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Abstract 

Back of the envelope reasoning involves generating 
quantitative answers in situations where exact data and 
models are unavailable and where available data is often 
incomplete and/or inconsistent. A rough estimate generated 
quickly is more valuable and useful than a detailed analysis, 
which might be unnecessary, impractical, or impossible 
because the situation does not provide enough time, 
information, or other resources to perform one. Such 
reasoning is a key component of commonsense reasoning 
about everyday physical situations. In this paper we present 
an approach that uses strategies and creates an AND/OR 
decomposition to solve such questions. We present BotE-
Solver, a general-purpose problem solving framework that 
uses strategies represented by suggestions, and keeps track of 
problem solving progress in an AND/OR tree. BotE-Solver 
can currently solve some fairly interesting back of the 
envelope estimation questions from different domains. We are 
building a library of strategies, which currently contains 23 
strategies.  

1 Introduction 
One goal of qualitative reasoning (QR) is to understand and 
model common sense. Forbus and Gentner (1997) proposed 
a hybrid model of QR where analogical reasoning and 
qualitative reasoning are tightly interwoven. In this paper, 
we look at quantitative estimation (also called rough 
estimation, back of the envelope analysis, etc). Back of the 
envelope (BotE) analysis involves the estimation of rough 
but quantitative answers to questions where the models and 
the data might be incomplete. In domains like engineering, 
design, or experimental science, one often comes across 
situations where a rough answer generated quickly is more 
valuable than waiting for more information or resources. 
Some domains like environmental science [Harte, 1988] and 
biophysics [O’Connor and Spotila, 1992] are so complex 
that BotE analysis is the best that can be done with the 
available knowledge and data.  BotE reasoning is ubiquitous 
in daily life as well.  Common sense reasoning often hinges 
upon the ability to rapidly make approximate estimates that 
are fine-grained enough for the task at hand. We live in a 
world of quantitative dimensions, and reasonably accurate 
estimation of quantitative values is necessary for 
understanding and interacting with the world. Our life is full 
of evaluations and rough estimates of all sorts. How long 
will it take to get there? Do I have enough money with me? 
How much of the load can I carry at once? These everyday, 
common sense estimates utilize our ability to draw a 
quantitative sense of world from our experiences.   We 
believe that the same processes underlie both these common 

sense estimates and expert’s BotE reasoning to generate 
ballpark estimates.   
 The two critical parts of such reasoning are using 
heuristics and strategies to simplify complex problems, and 
using one’s feel for numbers to make suitable numeric 
estimates. This paper presents the results of our work on the 
former. We have implemented BotE-Solver, a problem 
solver that uses a library of strategies and a large knowledge 
base to solve BotE problems. BotE-Solver can currently 
answer questions like “How many hotdogs are sold in a 
baseball season at Wrigley Field?”  
 The paper is organized as follows: next section argues 
that BotE reasoning has the same kind of constraints that we 
believe common sense QR to have. Section 3 is devoted to 
the design and implementation of BotE-Solver. Section 4 
discusses the results of running BotE-Solver on various 
examples and talks about the limitations of an approach that 
just uses first principles reasoning, and briefly discusses our 
ongoing work that addresses those limitations. Section 5 
concludes with future work.  

2 Common Sense QR and BotE 
Some of the central assumptions of QR in practice must be 
rethought when considering common sense knowledge, as 
opposed to narrow domain expertise.  It is commonplace in 
QR to assume that a domain theory is complete.  This 
assumption is implausible for common sense reasoning, 
whether or not one views QR purely in terms of a 
component in a performance system or as a psychological 
model.  The closer one looks at human knowledge, the more 
it appears that it is fragmentary, and more concrete than 
abstract.  It may be that such an organization is a necessity 
for human-level performance, whether or not one is making 
psychological claims.  Let us call this approach Common 
Sense QR (CSQR) for concreteness. There is a striking 
resemblance between the key constraints guiding CSQR and 
BotE reasoning. This is one of the strong motivations for 
building a BotE problem solver. Here are the five important 
constraints that we believe underlie CSQR:  

1. Incompleteness.  Domain theories are incomplete in 
terms of their coverage, and even what they do cover 
is  incompletely covered.   

2. Concreteness.  Domain knowledge includes 
knowledge of many concrete, specific situations.  
These concrete descriptions are used directly in 
analogical reasoning, in addition to first-principles 
reasoning. 

3. Highly experiential.  Doma in expertise improves 
through the accumulation of information, both 
concrete and abstract.  Experience improves our 
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abilities to reason through similar situations, and helps 
us develop intuitions for what is reasonable.  

4. Focused reasoning .  Instead of maintaining 
uncertainty and ambiguity for completeness, 
assumptions are made aggressively to tightly constrict 
the number of possibilities considered.   Common 
sense reasoning is required for action in the world, and 
there are opportunities for interaction and further 
reflection, reducing the amount of stress on any 
particular computation.  Thus it is better to answer 
rapidly and sometimes be wrong than to answer 
slowly and vaguely. 

5. Pervasively quantitative.  Our interaction with the real 
world requires concrete choices for quantities.  For 
example, the amount of salt one adds while cooking a 
certain dish cannot be safely specified as “+”.   While 
there are certainly tolerances, and we believe that 
estimation requires drawing upon lots of examples, 
our actions in the end require that estimates manifest 
as exact values.  Quite possibly this is true for every 
step along the way, as per the focused reasoning 
constraint. 

3 BotE-Solver: A Model of Problem solving 
 Problem solving is the process that takes us from a problem 
to its solution. A computational model of problem solving 
has to understand the problem representation, has to have 
access to domain knowledge and the ability to retrieve 
knowledge that might be relevant. It also needs to have 
strategies , which it can try when the problem is complex 
and the answer is not directly found. It needs to maintain the 
workspace, where it keeps track of the work done and 
progress made on the problem. We have implemented BotE-
Solver, a problem solver that uses –  

• A large knowledge base (a subset of Cycorp’s Cyc 
KB plus knowledge represented and developed in our 
research group) for domain knowledge and the FIRE 
reasoning engine for retrieving and accessing the 
knowledge base. 

• Suggestions as representation for strategies. 
• AND/OR tree as a model for maintaining the 

workspace. 
In this section we explain the above ideas, and then present 
the core algorithm of Solve. Using AND/OR decomposition 
for problem solving is not a new idea [Nilsson, 1994], but 
there are quite subtle issues and interesting design choices 
we made in Solve which we have not seen mentioned in the 
literature. Let’s have a look at an example that BotE-Solver 
can find answer for, and as we describe the system we’ll 
refer to the example to ground the discussion. 

Example: What is total annual amount of gasoline 
consumed by cars in the US? 
Total consumption = Total miles driven/ miles per gallon 
Total miles driven = Number of cars in the US * Miles 
driven per car per year 
Miles driven per car per year = Miles driven per day * 
365 
If we say that every household owns a car, since some 
don’t and some might have more than one, then  
Number of cars in the US = number of households = 
population / average size of American household.  
Now we have a model, and using the following numbers, 
Population ~ 300 million, Average size of household ~ 3, 
Daily miles driven ~ 20, Miles per gallon for a car ~ 20.  
We get an estimate of 36.5 billion gallons.  

3.1 Domain Knowledge  
The Knowledge Base (KB) and the FIRE reasoning engine 
are part of background infrastructure that this work builds 
on, and is provided to contextualize and make the current 
work more understandable. The contents of our knowledge 
base are a 1.2 million fact subset of Cycorp’s Cyc 
knowledge base, which provides formal representations 
about a wide variety of everyday objects, people, events and 
relationships. Problems, solutions, strategies are all 
represented uniformly and stored in this KB. Our group 
(Northwestern in collaboration with Xerox PARC) has built 
the FIRE reasoning engine. FIRE uses a special purpose 
database for storing the knowledge base. It can do 
analogical reasoning using structure mapping [Forbus et al, 
2002], and has facility for adding various kinds of reasoning 
source that allow it to do specialized reasoning, such as 
spatial reasoning [Forbus et al, 2003]. It provides the 
conventional ASK and TELL interface to the knowledge 
base, and QUERY which uses backward chaining to see if it 
can find answers.  

3.2 Strategies 
We represent strategies using suggestions. A suggestion 
provides a decomposition for the problem. In the above 
example of annual gas consumption, we use the idea that the 
number of cars can be estimated by finding the number of 
households. The suggestion HouseholdStrategyFor-
CountingUnits in Figure 1 captures the idea. It says that 
if we know that something is owned by households (refered 
to as FamilyCohabitationUnit in the KB), then we 
can find how many units of it are owned by estimating the 
number of households and number of units per household 
and multiplying them. 
 



There are four parts to a suggestion –  
1. Trigger: The form which is query for which the 

suggestion might be applicable.  
2. Test: Additional test conditions which must be true 

in order for the suggestion to work.  
3. Subgoals: A list of forms that this suggestion 

decomposes the current problem into. These are 
AND-subgoals, meaning if any one of them fails, 
this suggestion fails to solve the original problem. 
These subgoals are fully ordered.  

4. Result-step: The final step of the suggestion, which 
combines the answers to the subgoals.  

Inside the suggestion, the variables are order scoped such 
that any variable introduced can be used in the subsequent 
parts of the suggestion. The defSuggestion macro 
mentioned above is a facility for the sugges tion author – it 
expands the suggestion into assertions in predicate calculus 
that are stored in the KB. Suggestions can be as concrete or 
abstract as intended. For example, the above suggestion 
applies not only to cars, but to televisions, family insurance 
policies, etc. Our strategy library currently consists of 23 
such suggestions. One of the goals of the current work is to 
show that as we build a larger corpus of examples, there is 
re-use of these strategies and novel compositions, resulting 
in being able to solve newer problems with very little or no 
new problem specific knowledge added.  

3.3 Tracking problem solving progress 
BotE-Solver uses an AND/OR tree1 to track the progress as 
it is working on a problem. The mapping between the 
AND/OR tree and our representations is very direct. For a 
problem, there could be many applicable strategies, any one 
of which succeeding lead to a solution to the problem. This 
results in an OR node in the tree. A suggestion, on the other 
hand, introduces one or more subgoals all of which have to 
solved in order to solve the original goal. This results in an 
AND node in the tree. Figure 2 shows the AND/OR 
decomposition for our annual gas consumption example. An 
AND/OR decomposition lets us keep track of dependencies 

                                                                 
1 Because the solutions are obtained and cached in a TMS, we get 
the functionality of an AND/OR graph, i.e., we don’t re-solve an 
already solved node, although the underlying representation is a 
tree. The advantage of having a tree is that the propagation 
algorithms are much simpler.  

between the original problem and new subgoals introduced. 
During the course of problem solving, a node can be – 
• SOLVED: An OR-node is solved when any one of its 

children gets solved, and an AND-node is solved when 
all of its children are solved.  

• FAILED: An OR-node fails when all of its children fail, 
and an AND-node when any one of its children fail.   

• MOOT: A node is moot when it is not solved or failed, 
but when there is no point on working on it at the 
current point. So, if any one of the siblings of OR-nodes 
has succeeded, the other siblings are MOOT-VIA-
SUCCESS, as at any point we are interested in finding 
one solution, so if one strategy has succeeded, we don’t 
want to pursue others right now. However, we might 
come back and un-moot the other strategies if at some 
point we want more solutions, or after propagating this 
solution upwards in the tree we find that the original 
goal is still not solved. A strategy can generate many 
solutions, and we try the next sibling strategy only if we 
have exhausted all the solutions that this strategy has to 
offer. On the other hand, if an AND-node fails, its 
siblings are MOOT-VIA-FAILURE as there is no point 
in working on them, as the parent suggestion has failed 
as a result of one of its children failing. However, if 
later we find that we can solve the subgoal that failed 
by working more, we can un-moot the siblings.  

These inferences are made by maintaining flags at each 
node, which are updated/propagated after every unit of 
problem solving.  

3.4 The BotE-Solver Algorithm 
As BotE-Solver works on a problem, it maintains its 
progress in an AND/OR tree as mentioned above. It also 
maintains an agenda, which is a list of things that it can do 
next. The agenda consists of suggestions that have been 
found that it can try, and subgoals that have been suggested. 
The agenda is ordered by difficulty estimates2 so that the 
first thing on the agenda is the easiest one. BotE-Solver 
starts with enqueuing the original goal on to the agenda and 

                                                                 
2 Currently we use a very crude estimate of difficulty – the 
length+depth of the s-expression corresponding to the agenda 
item! Over many problem solving episodes, one might maintain 
statistics about which strategies work best, and how tough a 
particular subgoal is, based on experience, and use that (cf. 
[Minton 1988]) 

(defSuggestion HouseholdStrategyForCountingUnits 
   :trigger (unitsTotal ?obj ?place ?time ?total-units) 
   :test (ownedBy ?obj FamilyCohabitationUnit) 
   :subgoals ((numberOfHouseholds ?place ?time ?num-households) 
              (unitsPerHousehold ?obj ?units-per-household)) 
   :result-step (evaluate ?total-units  
                    (TimesFn ?num-households ?units-per-household))) 
 

Figure 1. An example suggestion. 
 



running the main loop. Since BotE-Solver is an incremental 
algorithm, the rest of the discussion will explain what 
happens at some point in midst of problem solving when we 
have done some work and have an already expanded 
AND/OR tree. There are two different ways in which 
solutions are generated in solve –  

 
• AGENDA processing: The original goal hasn’t been 

solved yet, and we are either trying to find suggestions 
that will solve it, or working on the subgoals that were 
suggested. It picks the easiest thing off the agenda. If 
it is a goal node, then sees if it can be solved by a 
primitive operation, QUERY. If that fails, it uses 
QUERY to gather suggestions. Found suggestions are 
added the children of the original goal and enqueued 
on the agenda. If it is a suggestion node, then it 
instantiates the first subgoal of the suggestion node as 
a child node of the suggestion in the graph, and 
enqueues it on the agenda.  

• IN-PLAY processing: This happens when the original 
goal has been expanded into a graph all of whose leaf 
nodes are solved. Now, no more problem solving 
needs to be done, and we can keep generating new 
solutions until we have exhausted all possible bindings 
found at the leaf nodes. We call a node that is solved 
and can possibly generate more solutions as an IN-
PLAY node. Every subgoal maintains a pointer to the 
current IN-PLAY suggestion. IN-PLAY processing is 
implemented by the get-next -solution loop in BotE-

Solver, whose main concern is to properly update what 
bindings have been already used.  

 
All the bindings that are found as a result of a successful 
solution are maintained at the nodes locally and only those 
that are of interest to the parent from the first successful 
combination of the bindings are propagated upwards. Each 
node maintains marker to the bindings that it has already 
used, and these are updated to make sure we exhaustively go 
through the space of combination of bindings from the 
subgoals. Since the combinatorial possibilities of bindings 
from subgoals can be large, for example, consider a 
suggestion whose three subgoals are solved by a primitive 
operation (these will correspond to leaf nodes in the graph).  
For these leaf nodes if we found 2, 5 and 50 successful 
bindings, we have 500 combinations of bindings that could 
possibly lead to as many solutions for the parent. BotE-
Solver tries each of these combinations one by one until it 
finds one solution for the parent and that is all it propagates 
upward in the graph. At the same point the binding markers 
at the nodes are updated appropriately so that solve could 
come back and try the next  combination if that solution was 
not good, or we wanted more answers.  
   The main BotE-Solver loop drives both these kinds of 
processing. It checks if there are in-play solutions, if not it 
picks the next thing off agenda and processes it. The 
pseudocode for the main loop, get-next -solution,  propagate-
bindings and process-agenda steps are available on request.  

HouseholdStrategyForCountingUnits  

Total annual 
gasoline 
consumption 

Total miles 
driven 

Miles per 
Gallon 

MileageStrategy 

Number of 
cars 
 

Miles driven 
per day 

Annual miles 
driven per car 

Number of 
households  
 

Number of cars 
per house 
 

PerUnitStrategy 

PerDayForYearStrategy 

Figure 2. AND/OR tree for the gasoline consumption problem. The circles represent the 
suggestion nodes (AND-node) and the rectangles subgoal-nodes (OR-nodes).  



4 Results 
Table 1 shows examples of problems that BotE-Solver can 
answer currently. Most of the times BotE-Solver finds an 
answer that is in the ballpark. The goal of BotE-Solver is to 
find an answer that is no more than an order of magnitude 
off on either side. Sometimes, the estimates being off can be 
an interesting thing. So in question 4 below, we see that if 
we bought everybody personal insurance, we would be 
spending half of the US healthcare expense. The healthcare 
system in US is complicated, but this estimate provokes us 
to think about why the system is incurring more costs. In 
cases like these, carrying out an estimate and comparing it 
to the expected value might trigger a model refinement and 

the fact that one needs to know more to understand the 
process. In the last column, we have the number of 
suggestion specific axioms that were added to the 
knowledge base for the particular problem. One hope of this 
work is to show that that number decreases with increasing 
the corpus of problems that BotE-Solver can handle. As the 
number of strategies increases, we think we might 
asymptotically reach to a stage where very little or none 
problem specific knowledge is added for a new problem. 
The current work shows that this approach is promising, 
though we don’t have enough data to make that claim here. 
We do find that some reuse of strategies in these examples 
which are from quite a broad range of domains, which we 
find encouraging.  

Problem 
Number 

Problem, and its predicate calculus representation Answer found by BotE-
Solver, and comparison to a 
known answer if available 

Number of 
specific axioms 
added for this 
problem.  

1 How many popcorn kernels would it take to fill in the 
1890 Maple big classroom? 
(CountContained CS381ClassRoom 
Popcorn ?number) 

(?number . 1.343444e+7) 
BotE-Solver: 13 million  
Correct answer3: not available! 

30 

2 How much money is spent on newspapers in the US? 
(annualSales NewspaperCopy 
UnitedStatesOfAmerica (YearFn 2003) 
?money) 

(?money . 2.1884363e+10) 
BotE-Solver: 21 billion 
Correct answer: 26 billion  

30 

3 How many K-8 teachers are there in the US? 
(cardinality K-8SchoolTeacher 
?numteachers) 

(?numteachers . 1056454) 
BotE-Solver: 1.05 million 
Correct Answer: 1.9 million 

20 

4 What is the annual cost of healthcare in the US? 
(annualSales HealthCare 
UnitedStatesOfAmerica (YearFn 2003) 
?money)) 

(?money . 799428834000) 
BotE-Solver: 0.8 trillion 
Correct Answer: 1.6 trillion 

12 

5 How many cars are bought per year in the US? 
(unitsBoughtPerYear Automobile 
UnitedStatesOfAmerica (YearFn 2003) 
?num) 

(?num . 8920000) 
BotE-Solver: 8.9 million 
Correct Answer: 8 million 

30 

6 What is the weight of garbage thrown away by 
American families each year? 
(annualProduction Garbage-Generic 
UnitedStatesOfAmerica (YearFn 2003) 
(Pound-UnitOfMass ?garbage-mass)) 

(?garbage-mass . 446000000) 
BotE-Solver: 446 million 
pounds 
Correct answer: not available! 

10 

7 How many hotdogs are sold in a baseball season in 
Wrigley Field? 
(unitsSold HotDogSandwich 
WrigleyField BaseballSeason ?num-
dogs) 

(?num-dogs . 1600000) 
BotE-Solver: 1.6 million 
Correct answer: not available! 

18 

8 What is the total amount of gasoline consumption by 
cars in the US? 
(annualAutomobileGasConsumption  
UnitedStatesOfAmerica (YearFn 2003)  
(Gallon-US ?oil-consumption))) 

(?oil-consumption . 
32558000000) 
BotE-Solver: 32.6 billion 
gallons 
 Correct Answer: 35 billion 
gallons 

20 

                                                                 
3 The correct numbers are all from Statistical Abstracts of the United States, 2003. 

Table 1. A summary of the problems that BotE-Solver can successfully do. 



4.1 Feel for Numbers  

As mentioned earlier in the introduction, another key part 
of doing back of the envelope estimates is the feel for 
numbers. Once we have the model that relates the 
parameter to other quantities that might be known, the 
reasoning bottoms out with making good guesses for 
numeric parameters. Sometimes the exact numeric 
parameter might be known. But many times, we have 
observed in informal protocols of people doing this kind 
of reasoning, people are able to use an example (or 
multiple examples) from their experience to guess for a 
number that might not be directly known. Many times we 
know the range of values a parameter might fall in, but we 
need to guess a typical value rather than do interval math. 
For example, in the Cyc KB, it is known that –  
(age Automobile (YearsDuration 5 50)) 

In question 5 above, this knowledge is used to infer 
how many cars are bought per year, by dividing the total 
number of cars by the age of a typical car. A typical value 
to assume might be 10 years as a life of a car. In many 
estimation problems, we are looking for typical, high, or 
low values for a parameter. For example, consider the 
question – What does a good gaming PC cost? Now, we 
know that a good gaming PC has a high RAM, expensive 
video card, and a fast processor, and everything else 
might be the usual fare. Being able to represent and 
reason with notions like high, low and typical values for 
quantity is a key aspect of BotE reasoning. Using the 
theoretical framework laid out in Paritosh (2003), we are 
building CARVE [Paritosh 2004], a system that 
automatically builds symbolic representations of quantity. 
These symbolic representations will capture the feel for 
numbers part of BotE reasoning, thus making it much 
more flexible and powerful. 

4.2 Related Work 
The most similar project in this spirit was FERMI [Larkin 
et al, 1988]. FERMI used two general principles, 
decomposition and invariance, with domain specific 
knowledge to solve textbook problems in fluid statics, 
DC-circuits and centroid location. Our approach is 
simpler, more general, builds upon existing large 
knowledge bases, and is more concerned with the kind of 
breadth of common sense reasoning as opposed to natural 
science. Such reasoning has relevance to education, 
especially engineering. More than 90% of mechanical 
engineering seniors (100 at MIT, and 250 from five other 
universities) came up with wrong order of magnitude 
estimates of value of energy stored in a 9-volt “transistor” 
battery [Linder, 1999]. The responses varied by nine 
orders of magnitude excluding outliers! Having a clearer 
understanding of BotE reasoning at the knowledge level 
and computationally, might be helpful in fixing that kind 
of innumeracy.  

5 Conclusions and Future Work  
We presented BotE-Solver, a system that uses an 
AND/OR tree and estimation strategies to solve problems. 
BotE-Solver can already solve fairly interesting BotE 
estimation problems. We plan to represent a much larger 
corpus of BotE problems, of about fifty different 
problems. This will enable us to test the hypothesis that 
there is a stable collection of strategies that solve most 
BotE problems, by measuring the amount of additional 
background knowledge and strategies needed to solve 
each new problem. Tucked away in these strategies are 
interesting modeling decisions, approximations and 
simplifications. With a robust library of BotE strategies, 
we would like to get a better understanding of the 
similarities and differences between estimation-model 
building in BotE and model composition in compositional 
modeling [Falkenhainer and Forbus, 1991; Nayak, 1994]. 
We plan to combine BotE-Solver with representations 
built by CARVE, to give it the feel for numbers, which 
we expect will make it much more powerful and flexible. 
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