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Abstract. In this paper, we present an algorithm that automatically
encodes a user-defined complex 2D shape to a set of cells on a grid
each characterizing a robot currently in the swarm. The algorithm is
validated via up to 100 simulated robots as well as up to 100 physical
robots. The results show that the goal configurations generated by the
algorithm for the swarms with any size are consistent with the input
shapes, moreover, it allows the swarm to adapt to the swarm size change
quickly and robustly. The supplementary materials for this paper can be
found at: https://tinyurl.com/2huc42t6

Keywords: Swarm systems, Shape Formation

1 Introduction

Shape formation is an important and well studied problem in the robotic swarm
systems. Here, the task is to move a group of robots to form a user-defined shape.
In the past, the problem has received a lot of attentions due to its extensive real-
world applications such as automated warehouse [1], entertainment applications
[2], and more [3].

Many past efforts have concentrated on a vanilla version of the problem. In
the vanilla shape formation problem, the swarm size is assumed to stay the same
all the times, and the representation of the desired shape is often pre-computed
and given to the swarm as an input. Many methods to represent the desired
shapes has been presented in the past, including curves or regions explicitly
described by a mathematical formula [4, 5], potential fields [6], masked grid [7,
8, 9], and more [10, 11]. The mathematical formula-based representations [4, 5,
12, 6] can help to derive the formation control laws when the robot’s kinematic or
dynamic constraints need to be considered. However, when the desired shape is
complex, it is time-consuming (sometimes even impossible) to encode the desired
shape to a mathematical formula. Masked grid, also known as ”binary image”
in 2D case [7] or ”binary volumes” in 3D case [8], is a grid where each cell is
labeled with either a 1 or a 0, indicating whether the cell is in the shape or not,
and the desired shape is described as the set of in-shape cells on the grid [7, 9,
8]. Masked grid is a convenient way to encode the complex shape, in addition,

https://tinyurl.com/2huc42t6
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Fig. 1: From left to right: the target shape – “N”; the swarms with different sizes forming the
configurations generated by the proposed algorithm

for the swarm of modular robots that are with discrete attachment locations [13,
14], the masked grid is a natural way to describe the collective’s configuration.

Beyond the vanilla shape formation, the other version of the problem is so
called scalable (or scale-independent) shape formation [7, 8]. In the scalable shape
formation problem, robots can be removed from / added to the swarm in real-
time. When the removal or addition of the robots occurs, there are two strategies
for the swarm to adapt. One option is to keep the scale of the desired shape fixed,
and change the density of the robots [15]. One drawback of this method is that:
when the robot’s physical size is finite, the size of swarm to display the shape will
be limited, as one can fit only finite amount of robots in a unit of space. On the
contrary, the other option is to keep the density of the robot fixed and change
the size of the desired shape [7, 8]. When using the masked grid to describe the
target shape, there are two options to scale the goal configuration: change the
number of robots fitted in each cell and fix the number of in-shape cells [7], or,
change the number of in-shape cells and fit exactly one robot to each cell [8]. As
shown in [7, 8], both of these two methods can offer the swarm the capability of
self-healing, making the system resilient to the removal and addition of robots.
On the other hand, for the algorithm proposed in [7], when the swarm size
changes, it takes the swarm a long time to adapt, as the swarm needs to wait
“long enough” to sense the change of the swarm size. Moreover, the algorithm
presented in the [8] only works for certain types of shapes, and the generated
configurations can be perfectly formed only by the swarms with certain sizes.

In this paper, we present an algorithm that automatically encodes an input
2D shape (given by an binary image) to a masked square grid where each in-shape
cell characterizes a robot current in the swarm. Given an input shape and the
swarm size n, the algorithm will first use naive binary image scaling methods to
generate two reference grids, in which one has slightly more than n in-shape cells
and the other has slightly less than n in-shape cells, then use a second subroutine,
called interpolation, to refine those two reference grids so as to obtain the final
output – a masked grid with exactly n in-shape cells. The algorithm is validated
via both the simulated and physical experiments, the results show that the goal
configurations generated by the algorithm are consistent with the original input
shapes, moreover, when the swarm size changes, it allows the swarm to adapt
quickly and robustly.

2 Preliminaries

In this section, we will formally state the problem, and introduce the notations
frequently used in the rest of the paper.
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2.1 Goal Configuration Generation: Problem Statement

The proposed algorithm takes two inputs: an binary image describing the desired
shape, and the size of the swarm to display the desired shape. Note that a binary
image is essentially a 2D masked grid, therefore, for the sake of description, in the
rest of the paper, we use the word “pixel” and the word “cell” interchangeably.
The output of the algorithm is a masked grid such that: the number of in-shape
cells must equal to the input swarm size.

When designing the algorithm, there are two factors to be considered: first,
the generated goal configurations should be consistent with the input shape;
second, in order to allow the swarm to quickly adapt to the removal and addition
of the robots, the goal configurations generated for different swarm sizes should
be similar to each other as well.

2.2 Notations

Let Gi be a 2D m×m masked square grid i, we use c
(x,y)
i ∈ {0, 1} to denote the

label of the cell in the x-th row and y-th column from the left-top corner, and

we use S(Gi) = {(x, y) | c(x,y)
i = 1} to denote the set of the coordinates of all

in-shape cells on Gi. Given a set A, we use |A| to denote its cardinality. For a
pair of sets A and B: A∪B denotes the union of set A and set B; A∩B denotes
the intersection of set A and set B; A − B denotes the set of all the elements
that are in set A but not in set B. For n ≥ 3 sets A0,A1, . . . ,An−1, their union
is denoted as

⋃n−1
i=0 Ai.

3 Approach

We assume the desired shape is given to the swarm in the format of a 100× 100
binary image, however this approach can be generalized to any size binary image.
The proposed algorithm consists of two subroutines – scaling and interpolation.
Given the desired shape Gin and the swarm size n, the algorithm will first use the
scaling subroutine to find two reference masked grids Glo and Gho such that: Gho
has slightly more in-shapes than n and Glo has slightly less in-shapes than n, then
apply the interpolation subroutine to Glo and Gho so as to obtain an output that
is with exactly n in-shape cells. A graphical illustration of the overall pipeline
is shown in Fig. 2 and a detailed description of algorithm’s overall pipeline is
shown in Alg. 1.

Algorithm 1: Pipeline for proposed algorithm

Input: Input shape Gin, swarm size n
Output: Configuration for the swarm Go

1 Gl
o,G

h
o ← scaling(Gin, n)

2 if |S(Gl
o)| is n then

3 Go ← Gl
o

4 else

5 Go ← interpolation(Gl
o,G

h
o , n)

6 return Go
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Fig. 2: The graphical illustration of the the overall pipeline of the presented algorithm. From left
to right: (a) The input shape, which is given in the format of a binary image. In this example, the
task is to find a goal configuration for a swarm of 12 robots; (b) We apply scaling subroutine to the
input masked grid so as to find two reference grids with approximately 12 in-shape cells; (c) Two
reference masked grids with each pixel enlarged for the visualization purpose; (d) A configuration
with 12 in-shape cells is constructed by the interpolation subroutine using those 2 reference grids
in (c).

Algorithm 2: scaling subroutine

Input: Input shape Gin, swarm size n
Output: Two reference masked grids Gl

o, Gh
o

1 m← 100 // inialize m to the size of Gin
2 iter← 1
3 last← Gin // variable to store the last scaled grid

4 if |S(Gin)| is n then

5 Gl
o ← Gin, Gh

o ← Gin
6 if |S(Gin)| < n then
7 while 1 do
8 m ← m+ 1 // gradually increase scaled grid size

9 cur ← scale the grid Gin to size m×m
10 if |S(cur)| ≥ n then

11 Gl
o ←last, Gh

o ←cur
12 break

13 else
14 last←cur
15 iter←iter + 1

16 if |S(Gin)| > n then
17 while 1 do
18 m ← m− 1 // gradually decrease scaled grid size

19 if m < 15 then // switch to skeletonization

20 cur ← skeletonize the grid last
21 if |S(cur)| ≤ n then

22 Gl
o ←cur, Gh

o ←last
23 break

24 else
25 Error: the input n is too small.

26 cur ← scale the grid Gin to size m×m
27 if |S(cur)| ≤ n then

28 Gl
o ←cur, Gh

o ←last
29 break

30 else
31 last←cur
32 iter←iter + 1

33 return Gl
o, Gh

o

3.1 Scaling

In the scaling subroutine, we first use the image scaling to change the number
of in-shape pixels. Image scaling is a well studied topic [16, 17], here, the task
is to create a new version of the image with a different width and/or height in
pixels. Many strategies to scale a binary image have been proposed in the past,
in this paper, we use the nearest neighbor interpolation [16] as our image scaling
method.

Given an input shape Gin and swarm size n, there are three possible cases: If
the number of in-shape cells on the input grid |S(Gin)| equals to n, the algorithm
will return Gin directly (Alg. 2, Line 4-5). If the |S(Gin)| < n, the algorithm will
first keep upscaling the Gin (Alg. 2, Line 6-15) until a grid that has more than n
in-shape cells is found (Alg. 2, Line 10 - 12), then return the two scaled images
obtained most lately, and exit this subroutine (Alg. 2, Line 11-12). Similarly, if
|S(Gin)| > n, the algorithm will keep downscaling the Gin until finding a grid
that contains less than n in-shape cells (Alg. 2, Line 16-32).
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Fig. 3: The graphical illustration of the interpolation subroutine. From left to right: (a) Two reference

grids Gl
o and Gh

o with 9 and 13 in-shape cells, respectively; (b) We align Gl
o to Gh

o (Alg. 3, Line 1).

There are 4 possible locations to place Gl
o on a 5 × 5 gird, and we choose the one in the right-up

corner because the difference score between this grid and Gh
o is the lowest; (c) We calculate the

set Dl−h, which is the set of cells filled with blue color, and the set Dh−l, which is the set of cells

filled with red color, and then split these two sets into two sets of 4 subsets {d0l−h, . . . , d
3
l−h} and

{d0h−l, . . . , d
3
h−l}, the number on each cells indicates the subset that it belongs to (Alg. 3, Line

2-24); (d) 5 configurations generated using Gl
o and Gh

o with different input swarm size n s. From
top to bottom: the configuration generated for the swarm with a size of 9, 10, 11, 12, 13, respectively
(Alg. 3, Line 25-27).

One issue for using the image scaling to reduce the number of in-shape cells
is that: When the size of the scaled image is too small (≤ 15 × 15 according
to our experiments), it often fails to preserve the main structure of the input
shape. Therefore, to prevent the main structure of the shape in scaled image
being distorted by over-downsampling, the size of the scaled image cannot be
smaller than a threshold (Alg. 2, Line 20). This limits the minimal number of
in-shape cells in the outputs that can be generated.

Besides the image scaling, an alternative to reduce the pixels required to
display a shape is the operation skeletonization [18]. The operation skeletoniza-
tion generates a “thinner” version of the input shape that emphasizes shape’s
geometrical and topological properties. In the scaling subroutine, we use the op-
eration skeletonization to extend the range of swarm sizes for which our method
can work: if the image scaled with the minimal size still has more than n in-shape
cells, we then apply the operation skeletonization to this scaled image so as to
obtain the shape’s skeleton, which is a masked grid with fewer in-shape cells
(Alg. 2, Line 20). It is possible that the number of in-shape cell on the skeleton
is still more than n, if that happens, algorithm will raise an error to tell the
user that the input swarm size n is too small for displaying the desired shape
Gin (Alg. 2, Line 25). See Alg. 2 for the detailed pseudo code for the scaling
subroutine.

3.2 Interpolation

The high-level idea behind the interpolation subroutine can be described as
follows: Say we have a l × l binary image Glo and a h × h binary image Gho
with a and b amount of in-shape cells, respectively. Assume h > l and b > a,
we want to generate a sequence of h × h binary images Ga, . . . ,Gb, in which
each generated image Gi has exactly i amount of in-shape cells. To do so, we
first place the input grid Glo on a empty h × h grid at a location such that the
overlapping between the newly formed binary image and the Gho is maximized.
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Then, we calculate the difference between the newly formed Glo and Gho , which
can be characterized by the cells that are with different labels on those two grids.
The sequence of the binary images Ga, . . . ,Gb can be constructed by gradually
toggling the labels of those difference cells on the grid Glo. To be more specific,
for the aligned Glo and Gho , their difference can be characterized by two sets:
Dl−h = S(Glo) − S(Gho ), which is the set of cells that are in the shape on Glo
but off the shape on Gho , and Dh−l = S(Gho ) − S(Glo), which is the set of cells
that are in the shape on Gho but off the shape on Glo. (Alg. 3, Line 3-4). Next,
let k = |S(Gho )| − |S(Glo)| be the difference between the numbers of in-shape
cells on Glo and Gho (Alg. 3, Line 2), we split those two sets into two groups of

k disjointed subsets d0
l−h, . . . , d

k−1
l−h and d0

h−l, . . . , d
k−1
h−l such that:

⋃k−1
i=0 dil−h =

Dl−h and
⋃k−1
i=0 dih−l = Dh−l. In addition, for a pair of subsets dih−l and dil−h,

we enforce their sizes to be such that: |dih−l| = 1 + |dil−h| (Alg. 3, Line 5-24).
With this constraint on each subset’s cardinality, given an swarm size n, its
corresponding configuration can be constructed as follows: first, set the labels

the cells
⋃n−|S(Gl

o)|
i=0 dil−h to 0 on Glo, then, set the labels of the cells

⋃n−|S(Gl
o)|

i=0 dih−l
to 1 on Glo (Alg. 3, Line 25-27). It is straight forward to examine that the masked
grid constructed via the procedure above will have exactly n in-shape cells. The
pseudo code for the interpolation subroutine is shown in Alg. 3. A graphical
illustration of the interpolation subroutine is shown in Fig. 3.

Assume that the reference grid Glo has a size of l × l and Gho has a size of
h × h, where h ≥ l according to Alg. 2. The interpolation subroutine will first
draw the Glo on an empty h× h grid (Alg. 3, Line 1). Before drawing Glo on this
empty h×h grid, we need to determine the location to place the Glo on this h×h
grid, as there might be multiple choices since h ≥ l. To do so, we first define a
metric called difference score as follows:

Definition 1. Given two masked grids A and B, the difference score between A
and B is given by |S(A) − S(B)| + |S(B) − S(A)|, i.e, the number of cells that
are in shape on A but not in shape on B plus the number of cells that are on in
shape on B but not in shape on A.

With this metric, the location to place the grid Glo on the new h × h grid can
be determined as follows: we exhaustively search all possible translations, and
choose the translation that gives the minimal difference score between the grid
Gho and the newly generated Glo (Alg. 3, Line 1).

After aligning Glo to Gho , we first calculate the difference between Glo and Gho
(Alg. 3, Line 2-4), then pack the set Dl−h into k subsets (Alg. 3, Line 5-16). szi

denotes the size of the subset dil−h of Dil−h, we first calculate the size of each
subset dil−h (Alg. 3, Line 5-10). After determining the size of each subset dil−h, we
then start to determine the contents of each subset dil−h. When removing the cells
from the shape, we want to remove the cells following the order such that: the
cells closer to shape’s boundary will be removed first. This order helps to avoid
generating “holes” in the remaining shape. To address this design consideration,
in the algorithm, for all the cells in Dl−h, we first calculate each cell’s Manhattan
distance to the boundary using the operation distance transform [19] (Alg. 3,



Hanlin Wang et al. VII

Algorithm 3: interpolation subroutine

Input: Reference grids Gl
o,G

h
o , swarm size n

Output: The generated masked grid Go
1 Gl

o ← align Gl
o to Gh

o

2 k ← |S(Gh
o )| − |S(Gl

o)| // calculate the difference of in-shape numbers on two reference grid

3 Dl−h ← S(Gl
o)− S(Gh

o ) // the set of cells that are in the shape on Glo but off the shape on Gho
4 Dh−l ← S(Gh

o )− S(Gl
o) // the set of cells that are in the shape on Gho but off the shape on Glo

5 Initialize sz0, . . . , szk−1 to be all 0s // the size of each subset used in interpolation

6 for i← 0, . . . , k − 1 do // determine each subset’s size

7 if i ≤ |Dl−h| mod k then

8 sz i ← b
|Dl−h|

k c+ 1

9 else

10 sz i ← b
|Dl−h|

k c

11 dt(Gl
o)← apply distance transform to Gl

o // calculate each in-shape cell’s distance to the boundary

12 buf sub←use each cell’s value in dt(Gl
o) as the key to sort S(Gl

o) in ascending order

13 Initialize d0l−h, . . . , d
k−1
l−h to be all ∅s // the subsets of cells to be turned off on Glo

14 for i← 0, . . . , k − 1 do // assemble the subsets of cells to be turned off on Glo
15 dil−h ← dil−h∪{the first sz i cells in buf sub}
16 buf sub←buf sub - dil−h

17 Initialize d0h−l, . . . , d
k−1
h−l to be all ∅s // the subsets of cells to be turned on on Glo

18 buf add← Dh−l

19 for i← 0, . . . , k − 1 do
20 dih−l ← dih−l∪{sz

i amount of cells in buf add that are closest to the cells in dil−h}
21 buf add←buf add - dih−l

22 for i← 0, . . . , k − 1 do
23 dih−l ← dih−l∪{the first cell in buf add}
24 buf add←buf add - dih−l

25 Go ←a copy of Gl
o // make a copy of Glo and toggle the labels of cells on it so as to construct the output

26 set labels of all the cells in
⋃n−|Glo|

i=0 dil−h to 0 on Go

27 set labels of all the cells in
⋃n−|Glo|

i=0 dih−l to 1 on Go
28 return Go

Line 11), and then use each cell’s distance to boundary as the key to sort all
the cells in Dl−h in ascending order (Alg. 3, Line 12). The sorted Dl−h is stored
in the variable buf sub. Next, we start to assemble each subset dil−h according
to the determined pack size szi (Alg. 3, Line 14-16): for each subset dil−h, we
pack the first szi cells in buf sub into it (Alg. 3, Line 15), and then delete those
szi cells from the buf sub right after so as to avoid the case where the same cell
shows up in two difference subsets (Alg. 3, Line 16).

Next, we start to assemble the subsets d0
h−l, . . . , d

k−1
h−l (Alg. 3, Line 18 - 24).

We first make a copy of Dh−l and store it to variable buf add (Alg. 3, Line
18). Note that when removing a subset dil−h of cells from the shape, we will
damage the structure of the shape. To reduce the effect of the removal of dil−h,
when packing each subset dih−l, which are the sets to be added to the remaining
shape, we want the cells in dih−l to be as “close” to cells in dil−h as possible (Alg.
3, Line 20). To be more specific, given a subset dil−h and the set buf add, we treat
each cell in dil−h as a “job” and each cell currently in buf add as a “worker”, and
the cost for each “worker” doing each “job” is given by the Manhattan distance
between those two cells. We use the Hungarian algorithm [20] to assign exactly 1
“worker” to each “job” in each subset dih−l such that the total cost is minimized,
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and these assigned “workers” will be packed into dih−l (Alg. 3, Line 20). Recall
that as stated in the overall description of the interpolation subroutine, we have
a constraint on the each pair of subsets’ cardinalities that: |dih−l| = 1+|dil−h|. On
the other hand, it is straight forward to examine that after Alg. 3, Line 19-21,
each pair of subsets dih−l and dil−h have the same cardinality. In order to satisfy
the cardinality constraint above, in Alg. 3, Line 22-24, we add one extra cell to
each of those subsets d0

h−l, . . . , d
k−1
h−l .

So far, both the subsets d0
l−h, . . . , d

k−1
l−h and the subsets d0

h−l, . . . , d
k−1
h−l have

been assembled, we then construct the desired masked grid Go following the
procedure described at the beginning of the Section 3.2 (Alg. 3, Line 25-27). See
Fig. 3 for a graphical illustration of the interpolation subroutine.

In interpolation subroutine, one key element is the way to determine szi,
which is the size of each subset dih−l (Alg. 3, Line 6-10). Given two masked grids

Glo and Gho , there might be multiple feasible combinations of each subset’s size.
One can consider a case where |Dl−h| = 2, |Dh−l| = 4, k = 2, one way to split
Dl−h and Dh−l is: |d0

l−h| = 1, |d1
l−h| = 1, |d0

h−l| = 2, |d1
h−l| = 2, and the other

way is: |d0
l−h| = 2, |d1

l−h| = 0, |d0
h−l| = 3, |d1

h−l| = 1. According to the overall

pipeline of the algorithm (Alg. 1), for the same pair of reference grids Glo and
Gho , they could be used to construct |S(Gho )|− |S(Glo)|+1 different configurations
with n = |S(Glo)|, |S(Glo)|+ 1, . . . , |S(Gho )| amount of in-shape cells, respectively.
It is trivial to see that different ways to determine each subset’s size will result
in different difference scores among these generated masked grids. Recall that
as stated in the Section 2.1, to allow the swarm to quickly adapt to the swarm
size change, one of our design considerations is: the configurations generated for
different swarm sizes should be similar to each other. Responding to this design
consideration, given a pair of reference grids Glo and Gho , for the configurations
generated from them, a desirable way to determine each subset’s size should make
the difference score between any pair of masked grids with adjacent number of
in-shape cells as small as possible. In the following, we show that: given two
reference grids Glo and Gho , the way that we determine each subset’s size (Alg. 3,
Line 6-10) is actually the optimal way that can minimize the maximal difference
score between any pair of generated masked grids whose difference of in-shape
cell number is one.

Problem 1 (Fair packing) Given a set A and an integer k, Pk(A) denotes a
k-partition of the set A, which is a set of k subsets {a0, . . . , ak−1} such that: (i)⋃k−1
i=0 ai = A, and (ii) ∀i 6= j, ai ∩ aj = ∅. The task is to find a Pk(A) that

minimizes the maximal cardinality among all those k subsets ai ∈ Pk(A). That
is, given a set A and an integer k, find a partition P∗k (A) such that:

P∗k (A) = argmin max
ai∈P∗k (A)

|ai|

To interpret Problem 1, one can consider a simple instance of it: Say we have 10
balls and we are tasked to put those 10 balls into 3 bins. We want to find a way
to assign those 10 balls to those 3 bins such that the maximal number of balls
among all 3 bins is minimized. Next, in the Lemma 1, we shows an sufficient
condition for a solution to be optimal to Problem 1.
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Lemma 1. Given a set A and an integer k, let P ′k(A) be a k-partition of the

set A, if the P ′k(A) is made such that:

max
ai∈P

′
k(A)
|ai| − min

ai∈P
′
k(A)
|ai| ≤ 1 (1)

Then P ′k(A) is an optimal solution to Problem 1.

Proof. See Section 1 in [21] �

Theorem 1. (Smooth transition) Given two reference masked grids Glo and Gho
with a and b amount of in-shape cells, respectively, let Ga,Ga+1, . . . ,Gb be the
masked grids generated for the swarms with a size of a, a + 1, . . . , b. Among all
the ways to determine the size of each subset used in interpolation subroutine,
Alg. 3 Line 6-10 is the optimal way for minimizing the following objective:

max
a≤i≤b−1

|S(Gi)− S(Gi+1)|+ |S(Gi+1)− S(Gi)| (2)

Proof. See Section 2 in [21] �

4 Performance Evaluation

In this section, we empirically study the performance of algorithm proposed in
this paper. Given a goal shape, in Section 4.1, we first study the quality of
configurations generated for the swarms with different sizes, then, in Section
4.2 and Section 4.3, the generated configurations were formed by a swarm of
simulated robots as well as a swarm of physical swarms using the shape formation
algorithm proposed in [9], and the results show that the proposed algorithm can
indeed make the swarm adapt to the swarm size change quickly and robustly.

In the experiments, we use four complex shapes as our goal shapes: the “N”,
the “star”, the “wrench”, and the “circle”. These four goal shapes are shown in
the Fig. 4.

4.1 Experiments on Generated Configurations

First, given each goal shape, we use the proposed algorithm to generate the goal
configurations with in-shape cell number ranging from around 20 to 1024. Recall
that as stated in the Section 2.1, we have two design considerations: the similar-
ity between each generated configuration and the goal shape, and the similarity
between the configurations generated for difference swarm sizes. The videos of

Fig. 4: Goal shapes used in the experiments. From left to right: the shape “letter N”, the shape
“star”, the shape “wrench”, and the shape “circle”.
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Fig. 5: Comparison between the proposed algorithm and two baselines. For each swarm size n, its
corresponding data points on the plots are the NDS and NISD between the generated masked grids
with n and n+1 in-shape cells, respectively. The red plots are the results for the proposed algorithm,
the blue plots are the results for the baseline 1, and the green plots, which overlap with the red plots
in all NDS plots, are the results for the baseline 2.

the configurations generated for different swarm sizes can be found in [21]. In ad-
dition, we introduce two metrics to qualitatively evaluate the similarity between
each pair of the binary images whose difference of in-shape cell number is one:
the normalized difference score (NDS), and the normalized inter-shape distance
(NISD). The NDS is the ratio between those two configurations’ difference score
and the sum of two configurations’ in-shape cell numbers. The NISD is defined
as follows: given two masked grid A and B where |S(A)| ≤ |S(B)|, we assign cells
in S(B) to the cells in S(A) in a way such that: (i) for each in-shape cell on A,
we assign exactly one in-shape cell on B to it, in addition, (ii) each in-shape cell
on B can be assigned to no more than one cell on A. The cost of each pair of in-
shape cell on A and its assigned in-shape cell from B is given by the Manhattan
distance between them in cells. The NISD is the ratio between the minimal total
cost that any feasible assignment can achieve and sum of two configurations’
in-shape cell numbers. Intuitively, the NDS shows the “mismatch” between two
configurations, and NIDS essentially characterizes the minimal average distance
traveled by the swarm to transform from one configuration to the other. The
plots showing these two metrics over difference in-shape cell numbers for each
goal shape are shown in Fig. 5. In addition, we also compare the proposed algo-
rithm with two baselines. Both of those two baselines use the same pipeline as
our algorithm does. The difference between our algorithm and the baseline 1 is
that: when executing the interpolation subroutine, instead of using Alg. 3 Line
6-10 to determine each subset’s size, the baseline 1 will aggressively set sz0 to
be |Dl−h| and set szi . . . szk−1 to be 0. The difference between the our algorithm
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and the baseline 2 is that: when executing the interpolation subroutine, instead
of using Alg. 3 Line 11-24 to assemble each subset, the baseline 2 will naively
fit the cells into each subset by the lexical order of each cell’s coordinate. In the
interpolation subroutine, there are two subproblems to be solved: how to deter-
mine each subset’s size, and how to determine the content of each subset. These
two baselines are essentially two naive solutions to those two subproblems.

As expected, in these plots, we can see that our algorithm outperforms two
baselines with respect to both NDS and NISD for all four goal shapes, confirming
that our way to determine the size and content of each subset in interpolation
subroutine (Alg. 3 Line 6-10, Line 11-24) can indeed make the transition between
goal configurations generated for different swarm sizes more “smooth”. Note that
our algorithm and baseline 2 uses the same way to determine each subset’s size
in interpolation subroutine, as a result, in all NDS plots, our algorithm (black)
overlaps with baseline 2 (green). The other counter-intuitive observation here is
that: the NISD for the shape “circle” is 0 for all the swarm sizes, this is because:
using the pipeline presented in the paper, for any swarm size n, the “circle”
generated for the swarm size n will always be “inside” the “circle” generated for
the swarm size n + 1, therefore, the “circle’s” NISD is by definition 0 for all the
swarm sizes.

4.2 Experiments on Simulated Robotic Swarm

In the simulation, a swarm of up to 100 simulated Coachbot robots were tasked
to use the shape formation algorithm proposed in [9] to form the configurations
generated from our algorithm. The simulation consists two main components: a
world engine written in C that simulates robot’s on-board hardware resources,
and a user-code loader written in python that executes the user’s code. The world
engine simulates the Coachbot robot’s motion, sensing and communication in a
very realistic way, that is, the specifications of all the simulated hardware, in-
cluding the maximal speed of robot’s wheel, sampling rate of robot’s positioning
sensor, throughput of the inter-robot communication channel, etc, are made to
be consistent with the real robot. In addition, the user-code loader is designed
in a way that: the code used to operate the simulated robot can be used to
operate the actual Coachbot robot without any modification. In the simulation,
the communication rate is 20hz, the maximal speed of robot’s wheel is 0.1m/s,
and each edge on the grid has a length of 0.3m. The demonstration videos of
the simulation can be found in [21].

In the first experiment, we study the how the addition of the robots will
affect the swarm’s behavior. In this experiment, the swarm size is initialized to
be around 20. Every time when robots currently in the swarm complete forming
the shape, we add one more robot in a random location near the swarm and
broadcast the new swarm size to the swarm. The robots will update their goal
configuration according to the new swarm size, and then start to form the new
goal configuration. This process will be repeated until the swarm size gets to 100.
For each goal shape, we repeat this experiment 50 times, and in each trial, we
study two metrics: the response time (RT), which is time between the swarm size
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Fig. 6: The results from the addition experiment. Each solid line is the average result from 50 trials,
and the colored shade areas show the confidence intervals for NTD and RT over swarm size at a
confidence level of two σ. Each green dotted line is the shape’s NISD obtained from the previous
section.

change and the swarm forming the shape at the new scale, and the normalized
travel distance (NTD), which the average distance traveled by the swarm to
form the shape at the new scale. The results from 50 trials are shown in Fig. 6.

In addition, besides the addition of the robots, we are also interested in effect
of the removal of robots on the swarm’s behavior. In the second experiment, the
swarm size is initialized to 100, and similar to the first experiment, every time
when the current swarm complete forming the shape, we randomly choose one
robot currently in the swarm, remove it from the swarm, and broadcast the new
swarm size to the robots. The robots will update their goal configuration accord-
ing to the new swarm size, and then start to form the new goal configuration.
This process will be repeated until the swarm size gets to minimal swarm size
required to display the shape. For each goal shape, we repeat this experiment
50 times, and in each trial, the metric RT and NTS are investigated, see Fig.
7 for the results from all 50 trials. As we can see in the plots, in both addition
and subtraction experiments, every time when the swarm size change occurs, the
swarm is able to adapt quickly, within 40 s to be more specific. Moreover, one
can observe that for each shape, at some certain swarm sizes, the RT and NTD
change sharply in both subtraction and addition experiments. For example, for
the shape “wrench”, the RT and NTD spike at the swarm size 52. To investigate
the cause of these spikes, we compare the NISD obtained from previous section
(green dotted line) with the NTD and RT obtained from the simulation. Unsur-
prisingly, the results show that the swarm sizes where the NTD and RT spike
are consistent with the swarm sizes where the shape’s NISD spikes, in the other
words, the swarm sizes where the RT and NTD spike are the swarm sizes where
the generated goal configurations change greatly.

4.3 Experiments on Physical Robotic Swarm

Beyond the simulations, we also experiment on a swarm of up to 100 real Coach-
bot robots. In the experiment, the robots are tasked to form the shape “N”. The
swarm size starts to be 100, every time when the current swarm complete form-
ing the shape, we remove a batch of robots from the swarm and then broadcast
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Fig. 7: The results from the substraction experiment. Each solid line is the average result from 50
trials, and the colored shade areas show the confidence intervals for NTD and RT over swarm size at
a confidence level of two σ. Each green dotted line is the shape’s NISD obtained from the previous
section.

the new swarm size to the robots. The robots use the presented algorithm to
update their goal configuration according to the new swarm size, and then start
to form the new goal configuration. This process is repeated until the swarm size
gets to 23. See Fig. 1 for the still images from the experiment, and the video
for this experiment can be found in [21]. As we can see in the video, when the
swarm size changes, the robots adapt quickly and robustly.

5 Conclusion

In this paper, we present an algorithm that encodes a 2D shape to a set of cells
on a grid each characterizing a robot currently in the swarm. The performance
of the algorithm is thoroughly evaluated via both the simulated swarm and
physical swarms. The experiments show that the generated goal configuration
for the swarm is consistent with the input shape, in addition, when the swarm
size changes, it allows robots to adapt quickly and robustly.
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