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Abstract. We present a biologically inspired controller for creating for-
mations in satellite swarms. This controller can place satellites in forma-
tion where there is equal spacing between individuals, or place them all
in the same location. The controller is fully decentralized without any
human control. It only relies on simple satellite capabilities such as light
sensing, neighbor communication, and attitude control, enabling it to run
on the simplest of satellites. We present the controller and demonstrate
its operation in a realistic simulation environment.

1 Introduction

Progress in consumer electronics, particularly the development of smartphones,
has had a dramatic impact on the aerospace industry. Many of the components
needed onboard spacecraft are now available in very small packages at low cost.
This trend is behind the success of kilogram-scale CubeSats [10], as well as the
emergence of even smaller spacecraft like 100 gram PocketQubes and gram-scale
ChipSats like the Sprite [7] (Fig. 1).

Fig. 1. The Sprite spacecraft.

Over the past decade, these small satellites have gone from university research
projects to the foundation of a new industry promising to deliver imagery [11],
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synthetic aperture radar [1], and data backhaul for tiny “Internet of Things”
devices [5] with near-continuous coverage of the entire Earth. To achieve this
coverage, several companies are either planning or currently launching constel-
lations of hundreds [11] to thousands [8, 6] of satellites.

Deploying and managing a large constellation poses serious challenges. Typ-
ically, many spacecraft are deployed into the same orbit from a single launch ve-
hicle and must then be “phased” into desired relative positions along that orbit.
Satellite operators currently rely heavily on tracking and centralized planning
and control performed on the ground to accomplish these tasks [3]. Reducing
reliance on ground-based infrastructure and increasing spacecraft autonomy will
be key to keeping hardware and operating costs low as commercial spacecraft
constellations continue to expand.

Fig. 2. Overview of desired satellite behavior in simulation. Satellites start in same
position and orbit and use drag-based control to move to equal spacing. Time labeled
in hours.

Inspired by distributed robotics and sensor networks, we propose a decentral-
ized method to manage the position of a large constellation of satellites, easily
scalable to large numbers. This method will take a swarm of satellites and place
them in an equally spaced constellation (Fig. 2), one of the most common satel-
lite formations. It is also capable of the opposite: taking dispersed satellites and
bringing them to the same point in space. This method is fully autonomous and
does not require any complex sensing, such as GPS or ground-based tracking, so
it is possible to implement on swarms of thousands of gram-scale ChipSats like
the Sprite [7].

The paper proceeds as follows: Section 2 reviews the basics of satellite dynam-
ics, formation control. Sections 3 and 4 introduce the novel distributed control
methodology. Section 5 then presents the results of numerical simulations demon-
strating the proposed control law. Finally, section 6 summarizes our conclusions
and directions for future research.

2 Background

2.1 Orbital Dynamics

Orbital dynamics in low-Earth orbit are dominated by two forces: gravity and
atmospheric drag. To a good first approximation, the Earth’s gravitational field
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is uniformly spherical and obeys the inverse-square law,

FG =
−µm
‖r‖3

r, (1)

where µ ≈ 3.986 × 1014 m3/s2 is the “standard gravitation parameter” for the
Earth, m is the mass of the spacecraft, and r is the spacecraft’s position vector
measured from the center of the Earth.

Atmospheric drag obeys the equation,

FD = −1

2
ρCDA ‖v‖v, (2)

where ρ is the atmospheric density, Cd is the drag coefficient, typically taken to
be 2.2 for spacecraft, A is the projected area normal to the velocity vector, and
v is the spacecraft’s velocity vector relative to the atmosphere. We use a simple
isothermal exponential model for atmospheric density as a function of altitude,

ρ = ρ0e
h/H , (3)

where ρ0 is the surface density, h is the altitude measured from the Earth’s
surface, and H is a constant known as the atmosphere’s “scale height.”

2.2 Spacecraft Attitude Control

Most spacecraft have some means of controlling their attitude (orientation).
This can range from passive solutions like spin stabilization to active closed-
loop control with thrusters. Most small satellites use a combination of magnetic
torque coils, which are essentially electromagnets that can be turned on and
off to exert torques against the Earth’s magnetic field, and reaction wheels,
which are internal flywheels that can be rotated in one direction to cause the
spacecraft body to rotate in the opposite direction due to conservation of angular
momentum. Throughout this paper, We will assume that full three-axis attitude
control is possible on timescales much shorter than the orbital period of the
spacecraft.

2.3 Drag-Based Formation Control

As is well known, a spacecraft in an inverse-square-law gravitational field moves
along an elliptical orbit in the absence of other perturbing forces. Atmospheric
drag tends to gradually reduce the the size of an orbit and increase the space-
craft’s velocity. Since the projected area, A, in equation (2) depends on the
spacecraft’s orientation relative to the oncoming flow, it is possible to modulate
the drag force by controlling the spacecraft’s attitude. This is an extremely use-
ful source of orbit actuation since most small spacecraft do not carry propulsion
systems for cost and safety reasons.

Drag modulation has been used for initial phasing and long-term formation-
keeping of the CubeSat constellation deployed by Planet Labs [4]. Their approach
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to formation control is based on a linearization of the orbital dynamics known
as the Clohessy-Wiltshire equations [12]:
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These equations, expressed in the orbital plane using polar coordinates, describe
motion relative to a nominal circular orbit of radius r0 and angular frequency
ω0.

Treating u = FD as a control input and assuming it can be varied between
umin and umax by altering the spacecraft’s attitude, the time-history of control
commands for each spacecraft can be found by solving a convex quadratic pro-
gram [4]. This approach suffers from two main drawbacks: First, very accurate
knowledge of each spacecraft’s position is needed to disambiguate individual
members of the constellation [3]. And second, control commands for the entire
constellation are computed centrally on the ground.

3 Distributed Control Law

For the control laws developed in this paper, we assume that each satellite in
the constellation has the following capabilities:

1. The ability to modulate its atmospheric drag
2. The ability to sense its passage into eclipse (Earth’s shadow)
3. Communication with its nearest neighbors (leader and follower)

We use these assumed abilities to create two behaviors useful for formation
control: drag-based position control and relative position sensing established
using Earth-shadow crossing times.

3.1 Drag-Based Satellite Control

In one method for relative position control, the satellites modify their drag to
adjust their speed and position relative to their neighbors. For example, the
Sprite pictured in Fig. 1 can orient itself so that it is facing the direction of
motion edge-on for low drag, or face-on for high drag. The satellites have a
continuous range of drag between umin and umax, which is achieved by allowing
a continuous range of orientations between edge-on and face-on. Due to the
somewhat counter-intuitive nature of orbital dynamics, when a satellite increases
its drag, the interaction with the atmosphere will lower its orbit, and increase
its speed. For two satellites in the same orbit, a leader and a follower, to move
closer to each other, the follower increases its drag, which reduces its altitude
and increases its speed relative to the leader. Similarly, to increase the distance
between the two, the leader increases its drag, increasing its speed and moving
it farther from the follwer.
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Since the satellites we are considering have drag-only control, they can never
increase their altitude or slow down, which makes formation keeping somewhat
complicated. To allow for motion toward the rear neighbor, we introduce a neu-
tral drag u0, which is between umin and umax. Satellites keep track of their total
accumulated drag impulse J , defined as,

J =

∫ T

0

u(t) dt, (5)

and are required to keep their own J within some constant value ∆J of J0,
defined as,

J0 =

∫ T

0

u0(t) dt, (6)

drag (i.e. −∆J ≤ (J − J0) ≤ ∆J ). This then allows a satellite to move closer
to its follower by setting its drag lower than u0.

A demonstration of this drag-based control concept is illustrated in figure 3,
where a leader and follower satellite move ahead and behind, respectively, from
a satellite that maintains u = u0. Once these satellites have moved to a desired
distance from the center satellite, they adjust their drag so their total drag
impulse returns to J0, causing them to match the speed of the center satellite.
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Fig. 3. Simulated drag based maneuvering demonstration for three satellites. (Left)
The altitude of the satellites over time, where the neutral satellite is shown in blue, the
leader is shown in red, and the follower is shown in yellow. (Right) the distance from
the front and rear satellites to the center satellite.

3.2 Shadow-Crossing Position Sensing

To estimate the relative positions (orbital phases) of neighboring satellites, we
make use of the time between each satellite’s crossing into Earth’s shadow. This
event is easy to detect with a very simple low-cost sensor, such as a photodiode.
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Since the orbital period of our satellites is small compared to the Earth’s one
year orbital period around the sun, we approximate the shadow crossing as a
fixed point along the orbit.

The relative phase angle between satellites a and b along their orbit is given
approximately by,

θa − θb ≈
2π(τb − τa)

P
, (7)

where θ is phase angle, τ is crossing time, and P is the average orbital period. To
compare shadow crossing times, satellites broadcast messages when they detect
their own crossing, and compare that with the times they receive from other
satellites. A satellites leader will have the nearest earlier crossing time, while its
follower will have the nearest later crossing time.

4 Control Law

We now present a method to control a constellation of simple satellites that,
when deployed from a single launch vehicle, can either 1) form and maintain a
ring of equally spaced satellites along an entire orbit, or 2) form and maintain a
cluster (Fig. 2).

The method of control is inspired by the work on synchronization of pulse-
coupled biological oscillators by Strogatz et. al [9] and the work on desynchro-
nization of wireless sensor networks by Nagpal et. al [2]. These works describe
systems where distributed agents periodically “fire” a signal, such as a firefly
flashing its light or a wireless sensor node transmitting a radio message, and
use this signal to either synchronize [9] or desynchronize [2] these events across
the group. This behavior can be visualized in a phase-space diagram as a col-
lection of points, one for each agent, moving along a circle. An agent’s position
on the circle represents the current phase of its oscillator (Fig. 4). A “firing”
location exists on the circle, and when the point crosses this location, the agent
transmits a signal and adjusts its phase by jumping ahead or behind in phase
based on signals it receives from other agents. The work presented in [9] and
[2] demonstrate control methods that are guaranteed to move all agents to the
same position on the circle (synchronize) or to positions equally spaced apart on
the circle (desynchronize).

Key to the satellite control algorithm described in this paper is the anal-
ogy between the phase space of coupled oscillators and the physical position of
satellites along their orbit (Fig. 4). Just as synch or desynch can create global
outcomes where all agents are grouped together or equally spaced apart in a
phase-space diagram, our proposed controller can create global outcomes where
all satellites are grouped together or equally spaced apart along a physical orbit.
In the satellite system, the “firing” signal occurs when the satellite detects it
has crossed into Earth’s shadow (its light sensor transitions from high to low).
When a satellite detects this crossing, it “fires” by broadcasting a radio signal.
We make the assumption that this signal reaches a satellite’s leader and follower
instantaneously. Based on the crossing times of itself and its nearest neighbors,
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Fig. 4. Analogy of desynchronization of wireless sensor networks and satellite forma-
tion control. (Left) a modified figure taken from [2] showing phase diagram of desyn-
chronized network. (Right) Position of 10 satellites in orbit using controller presented
here.

the satellite adjusts its drag, analogous to how pulse-coupled oscillators adjust
their phase to move towards or away from their neighbors in phase space.

4.1 Equal Spacing Control

To create an swarm of equally spaced satellites as shown in Fig. 2, the high-
level idea is to have satellites move to a position that is equidistant between its
leader and follower. This is the same controller behavior in [2] except instead of
controlling the phase of oscillators, we are controlling the position of satellites.
When this algorithm is run on all spacecraft, the end result is a ring of equally
spaced satellites.

Assuming a satellite itself crosses at time τ , and detects the crossing times of
its leader, τL, and follower, τF , then its desired crossing time is (τL +τF )/2. The
error between a satellite’s current orbital phase and its desired orbital phase is
then:

e = π

(
2τ − (τL + τF )

P

)
(8)

To move to the desired phase, each satellite sets its drag using a PD control
law:

uPD = KP e+KD ė. (9)

Additionally, a saturation operation is applied to uPD to ensure than each satel-
lite’s value of J stays within ∆J of J0:

u =

u0, J > J0 +∆J
u0, J < J0 −∆J
uPD, otherwise

(10)
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4.2 Clustering

To create a cluster of satellites, as shown in Fig. 2, a very similar controller
can be used. Here, the high-level idea is to have satellites move to a position
that is halfway between two points. The first point is its closest neighbor, i.e.
τmin = min(τL, τF ) and the second point is the midpoint between leader and
follower(τL + τF )/2. Therefore its desired crossing time is:

τdesired =

{
τmin/2 + (τL + τF )/4, if τmin = τL
−τmin/2 + (τL + τF )/4, if τmin = τF

(11)

The error between a satellite’s current orbital phase and its desired orbital phase
is then:

e =
2π(τ − τdesired)

P
(12)

To move to the desired phase, each satellite sets its drag using a PD control
law:

uPD = KP e+KD ė. (13)

Additionally, a saturation operation is applied to uPD to ensure than each satel-
lite’s value of J stays within ∆J of J0:

u =

u0, J > J0 +∆J
u0, J < J0 −∆J
uPD, otherwise

(14)

5 Numerical Simulations

To demonstrate the proposed control laws, numerical simulations of the full or-
bital dynamics of a satellite constellation in low-Earth orbit were performed
using the dynamics presented in Section 2 and the control laws presented in Sec-
tion 3. MATLAB’s ODE45 solver was used to propagate the nonlinear equations
of motion for each satellite. Physical parameters (mass, area, etc.) for the Sprite
ChipSat were used in all simulations.

These simulations were used to test a variety of number of satellites for both
the equal-spacing and clustering controllers. Fig. 2 show an example of how the
simulated satellites behave with the equal-spacing controller. We tested both the
equal-spacing and clustering controllers for a range of swarm sizes from 4 to 50
satellites. Figure 5 shows the end result of the equal-spacing controllers for a
range of swarm sizes. Qualitatively the controllers generated the desired spacing
and resulted in a stable final formation. To quantitatively measure performance
for each experiment, we measured the distance between each satellite and its
nearest ahead and behind neighbor. Figure 6 shows how these distances evolve
over time for a equal-spacing and a clustering experiment. As expected, all satel-
lites move to positions that have approximately the same distance between itself
and its nearest neighbors for the equal-spacing controller, and all distances are
close to zero for the clustering experiment.
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Fig. 5. Convergence of satellite position using an identical equal-spacing controller for
5, 10, 25, and 50 satellites.

Fig. 6. Spacing between satellites and their nearest neighbors. (Left) Ten satellites use
the equal-spacing controller to move apart from each other. (Right) Ten satellites first
spread out in orbit and then use the clustering controller to move to the same point in
space.

6 Conclusions

Here we have shown a fully distributed controller that enables swarms of satellites
to either spread equally out in orbit, or cluster together in orbit. This controller
could be used to reduce the human control needed to create and maintain cur-
rent satellite constellations, or could enable much larger numbers in the future.
The satellite requirements are simple enough to implement this on gram-scale
ChipSats like the Sprite [7]. In the future we hope to be able to demonstrate
this controller in a real system
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