solutions.  Persistent mappings consist of correspondences between the base 

and target domains which have proven useful in previous transfer episodes.  These mappings 

have implications for future learning in the target domain.  For concreteness, consider use the 

problems in Figure 35 to learn about electrical systems via cross-domain analogy with linear 

mechanics. 

  

Linear Mechanics Electrical Systems 
Gia-4-1: Estimate the net force 
needed to accelerate a 1500kg 
race car at -5 m/s2? 

Gia-21-37-P: A 75-V emf is 
induced in a .3 H coil by a current 
that rises uniformly from 0 to I in 
2ms.  What is the value of I? 

Phy-1: When a 13.2-kg mass is 
placed on top of a vertical 
spring, the spring compresses 
5.93 cm. Find the force constant 
of the spring. 

Gia-17-24-P: How much charge 
flows from a 12-V battery when it 
is connected to a 7.5 micro-F 
capacitor? 

Figure 35: Example problems from the linear mechanics and electrical system domains. 

The Companion is provided a case library of worked solutions to the linear mechanics problems.  

DTA begins after the Companion fails to solve the first problem, Gia-21-37-P, because it does 

not have any encapsulated histories about electrical systems.  After retrieving the worked 

solution to problem Gia-4-1 from memory and transferring the equation schema for the 

definition of self inductance, V=L*di/dt, the Companion verifies the knowledge by successfully 

solving Gia-21-37-P.    After a successful transfer, DTA stores the mappings from the analogy 

between the domain theories as persistent mappings.  In this case, the persistent mappings 

include correspondences between the domain theories including quantities (e.g., 

ForceQuantity and VoltageAcross), abstraction types (e.g., PointMass and 

Inductor-Idealized), relations (e.g., objectTranslating and objectActedOn) 
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and encapsulated history types (e.g. DefinitionOfNetForce and 

DefinitionOfSelfInductance). 

 

After this successful iteration of DTA, the Companion is presented with a new problem from 

electrical systems, Gia-17-24-P.  The Companion fails to arrive at the correct solution and 

invokes DTA.  The first step of DTA is to retrieve an analogous worked solution from memory 

and extract a domain mapping.  DTA uses the persistent mappings as required correspondence 

constraints to SME during the retrieval process.  This guides the retrieval process to select the 

worked solution to problem Phy-1 and to construct a mapping building upon its knowledge about 

the domains.  The resulting domain mapping includes the persistent mappings and the 

correspondences between the worked solutions to Phy-1 and Gia-17-24-P.  This domain mapping 

constrains the analogy between the linear mechanics and the electrical systems domain theories.  

At this point, the electrical system domain theory consists of the equation schema for self 

inductance and control knowledge indicating it is a frame equation.  DTA uses the candidate 

inferences from the analogy between the domain theories to extend the target domain theory with 

the equation schema for the definition of charge on a capacitor (i.e., the charge on a capacitor is 

equal to the voltage across the capacitor multiplied by its capacitance).  This knowledge is 

verified by the Companion successfully solving Gia-17-24-P, and the persistent mappings are 

extended with the correspondences of the analogy between the domain theories. 

 

As the example above illustrates, persistent mappings allow complex cross-domain analogies to 

be incrementally constructed as additional knowledge about the target become as available. 
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7.4.1.4 Non-analogous Base and Target Knowledge 

The dynamical analogy domains include a number of non-analogous equations.  These are items 

for which there is no corresponding item in the other domain.  There is no such thing as thermal 

inductance, nor are there analogous items for the equations to compute moment of inertia.  

Including these elements in the analogy provides a number of challenges for a cross-domain 

analogy system.  A non-analogous item in the base will be hypothesized in the target.  A non-

analogous target item could potentially match with a base item.  Given the one-to-one constraint 

of analogical matching, this would prevent the analogous target item from being suggested in 

analogical inferences. 

 

Three aspects of DTA prevent the non-analogous items in the base and target from adversely 

affecting the cross-domain analogy.  First, encapsulated histories are transferred only if all the 

facts concerning participant types and quantities are mentioned in the domain mapping.  Because 

non-analogous base encapsulated histories will include quantities and participant types, they will 

only be transferred if there is a target worked solution which causes all of the quantities to appear 

in the domain mapping.  For example, a cross-domain analogy from electrical to thermal 

mechanics will not transfer an encapsulated history for inductance because no worked solutions 

from the target domain will include this non-existent quantity.  Second, the verification step 

provides additional protection against non-analogous base knowledge being transferred into the 

target.  If a non-analogous base encapsulated history is transferred to the target domain theory, it 

may affect the problem-solving during the verification step.  If it does, then the newly inferred 

target items and the domain mapping which produced them are forgotten.  Third, because of the 
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assumption that knowledge about analogous encapsulated histories in the target comes only from 

the analogy, target encapsulated histories which are not included in the domain mapping are 

excluded from the cross-domain analogy.  

7.4.1.5 Interactive Cross-Domain Analogies 

The scope of the dynamical analogies domains requires that the target domain be constructed 

over a number of iterations of cross-domain analogy.  The analogy is introduced in pieces and 

separated by non-analogous aspects of the domain.  For example, Giancoli (1991) introduces 

rotational motion over an entire chapter.  The chapter begins with discussing kinematics 

equations and their analogues with linear motion.  Next, moment of inertia is introduced, which 

leads to a discussion of the non-analogous elements concerning the computation of moment of 

inertia and radius of gyration for various idealized objects.  Giancoli invokes the analogy again 

to introduce rotational kinetic energy and angular momentum.  Text books and teachers present 

cross-domain analogies iteratively and provide students with correspondences between the 

domains. 

 

Therefore, it is useful to view cross-domain analogical learning as an interactive process.  

Adapting DTA to take advice was done in two ways.  One, the Companion can be instructed to 

invoke DTA with a given set of correspondences serving as additional persistent mappings, 

constraining the retrieval and matching process between the worked solutions.  Two, the 

Companion can be instructed to invoke DTA with a given base worked solution.  Retrieval is a 

similarity based process and in cross-domain analogies there is very little surface similarity.  

Therefore, one would not expect MAC/FAC to be particularly effective as the number of non-
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analogous base worked solutions grows.  These pieces of advice can be invoked together by 

specifying a base worked solution and a set of correspondences. 

7.4.2 Experiment 

This experiment evaluates DTA’s performance on the dynamical analogy domains addressing 

the following questions: 

• Can DTA transfer the analogous knowledge necessary to solve problems in dynamical 

analogy domains? 

• When retrieval fails, does providing the Companion with the analogous base solution 

lead to successful transfer? 

• What are the effects of persistent mappings in learning domain mappings and aiding 

retrieval? 

7.4.2.1 Materials 

The problems were selected from the physics resources with the following goals.  First, each of 

the dynamical analogy equations from Table 9 should be included in the problem set.  Second, the 

problems were limited in complexity to requiring at most 3 different physics equations.  This is 

consistent with using more basic problems when introducing subjects.  Third, problems were 

favored which provided a worked solution.  The problems which did not have a worked solution 

had one created in the same manner as the proceeding experiment.  Fourth, problems were 

selected based upon an ability to solve them using our existing algebra system.  Problems which 

involved calculus were simplified to satisfy this requirement.  Table 10 contains natural language 

representations of the problems aligned by the underlying analogy. 
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Table 10: Dynamical analogy problems aligned by central equations8 

Linear Rotational Electrical Thermal 
Gia-4-1: Estimate the net force 
needed to accelerate a 1500kg 
race car at -5 m/s2? 

Gia-8-9: A 15N force is applied 
to a cord wrapped around a 4kb 
wheel with a radius of 33cm.  
The wheel is observed to 
accelerate uniformly from rest to 
reach an angular speed of 30 
rad/s in 3s, if there is a frictional 
torque of 1.1 Nm, determine the 
moment of inertia of the wheel. 

Gia-21-37-P: A 75-V emf is 
induced in a .3 H coil by a 
current that rises uniformly from 
0 to I in 2 ms.  What is the value 
of I? 

N/A 

Gia-7-2: A 10,000kg railroad car 
traveling at a speed of 24 m/s 
strikes an identical car at rest. If 
the cars lock together as a result 
of the collision, what is their 
common speed afterwards? 

Gia-8-12: A mass attached to the 
end of a string revolves in a circle 
on a frictionless tabletop.  The 
other end of the string passes 
through a hole in the table.  
Initially, the ball rotates with a 
speed of 2.4m/s in a circle of 
radius .8m. The string is then 
pulled through the hole so that 
the radius is reduced to .48m.  
What is the speed of the mass 
now? 

N/A N/A 

Gia-6-3: A 145g baseball is 
thrown with a speed of 25 m/s. 
What is the work done if it is 
starting from rest? 

Gia-8-40-P: A centrifuge rotor 
has a moment of inertia of 4e10-2 
kgm2. How much energy is 
required to bring it from rest to 
10,000 rpm? 

Gia-21-46-P: How much energy 
is stored in 40mH inductor at an 
instant when the current is 12 A? 

N/A 

Phy-1: When a 13.2-kg mass is 
placed on top of a vertical spring, 
the spring compresses 5.93 cm. 
Find the force constant of the 
spring. 

She-2-16: A simple torsion bar is 
formed by a cylindrical steel rod 
has a diameter  of .25 inch and a 
length of 3 inches and is fixed to 
a rigid support at one end. The 
end rotations 1 radian when a 20 
N force is applied, Compute the 
inertia of the rod? 

Gia-17-24-P: How much charge 
flows from a 12-V battery when 
it is connected to a 7.5 micro-F 
capacitor? 

Gia-14-1: How much heat is 
required to raise the temperature 
of an empty 20-kg vat made of 
iron from 10C to 90C? 

Gia-6-28-P: A spring has a spring 
constant of 380 N/m.  How much 
must this spring be compressed to 
store 60J? 

She-2-18: An ideal torsion spring 
is attached to the shaft of a gear.  
A torque, T, is applied to the gear 
twisting the spring.  Assuming 
that K=11 Nm/rad.  Compute the 
energy stored in the spring when 
it is displaced by 2 rads. 

Gia-17-7: A 12-V battery is 
connected to a 20 micro-F 
capacitor with uses a paper 
dielectric, how much electric 
energy can be stored in the 
capacitor? 

N/A 

Oga-3-8: Given a speed of 20 m/s 
what is the force applied by a 
series of dampers with damping 
constants of 7 Ns/m and 5 Ns/m? 

Oga-6-12: A Cylinder is rotating 
with a speed of 15 rad/s what is 
the force applied from a dashpot 
(b = 2 Ns/rad)? 

Gia-18-2: A plate on the bottom 
of a small tape recorder specifies 
that it should be connected to that 
it should be connected to a 6V 
and will draw 300 mA, what is 
the resistance of the recorder? 

Gia-14-8: A major source of heat 
loss from a house is through the 
windows. Calculate the rate of 
heat flow through a glass window 
2m x 1.5m and 3.2mm thick if 
the temperatures at the inner and 
out surfaces are 15C and 14C. 

Gia-6-47-P: If a car generates 
15hp when traveling at a steady 
100 km/h, what must be the 
average force exerted on the car 
due to friction and air resistance? 

Rea-286: The drive shaft of an 
automobile rotates at 377rad/s 
and transmits 59.6W from the 
engine to the rear wheels. 
Compute the torque developed by 
the engine.  

Gia-18-6: An electric heater 
draws 15 A on a 120 V line.  
How much power does it use and 
how much does it costs per 
month 30 days if it is operated 3 
hrs/day and the electric company 
charges $.08 per Kwh? 

N/A 

                                                 
8 Problem sources are indicated by their prefixes.  The first number indicates the chapter and the second problem 
indicates the example within that chapter.  The ‘P’ designation is used for problems from the end of the chapter.  Gia 
are from (Giancoli 1991), Oga are from (Ogata 1997), She are from (Shearer et al. 1971), Rea are from (Fogiel 
1994) and Phy are from ("Hooke's Law, Work and Elastic Potential Energy" 2009) 
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Predicate calculus representations for problems and worked solutions were created for the 22 

problems: 7 from linear mechanics, 7 from rotational mechanics, 6 from electrical systems, 2 

from thermal systems. 

 

As in the previous experiment, the rules for the problem-solving system are hand coded. 

7.4.2.2 Method 

The base domain for this experiment is linear mechanics, because it is the dynamical analogy 

domain most students learn first.  The linear mechanics 7 problems and worked solutions were 

added to the case library.  The base domain theory consists of the encapsulated histories and 

control knowledge necessary to solve these 7 problems.  The target domains for this experiment 

are rotational, electrical, and thermal systems.  The initial target domain theory includes only the 

non-analogous encapsulated histories necessary to solve the problems (e.g. equations for 

computing moment of inertia).  

 

Instead of learning curves, the design of this experiment seeks to evaluate DTA’s performance 

on a per problem basis.  Therefore each problem was tested independently in four conditions.  

First, the entire DTA algorithm was run on each problem.  To isolate the retrieval mechanism, 

the Companion was only allowed one attempt to retrieve a worked solution from the base 

domain.  In the second condition, each problem was presented with the correct retrieval from 

linear mechanics.  The third and fourth conditions address the effects of persistent mappings.  the 

third condition provides each problem with the persistent mappings resulting from a successful 
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run of DTA on the most similar problem.  For example, in condition three for Gia-21-37-P, the 

persistent mappings were provided from a successful transfer between Gia-6-3 and Gia-21-46-P.  

In the fourth condition, the persistent mappings and the correct retrieval were provided. 

 

For each problem, DTA was scored correct if the Companion was able to solve the problem after 

the transfer and retrievals were scored using Table 10.  Therefore each problem has only one 

correct retrieval out of 7 worked solutions in the case library. 

 

The goal of this experiment is to assess DTA’s ability to learn rotational mechanical, electrical, 

and thermal systems through cross-domain analogy with linear mechanics.  Using the four 

conditions, the retrieval, mapping and persistent mapping components are evaluated 

independently. 

7.4.2.3 Results 

Table 11 shows the results of the four trials for each of the three transfer domains. 
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Condition Rotational Mechanical (7) Electrical Systems (6) Thermal Systems (2) 
Correct(%) Retrieval(%) Correct(%) Retrieval(%) Correct(%) Retrieval(%) 

1: Complete 
DTA 

2(29%) 3(43%) 1(17%) 2(33%) 0(0%) 0(0%) 

2: Given base 
worked solution 

6(86%) n/a 4(67%) n/a 2(100%) n/a 

3: Given 
persistent 
mapping  

3(43%) 3(43%) 1(17%) 3(50%) 0(0%) 0(0%) 

4: Given 
persistent 
mapping and 
base worked 
solution 

7(100%) n/a 4(67%) n/a 2(100%) n/a 

Table 11: DTA results by successful transfers and number of retrievals using linear mechanics as the base 
domain 

In condition 1, DTA transferred useful equation schemas and control knowledge to 3 out of 15 

problems from the target domains (20%).  While the Companion solved problems from rotational 

mechanical and electrical domains, it failed to solve either of the thermal system problems.  

These results are not as bad as they seem because, of the worked solutions retrieved, only 5 out 

of the 15 (33%) were analogous to the target worked solution.  Compared against random 

retrieval, this result is not statistically significant (p<.19).  In condition 2, where DTA was 

provided the correct retrieval from memory, the Companion successfully solved problems from 

all three of the domains.  DTA transferred useful equation schemas and control knowledge for 12 

out of the 15 problems (80%) of the problems.   In the third condition, the Companion was 

provided with the persistent mappings resulting from a successful transfer of the closest target 

problem.  After retrieving 6 out of 15 (40%) correctly, DTA successfully transferred knowledge 

to solve 4 (27%) of the problems.  Unlike condition 1, the retrieval result for condition 3 is 

statistically significant from random retrieval (p<.04).  In the final condition, DTA was provided 

with both the persistent mappings and correct retrieval and the Companion correctly solved 13 of 
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the 15 (87%) problems. 

7.4.3 Discussion 

First, these results indicate DTA is able to transfer knowledge from linear mechanical systems in 

order to solve problems from related domains.  In addition to successful transfer to rotational 

mechanics, DTA was able to transfer linear mechanical knowledge to the superficially dissimilar 

domains of electrical and thermal systems under certain conditions.  These cross-domain 

analogies include non-analogous base and target elements.  In addition, these cross-domain 

analogies required the transfer of not only equation schemas but also control knowledge 

regarding how to employ the equations to solve problems in the target domain.  While the 

analogous portion of these domains contains 7 equations relating 11 quantities, there are 33 total 

equations and 56 total quantities used in the 4 domain theories and 22 worked solutions.  The 

next sections discuss the retrieval, mapping, verification and persistent mapping aspects of the 

algorithm in detail. 

7.4.3.1 Retreival 

The primary cause for DTA’s failures was the inability to retrieve an analogous worked solution.  

This is consistent with psychological findings regarding the difficulties in the spontaneous 

retrieval of cross-domain analogies (Gick and Holyoak 1983).  Given a known base domain, 

DTA retrieved the analogous worked solution only 33% of the time.  By providing persistent 

mappings, this performance improved to 40% which is statistically significant compared to 

chance. 

 

An analysis of the retrieval failures indicates that every failure occurred during the 1st stage of 
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MAC/FAC.  Recall that the MAC stage consists of a fast non-structural comparison between 

feature vectors for each of the cases in the case library and the probe case.  The feature vectors 

are automatically computed and each component has a strength proportional to the number of 

occurrences of individual predicates.  Looking at the feature vectors more closely, the majority 

of the highest weighted entries are relations concerning the definition of worked solution steps.  

Therefore, the MAC stage is largely determined by the size of the worked solution probe.  Of the 

rest of the entries, few are shared across the domains.  Rotational mechanics shares some motion 

predicates with the base domain, contributing to improved retrieval.  Also, persistent mappings 

improved retrieval slightly by altering the probe’s feature vector to include additional predicates 

from the base domain.  Every time the analogous worked solution was selected in the MAC 

stage, it was returned as the retrieval. 

 

Combining the results from condition 1 and 3, retrieval performed statistically better than chance 

(37% p<.05).  For this experiment, the Companion was only allowed one retrieval attempt.  One 

method to improve performance would be by allowing multiple retrievals.  The rigorous 

verification of transferred knowledge prevents non-analogous retrievals from tainting the target 

domain theory.  As discussed earlier, the number of retrievals should be under the control of the 

agent.  If the agent using DTA does not have other tasks requiring attention, then it would be free 

to make multiple retrievals.  Otherwise, the agent should entertain another course of action, such 

as interactive cross-domain analogy.  In this case, the agent asks the user for an analogous 

worked solution from the base domain.   
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7.4.3.2 Mapping and Transfer 

Given the cross-domain nature of these analogies, the mapping of worked solutions to learn the 

domain theory followed by the analogy between the domain theories was very successful.  Of the 

41 problems in which DTA used the correct retrieval, transfer was successful on 32 (78%) of 

them.  Through analyzing the failures, we can better understand the limits of DTA.  The 9 

transfer failures can be divided into three types of failures: merge failures, one-to-one constraint 

failures, and incomplete mapping failures. 

 

The first cause of mapping failures occurs when the mapping fails to include a necessary 

correspondence because another correspondence was already in the mapping.  Recall that during 

SME, local match hypothesis are merged into structurally consistent global mappings.  For 

example, the worked solution of Gia-6-3 includes two relations connecting the ball to the 

throwing event: objectThrown and objectTranslating.  The analogous rotational 

mechanics problem, Gia-8-40-P, has one relationship linking the rotor to its rotation event: 

objectRotating.  Due to the one-to-one constraint, objectRotating can only map to 

objectThrown or objectTranslating.  If it maps to objectThrown, the subsequent 

cross-domain analogy will fail because objectTranslating is condition in the analogous 

equation schema.  

 

The second cause of mapping failures is one-to-one constraint violations in the analogous 

equations.  For example, the worked solution to problem Gia-6-3 uses the equation schema for 

linear kinetic energy (Ke = .5mv2) which includes 3 participants: the object, the movement event, 
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and the time point of the measurement.  The three participants are Ball-6-3, Throwing-6-

3 and (EndFn Throwing-6-3) respectively.  The analogous electrical problem, Gia-21-46-

P, uses the equation schema for inductance energy (E = .5 Li2) which also includes three 

participants: the inductor, the induction event, and the time point of the measurement.  In this 

case, the induction event is the same entity as the time point.  Therefore, the one-to-one 

constraint prevents the participant types for the events and the time points for appearing in the 

same mapping.  Recall, if all of an equation schema’s participant types are not in the domain 

mapping, then the equation schema cannot be transferred via DTA. 

 

The third cause of mapping failures is an incomplete mapping.  This occurs when the mapping 

with the analogous worked solution transfers some of the equation schemas required to solve the 

target problem.  This error occurred during the analogy between electrical problem Gia-17-7 and 

the linear mechanics problem Gia-6-28-P.  Gia-17-7 requires equation schemas for both the 

definition of electrical capacitance, V=q/C, and the definition of capacitor energy, Ce=.5(q2)/C.  

The worked solution analogy between Gia-6-28-P and Gia-17-7 successfully transfers the 

equation schema for electrical capacitance, but not capacitor energy.  Therefore, the verification 

step fails, and the transferred knowledge and domain mapping is forgotten. 

 

The three types of mapping failures demonstrate the limits of DTA’s ability to learn domain 

mappings from the analogy between two worked solutions.  As the next section describes, 

persistent mappings allow DTA to overcome merge failures and incomplete mapping failures. 



189 
 
7.4.3.3 Persistent mappings 

The results from conditions 3 and 4 of the dynamical analogies experiment demonstrate that 

persistent mappings support incremental learning of the target domain theory through multiple 

cross-domain analogies.  In condition three, persistent mappings enabled an additional correct 

retrieval.  Persistent mappings prevent worked solution mapping failures.  In the merge failure 

between worked solutions Gia-6-3 and Gia-8-40-P, the persistent mappings included a required 

correspondence between objectTranslating and objectRotating.  This shows how 

successful matches can assist future analogies between worked solutions.  Also, persistent 

mappings prevent incomplete mappings by already including aspects of the cross-domain 

analogy.  In the incomplete failure between worked solution Gia-6-28-P and Gia-17-7, the 

persistent mapping and target domain theory already includes the definition of capacitance.  This 

was the result of the analogy between Phy-1 and Gia-17-24-P.  Therefore, when analogy between 

Gia-17-7 and Gia-6-28-P transfers the definition of capacitance energy, the Companion is able to 

use both equations to successfully solve Gia-17-7.  DTA is able to incrementally construct 

complex cross-domain analogies by storing persistent mappings from successful iterations. 

 

An underlying assumption of persistent mappings is that the entire cross-domain analogy 

satisfies the one-to-one constraint.  That is, each element of the base domain theory corresponds 

to at most one element in the target domain theory.  This assumption was not valid in this 

experiment.  This caused DTA to fail on the electrical power problem, Gia-18-6, which it 

succeeded on in previous conditions.  The electrical power equation, P=Vi, involves three 

participants, a power supply, an electrical component, and an electrical conduction event.  In the 
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first two conditions, the analogy between the worked solutions for Gia-6-47-P and Gia-18-6 

resulted in a domain mapping including a correspondence between point mass and electrical 

component.  Using the resulting domain mapping, the power equation is transferred and the 

Companion solves the problem.   In conditions 3 and 4, the persistent mapping resulting from a 

successful transfer for problem Gia-21-37-P includes a correspondence between point mass and 

inductor.  This is a required correspondence during the worked solution analogy between Gia-6-

47-P and Gia-18-6 preventing the necessary domain mapping between point mass and electrical 

component.  Therefore an important direction for future work involves relaxing persistent 

mappings.  Successful transfers would support persistent mappings and transfer failures 

involving persistent mappings would be evidence against them. 

 

The dynamical analogy evaluation and the kinematic evaluation demonstrate that DTA enables 

the reuse of knowledge from an understood domain in new domains.  Using analogies between 

worked solutions, DTA learns a domain mapping which is used to constrain a cross-domain 

analogy.  This cross-domain analogy transfers equation schemas and control knowledge.  

Verified transfers result in persistent mappings which guide future analogies between the 

domains.  The next chapter presents related work on cross-domain analogy and directions for 

future research. 
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8 Related and Future Work on Cross-domain Analogy 

 

This chapter compares DTA with other methods not mentioned in previous chapters and 

discusses future directions. 

8.1 Related Work 

The major threads of related work concern cognitive science models of analogy, AI transfer 

learning, and other forms of example-based reasoning. 

8.1.1 Cross-domain Analogy simulations from Cognitive Science 

The differences between DTA and PHINEAS (Falkenhainer 1987) are discussed in Section 

7.1.2.  Another analogical problem-solving and learning system is Holyoak and Thagard's PI 

(1989).  PI used a pragmatic theory of analogy to model solving a variation of the radiation 

problem through schema induction.  After a successful analogical problem-solving episode, PI 

induces a schema which is treated as a general rule which applies to the two analogous 

situations.  PI only used analogy during problem-solving, and its retrieval model was never 

extensively tested.  On the other hand, DTA makes analogies between both example problems as 

well as analogies between domains themselves.  The domain theory analogy enables DTA to 

transfer domain knowledge not explicitly referenced in the particular worked solutions used in 

creating the domain mapping (e.g., the rest of the domain theory in the kinematics experiment 

and the control knowledge in the dynamical analogy experiment).  Moreover, DTA tests its 

learned knowledge, and uses it to solve new problems from the target domain, whereas PI did 

neither. 



192 
 
 

Kühnberger et al.’s I-Cog (2007) explores the trade-offs between analogy and two other 

reasoning modules, all of which operate over noisy data, using the Heuristic-Driven Theory 

Projection (Gust et al. 2006) model of analogy.  Schwering et al. (2008) identifies the 

importance of combining analogy with deductive and inductive techniques for achieving human 

level reasoning.  These approaches emphasize ubiquity of analogy in reasoning and learning as 

well as the integration of analogy with other reasoning processes.  A major point of departure 

between the above simulations and DTA is the scale of the tasks.  While the above systems have 

explored similar domains to those explored here, they have not been systematically evaluated on 

sets of problems and domains.  Scaling up is a major challenge for analogical learning systems 

(Forbus 2001).  By learning physics domain theories, the results of the cross-domain analogy are 

used in a large-scale reasoning task, solving physics problems. 

8.1.2 Transfer Learning 

Hinrichs & Forbus (2007) describe how analogy can be used to transfer learned qualitative 

models between scenarios in a turn based strategy game.  As in DTA, examples are used to find 

the domain mapping between source and target domains.  From a cognitive architecture 

perspective, ICARUS achieves near transfer through goal decomposition (Choi et al. 2007) and 

has been augmented with a representation mapping algorithm (Shapiro et al. 2008) to handle 

more distant types of transfer.  The methods employed by ICARUS require abstracted domain 

theories in both the source and target tasks.  As demonstrated in the kinematics experiment, DTA 

can transfer abstract knowledge from the source domain to the target domain using a domain 

mapping learned from specific examples. 
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Within the reinforcement learning (Sutton and Barto 1998) community, transfer learning efforts 

have focused on using mappings between scenarios and domains.  In these RL efforts, the 

transfer consists of learned state action policies.  Lui and Stone (2006) use a version of SME to 

accelerate learning of state action policies in novel but similar tasks within the keep-away soccer 

domain.  Taylor (2008) emphasizes the importance of the mapping between the states and 

actions of the source and target domains.  In these systems the mappings are one shot processes 

to jump start learning in the target domain.  After the initial transfer, the mapping with the base 

domain is ignored.  By using persistent mappings, DTA is an iterative process in which the 

transferred target knowledge and the domain mapping are incrementally verified and extended.  

Molineaux et al. (2008) use a Case-based Reasoning technique to use examples to find mappings 

for use by a reinforcement learning system playing a real-time strategy game.  Unlike the above 

reinforcement learning methods which use feature vectors, DTA operates over predicate calculus 

descriptions which facilitates the representation of episodes, explanations and plans.  These 

structures provide additional context for the transfer and enable the transferred knowledge to be 

more broadly applicable.  A transfer failure can be quickly identified by failing to solve the 

target problem.  The kinematics and dynamical analogy experiments demonstrate how DTA can 

transfer schemas and control knowledge using one example from the target domain.  For a more 

direct comparison, it is necessary to integrate DTA with established domain learning techniques.  

This is an important direction for future research. 

8.2 Conclusions and Future Directions 

Using domain general methods of similarity-based retrieval and analogical matching, Domain 
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Transfer via Analogy (DTA) enables the transfer of equation schemas and control knowledge 

from an understood domain to a new domain.  Persistent mappings support this process by 

building up a complex cross-domain analogy from successful local mappings.   

 

These claims are supported by experimental results from cross-domain analogies between linear 

and rotation kinematics as well as the dynamical analogy domains of linear, rotational, electrical, 

and thermal mechanical systems.  Given a known base domain and a worked solution from the 

target domain, DTA transferred schemas representing domain specific equations and control 

knowledge concerning preferences between equations useful for problem-solving.  This 

knowledge was then applied successfully to solve problems from the new domain. 

 

These experiments open a number of interesting directions for future research.  Here, I focus on 

four directions: integration with domain learning techniques, application to new domains, 

extending DTA through diagnosis of errors in transferred knowledge, and interactive cross-

domain analogy. 

8.2.1 Integration with Domain Learning Techniques 

As discussed in the related work section, DTA has not been used with learned domain theories.  

To perform transfer learning, DTA should be integrated with existing domain learning 

techniques.  For Physics, a promising direction involves learning generalizations for participant 

abstraction modeling decisions within each domain (Klenk et al. 2008), then applying DTA to 

transfer these generalizations to new domains.  Because DTA transfers schemas and predicate 

calculus representations, it should be possible to transfer knowledge produced by a variety of 
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learning algorithms.  In physics, it would be interesting to use reinforcement learning to learn a 

policy for the selection of operators during problem-solving within a domain.  DTA should be 

able to transfer this state action policy to new domains in addition to the existing encapsulated 

histories and control knowledge. 

8.2.2 Application to New Domains 

Another direction for future work is to apply DTA to new domains.  For example, simulation 

game domains have a number of different properties than physics problems solving (e.g., 

incomplete knowledge, the integration of planning and action).  While cross-domain analogies 

between strategy games are not as well understood as the physics analogies, it is a reasonable 

assumption that an agent which performs well in one strategy game or situation could benefit 

from transferring some aspects of its knowledge to a new game or situation.  Integrating with 

existing learning techniques and applying DTA in new domains opens the question of how an 

agent adapts the newly acquired domain knowledge. 

8.2.3 Debugging the Learned Knowledge 

An underlying assumption of this work is that by identifying similarities between pairs of 

domains, the domain mapping, DTA can transfer abstract domain knowledge between them.  The 

existence of these underlying similarities does not necessarily imply that the situations are 

completely analogous.  The cross-domain analogy may provide a useful starting point for 

exploration of the new domain, but it may also introduce a number of misconceptions which 

could prevent future learning in a domain.  This is consistent with psychological findings in 

student learning (Burnstein 1986).  Thus far, persistent mappings have been considered hard 

constraints for future analogies between the domains.  As illustrated in the dynamical analogy 
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evaluation, this can have a negative effect of performance.  Applying DTA in new domains and 

over a greater period of learning will likely require relaxing this constraint.  This provides an 

opportunity to exploit either models of conceptual change (Friedman & Forbus 2008) or model-

based diagnosis techniques (de Koning 1997) to identify and repair errors in the persistent 

mappings or the target domain theory.   

8.2.4 Interactive Cross-domain Analogy 

The fact that cross-domain analogies are used so frequently in textbooks and explanatory 

discourse implies that these are important communicative devices.  Most cross-domain analogy 

research views analogy as an isolated process within a cognitive agent.  The analogy occurs, and 

then the agent, or the research, evaluates the result.  DTA represents an important step toward 

interactive analogy.  Persistent mappings enable the reuse of the analogy and its expansion as 

additional information becomes available.  DTA currently accepts two pieces of advice: user 

supplied mappings and worked solutions.  User supplied mappings are treated in the same 

manner as persistent mappings, informing both the retrieval and mapping process.  User supplied 

worked solutions are a particularly effective form of feedback, as shown by conditions 2 and 4 in 

the dynamical analogies experiment. Within this framework, a simple extension involves 

enabling the user to provide negative feedback regarding individual persistent mappings. 

 

Another potential advance in interactive cross-domain analogy would involve the Companion 

suggesting insights to the user.  This would take the form of suggested correspondences, from 

which the user could draw new insights, and suggested predictions about aspects of the target 

domain.  For example, in critiquing a course of action in a strategy game, the Companion could 
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express concerns about a particular plan.  The ensuing discussion could upon similarities with 

other games identifying correspondences between units (e.g., riflemen ↔ elves) or strategies 

(e.g., blitzkrieg ↔ scorched earth).  Also of importance would be the predictions resulting from 

the cross-domain analogies.  If I consider my tanks in game A as analogous to the cavalry from 

game B, then I should watch out for over extending them, a frequent occurrence in my 

experiences in game B.  In interactive cross-domain analogy, the system informs the user, and, as 

previously described, the user informs the system. 

 

Each of these directions contain a number of exciting research questions, addressing them all 

would require many more theses. 
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9 Closing Thoughts 

 

Let us return to the original problem of alleviating the brittleness of AI systems.  A primary 

cause of brittleness in knowledge based systems involves their lack of ability to reuse their 

existing knowledge in new situations or domains.  The approach taken in this dissertation 

focuses on two methods, analogical model formulation and domain transfer via analogy, which 

employ domain general analogical processes into robustly reuse knowledge. 

9.1 Analogical Model Formulation 

Analogical model formulation enables the understanding of new situations based on previous 

examples.  Through analogy with an understood example, analogical model formulation infers 

the assumptions, approximations, causal models, and equations necessary for reasoning about the 

new situation. 

 

Analogical model formulation addresses the following shortcomings of current model 

formulation methods.  First, by relying on examples, analogical model formulation does not 

require a complete and correct domain theory.   Second, analogical model formulation can build 

scenario models of everyday situations.  The breadth of entity types is limited only by the 

underlying ontology.  Third, systems using analogical model formulation learn incrementally by 

accumulating new examples. 

 

This method has been evaluated on the Bennett Mechanical Comprehension Test and problems 
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of the style found on the AP Physics exam.  To construct models for BMCT problems, analogical 

model formulation transferred the following kinds of modeling knowledge from examples: 

qualitative mechanics abstractions, causal models, and instructions for visual quantity 

measurements.  In AP Physics, an external evaluation created transfer levels representing 

systematic differences between examples and problems.  Using examples, analogical model 

formulation successfully applied equations, modeling assumptions and default values to create 

the models necessary to solve the new problems. 

9.2 Domain Transfer via Analogy 

Domain transfer via analogy (DTA) allows the reuse of abstract domain theories through cross-

domain analogy.  Using domain general retrieval and matching algorithms, DTA constructs a 

domain mapping from pairs of explanations.  This domain mapping is used to initialize and 

extend the target domain theory.  The learned aspects of the target domain theory are verified by 

using them to solve new problems.  When successful, DTA stores persistent mappings to enable 

the identified similarities between the domains to assist in future cross domain analogies. 

 

The DTA method makes the following contributions as a cognitive simulation of cross-domain 

analogy.  First, DTA transfers the equation schemas and control knowledge necessary to solve 

quantitative physics problems.  Second, DTA uses persistent mappings to incrementally 

construct complex cross-domain analogies as it encounters new examples from the target 

domain. 

 

This model has been evaluated across a variety of physics domains.  In kinematics, the system 
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using DTA out performed a spoon-fed baseline.  In dynamical analogies, DTA transferred 

equation schemas and control knowledge between the superficially dissimilar domains of 

mechanical, electrical and thermal systems.  Consistent with psychological findings, retrieving 

analogous examples between domains was difficult.  Persistent mappings enable the cross-

domain analogy to incrementally extend, based upon successful transfers, to address the depth of 

the evaluation domains which required multiple cross-domain analogies. 

9.3 Final Thoughts 

To overcome brittleness, AI systems must be able to identify and reuse related knowledge.  

Analogical processing seems central to this goal.  By using domain general cognitive simulations 

of analogical matching and retrieval, the methods described in this work are two new ways of 

reusing knowledge from examples and domains. 

 

Once free from brittleness, AI systems will be able to exist over a long period of time, adapting 

to new tasks through analogies with their existing knowledge. 
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11 Appendices 

 

11.1  Online 

An on-line appendix to this dissertation may be found at 
 
http://www.cs.northwestern.edu/~mek802/dissertation.html 
 
This website includes archives of the following predicate calculus representations: 
 

• The ETS generated problem and worked solutions for AP Physics-style problems 
• The corrected versions of the AP Physics-style problems 
• The kinematics problems and worked solutions 
• The dynamical analogy problem and worked solutions 

11.2  Appendix A 

 
Problem 2 Representation 
 
(isa Hyp-MT-ETS-Query-2-0-1 Microtheory) 
(genlMt Hyp-MT-ETS-Query-2-0-1 PhysicsTestTakingAssumptionsMt) 
(isa Movement-2-0-1 ProjectileMotion) 
(isa Upward-Movement-2-0-1 ProjectileMotion) 
(isa Astronaut-2-0-1 Astronaut) 
(isa Ground-2-0-1 SurfaceRegion-Tangible) 
(isa Planet-2-0-1 Planet) 
(isa Throwing-2-0-1 ThrowingAnObject) 
(isa BaseballBat-2-0-1 BaseballBat) 
(except (ist PhysicsTestTakingAssumptionsMt (relationAllInstance eventOccursAt Event 
PlanetEarth))) 
(groundOf Planet-2-0-1 Ground-2-0-1) 
(performedBy Throwing-2-0-1 Astronaut-2-0-1) 
(no-GenQuantRelnFrom in-ImmersedFully Planet-2-0-1 Atmosphere) 
(eventOccursNear Throwing-2-0-1 Ground-2-0-1) 
(objectThrown Throwing-2-0-1 BaseballBat-2-0-1) 
(valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (StartFn Upward-Movement-2-0-
1)) 
 (MetersPerSecond 6.5)) 
(eventOutcomes Throwing-2-0-1 Movement-2-0-1) 
(primaryObjectMoving Movement-2-0-1 BaseballBat-2-0-1) 
(firstSubEvents Movement-2-0-1 Upward-Movement-2-0-1) 
(maximumMotionInDirection Movement-2-0-1 Upward-Movement-2-0-1 Up-Directly) 
(primaryObjectMoving Upward-Movement-2-0-1 BaseballBat-2-0-1) 
(directionOfTranslation-Throughout Upward-Movement-2-0-1 Up-Directly) 
(valueOf (MeasurementAtFn ((QPQuantityFn Altitude) BaseballBat-2-0-1) (EndFn Upward-Movement-2-0-
1)) (Meter 3)) 
(isa Acceleration-2-0-1 ScalarOrVectorInterval) 
(isa NU-ETS-Query-2-0-1 KBContentTest-FullySpecified) 
(isa NU-ETS-Query-2-0-1 ETSPhysicsSampleQuery) 
(hypotheticalMicrotheoryOfTest NU-ETS-Query-2-0-1 Hyp-MT-ETS-Query-2-0-1) 
(retainTerm (TestQueryFn NU-ETS-Query-2-0-1)) 
(testQuerySpecification NU-ETS-Query-2-0-1 (TestQueryFn NU-ETS-Query-2-0-1)) 
(querySentenceOfQuery (TestQueryFn NU-ETS-Query-2-0-1) 
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 (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) Acceleration-2-0-1)) 
(termToSolveFor (TestQueryFn NU-ETS-Query-2-0-1) 
 (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) Acceleration-2-0-1) 
Acceleration-2-0-1) 
(isa Hyp-MT-ETS-Query-2-0-1-WS Microtheory) 
(genlMt Hyp-MT-ETS-Query-2-0-1-WS Hyp-MT-ETS-Query-2-0-1) 
(multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 2.2) "A")) 
(multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 0.5) "B")) 
(multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 7.0) "C")) 
(multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 19.5) "D")) 

 
Worked Solution for Problem 2 Representation 
 
(isa ETS-WorkedSolution-2-0-1 Individual) 
(isa ETS-WorkedSolution-2-0-1 PhysicsWorkedSolution) 
(comment ETS-WorkedSolution-2-0-1 
 "An instance of PhysicsWorkedSolution. ETS-WorkedSolution-2-0-1 is a worked solution for the 
question posed by NU-ETS-Query-2-0-1.") 
(workedSolutionForKBContentTest NU-ETS-Query-2-0-1 ETS-WorkedSolution-2-0-1) 
(workedSolutionMtForTestMt Hyp-MT-ETS-Query-2-0-1 Hyp-MT-ETS-Query-2-0-1-WS) 
(isa ETS-WorkedSolution-2-0-1-Step1 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step2 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step3 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step4 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step5 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step6 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step7 WorkedSolutionStep) 
(isa ETS-WorkedSolution-2-0-1-Step8 WorkedSolutionStep) 
(firstSolutionStep ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step1) 
(hasSolutionSteps ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step2) 
(hasSolutionSteps ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step3) 
(hasSolutionSteps ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step4) 
(hasSolutionSteps ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step5) 
(lastSolutionStep ETS-WorkedSolution-2-0-1 ETS-WorkedSolution-2-0-1-Step6) 
(priorSolutionStep ETS-WorkedSolution-2-0-1-Step2 ETS-WorkedSolution-2-0-1-Step1) 
(priorSolutionStep ETS-WorkedSolution-2-0-1-Step3 ETS-WorkedSolution-2-0-1-Step2) 
(priorSolutionStep ETS-WorkedSolution-2-0-1-Step4 ETS-WorkedSolution-2-0-1-Step3) 
(priorSolutionStep ETS-WorkedSolution-2-0-1-Step5 ETS-WorkedSolution-2-0-1-Step4) 
(priorSolutionStep ETS-WorkedSolution-2-0-1-Step6 ETS-WorkedSolution-2-0-1-Step5) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step1 CategorizingAPhysicsProblem) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (isa Throwing-2-0-1 ThrowingAnObject)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (eventOccursNear Throwing-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (groundOf Planet-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (isa Planet-2-0-1 Planet)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 

(no-GenQuantRelnFrom in-ImmersedFully Planet-2-0-1 Atmosphere)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (objectThrown Throwing-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (eventOutcomes Throwing-2-0-1 Movement-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (isa Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (primaryObjectMoving Movement-2-0-1 BaseballBat-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (firstSubEvents Movement-2-0-1 Upward-Movement-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 (isa Upward-Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 
 (maximumMotionInDirection Movement-2-0-1 Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 
 (primaryObjectMoving Upward-Movement-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 
 (directionOfTranslation-Throughout Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 



211 
 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (StartFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 6.5))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step1 
 (valueOf (MeasurementAtFn ((QPQuantityFn Altitude) BaseballBat-2-0-1) (EndFn Upward-Movement-2-
0-1)) 
  (Meter 3))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step1  
 (isa NU-ETS-Query-2-0-1 PhysicsProblem-DistanceVelocity)) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step1 
 (isa NU-ETS-Query-2-0-1 PhysicsProblem-ConstantAcceleration)) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step2 SubstitutingBindingsForVariables) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step2  
 (isa NU-ETS-Query-2-0-1 PhysicsProblem-ConstantAcceleration)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step2 
 (isa NU-ETS-Query-2-0-1 PhysicsProblem-DistanceVelocity)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step2 
 (equationFormFor DistanceVelocityUnderConstantAcceleration 
  (mathEquals (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) ?OBJ) (EndFn ?INTERVAL))) 
   (PlusFn (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) ?OBJ) (StartFn ?INTERVAL))) 
    (TimesFn 2 (MeasurementAtFn ((QPQuantityFn Acceleration) ?OBJ) ?INTERVAL) 
     ((QPQuantityFn DistanceTravelled) ?OBJ ?INTERVAL)))))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step2 (isa Upward-Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step2 (isa BaseballBat-2-0-1 BaseballBat)) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step2 
 (equationForSolution ETS-WorkedSolution-2-0-1 
  (mathEquals (MeasurementAtFn ((QPQuantityFn Acceleration) BaseballBat-2-0-1) Upward-Movement-2-
0-1) 
   (QuotientFn 
    (DifferenceFn 
     (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) 
      (EndFn Upward-Movement-2-0-1))) 
     (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) 
      (StartFn Upward-Movement-2-0-1)))) 
    (TimesFn 2 ((QPQuantityFn DistanceTravelled) BaseballBat-2-0-1 Upward-Movement-2-0-1)))))) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step3 
 DeterminingSpecificScalarOrVectorValuesFromContext) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (isa Throwing-2-0-1 ThrowingAnObject)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (eventOccursNear Throwing-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (groundOf Planet-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (isa Planet-2-0-1 Planet)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (no-GenQuantRelnFrom in-ImmersedFully Planet-2-0-1 Atmosphere)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (objectThrown Throwing-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (eventOutcomes Throwing-2-0-1 Movement-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (isa Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (primaryObjectMoving Movement-2-0-1 BaseballBat-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (firstSubEvents Movement-2-0-1 Upward-Movement-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 (isa Upward-Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (maximumMotionInDirection Movement-2-0-1 Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (primaryObjectMoving Upward-Movement-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (directionOfTranslation-Throughout Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (valueOf (MeasurementAtFn ((QPQuantityFn Altitude) BaseballBat-2-0-1) (EndFn Upward-Movement-2-
0-1)) 
  (Meter 3))) 
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(solutionStepUses ETS-WorkedSolution-2-0-1-Step3 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (StartFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 6.5))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step3 
 (valueOf ((QPQuantityFn DistanceTravelled) BaseballBat-2-0-1 Upward-Movement-2-0-1) (Meter 3))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step3 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (EndFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 0))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step3 
 (valueOf (MeasurementAtFn ((QPQuantityFn Acceleration) BaseballBat-2-0-1) Upward-Movement-2-0-1) 
  ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1))) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step4 SolvingAMathematicalEquation) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step4 
 (equationForSolution ETS-WorkedSolution-2-0-1 
  (mathEquals (MeasurementAtFn ((QPQuantityFn Acceleration) BaseballBat-2-0-1) Upward-Movement-2-
0-1) 
   (QuotientFn 
    (DifferenceFn 
     (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) 
      (EndFn Upward-Movement-2-0-1))) 
     (SquaredFn (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) 
      (StartFn Upward-Movement-2-0-1)))) 
    (TimesFn 2 ((QPQuantityFn DistanceTravelled) BaseballBat-2-0-1 Upward-Movement-2-0-1)))))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step4 
 (valueOf ((QPQuantityFn DistanceTravelled) BaseballBat-2-0-1 Upward-Movement-2-0-1) (Meter 3))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step4 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (StartFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 6.5))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step4 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (EndFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 0))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step4 
 (valueOf (MeasurementAtFn ((QPQuantityFn Acceleration) BaseballBat-2-0-1) Upward-Movement-2-0-1) 
  ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step4 
 (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) 
  (MetersPerSecondPerSecond (MinusFn 63.4)))) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step5 SanityCheckingPhysicsProblemSolution) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (isa Throwing-2-0-1 ThrowingAnObject)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (eventOccursNear Throwing-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (groundOf Planet-2-0-1 Ground-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (isa Planet-2-0-1 Planet)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (no-GenQuantRelnFrom in-ImmersedFully Planet-2-0-1 Atmosphere)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (objectThrown Throwing-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (eventOutcomes Throwing-2-0-1 Movement-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (isa Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (primaryObjectMoving Movement-2-0-1 BaseballBat-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (firstSubEvents Movement-2-0-1 Upward-Movement-
2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 (isa Upward-Movement-2-0-1 ProjectileMotion)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (maximumMotionInDirection Movement-2-0-1 Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (primaryObjectMoving Upward-Movement-2-0-1 BaseballBat-2-0-1)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
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 (directionOfTranslation-Throughout Upward-Movement-2-0-1 Up-Directly)) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (valueOf (MeasurementAtFn ((QPQuantityFn Speed) BaseballBat-2-0-1) (StartFn Upward-Movement-2-0-
1)) 
  (MetersPerSecond 6.5))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (valueOf (MeasurementAtFn ((QPQuantityFn Altitude) BaseballBat-2-0-1) (EndFn Upward-Movement-2-
0-1)) 
  (Meter 3))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step5 
 (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) 
  (MetersPerSecondPerSecond (MinusFn 63.4)))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step5 
 (consistent 
  (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) 
   (MetersPerSecondPerSecond (MinusFn 63.4))))) 
(solutionStepOperationType ETS-WorkedSolution-2-0-1-Step6 
DeterminingTheBestAnswerFromASetOfChoices) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 2.2) 
"A"))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 0.5) 
"B"))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 7.0) 
"C"))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (multipleChoiceSingleOptionList NU-ETS-Query-2-0-1 (TheList (MetersPerSecondPerSecond 19.5) 
"D"))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) 
  (MetersPerSecondPerSecond (MinusFn 63.4)))) 
(solutionStepUses ETS-WorkedSolution-2-0-1-Step6 
 (consistent 
  (valueOf ((QPQuantityFn AccelerationDueToGravity) Planet-2-0-1) 
   (MetersPerSecondPerSecond (MinusFn 63.4))))) 
(solutionStepResult ETS-WorkedSolution-2-0-1-Step6  
 (testAnswers-SingleCorrectMultipleChoice NU-ETS-Query-2-0-1 "C")) 
 


