
  

 

Abstract—  Specialization has always been a tool for work 

distribution and simplification in nature and in distributed 

robotics. We present a novel approach to use hardware 

specialization hierarchically to enhance the capabilities of a 

swarm without increasing complexity, allowing a numerous 

group of robots to benefit from the extended features of a few to 

complete a task that was impossible for them before. We tested 

the concept under a simulated environment with a classical 

distributed robotics problem, shape formation, and validated 

the simulated results against a real experiment. 

I. INTRODUCTION 

Specialization is a valuable strategy to efficiently solve 
problems in large groups. Nature provides countless examples 
of the advantage of differentiating individuals in specific roles: 
cells[1], bees[2][3], ants[2][3][4], termites[2][3], etc., are 
often organized in such ways that individuals perform only a 
small set of tasks as part of a much larger process.   

In the past, researchers have used specialization in 
distributed robotics to increase efficiency or simplify the robot 
swarm hardware. One common use of specialization is to 
reduce the group complexity by assigning specific tasks based 
on the mechanical abilities of different robot types [5]; this 
“hardware specialization” leverages differences in the 
hardware of the individuals. This kind of specialization is used 
in heterogenous swarms, for example allowing reduction of 
the total number of actuators by avoiding unnecessary 
redundancies, such in [5], some individuals can drive while 
others can grab objects. If every individual in the group had 
the same mechanical configuration, then every individual must 
have all the required capabilities to complete a goal. This not 
only means that the final configuration of the robots would be 
more complex (they would need to be able to drive and grab 
objects), but also that extending the capabilities of the swarm 
would require an extension of the capabilities of every single 
individual.  

While counterintuitive, hardware specialization can also be 
achieved using hardware variability in homogeneous swarms. 
An example of this could be to let what a priori seems to be a 
group of identical robots “discover” [6][7] which individuals 
are better at solving specific tasks based on the success rate 
attempting to perform them. Then small differences in each 
robot’s hardware performance start playing a part, the 
individuals accumulate knowledge about their own abilities 

and use that knowledge to take or abandon specific roles: those 
with better actuators will move, those with better sensors will 
sense, for example. 

 Another form of specialization, “software specialization”, 
could be achieved by defining roles in the algorithm so, during 
its execution, the roles will be dynamically assigned to specific 
agents. An example could be the algorithms that require the 
selection of a leader to serve as a point of reference for the rest 
of the robots to achieve a goal or help coordinate the actions 
of the group. The leader role could be assigned at runtime 
based on an advantageous condition [8], purely randomly [9] 
or by hand [10] [11]. A different use of soft specialization is to 
instruct the robots to “switch” roles when they reach a specific 
state. A good example are some foraging algorithms where all 
the participants starts on an explorative mode until the path 
between the source and the destination is discovered and then 
some robots switch to a beacon mode and others to a forager 
mode [12]. Soft specialization can also be found on some 
sensor network implementations [13], where some sensor-
nodes closer to the phenomena under investigation, or with a 
better chance to get the measurement, specialize in sensing 
while other nodes take on a sole communication role. The 
main benefit of “soft specialization” is the possibility to assign 
roles based of spatial or temporal advantages, such as: when 
an individual is better located, has more battery, is in range of 
the goal or became part of a path for example. This also means 
that if the advantage changes, the roles can be re-shuffled to 
maintain performance. The main drawback is that every robot 
must have the hardware abilities to execute all possible roles.  
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Fig. 1. Coachbot with the raspberry pi board(A), the high resolution camera 

(B) and the kilobot communication module (C) next to a kilobot (D) and 
fiducial markers (E). 

 



  

Even though these uses of specialization allow algorithms 
to be broken down into roles, most require all participants to 
have the same level of understanding of the global objective. 
This means that the complexity of the algorithm is limited by 
the weakest computing element of the swarm. To overcome 
this limitation, we propose an alternative use of specialization: 
the decomposition of a process into “layers” with different 
complexity, from a complete understanding of the global goal 
to a very local ability to solve a specific task. 

In our layered approach, specific parts of the goal are 
communicated to the immediate layer below as a mandate to 
start a task. The recipient of this mandate does not need to 
know the global goal, and only receives the information 
required to execute its local task. This interaction between 
layers is characterized by a hierarchical relationship, where the 
robots in the lower layers simply execute the commands sent 
by the upper layers, and the complexity of the goal decreases 
as the message moves down layers. An important point is that 
additional information to complete the task can be inferred as 
an implicit part of the communication between layers. For 
example, this implicit information could be the time and place 
the message was communicated. Here, if the top most layer 
has some sort positional or synchronization information, the 
rest of the system can “inherit” this knowledge implicitly.  

We are looking to show that this approach can help reduce 
the total complexity of the group by giving the individuals only 
the computational and sensory abilities to perform in their 
assigned role and, as an additional benefit, the robots 
performing the local tasks can have specialized mechanical 
properties, not required to perform in the other layers. 

II. HIERARCHICAL SHAPE FORMATION 

A classical problem of distributed robotics was selected to 
test the value of hierarchy as a form of hardware 
specialization: shape formation. The technique used was 
inspired by the growing circles process described in [14], that 
provides a mechanism to connect global and local rules, but as 

it is currently not possible to make the robots self-replicate, we 
decided to combine it with the technique on [15] where robots 
join the shape after performing stochastic walk when they 
bump into a growing surface. 

The work was divided into two roles: “global” robots that 
understand the shape and know where circles need to be built 
and “local” robots that can build and add to the circles.   

A high-level idea of the algorithm is as follows: the process 

begins by providing to the global robots a list of circles, 

specified by center location and radius, that form the desired 

shape. Then these global robots will navigate towards where 

the center of each circle should be located and wait there until 

it can recruit a randomly walking local robot as a seed. The 

local robot selected as a seed receives all the parameters 

needed to form the assigned circle and the global robot moves 

on to the next circle. The seed stays in place and after a 

predefined time (called “Initial wait time”), starts recruiting 

more robots by emitting a decreasing hop-count message that 

starts at size one and over time increases until it reaches the 

full size of the circle provided by the global robot. When all 

circles are fully grown, the shape emerges (fig. 4). 
These two layers of work, global and local, demand 

significantly different abilities. The global role requires 
positional information, path planning to prevent robot from 
running into growing circles and global communication to 
shuffle tasks and share progress information. The local role 
requires only to perform a random walk and contact-based 
communication.  

 
Fig. 2. Program flowchart for global role robots. 

 
Fig. 3. Program flowchart for local role robots. 



  

One difference between this approach for shape formation 
and many others using homogeneous swarms [11], is that the 
global location and orientation of the shape in the environment 
is completely controlled by the algorithm, this means that no 
manual seed is required and the resulting shape will be at the 
exact global position is desired at the end. This is a direct result 
of the positioning abilities of the global robots and its passed 
down to the local robots using hierarchy. 

III.  ROLES DEFINITION 

The tasks performend by robots in the “global role” can be 
summarized as follows.  Global robots are given a priori a user 
defined set of circles to be formed, with the location , the size, 
the priority, the initial wait time and the grow rate of each one. 
Using communication between global robots, each global 
robot claims a circle to form based on priority, proximity and 
availability. Then, using positioning information, they 
navigate toward the locations where the assigned circle centers 
should be located and recruit a “local” robot to start building a 
circle of a specified size and that location (by sending a “seed 
recruiting” message to the local robot). This interaction can be 
observed in figure 1. After successful recruitment of a local 
robot, the global robot communicates to all global robots that 
the circle was built and bids on a new circle to form (fig. 2).  
This continues until all the circles have been started.  

Each action performed on the circles is transmitted 
immediately to the rest of the global robots to ensure no circle 
is assigned twice and all circles are completed at the end of the 
process.  

The “local” robot starts by moving around in the 
environment using a random walk. If a local robot receives a 
“seed recruiting” message (from a global robot), the robot will 
stop moving and bid for the chance to become a seed for a 
circle. If it fails to become a seed for a circle, due to other robot 
winning the bid or a faulty communication, it will return to 
moving randomly. In case of winning the bid, the seed will 
wait the time specified as the “initial wait time” and then start 
transmitting a “growing circle” message with a hop-count one. 
From that moment on, it will increase the hop-count by one 
whenever the time specified as the “growing rate” elapses until 
it reaches the size of the circle. All these parameters: the circle 
size, the initial wait time and the grow rate, are given to the 
seed robot by the global robot during the recruitment.   

If a local robot walking randomly receives a “growing 
circle” message with a hop-count value greater than zero, it 
will stop moving, reduce the hop-count value by one and 
retransmit this message (fig 3).  

IV. SELECTED HARDWARE 

The Kilobot platform allows the use of a large number of 
robots that are easy to operate collectively and also meets all 
the requirements of the local role, as it can perform a random 
walk, and has short range communication and distance 
sensing. These last two can be used together to simulate a 
downgrade to contact-based communications like it is needed 
for the algorithm. For more information about kilobots, see [9]. 

The global role needed a robot platform with the ability to 
sense its position, plan paths and move without colliding with 
other global robots. In terms of communications, it required 

the ability to send progress information to its peers at all time 
and also short-range communication with nearby kilobots. A 
custom designed robot called “Coachbot” was built to meet 
these needs. Coachbot is a two-wheel differential drive robot 
built within a circular acrylic frame.  The frame is designed to 
run in an environment shared with kilobots by being able to 
gently push through a crowd of them without knocking them 
over. Each Coachbot is powered by a 3.7V 2Ah rechargeable 
battery and an onboard raspberry Pi 3 rev 1.2 computer with a 
1Ghz ARM processor and built in WIFI, a high-resolution 
forward-facing camera and a special communication module 
attached in the front to send and receive messages to and from 
touching kilobots.  To share progress and positioning 
information between Coachbots, they send peer to peer 
messages over WIFI. This distributed communication system 
allows changes in the number of Coachbots during the 
execution of the experiment without impacting the result. The 
coachbot total part cost is under $120. 

To get positioning information, Coachbots use a number of 
Aruco [16] fiducial tags located in the walls of the arena.  Each 
tag is uniquely identified and the global position of each tag is 
known by all Coachbots. Using its camera, Coachbot can 
compute the relative position of the robot respect to the tags 
captured by the camera, and therefore estimate the location and 
orientation of the robot. Aggregating information from 
multiple tags reduce the impact of noise in the readings and 
improve the accuracy in the positioning information produced. 
For this reason, we incorporated multiple tags in different sizes 
in every possible view angle (fig. 1). 

  

V. SIMULATION ENVIRONMENT 

To test the performance of the shape formation, we 

 
Fig 4: (A) Coachbot moving toward the center of the assigned circle of hop-
count one. (B) Coachbot recruiting a kilobot to serve as the seed for the 

circle. (C) Coachbot moving away toward the next circle and the seed 

starting the circle formation. (D) Circle formation in advanced state, 

randomly walking kilobot performing edge following. 



  

developed a simulated environment with all the features 

required in the shape formation process. A virtual three meters 

by three meters arena hosted one thousand robots for the local 

role and up to four robots for the global role.  Robots were 

represented by a circular shape that cannot overlap and cannot 

move outside of the arena. All robots started in a randomized 

position and ran for sixty simulated minutes. The program 

simulates the movement and communication behaviors needed 

for the local and global roles robots. Collision detection was 

only added to the local robots, as in the real experiment the 

Coachbots hardware was designed to be able to push its way 

through kilobots and they will use positioning and planning to 

avoid each other. All the results showed in section VII and VIII 

were obtained by repeating simulated experiment 100 times 

for each parameter variation.  

VI. EVALUATION FUNCTION 

To quantitatively measure how well the shape is formed 
with the described hierarchical shape formation algorithm, a 
custom evaluation function was used. The evaluation function 
is given the desired shape and the position of all robots at a 
particular time. It then reports the ratio of area inside the shape 
that is farther than one Kilobot diameter from any other robot, 
these are locations within the shape that another Kilobot could 
have been added.  Figure 14 shows in red an example of the 
area considered by the evaluation function farther than one 
Kilobot diameter a way from other robots in the shape.    

Each robot counts not only by its own surface but also has 

a small influence area around it where there is not enough 

space to fit another robot. The areas within the desired shape 

where there is enough space to fit a robot but it is not occupied 

by any, it is discounted from the area of the shape. The 

evaluation function then reports the ratio of space where no 

other robot will fit to the total area in the shape. 

VII. SHAPES AND SIMULATION RESULTS  

It was necessary to show the algorithm worked well with 
various desired shapes, such as contours and solid ones, to do 
so, two experiments of each kind were selected: a straight line 
and an “N” will test contours, and a filled triangle and a 
rectangle will do the same for solid shapes. In addition, to 
ensure the method is nonspecific to these four, the algorithm 
was tested with 100 random shapes (fig. 7). Each random 
shape was formed by a group of 18 circles of sizes 1, 2 and 3, 
randomly distributed in a 1m by 1m section of the arena to 
maximize overlapping. In terms of shape completion, the 
results show that the algorithm performance is better in 
contours than solid shapes and is affected by the overlapping 
area of circles and the sharpness of contours (fig. 5). 

In terms of speed of formation, the solid shapes took longer 
to build. The straight line was the fastest, and did not improve 
much after the first ten minutes. The N contour had a 
significant change in the slope at ten minutes but continued to 
improve through the following twenty minutes of the 
experiment. In both solid shapes, it can be appreciated the wait 
times to trigger the circle formation as changes in the curve 
slope. Random shapes where the slowest, taking close to thirty 
minutes to reach an average value of 0.8 (fig. 6). 

 
Fig. 7. Final robot configuration and desired shapes. Evaluation function results from left to right: Line 96.89%, “N” 93.77%, Triangle 95.56%, Rectangle 

89.58% and Random 92.10%. In green shows robot that are part of the shape, in red robots performing edge following and in gray robots that are in random 

walk state. The desired shape is marked with a light blue shade. 

 
Fig. 6. Value of evaluation function over time, by shape. Computed from 

100 simulations per scenario. Solid line represents the mean and dotted line 
the standard deviation. 

 

 
Fig. 5. Value of evaluation function, by shape. Computed from 100 

simulations per scenario. 

 

 



  

VIII. IMPLEMENTATION ADJUSTMENTS 

By analyzing the initial results, some additional parameters 
and behaviors that increase the shape completion and speed up 
the process were identified. 

Edge following: The local robots originally only joined the 
shape when they randomly ran into another robot sending a 
“growing circle” message with a hop-count bigger than zero, 
otherwise they just kept walking randomly. By adding edge 
following, the kilobots follow the edge of the shape (where the 
hop-count is zero) once they bumped into it, instead of staying 
in the random walk behavior. This allows them to try to find a 
spot where they can join a circle, even if they arrive to the 
shape in a non-growing area (fig. 4). The change in the local 
role increases the chance of a kilobot of joining a growing 
shape and produce better and faster results. To evaluate the 
improvement, we performed the same shape formation 
simulations with and without edge following behavior and 
compared the output. The results showed that edge following 
improvement is more significant in solid filled shapes. The 
median formation in triangles improved around 4% and in 
rectangles improved over 5% (fig. 8). 

Edge following also increased the speed of the algorithm 
by keeping robots near the shape while the circles are forming 
and, when the hop-count of the circle is incremented during 

the formation, all robots performing edge following are likely 
to be recruited by the circle immediately. Comparing the 
completion over time, on average the formation was five 
minutes quicker to reach value 0.85 for the rectangle shape 
once edge following was implemented (fig. 9). 

Initial wait time: One complication that can arise with this 
algorithm is that a circle can be blocked by others surrounding 
it before it is complete. This happened mainly when complex 
shapes have circles located close enough to each other to block 
the way of nearby walking kilobots. To prevent this problem, 
we defined a parameter per circle to specify a wait time for the 
seeds before starting sending hop-count messages. This allow 
circles surrounded by other circles to start growing before the 
circles around it can block it, generating a more consistent and 
better result.  By waiting 5 minutes before every circle started 
the recruitment in a 5x5 lattice of circles, the evaluation 
function showed a significant change allowing the top 75% of 
the executions to improve from at least value 0.74 to 0.78 (fig. 
10).  

Grow rate: Another initial complication occurred in 
experiments with bigger circles, where growing surfaces with 
a high hop-count tended to have diffusion limited aggregation 
problems [17] and form long branches with lots of empty 
space. These structures blocked the way for walking kilobots 
and prevented these circles from achieving a high density. To 

 
Fig. 11. Value of evaluation function, by grow rate in minutes per hop-

count increase. Computed from 100 simulations per scenario. 

 

 
Fig. 9. Value of evaluation function over time, with and without edge 

following. Computed from 100 simulations per scenario. 

 
Fig. 10. Value of evaluation function, with and without initial wait time. 

Computed from 100 simulations per scenario. 
 

 
Fig. 8. Value of evaluation function, with (blue) and without (red) edge 

following, by shape. Computed from 100 simulations per scenario. 



  

avoid this problem, we added another parameter to the circles 
to control the growth rate. The seed, instead of starting the hop-
count with the circle size, starts at zero and increases the hop-
count at a fixed rate until reaching the desired value at a 
configurable pace. By controlling the time between hop-count 
increases, the completion improved on large circles, reducing 
the median incomplete area from 0.2 to 0.02 in circles of hop-
count 10 (fig 11). Figure 12 shows the correlation between 
completion and the grow rate. Each one of the three increments 
in the grow rate, improved the results. 

Priority: Originally the coachbots assigned the circles only 
based on the global robot’s current distance to the circle. This 
solution works fine for simple contours, but proved to be 
problematic with complex shapes, especially on solid ones. 
The main drawback is that in a solid shape, is necessary to start 
building it on a specific order to prevent isolating pending 
circles. An example of this can be a rectangular lattice like 
shape, if the circles on the edge are recruited first, then 
accessing the inner ones becomes difficult or impossible. To 
address this problem, we added a priority parameter to the 
circles based on the Manhattan distance of the circle to the 
center of the shape, giving the interior circles higher priority. 
We found that by  doing that we could improve the median 
results by 6% in solid complex shapes (fig. 13). 

IX. EXPERIMENTAL SETUP  

The results of a smaller experiment with real robots was 
compared against the same configuration in the simulation to 
validate the accuracy of the data obtained from the simulation. 
Each experiment ran for a maximum of fifteen minutes 
forming five circles  (4 with size 1 and 1 with size 3) in a 
diamond formation. The experiments were considered finished 
when there was no growing surface exposed to randomly 
walking local robots or when the time was up.  

The experiment was performed ten times in a one-meter by 
one-meter arena with 100 kilobots and 2 coachbots. Kilobots 
cannot sense the edge of the arena, so ones touching the edge 
were rotated by hand to allow them to continue to move 
randomly. To capture the activity during the experiments, a 
ceiling camera that took one picture per second was installed 
and a computer vision algorithm computed the location and the 
state of each robot in the arena. After the data was captured, it 

is then used to compute the completion rate using the 
evaluation function.  

X. EXPERIMENTAL RESULTS 

The average completion value of the experiment was 0.95, 
very close to the 0.94 obtained by the simulation with the same 
setup. Surprisingly, both environments reached 0.85 average 
value at a very similar time, around 6 minutes and 45 seconds.  

One observation was that, like in a pixelated image, in a 
reduced number of circles, small variations in the location of 
the circles had a great effect in the recognizability of the 
desired shape in both, the simulation and the real experiment. 
However, the circle formation performed as predicted in the 
simulation and the metrics from the evaluation function have 
shown a high completion value.  

Another observation from performing the experiment in 
real robots was the realization on how the physical interaction 
was influencing the results in a way that was not fully modeled 
in the simulation. Randomly walking and edge following 
robots bumped into non-growing areas of circles and pushed 
other stationary robots altering the formation. This 
unaccounted interaction caused two different effects: one 
detrimental and one beneficial to the shape formation. When 
the seeds of the circles are by themselves (during the initial 
wait time) or the circles are in a very early state and do not 
have enough mass to withstand the collisions, the bumping 
caused migrations of the circles centers. This caused robots to 
end the experiment outside of the desired shape and do not 
count for the evaluation function. In the other hand, when the 
circles are more complete, the edge following behavior of the 
robots running into the shape, creates an inward movement in 
the edge of the shape reducing the empty space and increasing 
the number of robots forming each circle, making circles more 
compact (fig 14). This unaccounted phenomenon caused the 
completion rate to increase and decrease over time, when in 
the simulation it only increased (fig 15).  

Figure 15 also shows the correlation in the results from the 
both, the physical experiment and simulated one. This 
information supports the hypothesis than the experiment will 
behave close to the simulated results when performed in bigger 
scenarios. 

 
Fig. 13. Value of evaluation function, by circle priority strategy. Computed 
from 100 simulations per scenario. 

 

 

 
Fig. 12. Value of evaluation function over time, by grow rate in minutes per 

hop-count increase. Computed from 100 simulations per scenario. 



  

XI. CONCLUSION AND FUTURE WORK 

In this paper, we showed a novel approach for 
specialization using hierarchy to reduce the complexity of 
robot swarms. The fundamental idea we proposed, is to divide 
work into layers, from a global understanding of the goal to a 
local knowledge of a task. We showed supporting evidence 
that the approach allowed a simple swarm to achieve an 
objective it was not able to achieve before by adding a global 
role assigned to a more complex robot to help support the 
process. We performed simulated experiments to validate the 
process and improve the settings of the different parameters in 
the algorithm.  

The described use of specialization and hierarchy in the 
swarm allowed the Kilobots to operate without distance 
sensing, using contact based communication.  This reduction 
in needed capability could result in approximately $2.50 cost 
savings per Kilobot (the cost of distance sensing hardware), 
and therefore $2500 for the whole 1000 robot swarm.  This 
savings is an order of magnitude more than the cost of adding 
a few Coachbots used to reduce the needed Kilobot 
capabilities. Using cost as an approximation of swarm 
complexity, this means the use of specialization and hierarchy 
allows for a significant reduction in swarm complexity when 
compared to similar tasks in a homogenous swarm, such as in 
[11]. In addition, the shape formation task presented here is 
greatly speed up using the coachbots, forming shapes in 
approximately 30 min compared to 12 hours in [11] and also 
requires no human intervention to secure the location and 
orientation of the shape in the arena. 

We tested the concept using it only for shape formation, 
however, we believe this separation of work and duties could 
be applied to other problems. Future work includes the test of 
hierarchy in other scenarios like collective transport and 
foraging, as well as to approach complicated problems like 
algorithm healing and fault tolerance.  
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Fig. 15. Evaluation function over time in minutes: Simulation Vs 

Experiment. Computed from 100 simulations and 10 experiments. 

 
Fig. 14. Screen shot from experiment and simulation execution with 

associated evaluation function. 


