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Abstract— This paper describes a distributed algorithm for
computing the number of robots in a swarm, only requiring
communication with neighboring robots. The algorithm can
adjust the estimated count when the number of robots in the
swarm changes, such as the addition or removal of robots.
Probabilistic guarantees are given, which show the accuracy of
this method, and the trade-off between accuracy, speed, and
adaptability to changing numbers. The proposed approach is
demonstrated in simulation as well as a real swarm of robots.

I. INTRODUCTION

The number of robots in a robotic swarm is used in a
wide variety of applications; from self-assembling a shape
at a scale proportional to the number of robots in a swarm,
to optimizing behaviors based on swarm size. While some
approaches make use of the swarm size given to it a priori
[1], having the swarm learn its size on the fly offers more
flexibility to behaviors and make it more tolerant to failures
that may inadvertently change the swarm size.

One application in swarm robotics that explicitly or im-
plicitly uses the swarm size is shape formation. In [1] the
shape is sized to fit the number of robots in the swarm.
For [2][3] the number of robots is implicitly learned by
building the shape at larger and larger scales until the
shape can no longer be built completely with the swarm.
Building these intermediate sizes increases assembly time,
and in some cases [2], it limits the types of shapes that can
be formed. Quickly knowing the size of the swarm would
greatly increase assembly speed.

Other application to swarm robotics could take advantage
of knowing the swarm size to optimize various behaviors
of robots. For example in task allocation [4] when assign-
ing tasks to individuals, inefficiencies can occur for larger
swarms [5] due to interference and motion traffic, if the
number of robots was known, the allocation of tasks could
be adjusted for optimality. Other tasks, such as computing a
distributed consensus value [6] require waiting for messages
to reach all individuals in the swarm. To ensure this, imple-
mentations of these algorithms assume a maximum number
of robots in the swarm and set the wait time to allow the
message to reach all robots in a swarm that size. If the swarm
size was known, a less conservative wait time could be used,
speeding up the distributed computation.

Additionally, knowing the swarm size could allow for new
approaches that change behavior based on swarm size. For
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example, a swarm could use more conservative behaviors for
small numbers, but could use riskier behaviours for larger
sized swarms, where the loss of individuals would have less
of an impact on outcome.

Some previous approaches for counting in robot swarms
and adhoc networks include electing a leader then using
distributed token passing [9] and counting the number of
times a token is passed, or building a network tree [10] and
propagating counting information from the leaves to the root.
These types of approaches are difficult to implement in a
moving robotic swarm where the communication topology
can be dynamic.

Other approaches are based on a distributed gossip algo-
rithm [11], however there is an implicit maximum number
allowed, based on the time allowed for each gossip round.
The approach by [12] and extended by [13] can measure
swarm size in dynamic systems, but either requires long
range communication or an additional messaging overhead
to propagate local messages globally. Similar approaches
first elect a single leader and then run distributed consensus
between the leader’s value of 1 and all others with a value of
0 [14]. The average here will be 1

n where n is the swarm size.
This approach requires synchronized communication and has
an implicit maximum size based on the time the distributed
consensus algorithm is run.

II. ALGORITHM DESCRIPTION

We propose an algorithm that can estimate the number of
robots in the swarm, which is scalable, can adapt to changing
numbers of robots, works in the dynamic communication
environments of swarms and does not have an implicit
maximum it can count.

The proposed algorithm is inspired by the following
simple idea: Let s1, ...sn be n independent samples that are
taken from a uniform probability distribution between 0 and
1, we compute the max value of all samples, max1≤i≤n si.
The more samples that are taken, i.e. the larger n, the closer
max1≤i≤n si is expected to be to 1. Furthermore, the value of
max1≤i≤n si can be used to estimate the number of samples,
n. This can be repeated multiple rounds, where in each
round, j, a new set of n samples are generated and the
maximum is computed just for the samples in that round
maxj1≤i≤n si. The average of these max samples found in

all m rounds, k =
∑m

j=1 maxj
1≤i≤n

si

m , can be used to provide
an estimate of n with less variance when compared to any
single rounds max1≤i≤n si. See Algorithm 1 for the detailed
pseudo code.



Algorithm 1: Pseudo code for swarm size estimation

1 maxs ← {} // the variable to record sample maximums in all m rounds

2 for j ← 0 to m do
3 max ← 0 // the variable to find the sample maximum in current round

4 for i← 0 to n do
5 si ← Xi ∼ U(0, 1)
6 if si > max then
7 max ← si

8 maxs ← {max} ∪ maxs

9 k← average of all the elements in maxs
10 n∗ = k

1−k // calculate the estimation of the swarm size

This idea is mapped to a robotic system by having each
robot generate a random number sampled from a uniform
probability distribution between 0 and 1. The swarm then
communicates amongst themselves to compute the largest
number generated by any robot, and uses that number to
estimate the number of robots in the swarm. As before, this
process can be repeated for multiple rounds to give better
estimates of n.

III. THEORETICAL RESULTS

In this section, we study the correctness and efficacy of the
algorithm that is proposed in Section II. We first use lemma
1 to show that the algorithm is correct, and then use the
theorem 1 to show that the error of estimation will linearly
converge to 0 in probability.

Definition 1. Let n be the actual swarm size, n∗ be the
estimation obtained from Algorithm 1, we define the RE
(relative error) of the estimation n∗ as:

RE(n∗) =
|n∗ − n|
n∗ + 1

Lemma 1. The sample maximum of n i.i.d. U(0, 1) random
variables is an unbiased estimator of n

n+1 .

Proof: Suppose we have n i.i.d. uniform random variables:

Xi ∼ U(0, 1), i = 1, 2, .., n

the CDF (cumulative density function) of their sample max-
imum Y = max1≤i≤n Xi is:

Pr(Y ≤ x) =
n∏

i=1

Pr(Xi ≤ x) =


1, x > 1

xn, 0 ≤ x ≤ 1

0, x < 0

and the PDF (probability density function) of Y is:

p(Y = x) =
dPr(Y ≤ x)

dx
=


0, x > 1

nxn−1, 0 ≤ x ≤ 1

0, x < 0

From this, it is straight forward to develop the Y’s ex-
pected value E(Y) and variance Var(Y):

E(Y) =
∫ 1

0

nxndx =
n

n+ 1

Var(Y) =
∫ 1

0

nxn−1(x− n

n+ 1
)2dx =

1

(n+ 1)2
n

n+ 2

�

Theorem 1. Given an error margin ε, the probability that
the RE(n∗) exceeds ε will linearly decay over number of
trials m. Specifically:

Pr{RE(n∗) ≥ ε} < 1

mε2

Proof: It is well known that for m i.i.d random variables
Y1, ...,Yn that have a expected value µ and a variance σ2,
it hold that:

E(
∑m

i=1 Yi
m

) = µ, Var(
∑m

i=1 Yi
m

) =
σ2

m

In our case, specifically, let k =
∑m

i=1 Yi

m and Yi be the
sample maximum of n i.i.d. U(0, 1) random variables, using
the result we obtained in lemma 1, we have:

E(k) =
n

n+ 1
, Var(k) =

1

m

1

(n+ 1)2
n

n+ 2

By Chebyshev inequality, we have:

Pr(|k − E(k)| ≥ δ) ≤ Var(k)
δ2

On the other hand, let n∗ = k
1−k , it is straight forward to

examine that:

RE(n∗) =
|n∗ − n|
n∗ + 1

= (n+ 1)|k − E(k)|

that is:

Pr(
RE(n∗)

n+ 1
≥ δ) ≤ 1

mδ2
1

(n+ 1)2
n

n+ 2

Note that n + 1 is a constant. Let ε = δ(n + 1), by this
variable change we have:

Pr(RE(n∗) ≥ ε) ≤ 1

mε2
n

n+ 2
<

1

mε2

�
Remark: Surprisingly, the result we obtained in Theorem 1
suggests that the convergence rate of RE(n∗) is independent
of number of samples n, which suffices to show that the
algorithm is scalable from a theoretical perspective.

IV. ALGORITHM IMPLEMENTATION

In practice, when implementing the algorithm proposed in
Section II, each agent needs to wait “long enough” between
trials so as to give the swarm sufficient time to find the
largest number in each trial, i.e, enable the random number
generated by itself to propagate through the entire swarm.
However, this waiting time is essentially a function of swarm
size, which incurs the “chicken and egg” paradox, as the our
task is to estimate the swarm size.

To tackle this problem, we developed an error-driven
method with which each agent ai can use the local-only ob-
servation to maintain an estimation of the necessary waiting
time. The idea is shown as following: We assume that each



agent ai transmits the messages at the same constant fre-
quency f . Through the experiment, each agent will maintain
an estimation of swarm’s communication diameter di, i.e. the
longest distance (in term of communication hop) between
one agent to another in swarm, and it use this di to calculate
the waiting time. To be specific, between two adjacent trials,
ai waits 4di

f amount of time.
To estimate di, during each trial j, each agent uses the

hop-count algorithm [7] to estimate the distance (in term
of communication hop) hopji between itself and the agent
that generates the largest number of the trial. If the agent
underestimates the communication diameter, then two error
events may occur, where ai will update di:
• ai sees a neighbor aj such that dj > di: This implies

some other agent has seen a larger pairwise communication
distance. In this case, ai set di = dj ;

• di is less than the hopji : This suggests the agent’s diam-
eter estimation is less than the communication distance
between itself and some other agent. This is a more
serious error because hopji is already a lower bound of
the communication diameter, hence in this case we punish
di by setting di = 2 hopji .
It is straight forward to examine that the waiting time 4di

f
is sufficient to enable the agent to detect these two errors
before it starts the next trial.

The other challenge we have when developing a decen-
tralized implementation of the algorithm is that: In reality,
agent’s clocks are not perfectly synchronized. To solve this
problem, we embedded a sequence number in each trial,
and enforce the agent to only use the information coming
from the message that has the same sequence number. See
Algorithm 2 for implementation details.

The algorithm is implemented in a “listen-think-talk”
manner. Specifically, the algorithm consists of three modules:
main module, broadcast module, and message handler mod-
ule. The broadcast module constantly transmits messages to
neighbors at a fixed frequency f ; the main module handles
computation and memory management, and message handler
modifies the local variables according to the incoming mes-
sages. These three modules can be implemented using three
separate threads that communicate through shared memory.
The sketches of these three modules are shown in Algorithm
2, 3, and 4. Note that all the variables are thread-public.

A. Main module

The Main module takes two inputs: f and m where f is
the communication frequency and m is the number of trials
that will be used for estimation. The algorithm first claim
and initialize the variables that will be used in the later
calculation, to be specific (Algorithm 2 Line 1-10):
• buff : a ring buffer whose length is m, it is used to store

the most recent m trials’ results in the history;
• index: the variable that helps to operate buff ;
• seq #: each trial’s sequence number;
• sample max: the largest number of current trial;
• n∗: agent’s estimation of swarm size;

Algorithm 2: Main Module
Input: m, f

1 buff ← {0}
2 index ← 0
3 seq #← 0
4 sample origin ← rand(0, 1)
5 sample max ← sample origin
6 n∗ ← 0
7 hop ← 0
8 max hop seen ← 1
9 diameter ← max hop seen

10 last check ← clock()
11 while agent is active do
12 msg ← {seq #, sample max, hop, max hop seen}
13 if clock() - last checked > 4 diameter

f
then

14 if hop > max hop seen then
15 max hop seen ← hop

16 if diameter < max hop seen then
17 diameter ← max hop seen
18 continue
19 buffer[index] ← sample max
20 index = (index + 1) mod m
21 k ← average(buff )
22 n∗ ← k

1−k
23 seq #← seq # + 1
24 sample origin ← rand(0, 1)
25 sample max ← sample origin

Algorithm 3: Broadcast Module

1 while agent is active do
2 transmit msg
3 sleep 1

f

Algorithm 4: Message Handler

1 while agent is active do
2 if receive a msg then
3 if msg.seq # - 1 > seq # then
4 seq # ← msg.seq # - 1

5 if msg.seq # < seq # then
6 last check ← clock()

7 if msg.seq # == seq # then
8 if msg.sample max > sample max then
9 sample max ← msg.sample max

10 if msg.hop < hop then
11 hop ← msg.hop + 1

12 if sample max == sample origin then
13 hop ← 0

14 if max hop seen < msg.max hop seen then
15 max hop seen ← msg.max hop seen

• diameter: agent’s estimation of the communication diam-
eter of swarm;

• hop and max hop seen: the variables that help to update
diameter;

• last check: the beginning time of current trial.
After the initialization phase, the agent enters the main
loop. At the beginning of each iteration, the agent first
forges the message that will be transmitted by Broadcast
Module (Algorithm 2 Line 12), then checks whether it has



already waited long enough to start the next trial (Algorithm
2 Line 13). If the agent has waited long enough already,
it first checks whether the current estimation of swarm’s
communication diameter needs to be updated (Algorithm 2
Line 14-18), and if the current diameter estimation is correct,
the agent then adds the result to buff (Algorithm 2 Line 19),
updates the estimation n∗ (Algorithm 2 Line 21-22), and
initiates another trial (Algorithm 2 Line 13-25).

B. Message Handler

When receiving a message, the Message Handler first
compares msg.seq # with the local seq #:

If msg.seq # - 1 > seq #, it implies that the local clock is
slower than the neighbor by more than one trial, the agent
then sets seq # = msg.seq # - 1 so as to catch up with the
neighbor (Algorithm 4 Line 3-4).

If msg.seq # < seq # , it suggests that there is a neighbor
that is slower than the agent, then the agent will delay the
next trial so as to give the neighbor time to catch up.

If the neighbor and the agent have the same sequence
number, then the agent will use the information in the
message to update its local variables (Algorithm 4 Line 8-
15): Algorithm 4 Line 8-9 is for finding the largest random
number in the current trial; Algorithm 4 Line 10-13 is for
finding the distance (in term of communication hop) between
itself and the agent that generates the largest number of
the trial; Algorithm 4 Line 14-15 is for finding the largest
pairwise communication distance in swarm.

C. Complexity

First, we study the algorithm’s memory complexity. One
can easily examine that the algorithm’s memory complexity
is dominated by the size of buffer to store the trials’ results
in Algorithm 2, In the other words, the algorithm’s memory
complexity is O(m).

Next, we investigate the algorithm’s computation com-
plexity. We here assume that the computation complexity of
querying a random number generator (RNG) is O(1). Then
the computational cost of each iteration of the algorithm is
dominated by the calculation to find the average over buff, as
a result, the algorithm’s computation complexity is O(m).

Last, it is straight forward to examine that the algorithm’s
communication complexity, i.e., the length of each message,
is O(1).
Remark: The results we obtained in this section suggests
that the algorithm’s cost is independent of swarm’s size n
with respect to computation complexity, memory complexity,
and communication complexity, which suffices to show that
the algorithm is scalable from a engineering perspective.

V. EXPERIMENTAL RESULTS

A. Basic Simulations

To simulate the estimation algorithm on a large number
of robots, and on a large number of experiments, we first
implemented the behavior on a simplified simulation in Mat-
lab. In this simplified simulation, we assume robots are all

Fig. 1: The distribution of estimates for the number of robots for varying
swarm size. The distribution is normalized by the true number of robots.
Each boxplot represents the distribution of 2000 experiments in which the
swarm used 1000 rounds to estimate the number of robots.

synchronized and have global communication. Here the non-
ideal effects of a robotic implementation are ignored to allow
for fast and efficient experiments on up to 100,000 simulated
robots. These first simulations were used to validate predicted
properties of the algorithm such as scalability and the effect
the number of rounds has on precision of estimates.

One property of this algorithm predicted in our analysis is
that the normalized error (i.e. the percentage of error) is only
dependent on the number of rounds, not the swarm size. To
show this, we looked at swarms sized from 10 to 100,000
and ran the estimation for 1000 rounds. This was repeated
for 2000 experiments. Figure 1 shows that the normalized
accuracy of swarm size estimates are indeed independent of
swarm size.

Next, the simplified simulation was used to show how
the number of rounds used to estimate swarm size has
an effect on the accuracy of the estimate. Fig. 2 shows
the estimation of 10,000 experiments for varying numbers
of rounds, showing that increasing the number of rounds
produces less variance in the estimated swarm size. Fig. 3
shows how on average the estimated number is improved as
more rounds are included in the estimate.

Fig. 2: The histograms of estimates of the swarm size for a 1000 robot
swarm after 10 (top left), 100 (top right), 1000 (bottom left), or 10000
(bottom right) rounds. Each histogram represents the range of estimates of
10,000 experiments.



Fig. 3: The average, and 1 standard deviations above and below average
of 1000 experiments with 100 simulated robots as increasing number of
rounds are included in the size estimate.

B. Kilobot Simulations

To validate our method’s performance on a large-scale
swarm system, we tested our algorithm using an agent-based
simulator that is originally developed for [8]. The simulator
implements both the Kilobot’s motion and communication
in a very realistic way. Moreover, the user interface of
the simulator is exactly the same as the one that is on
actual Kilobot. In the simulation, each agent communicates
with neighbors at a frequency of 15Hz and the maximum
transmission unit (MTU) is 9 bytes.

First, we use simulation to investigate the effect of the
buffer size m on the algorithm’s accuracy and adaptability
to changes. In simulation, up to 1000 agents execute our
algorithm to estimate the swarm size using varying of trials
in the past. The initial swarm size is 1000, and after 1000
seconds, we remove half of agents from the swarm. Fig. 4
shows the each agent’s estimation about swarm size over
time.

In the second test, we use simulation to investigate the con-
vergence rate of the method. In these experiments, swarms
of size 10 to 1000 agents use all the trials in the history to
estimate the swarm size. The result is shown in Fig. 5.

Fig. 4: The results for the test where up to 1000 agents estimate the swarm
size using fixed number of trials. From left to right: m = 20, 100, 200.
The black dotted line is the actual swarm size n and the solid colored lines
are agents’ estimations over time. The different colors indicates the results
from different agents, plots are overlapping as many have similar estimates.

A third simulation is given to demonstrate our algorithm’s
performance on the swarm with extremely large size. In this
test, 5000 simulated agents perform two experiments: In first
experiment, agents use 200 trials in the past to estimate the
swarm size, and the swarm size is initialized to be 5000 then
drops to 2500 after 3000 seconds; in the second experiment,
5000 simulated agents use all the trials in the history to do

Fig. 5: The results for the tests where agents estimate the swarm size using
all the trials in the history. The black dotted line is the actual swarm size
n and the solid colored lines are agents’ estimations over time, plots are
overlapping as many have similar estimates.

the estimation, and the swarm size does not change in this
experiment. The results are shown in Fig. 6.

Fig. 6: The experiments to demonstrate the algorithm’s performance on a
swarm of 5000 agents. The black dotted line is the actual swarm size n
and the solid colored lines are agents’ estimations over time. The different
colors indicates the results from different agents, plots are overlapping as
many have similar estimates.

C. Real Kilobot implementation

To validate our algorithm’s performance beyond simu-
lation, we implemented our algorithm on a swarm of 35
Kilobots [15]. In reality, it is hard to collect the data from
each individual in real-time. As a result, instead of paying
attention to each individual’s estimation, we use a “probe
message” to collect the minimal and maximal estimation
amongst the swarm.

We performed two tests on the physical Kilobot swarm:
The first test is given to demonstrate the algorithm’s con-
vergence rate, and the second second test is given to show
the algorithms accuracy and adaptability to changes. In the
first test, 35 Kilobots are tasked to use all the trials in their
history to estimate the swarm size, the result for this test
is shown in Fig. 7 (top); in the second test, Kilobots use



100 most recent trials to estimate the swarm size, moreover,
the swarm size is initialized to be 35 then drops to 25 after
2600 seconds. The result for the second test is shown in Fig.
7 (bottom).

Fig. 7: The results from physical experiments. The black dotted line is the
actual swarm size n, the red and blue solid lines are largest and smallest
estimation amongst the swarm, respectively.

VI. CONCLUSION

We present an algorithm for counting the number of robot
in a swarm, which is scalable, and capable of adapting
to changing robot numbers during runtime. We provided
theoretical results that show the convergence rate and the
effects of sample rounds. The algorithm is shown to work in
simulations as well as a real swarm of robots.
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