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Abstract 

Effective problem solving requires building adequate models that embody the simplifications, 
abstractions, and approximations that parsimoniously describe the relevant system phenomena for 
tbe task at hand. Compositional modeling is a framework for constructing adequate device models 
by composiqg model fragments selected from a model fragment library. While model selection 
using compo,sitional modeling has been shown to be intractable, it is tractable when all model 
fragment approximations are causal upproximations. 

This paper addresses the reasoning and knowledge representation issues that arise in building 
practical systems for constructing adequate device models that provide parsimonious causal ex- 
planations of how a device functions. We make four important contributions. First, we present 
a representation of class level descriptions of model fragments and their relationships. The rep- 
resentation yields a practical model fragment library organization that facilitates knowledge base 
construction and supports focused generation of device models. Second, we show how the struc- 
tural, behavioral, and functional contexts of the device define model adequacy and provide the 
task focus and additional constraints to guide the search for adequate models. Third, we describe 
a novel model selection algorithm that incorporates device behavior with order of magnitude rea- 
soning and focuses model selection with component interaction heuristics. Fourth, we present the 
results of our implementation that produces adequate models and causal explanations of a variety 
of electromechanical devices drawn from a library of 20 components and 150 model fragments. 

1. Introduction 

Effective problem solving about complex physical systems requires building models 
that are both adequate for the task and computationally efficient. Adequate models em- 
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body the simplifications, abstractions, and approximations that parsimoniously describe 
the relevant system phenomena for the task at hand. Overly detailed models are com- 
putationally expensive, contain irrelevant information, obscure qualitative differences, 
and often have unstable solutions or are altogether unsolvable. Overly simple models 
miss or distort key phenomena, ignore relevant interactions, and can lead to erroneous 

conclusions. 
In current practice, most system models are either hand-crafted or are automatically 

derived assuming the relevant system-wide phenomena have been identified. Hand- 
crafting models is difficult, error-prone, and time-consuming, requiring a good under- 

standing of what the system does, and how it does it. Recent model-based reasoning 
systems derive device models from a description of their structure based on so called 
system-wide or class-wide assumptions. These assumptions determine the simplifica- 
tions, phenomena types, and interaction modes applicable to all the components of the 
device. For example, in modeling digital circuits, component models ignore all but the 

information processing capabilities. System-wide assumptions are useful but limit the 
modeling scope and fail in devices that exhibit many types of phenomena. The goal of 
automating the model construction process is to overcome these limitations and provide 
future programs with an effective modeling tool. 

Recently, Falkenhainer and Forbus [ 101 proposed compositional modeling, a frame- 
work for constructing adequate device models by composing model fragments selected 
from a model fragment library. Model fragments are partial descriptions of components 
and physical phenomena embodying different assumptions, simplifications, abstractions, 
and approximations. Model construction is a search process, where the goal is to select 

an adequate model from the space of possible models defined by the library’s model 

fragments. Falkenhainer and Forbus demonstrate compositional modeling in a tutorial 
setting. They develop a model composition algorithm that constructs a device model 

which satisfies the modeling constraints and answers the user query. 
While compositional modeling is a general framework that can be used in a variety 

of tasks, it is also inherently intractable. Nayak [25] shows that model selection using 
compositional modeling becomes tractable when all model fragment approximations 

are causal approximations. Causal approximations, which are common in modeling the 

physical world, are based on the idea that more approximate descriptions usually explain 
less about a phenomenon than more accurate descriptions. When all approximations are 
causal approximations, the causal relations entailed by a model decrease monotonically 
as models become simpler. Thus, not all combinations of model fragments need to be 
considered when constructing an adequate model. 

This paper focuses on the reasoning and knowledge representation issues that arise in 
building an efficient system for constructing adequate device models. Effective knowl- 
edge representation and constrained reasoning are essential to demonstrate the practical 
utility of compositional modeling and causal approximations. Specifically, we address 
the problem of constructing device models that provide parsimonious causal explanations 
of the functioning of a device. Causal explanations play a central role in communicating 
with human users and in automating a vast array of reasoning tasks, including tutor- 
ing [4,13], diagnosis [6,26], design [35], and analysis [ 121. Models that support 
causal explanations are necessary to generate causal explanations and are useful to an- 
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swer queries, run simulations, and make predictions. They can be used as base models 
incremental1.y modified for other tasks. 

In this paper we make four important contributions. First, we describe a representation 
of class level descriptions of model fragments and their relationships. The representation 
provides the means for representing relevant domain knowledge and yields a practical 
model fragment library organization that facilitates knowledge base construction and 
maintenance and supports focused generation of device models. Second, we show how 
the structural, behavioral, and functional contexts of the device define model adequacy 
and provide the task focus and additional constraints to guide the search for adequate 
models. To model an important aspect of the functional context, we use expected behav- 
iors, an abstract, causal description of what a device does (but not how it does it). Third, 
we describe: a novel model selection algorithm that incorporates device behavior using 
order of magnitude reasoning and focuses model selection using the component interac- 
tion heuristic. Our method extends previous model composition algorithms [ 10,251 by 
incorporating behavior into the model selection process, by starting with a simpler ini- 
tial device model, and by only instantiating model fragments that are used in the model 
construction process. Fourth, we present experimental results of our implementation that 
produces adequate models and causal explanations of a variety of electromechanical 
devices drawn from a library of 20 component and 150 model fragments. The program 
constructs models for devices with lo-54 components in 0.5-8 minutes on a workstation. 

The rest of this paper is organized as follows: Section 2 illustrates compositional 
modeling with an example and motivates our approach. Section 3 briefly reviews com- 
positional modeling, causal approximations, and model parsimony. Section 4 describes 
the model fragment classes and their organization into a library. Section 5 defines task 
adequacy with expected behaviors, defines the structural and behavioral contexts, and 
identifies the types of constraints associated with them. Section 6 describes order of mag- 
nitude reasoning and its role in model selection, introduces the component interaction 
heuristic, and describes the model selection algorithm. Section 7 presents experimen- 
tal results from the implementation. Section 8 discusses related work and Section 9 
concludes with extensions and future work. 

2. Example: modeling a temperature gauge 

Fig. 1 shows the schematic of a temperature gauge. It consists of a battery, a wire, a 
bimetallic strip, a pointer, and a thermistor. A thermistor is a semiconductor device; a 
small increase in its temperature causes a large decrease in its resistance. A bimetallic 
strip has two strips made of different metals welded together. Temperature changes cause 
the two strips to expand by different amounts, causing the bimetallic strip to bend. The 
function of the temperature gauge is to measure the temperature of a liquid in a container 
by posting its value on a scale. An important aspect of its function is captured by the 
following expected behavior: the temperature of the thermistor determines the angular 
position of the pointer. 

The temperature gauge achieves its expected behavior as follows: the thermistor senses 
the water temperature. The thermistor temperature determines the thermistor resistance, 
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0 terminal connnections 
container of water 

Fig. 1. A temperature gauge. 

which determines the circuit current. This current generates heat in the wire, which 

determines the temperature of the bimetallic strip. This determines the deflection of the 
free end of the bimetallic strip, and hence the position of the pointer along the scale. 

The main difficulty in modeling this device is accounting for the variety of physical 
phenomena involved (electrical, thermal, magnetic, kinematic), assessing their relative 
importance, and selecting among the many different ways in which each component can 
be modeled and can interact with its neighbors. In compositional modeling, components 
and their interactions are represented using model fragments that are organized in a 
model fragment library. For example, Fig. 2 shows a hierarchy with some of the possible 

model fragments that can be used to model a wire. The wire can be modeled as an 
electrical conductor, an electromagnet, or an inductor. When it is modeled as an electrical 
conductor, it can also be modeled either as an ideal conductor or as a resistor. In the 
latter case, its resistance can be modeled as being constant, or as being dependent upon 
its temperature. When the wire is modeled as a resistor, it can also be modeled as 
a thermal resistor, which models the heat generated in the wire due to current flow. 
Finally, as with most other components, the wire can be modeled using various thermal, 
mass, and motion models. Similarly, the wire and the bimetallic strip can interact with 
each other in a number of ways: thermally (heat generated in the wire can cause the 

bimetallic strip to heat up) ; magnetically (a magnetic field generated in the wire can 
cause the bimetallic strip to be magnetized) ; and kinematically (translation or rotation 
of the bimetallic strip causes the same motion in the wire). 

An adequate model for the temperature gauge models the battery as a constant voltage 
source, the wire as a resistor that generates heat, the pointer as a rotating object, and 
the bimetallic strip, thermistor, and atmosphere as thermal objects with appropriate 
models. The resulting model is shown in Fig. 3. It includes model fragments for the 
components of the temperature gauge (e.g., the wire wire-l) and for the component 
interactions (e.g., atmosphere-bms represents interactions between the atmosphere and 
the bimetallic strip). 
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electrical-conductor 

wire 

ideal-conductor 

< 

constant-resistor 

resistor temperature-dependent-resistor 

elastic-wire thermal-resistor 

thermally-expanding-wire 

axially-rotating-wire 

- Possible model link 

rigid-rotating-wire 

torsion-spring 

Fig. 2. Possible models of a wire. The hierarchy shows the different model fragments that can be used, some 
inclusively, some mutually exclusively, to model a wire. 

This model satisfies the three important properties of an adequate model. First, it 

is able to explain the expected behavior of the temperature gauge. Fig. 4 shows the 
causal ordering generated from the equations of this model. It matches the explanation 
of the expected behavior presented earlier. Second, it includes all significant phenomena 
and leaves out insignificant phenomena. For example, the internal resistance of the 
battery is insignificant, and is not included in the model. Third, it excludes all irrelevant 
phenomena, so that it is as simple as possible. For example, the electromagnetic field 
generated by the wire is irrelevant, and has been excluded. 

3. Background 

Our starting points are compositional modeling [ 101 and causal approximations [ 251. 
This section briefly summarizes their key concepts and describes the notion of model 

parsimony as defined in [ 251. Our focus is on behavioral device models: behavioral 
models describe relations between the device’s physical attributes, and how these at- 
tributes’ vallues evolve over time. ’ Models of device behavior are described by sets of 
equations that relate sets of device parameters. We restrict ourselves to time-varying and 
equilibrium lumped parameter models represented using ordinary differential equations, 
algebraic equations, and qualitative equations [ 3,331. 

3.1. Compositional modeling 

Compositional modeling constructs device models by composing model fragments. A 

model fragment is a set of non-redundant equations that partially describes some phys- 

’ Unlike structural models, which are often directly available from CAD tools, and functional models, 
which are typically pact of the design description, behavioral models must be constructed. Henceforth, unless 
otherwise noled, we will use the term “model” to refer to behavioral models. 
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(Constant-temperature atmosphere-l) : exogenous(l;), 
(Constant-temperature-model thermistor-l) : aogemms(T,), 

(Thermal-thermistor thermistor-l) : V, = i,R,; M - (R,, Tt), 

(Constant-voltage-source battery-l) : exogenous( V,), 

(Constant-resistance wire-l) : exogenous(&), 
(Resistor wire-l) : VW = iwRw, 

(Thermal-resistor wire-l) : fw = V,i,, 

(Equilibrium-thermal-model wire-l) : f,,,b = f,,,, 

(Thermal-bimetallic-strip bms-1) : xb = k2Tb, 

(Equilibrium-thermal-model bms-1) : fba = f,,$, 
(Resistive-thermal-conductor atmosphere-bms) : fba = k3(Tb - T,), 

(Resistive-thermal-conductor bms-wire) : f,,+ = kd(T, - Tb), 

Kirchhoff’s 

/3,: Pointer angle 
R,: Wire resistance 
it: Thermistor current 
i,: Wire current 
i,,: Battery current 
Tb: Bms temperature 
Tw: Wire temperature 

xb: 
R,: 

&: 
VW: 

K,: 
T,: 

Tt: 

laws : q, = VW + V,; i,, = i,; 
. -. lt - hv; 6, = k,xb. 

Bms deflection 
Thermistor resistance 
Thermistor voltage 
Wire voltage 
Battery voltage 
Atmosphere temperature 
Thermistor temperature 

fb& Heat flow (bms to atmosphere) f&: Heat flow (wire to bms) 
f,,,: Heat generated in wire kj: Exogenous constants 

Fig. 3. Model fragments and equations describing the temperature gauge. The equation e.rogenous( Q) indicates 
that the value of Q is determined exogenously. The equation M - (Qt , Q2) is a qualitative equation indicating 
that Qt decreases when Q2 increases [ 18 1. 

R 

T,-;T{ ~;,,-fwg$$-lp \ 

” $ 
(1 

Fig. 4. The causal ordering generated from the model in Fig. 3. Directed arrows show the causal dependency 
relation between parameters. Bracketed parameters are determined simultaneously. 

ical phenomenon at some level of granularity. Different model fragments can describe 
different phenomena (e.g., electrical conduction, heat generation, electromagnetism) or 
can be different descriptions of the same phenomenon (e.g., describing electrical con- 
duction in a wire as a resistor, an ideal conductor, or an ideal insulator). Since model 
fragments are only partial descriptions of phenomena, additional model fragments are 
necessary to complete the description. For example, modeling a wire as a resistor re- 
quires additional model fragments describing the variation of the wire’s resistance. The 
set of model fragments represents the space of possible device models. 
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The equations of a device model are constructed by composing the equations of the 
model fragments. For algebraic and differential equations, the composition is a union of 
the equations in the model fragments. Qualitative equations and expressions with special 
operators, e.g., direct (If) and indirect influences (a~*:) [ 111, are composed with 
special rules. 

Using model fragments to represent the space of device models has two advantages. 
First, the set of model fragments is a representation of an exponentially large set of device 
models: any subset of it can be composed to form a model. This representation, unlike 
the explicit representation of each model [ 11, allows broad coverage of phenomena and 
scales up. Second, model fragments are highly reusable, both in different models of the 
same device and in models of different devices. Thus, the effort of constructing a library 
of model fragments can be amortized over their use in different models. 

3.2. Causal approximations 

Compositional modeling is, in general, intractable. Nayak [ 24,251 formalizes compo- 
sitional modeling and shows that finding adequate models using compositional modeling 
is NP-hard. To make it tractable, Nayak introduces a new class of model fragment ap- 
proximations called causal approximations. Causal approximations have the property 
that when all approximations are causal approximations, model selection using compo- 
sitional modeling does not require exhaustive search. 

Causal approximations are based on the observation that more approximate descrip- 
tions often involve fewer parameters and explain less about a phenomenon than more 
accurate descriptions. Formally, causal approximations are defined as follows: every 
equation in the more approximate model fragment must have a corresponding equation 
in the more accurate model fragment which uses a superset of parameters. Hence, when 
all approximations are causal approximations, the causal relations entailed by a model 
decrease monotonically as model fragments in the model are replaced by their approxi- 
mations. Modeling the different aspects of the physical world with causal approximations 
is both natural and commonplace in physics and engineering. Many examples of causal 
approximations, such as elastic collisions, frictionless motion, and ideal gas laws are 
described in [ 251. 

3.3. Mode2 simplicity 

An adequate model must parsimoniously describe the relevant system phenomena for 
the task at hand. Hence, any notion of model adequacy must incorporate some notion 
of model s:implicity. Following [ 251, we establish a partial order between models based 
on the approximation relation between model fragments. A model is usually simpler 
if it models fewer phenomena or does so more approximately. Formally, we say that 
model ML is simpler than model Mt if and only if for each model fragment m2 E A42 
either (a) m2 E Ml; or (b) there is a model fragment ml E MI such that m2 is an 
approximation of ml. 

For example, a simpler model of the temperature gauge model in Fig. 3 ignores 
the wire’s heating properties by removing the model fragment (Thermal-resistor 
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wire- I > . A more complex model takes into account the thermal properties of the wire’s 
resistance by replacing the model fragment (Constant-resistance wire-l) with the 

more accurate model fragment (Temperature-dependent-resistor wire-l). An 
incomparable model results from both removing (Thermal-resistor wire-l) and 
replacing (Constant-resistance wire-l) by (Temperature-dependent-resis- 

tor wire-l). 
Note that this definition of model simplicity does not guarantee that simpler mod- 

els will be more efficient to simulate or will produce simpler causal explanations than 

more complex ones. However, it is a good heuristic, following the common engineer- 
ing practice of disregarding irrelevant phenomena and using all applicable approxima- 

tions. 

4. Representation and organization of the model fragment library 

Relations between model fragments are a key part of the domain knowledge that are 
needed for effective model construction. Identifying and capturing these relationships 
is essential for representing the relevant domain knowledge and for organizing the 
model fragment library to focus the search for adequate models. In this section, we 
identify several key model fragment relations, describe how to represent them, and 

show how to effectively organize the model fragment library according to them. This 
organization provides compact representations, facilitates knowledge base construction 
and maintenance, and supports efficient model fragment retrieval and generation of 
device models. Section 6 shows how to effectively use the library in the model selection 

search process. 
The library is organized along three major lines. First, the model fragment library 

contains class level descriptions of model fragments. The model fragment classes are 

organized into a generalization hierarchy that captures the “subset-of’ relation between 
classes. Second, the space of possible device models is represented using a possible 

models hierarchy that captures the additional ways of modeling instances of a class. A 
set of articulation rules ensure that attributes of different model fragment classes are 
used coherently. Third, the representation of three relations, contradictory, required, and 
approximation ensures the consistency, completeness, and parsimony of models built 
from model fragments. 

4.1. Model fragment classes 

Model fragments in the library are represented as classes; a component is modeled 
by a model fragment by making it an instance of the corresponding class. For example, 
a wire, wire-l, is modeled as a resistor by making it an instance of the Resistor 
class. The literal (Resistor wire-l), which also denotes the corresponding model 
fragment, indicates this choice. A component can be simultaneously modeled by more 
than one model fragment by making it an instance of each of the corresponding classes. 

Model fragment classes inherit properties to their instances. The properties comprise 
the definitions of the phenomena being modeled by the model fragment class. Two prop- 
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(defmodel Resistor 
(attributes 
(resistance 
:range Resistance-parameter 
:documentation 'I The resistor's resistance")) 

(equations 
(= (voltage-difference ?object) 

(* (resistance ?object) 
(current (electrical-terminal-one ?object>>>)> 

(generalizations Electrical-conductor) 
(possible-models Constant-resistance 

Temperature-dependent resistance 
Thermal-resistor) 

(assumption-class electrical-conductor-class) 
(required-assumption-classes resistance-class)) 
(8approximations Ideal-conductor 

Ideal-insulator) 

Fig. 5. The Resistor model fragment class. 

erties are inherited to instances: atttibutes and equations. Attributes are either numerical 
attributes, which are the parameters of the phenomena being modeled, or terminals, 
which specify the ports through which components can interact with each other by 
sharing parameters [ 71. Equations are defined using equation schemus that are instanti- 

ated for specific instances of the model fragment class. Equation schemas are equations 
whose parameters are replaced by terms such as (resistance ?object) and are in- 
stantiated by binding the variable ?object to the instance and replacing the terms by 

the parametler resulting from evaluating the term. 
Fig. 5 shows the Resistor model fragment class. The attributes clause specifies 

the resistance parameter for instances of Resistor. The : range specification defines 

the type of this attribute. The equations clause specifies the relation between the 
different parameters. (The remaining clauses are discussed in detail below.) 

4.1.1. Generalization hierarchy 
Model fragment classes are organized into a standard generalization hierarchy repre- 

senting the “subset-of’ relation between classes. Knowledge represented with a class 
can be used both by direct instances of the class and by instances of subclasses 
(specializations) of the class, thereby facilitating its reuse. Also, since knowledge 

needs to be represented only with the most general class to which the knowledge is 
applicable, changes tend to be localized, thereby facilitating knowledge base mainte- 

nance. 
For example, the generalizations clause in Fig. 5 states that the Electri- 

cal-condu.ctor class is a generalization of the Resistor class. Hence, any component 
being modeled as a resistor is also modeled as an electrical conductor. 



202 f?FI Nayak, L. Joskowicz/Art#cial Intelligence 83 (1996) 193-227 

4.2. Representing the space of device models 

Model fragment classes are an effective way of compactly representing the set of 
model fragments, which define the set of device models (Section 3.1). To generate 
the set of model fragments from these classes requires knowing which model fragment 

classes can be used to model each component. For example, we must represent the 
fact that a wire can be modeled as a resistor but not as a thermal thermistor, which 
models the dependence of a thermistor’s resistance on its temperature. Furthermore, 
to ensure that the model description is complete, we must represent how attributes in 

model fragments relate and complement each other. For example, wire-l inherits the 

attributes wire-terminal-one and wire-terminal-two, representing the two ends 
of the wire, from Wire. When it is modeled as an Electrical-conductor it also 
inherits the attributes electrical-terminal-one and electrical-terminal-two, 

corresponding to the two ends of the electrical conductor. Since the ends of the elec- 
trical conductor are identical to the ends of the wire, they must be considered as 
identical. 

4.2.1. Possible models hierarchy 
To represent the set of model fragment classes that can be used to model each 

component, we organize the model fragment classes into a possible models hierarchy. 
The possible models of a model fragment class are the additional ways of modeling 

instances of that class. The transitive closure of the possible models of a class is the set 
of all possible ways of modeling instances of that class. For example, Fig. 2 shows part 

of the possible models hierarchy rooted at Wire. The possible-models clause in Fig. 5 
specifies that instances of Resistor can also be modeled as instances of Constant-re- 
sistance, Temperature-dependent-resistance, and Thermal-resistor. 

The possible models hierarchy has advantages similar to the generalization hierarchy. 
First, it leads to compact representations. For example, we only need to specify that 
instances of Wire can be modeled as an Electrical-conductor. The additional ways 
of modeling instances of Wire are directly inferred from the hierarchy. Second, it 
simplifies knowledge base maintenance. For example, adding a model fragment class 

describing the dependence of resistance on length only requires changing the possible 
models hierarchy below Resistor, while model fragment classes above it, such as Wire 
remain unchanged. 

The generalization hierarchy and the possible models hierarchy often overlap, but they 
are not the same. For example, Resistor is both a specialization and a possible model 
of Electrical-conductor. However, the Thermal-thermistor model fragment class 
is a specialization of the Thermal-object model fragment class, but not all components 
being modeled as Thermal-objects can be modeled as Thermal-thermistors. The 
generalization hierarchy captures the “subset-of” relation between classes, while the 
possible models hierarchy captures additional ways to modeling instances of a class. 

4.2.2. Articulation rules 
To represent the relations between attributes introduced by different model fragment 

classes we introduce articulation rules (similar to articulation axioms in [ 1.51) . These 
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rules ensure that all relations between attributes of different model fragment classes are 
correctly represented. For example, the relations between the wire terminals and the 
electrical terminals, discussed above, are enforced by the rule: 

(implies 
(and (Wire ?object) 

(Electrical-conductor ?object) 
(wire-terminal-one ?object ?terml) 
(wire-terminal-two ?object ?term2)) 

(and (electrical-terminal-one ?object ?terml) 
(electrical-terminal-two ?object ?term2>)> 

This rule captures the fact that the two ends of the wire are identical to the two ends 
of the electrical conductor so that components connected to the ends of wire-l will be 
able to electrically interact with it. 

4.3. Representing model consistency, completeness, and parsimony 

The possible models hierarchy represents the space of possible device models. How- 
ever, not all device models in this space are consistent, complete, and parsimonious. 
For example, a wire can be modeled as an ideal conductor or as an ideal insulator, 
but not both.. Thus, a consistent device model can contain at most one of these model 
fragments. Similarly, modeling a wire as a resistor requires a model of the resistance. 
Thus, a complete device model must include both model fragments. Finally, modeling 
the internal resistance of a battery is superfluous if the battery is modeled as a con- 
stant voltage source. Thus, a parsimonious device model that includes the latter model 
fragment would not include the former. 

We ensure that device models are consistent, complete, and parsimonious by repre- 
senting additional relations between model fragments. We represent the contradictory 
relation between model fragments by organizing mutually contradictory model frag- 
ments into assumption classes. We represent the set of model fragments that can be 
used to complete the (partial) description in a model fragment by introducing the 
assumption classes required by a model fragment. Finally, we show how the approx- 
imation relation, introduced earlier in our discussion on model parsimony, is repre- 
sented. 

4.3.1. Assumption classes 
When model fragments describe the same phenomenon, they often make mutually 

contradictory assumptions. Following [ 1, 10,251, we represent the contradictory relation 
between model fragments by grouping mutually contradictory model fragments into 
disjoint assumption classes. To avoid inconsistencies, consistent models must include at 
most one model fragment from each assumption class. The explicit representation of 
assumption classes makes it easy to generate consistent device models. 

For example, the following three model fragments describing electrical conduction in 
a wire: 
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(Ideal-conductor wire-l) : VW = 0, 

(Ideal-insulator wire-l) : i, = 0, 

(Resistor wire-l) : VW = i,R,, 

are mutually contradictory: the ideal conductor model fragment assumes that the re- 
sistance of the conductor is zero, the ideal insulator model fragment assumes that 
the resistance of the conductor is infinite, and the resistor model fragment assumes 
that the resistance of the conductor is nonzero and finite. The assumption-class 

clause of the model fragment classes Resistor (see Fig. 5), Ideal-insulator, and 
Ideal-conductor all specify electrical-conductor-class. 

Note that the contradiction between model fragments in an assumption class cannot, 

in general, be derived from the equations of the model fragments. For example, the 
equations of the ideal conductor model fragment and the ideal insulator model fragment 
can be simultaneously satisfied when both the current through a conductor and the 
voltage drop across it are zero. However, these model fragments are mutually exclusive 

because their underlying assumptions are contradictory. Assumption classes capture this 

domain-dependent fact. 

4.3.2. Required assumption classes 
Since model fragments are partial descriptions of phenomena, additional model frag- 

ments are sometimes required to complete their description. We represent the set of 

model fragments that can be used to complete a description by introducing the as- 
sumption classes required by a model fragment; the description of the model fragment 
is completed by including a model fragment from each required assumption class. 
This representation makes it easy to generate device models that include complete de- 
scriptions of all modeled phenomena. We will use this fact in our model selection 

algorithm. 
For example, the required-assumption-classes clause in Fig. 5 shows that a 

component being modeled as a Resistor must also be modeled using a model fragment 
class that specifies Resistor-class as its assumption-class, viz. Constant-re- 
sistance or Temperature-dependent-resistance. 

4.3.3. Approximation relation 
We define model parsimony based on the approximation relation between model 

fragments (Section 3). When one model fragment is an approximation of another, 

they clearly make mutually contradictory assumptions, and hence belong in the same 
assumption class. Hence, we represent the approximation relation between model frag- 
ments by organizing the model fragments within an assumption class into an approx- 
imation hierarchy. For example, the approximations clause in Fig. 5 specifies that 
Ideal-conductor and Ideal-insulator are more approximate descriptions of elec- 
trical conduction than Resistor. 

The representation of the approximation relation as a hierarchy makes it easy to 
minimally simplify a model by replacing a model fragment by one of its immediate 
approximations. This is useful since our model selection algorithm (see Section 6) is 
based on the ability to minimally simplify a model. 
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5. Adequade models 

In addition to being consistent, complete, and parsimonious, device models must 
also be adequate for the task at hand. For example, to analyze the performance of the 
temperature gauge in Fig. 1 during the final stages of detailed design, it is necessary 
to include complex nonlinear differential equations describing the dependence of the 
thermistor’s resistance on its temperature. However, a simple qualitative current/no 
current model is sufficient for determining why the pointer does not move when the 
water temperature rises. Model adequacy is critically dependent on the context in which 
the device operates. In this section, we introduce the functional, structural, and behavioral 
contexts that define model adequacy. 

The functional context is an abstract description of the aspect of the device’s function- 
ing that is of interest. The functional context determines the set of relevant phenomena, 
and the level of granularity that must be included in an adequate model. The structural 
context is defined by the device’s components, their physical and structural properties, 
and structural relations between them describing how they are put together to form 
the device. Together with the model fragment library, it defines the space of possible 
models and provides constraints that guarantee structurally coherent models. The behav- 
ioral context is defined by the values, and the variations over time of the values, of the 
physical parameters used to model the device. It provides constraints that ensure that all 
significant phenomena are modeled with applicable approximations. 

5.1, Functional context 

The functional context is provided by the function of the device that is of interest. 
The function is an abstract description of some aspect of what the device does. An 
adequate model must be able to explain how the device achieves this function. The most 
common functional descriptions are input/output descriptions of device behavior, and 
often correspond to the primary function of the device. Knowledge of device function 
is commonplace and almost always available either directly from the user, from the 
description of the problem to be solved, or from the context in which the device 
operates. For example, the primary function of the temperature gauge in Fig. 1 is to 
measure temperature by measuring the deflection of the pointer as the temperature of 
the liquid changes. 

Device function can be represented at different levels of abstraction [ 51. For example, 
the relationship between the pointer’s angular position and the temperature can be 
represented as a causal relation, a qualitative relation, or an algebraic relation. The 
“right” level of abstraction should be determined by the task at hand. In this paper we 
focus on the task of generating parsimonious causal explanations for the functioning of 
the device [ 251. We specify device function using causal relations between parameters; 
an adequate device model must provide a parsimonious explanation for these causal 
dependencies. We call such required causal relations the expected behavior of the device. 
For example, the expected behavior of the temperature gauge, representing its primary 
function, is: 
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(causes (temperature thermistor-l) 

(angular-position pointer-l)) 

which states that an adequate device model must explain how the temperature of the 
thermistor causally determines the angular position of the pointer. 

We test if a model satisfies the expected behavior by generating the causal ordering 

of the parameters of the model, using the equations of the model [ 7,11,17,30,34]. The 
causal ordering can be generated efficiently using the causal ordering algorithm discussed 

in [ 281. The causal ordering identifies causal dependencies between the parameters of 

the model, and hence can be directly used to check if the model explains the expected 
behavior. For example, recall that Fig. 4 shows the causal ordering generated from the 

equations of the model in Fig. 3. This causal ordering provides an explanation for the 

above expected behavior. 

5.2. Structural context 

The structural context is defined by the components of the device, their physical and 

structural properties, and their structural relations. The user models the structure of the 
device by selecting model fragments from the library and by specifying their properties 

and the structural relations between them. The structural context provides the basis 
for model construction by defining the space of possible component models and their 
interactions. 

The particular choice of components in the library, their properties, and the possible 

structural relations reflects the domain of interest and defines the most detailed level 
of granularity that needs to be considered. For example, in the electro-mechanical do- 
main, the components of interest include wires, batteries, magnets, and springs. The 
physical and structural properties include shape, dimension, mass, and material com- 
position. Structural relations, which describe how components are put together, include 

connected-to, indicating that two component terminals are connected to each other 
[ 7 1, coiled-around, indicating that a wire is coiled around a component, meshed in- 

dicating that a pair of gears mesh with each other, and immersed-in, indicating that a 
component is immersed in a fluid. These structural relations determine how components 
may interact, e.g., the connected-to relation supports electrical, thermal, and kinematic 
interactions between components. The structural context of a device can change during 
the operation of the device, as new components are created and old ones are destroyed 

(e.g., boiling water becoming steam), as the physical properties of components change 
(e.g., demagnetizing the magnetic strip on a credit card), or as structural relations be- 
tween components change (e.g., the intermittent contact between the hammer and the 
dome of an electric bell). 

To ensure structurally coherent device models and to model structural context changes, 
we associate structural constraints with model fragment classes. These constraints state 
that a component can be modeled by a model fragment class only if it satisfies all the 
structural constraints associated with that class. We distinguish between two types of 
constraints: structural preconditions and structural coherence constraints. 
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Structurall preconditions are necessary constraints on the structural context that must 
be satisfied if a component is to be modeled by the model fragment class. For example 
the precondition: 

(and (composition ?object ?material) 
(metal ?material) ) 

in the Electrical-conductor model fragment class indicates that a component must 
be metallic for it to be modeled as an electrical conductor. Structural preconditions are 
similar to process preconditions in QP theory [ 111, except that structural preconditions 
are necessary conditions, while process preconditions are sufficient conditions. 

Structural coherence constraints restrict the model fragment classes that can be used 
to model a set of structurally related components. For example, the constraint: 

(impl.ies 
(and (Wire ?object) 

(coiled-around ?object ?core) 
(magnetic-material ?core)) 

(Magnet-class ?core)) 

associated with the Electromagnet model fragment class specifies that a wire coiled 
around a core made of magnetic material can be modeled as an electromagnet only if the 
core is also modeled as a magnet (i.e., by a model fragment class in the Magnet-class 
assumption class). This is because the core amplifies the wire’s magnetic field by three 
or four orders of magnitude, converting the core into a powerful magnet. Without this 
amplification, the magnetic effect is considered negligible. 

5.3. Behavioral context 

The behavioral context of a device is defined by the values of the physical parameters 
used to model the device; it changes over time with the parameter values. For example, 
the behavioral context of the temperature gauge in Fig. 1 includes the values for the 
current flowing in the circuit, the magnetic field generated by the wire, and the angular 
position of the pointer. 

Ideally, we would like the behavioral context to refer to the actual behavior of the 
device, e.g., to the values of the parameters obtained from actual measurements on a 
physical prototype. Since the actual device behavior is usually unavailable, the behavior 
must be c80mputed from the device model equations. Because different device models 
can predict different behaviors and introduce different errors, it is important to use the 
device model that introduces the least error. Hence, we use the behavior predicted by 
the most accurate (complex) device model as the behavioral context. 

To ensure that models have acceptable accuracy, we introduce two types of domain- 
dependent behavioral constraints: behavioral preconditions, indicating which approxima- 
tions are acceptable, and behavioral coherence constraints, indicating which phenomena 
are significant. Behavioral preconditions are constraints associated with model fragment 
classes that must be satisfied if a component is to be modeled by that model fragment 
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class. They specify necessary conditions under which an approximate model fragment 
class can model a component. For example, the behavioral precondition: 

(< (voltage-difference ?object) 
(voltage-difference-threshold ?object>> 

associated with the Ideal-conductor model fragment class indicates that a component 
can be modeled as an ideal conduct, rather than more accurately as a resistor, only if the 

voltage drop across it is less than some threshold. Behavioral preconditions are similar 

to process quantity conditions in QP theory [ 111. However, behavioral preconditions 
are modeling constraints used to decide which model fragment classes in an assumption 

class can model a component, while quantity conditions control the activity of a process, 

and are about the physics of the situation. 
Behavioral coherence constraints, like structural coherence constraints, constrain the 

model fragment classes that can model a set of related components. They ensure that 
device models include all significant phenomena. For example, the constraint: 

(implies 
(>= (* (voltage-difference ?object) 

(current (electrical-terminal-one ?object>>> 

(electrical-power-threshold ?object>> 
(Thermal-resistor-class ?object)) 

in the Resistor model fragment class specifies that when the power dissipation of a 
component modeled as a resistor exceeds a prespecified threshold, this power dissipation 
is deemed significant and must be explicitly modeled by adding a model fragment class 
from the Thermal-resistor-class assumption class to the wire model. 

Parameter thresholds, such as the electrical power dissipation threshold in the previous 
example, play a central role in determining the significance of phenomena and the ap- 
plicability of approximations. Thresholds can either be preset or computed dynamically. 
Preset thresholds can be derived from physics, such as the Reynolds number in fluid 
dynamics indicating when laminar flow becomes turbulent, or can be set by an engineer 
depending on the application, For example, voltage differences of up to 10 volts can 
be considered insignificant in a power distribution system, while voltage differences of 

only up to .Ol volts can be considered insignificant in an electronic circuit. Thresholds 
can also be set dynamically, based on knowledge of acceptable error tolerances on pa- 
rameters. The error tolerances can be propagated, via a set of rules or through the model 

equations, to set other thresholds [ 22,291. 

6. Model selection algorithm 

We now present the model selection algorithm. Given a device description, its ex- 
pected behavior, and a library of model fragments, we construct an adequate model 
by composing a set of model fragments describing the device’s components and their 
interactions. Following [25], we identify an adequate model by first constructing an 
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initial model that satisfies all the model adequacy criteria with the exception of model 
parsimony and then progressively simplifying this model until none of its immediate 
simplifications explains the expected behavior. 

We make two contributions to the basic model selection algorithm. First, we show 
how to construct an initial model that is simpler than the most accurate model by 
using the expected behavior, the structural and behavioral constraints, and a special 
set of heuristic constraints called the component interaction heuristic constraints. This 
improves the basic algorithm in [25], which starts with the most accurate model as 
the initial model. Second, we explicitly incorporate behavior generation into our model 
selection algorithm using a logarithm-based order of magnitude reasoning technique. 
Behavior generation is a prerequisite for evaluating behavioral constraints. 

To ensure, that the initial model can be efficiently simplified, we require all model 
fragment aplproximations to be causal approximations. This guarantees that the causal re- 
lations entailed by a model decrease monotonically as it is simplified. Hence, simplifying 
a model that explains the expected behavior until none of its immediate simplifications 
does yields an adequate model. In addition, we restrict the expressivity of the structural 
and behavioral coherence constraints by requiring them to be rules whose antecedents 
are conjunctions of positive literals (representing structural properties of components, 
ordinal relations between quantities, or components being modeled as instances of model 
fragment classes) and whose consequents are positive literals representing components 
being modeled by an assumption class. All the coherence constraints in Section 5 have 
this restricted form. 

This section describes the model selection algorithm. We begin by describing order 
of magnitude reasoning for behavior generation and the component interaction heuristic 
constraints. We then describe the steps of the algorithm in detail and illustrate them on 
the temperature gauge. 

6.1. Order of magnitude reasoning 

Generating device behavior is necessary to evaluate the behavioral constraints and 
to determine the significance of different physical phenomena. Since the device model 
equations c#an seldom be solved in closed form, we must use either numerical or qualita- 
tive methodls. Numerical methods require exact values for exogenous parameters, which 
are not always available, and can be unstable, inefficient, or converge to the wrong 
solution. Qualitative methods, which consider only parameter signs [3,33], lack the 
discriminat~ory power to estimate the significance of phenomena and can lead to ambi- 
guity. Order of magnitude reasoning, which focuses on the relative signs and magnitudes 
of the parameters, strikes a balance between these two extremes. 

We use the order of magnitude reasoning technique embodied in a program called 
NAPIER [ 231. NAPIER defines the order of magnitude of a quantity on a logarithmic 
scale and uses a set of rules to propagate orders of magnitudes through equations. It 
handles nonlinear simultaneous equations and uses approximation techniques to make the 
computation efficient. We use the computed orders of magnitude to evaluate behavioral 
preconditions and coherence constraints. These determine which model fragments should 
or should not be part of the device model. 
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Following is a brief description on NAPIER'S operation (see [23] for a detailed ac- 
count). NAPIER defines the order of magnitude of a parameter q (denoted om( q) ) as an 
interval on a logarithmic scale: 

am(q) = llog,, 1411. 

It applies rules to propagate orders of magnitude through equations. The orders of 

magnitude are propagated by first converting each equation into a disjunction of sets of 
linear inequalities and solving the resulting disjunctive linear program. For example, the 
equation 

43 = 41 * q2 

yields two linear inequalities (in this case, a single disjunct): 

(om(q1) + Mq2) 6 mq3>,wq3> 6 Mq1) +om(qa) + 1). 

NAPIER then solves the disjunctive logic programs using linear programming and back- 

tracking. Since solving the disjunctive logic program is, in general, NP-hard, NAPIER 

uses a heuristic method based on causal ordering. The heuristic method is fast and 
does not appear to lose accuracy in practice. For example, NAPIER solves a set of 163 
equations in only 21 seconds on a workstation, with no loss of accuracy. 

To illustrate how orders of magnitude are used in model selection, consider modeling 

a wire through which current is flowing. Suppose that NAPIER has predicted that the order 
of magnitude of the current through the wire is - 1 (several deciamperes), and that of 

the voltage across the wire is 0 (several volts). To determine if the heat generated in 
the wire is significant and must be modeled, recall the behavioral coherence constraint 
in Section 5.3: 

(implies 
(>= (* (voltage-difference ?object) 

(current (electrical-terminal-one ?object>)) 
(electrical-power-threshold ?object>> 

(Thermal-resistor-class ?object)) 

where the order of magnitude of the electrical power threshold is - 1 (several deciwatts) , 
Following the previous order of magnitude rule, the order of magnitude of the product 
of the current and the voltage is between -1 and 0, which is greater than or equal 
to the electrical power threshold. This indicates that the heat generated by the wire is 
significant and hence the wire should be modeled as a thermal resistor. 

6.2. Component interaction heuristic 

To focus the search for initial adequate models we introduce the component interaction 

heuristic. The idea is to have a set of constraints on component interactions that focus 
the initial model selection process. However, these constraints do not define model 
adequacy, so the final adequate model need not satisfy them: the interactions required 
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by these constraints might eventually be discarded because they may be too weak to be 
worth modeling or may not be relevant in explaining the expected behavior. 

Components can only interact with each other if the components are related by the 

structural relations that support the interaction and the component models are compatible 
with the interaction. For example, two wires can interact electrically only if they are 
connected to each other and if they are both modeled as electrical conductors. The 
heuristic requires that if a set of components are related by one or more structural 
relations that support an interaction, and if one of the component models is compatible 
with this interaction, then the remaining component models must be augmented to be 

compatible with this interaction. This allows the components in the set to interact with 
each other via that interaction. Note that if none of the component models is compatible 

with the interaction, then no augmentations are necessary. 
We implement the component interaction heuristic with a set of constraints. Each 

constraint specializes the heuristic for a particular interaction and structural relations. 
For example, the constraint: 

(implies 
(and (terminals ?object ?terml) 

(voltage-terminal ?terml) 
(connected-to ?terml ?term2) 
(terminal-of ?term2 ?comp2)) 

(electrical-component ?comp2)) 

in the electrical-component model fragment class says that if a component is being 

modeled as an electrical-component, and one of the component’s voltage terminals 

is connected to a terminal of another component, then the other component must also 
be modeled as an electrical-component. This allows the two components to interact 
by sharing voltages at the connected terminals. We require the initial model to satisfy 

all the component interaction constraints. 

6.3. Model composition algorithm 

Fig. 6 shows the algorithm for finding a device model that explains the expected 
behavior of a device. The inputs to the algorithm are: 

l the structure of the device: its components, their physical and structural properties, 

and the structural interconnections between them; 

l the expected behavior of the device; 
l orders of magnitudes of thresholds and exogenous parameters; 
l an optional set of model fragment classes preselected for each component, corre- 

sponding to modeling decisions made by the user; and 
s the library of model fragments organized as described in Section 4. 
The algorithm constructs an initial device model and then simplifies it. The initial 

device model is constructed by augmenting the initial device description to include 
all expected behavior parameters (step 1) and to satisfy the structural coherence and 
component interaction constraints (step 2). The device behavior is then generated on 
the current choice of model fragments using NAPIER (step 3). Its results are used to 
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augment the device model using the behavioral coherence constraints (step 4). If the 
resulting model does not explain the expected behavior, it is augmented with alternate 
model fragments (step 5). These steps are repeated until an initial model is found. The 
initial mode.1 is then simplified by either replacing model fragments with one of their 
approximations or by dropping them altogether (step 6). 

All steps except behavior generation (step 3) and model simplification (step 6) 
modify the device model by adding one or more model fragments to it. When a model 
fragment is added to the device model, the most accurate model fragment from every 

assumption ~class required by the model fragment is also added to the model. Thus, at 
the end of every step the device model is complete, i.e., the device model contains a 
model fragment from all required assumption classes. 

We now (describe each step in detail. As a preprocessing step, the algorithm starts 
by identifying all possible component interaction paths induced by particular structural 
configuratio,ns with a set of rules (step 0). For example, in the temperature gauge, the 
wire can interact with the bimetallic strip since the former is coiled around the latter. 
Potential component interaction paths are considered to be additional device components 
and are treated exactly like the original components by the remaining steps in the 
algorithm, e:.g., the component representing the interaction between the wire and the 
bimetallic strip can be modeled as a thermal or an electromagnetic interaction. Path 

identification is analogous to process instantiation in [ 111. 
In step 1, the algorithm checks if the input device model contains all expected behavior 

parameters. If a component parameter is missing, the algorithm searches the possible 
models hiemrchy rooted at that component for a model fragment class that provides the 
required parameter and whose structural preconditions are all satisfied. The resulting 

model fragment class is added to the component’s model. When several model fragment 
classes satisfy the above condition, we prefer (a) more general model fragment classes 
over more specific ones to ensure that minimal modeling commitments are made; and (b) 
only most accurate model fragment classes, i.e., only model fragment classes that are not 
approximations of any other model fragment class (this is necessary because we cannot 
determine the applicability of approximations by evaluating behavioral preconditions 

since the behavior has not been generated). 

In step 2, the algorithm checks the structural coherence constraints and the component 
interaction constraints of each component model. An unsatisfied constraint indicates 
that the component model does not include a required model fragment. The algorithm 

then searches the possible models of that component for a model fragment class that, 

when added to the component model, would satisfy the violated constraint. As before, 
the algorithm only considers most accurate model fragment classes whose structural 
preconditions are satisfied. The component model is augmented with the resulting model 
fragment cllass. This step is repeated until all structural and component interaction 
constraints are satisfied. 

In step 3., the algorithm uses the current device model to generate the device behavior 
using NAPIE;R. NAPIER computes the orders of magnitude of the model’s parameters from 
the equations of the model and the exogenous parameter values provided as input by 
the user. Note that these computed values of the model’s parameters are the same as the 
values computed using the most accurate model. The reasons are two-fold: (a) since 
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the current model only consists of most accurate model fragments, it is a subset of 
the most accurate model; and (b) the current model is complete, and the predictions 
of a complete model are unchanged with the addition of extra equations. Hence, the 
behavior predicted at this step is the part of the behavioral context relevant to the current 
model. 

In step 4, the algorithm uses the behavior generated above to enforce all the behavioral 
coherence constraints. This step enforces constraints exactly like step 2. Ordinal relations 
are satisfied by the generated behavior if the relations can be possibly true with respect 

to the behavior, e.g., (>= p q) is satisfied if, given order of magnitude intervals for p 

and q, it is possible (not necessary) that p is greater than or equal to q. If there are 
any changes to the device model, the algorithm loops back to the second step, to ensure 

that all the structural coherence constraints and the component interaction constraints are 
satisfied. The algorithm loops through steps 2, 3, and 4, until all structural and behavioral 
coherence constraints, and the component interaction constraints are satisfied. 

Once all these constraints are satisfied, the algorithm checks to see if the resulting 
model can explain the expected behavior. This is done by generating the causal ordering 
of the model parameters using the efficient causal ordering algorithm presented in [ 281. 
Using simple graph traversal, the algorithm then checks whether the causal ordering can 
explain the causal relations required by the expected behavior. If the expected behavior 

is explained by the causal ordering, the initial model has been found and can then be 
simplified (step 6). Otherwise, it has to be augmented. 

In step 5, the algorithm augments the device model with alternate model fragment 
classes identified in earlier steps. These are either model fragment classes that are more 
specific than those chosen earlier, or other most general model fragment classes that 

could have been, but were not, selected. The algorithm attempts again to enforce and 
satisfy all constraints (by looping back to step 2)) until a model that explains the 
expected behavior is found. If all possible ways of augmenting the device model are 
exhausted, the algorithm reports that the expected behavior cannot be explained. This 
is justified because the component interaction heuristic guarantees that the component 
models used in the final device model cannot interact with any other components, and 

hence no augmentation of the device model can lead to a model that explains the 

expected behavior. 
The last step is model simplification. The initial model produced by the previous 

steps can be more complex than necessary for one of three reasons: (a) for each 
required assumption class, we added in the most accurate model fragment, even though 
a more approximate model fragment might do; (b) model fragments added to satisfy 
the component interaction constraints are not strictly necessary; and (c) unnecessary 
model fragments may have been added when augmenting the model (step 5). 

We simplify the initial device model by applying one of the following two sim- 
plification operators (see [ 24,25 J for formal details and proofs of correctness): (a) 
replace a model fragment by one of its immediate approximations; and (b) remove 
a model fragment. During the simplification process, only approximations with satis- 
fied structural and behavioral preconditions are considered. Behavioral preconditions are 
evaluated with respect to the most recent behavior generation in step 3. We first simplify 
the model by repeatedly applying the first simplification operator, while ensuring that 
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the expected behavior can still be explained. We assume that applying this operator 
does not lead to any coherence constraints being violated, i.e., there is no coherence 
constraint whose antecedent is satisfied by a model simpler than the initial model and 
whose consequent requires an assumption class not included in the initial model. * We 
then apply the second simplification operator while ensuring that the expected behavior 
and all structural and behavioral coherence constraints continue to be satisfied. When 
all immediate simplifications of a model are unable to explain the expected behavior, 
the algorithm terminates, and returns that model as an adequate model. It also gener- 
ates a causal explanation for the expected behavior using causal ordering as described 
earlier. 

The application of different sequences of simplification operators can result in different 
models. All such models can be found by the straightforward addition of backtracking 
into the simplification process. One can then use additional preference criteria to choose 
the most preferred simplest model. However, note that the different simplest models 
differ only in features deemed to be insignificant by the behavioral constraints and 
thresholds. Hence, our algorithm returns the first adequate model it finds. 

In summary, the model selection algorithm finds an adequate model, i.e., a parsi- 
monious m.odel that explains the expected behavior and satisfies all the structural and 
behavioral constraints. The use of causal approximations and the restricted expressivity 
of the constraints ensure the correctness and efficiency of the algorithm. 

6.4. Complexity of the model selection algorithm 

The complexity of the model selection algorithm is determined by two factors: (a) 
the number of device models constructed by the algorithm; and (b) the processing of 
each such device model. 

The number of device models constructed by the above algorithm is linear in the 
number of model fragments in the library. In particular, steps l-5 only modify the 
model by adding zero or more model fragments. Since only consistent models are 
constructed, these steps can add at most one model fragment from each assumption 
class. Hence, the number of models constructed by this part of the algorithm is bounded 
by the numlber of assumption classes. Since the assumption classes are disjoint, it follows 
that the number of assumption classes, and hence the number of models constructed in 
steps 1-5, is bounded by the number of model fragments. Step 6 simplifies the initial 
model by either dropping a model fragment or by replacing a model fragment by 
one of its approximations. In either case, once a model fragment has been removed 
from the model, it is never reconsidered. Hence, the number of models constructed 
by step 6 is bounded by the total number of model fragments. Hence, the number of 
device models constructed by the above algorithm is linear in the number of model 
fragments. 

* This assumption holds in our knowledge base for any initial model. One can ensure that it holds by adding 
heuristic coherence constraints that need only be satisfied by the initial model, but not by the final adequate 
model. These constraints can be derived from the structural and behavioral coherence constraints by replacing 
every model fragment in the antecedent by the most accurate model fragment in its assumption class. 
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Components and their initial models 

Component Component classes After step 1 After step 2 

thermistor-i Thermistor 

pointer-l Pointer 

bms-1 Bimetallic-strip 

wire-l Wire 

battery-l Battery 

atmosphere-l Atmosphere 

bms-wire Coil-structure 

atmosphere-pointer Immersion-structure 

atmosphere-bms Immersion-structure 

atmosphere-battery Immersion-structure 

Thermal-object Thermal-object 
Dynamic-thermal- Dynamic-thermal-model 

model 

Rotating-object Rotating-object 
Thermal-object 
Dynamic-thermal-model 

Thermal-bimetallic-strip 
Dynamic-thermal-model 

Thermal-object 
Dynamic-thermal-model 

Thermal-object 
Dynamic-thermal-model 

Thermal-object 
Dynamic-thermal-model 

Resistive-thermal-conductor 

Resistive-thermal-conductor 

Resistive-thermal-conductor 

Resistive-thermal-conductor 

Device models can be processed in three ways: (a) enforcing coherence and heuristic 
constraints; (b) checking the expected behavior; and (c) generating behavior. Enforcing 
the coherence and heuristic constraints is efficient, only involving a depth first search 
of the possible models hierarchy. Checking the expected behavior is also efficient since 
it is done using the polynomial-time causal ordering algorithm in [ 281. Generating the 
order of magnitude behavior is potentially exponential but fast in practice, as discussed 

in Section 6.1. 

6.5. Example: modeling the temperature gauge 

We now illustrate the model selection algorithm on the temperature gauge in Fig. 1. 

Part of the input, describing the components and their component classes, is shown in 
the first two columns of Table 1. The last four rows show the components added by the 
algorithm to model component interaction paths in step zero. For example, bms-wire is 
a possible interaction path between bms-I and wire-l, corresponding to wire-l being 
coiled-around bms-I. In the first step, the expected behavior of the temperature 
gauge: 

(causes (temperature thermistor-l) 
(angular-position pointer-l)) 

requires a temperature parameter for the thermistor and an angular-position 
parameter for the pointer. The former can be achieved by modeling the thermis- 
tor either as a Thermal-object or as a Thermal-thermistor. The algorithm uses 
Thermal-object since it is more general. Similarly, the pointer is modeled as a 
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Rotating-,object. Finally, Dynamic-thermal-model is added to the thermistor model, 
since it is the most accurate model fragment class of the assumption class required by 
Thermal-ob ject.3 The resulting model is shown in the third column of Table 1. 

In the second step, because the pointer is a Rotating-object that is connected 
to the free end of the bimetallic strip, a component interaction constraint requires a 
kinematic interaction between pointer-l and bms-1. This constraint can be satisfied 
by modeling the bimetallic strip as a Thermal-bimetallic-strip, which models 

the deflect:ion of the free end of the bimetallic strip as a function of its tempera- 
ture. As a consequence of this modeling decision, another component interaction con- 
straint requires a thermal interaction between bms-1 and both wire-l (via bms-wire) 

and atmosphere-l (via atmosphere-bms), so that wire-l and atmosphere-l are 
modeled as Thermal-objects and bms-wire and atmosphere-bms are modeled as 
Resistive-thermal-conductors. Modeling atmosphere-l as a Thermal-object 

requires that all objects immersed in it must also have thermal models. The resulting 
device model is shown in the fourth column of Table 1. 

In the third step, the algorithm uses NAPIER to generate the behavior, and then proceeds 
to check the behavioral coherence constraints in the fourth step. None of these constraints 
are currently violated, so we now have a device model that satisfies the structural, 

behavioral, and component interaction constraints. However, the expected behavior is 

not satisfied, so the algorithm proceeds to the fifth step. 
Recall that an alternate way of providing the temperature parameter to ther- 

mistor-l was to model it as a Thermal-thermistor. Hence, the fifth step aug- 
ments the thermistor model with this model fragment class, and returns to the sec- 
ond step. !3nce Thermal-thermistor is an electrical model, a component interaction 
constraint requires an electrical interaction between the thermistor and the wire and 

battery. This is achieved by modeling the wire as a Resistor, and the battery as 
a Voltage-source-with-resistance. The resulting model is used to generate the 
behavior, which includes calculating the wire’s voltage and current. The behavioral 
coherence constraint: 

(impllies 
(:>= (* (voltage-difference ?object) 

(current (electrical-terminal-one ?object>>) 
(electrical-power-threshold ?object)) 

(Thermal-resistor ?object)) 

requires that the wire must be modeled as a Thermal-resistor, since the product of 
the wire’s voltage and current exceeds its electrical-power-threshold. With this 
augmentation all the structural, behavioral, and heuristic constraints are satisfied, and the 
expected behavior explained. The resulting initial model is shown in the second column 
of Table 2.. 

The initial model is finally simplified by approximating and dropping model fragments. 
For example, in the initial model the battery is a Voltage-source-with-resistance. 
However, the internal resistance of the battery is very small, so that the approxima- 

3 We will not mention these required assumption class augmentations in the rest of the example. 
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The initial and adeauate model 

Component Initial model Adequate model 

pointer-l 

bms-I 

wire-i 

battery-l Thermal-object 
Dynamic-thermal-model 
Voltage-source 
Voltage-source-with-resistance 

atmosphere-l Thermal-object 
Dynamic-thermal-model 

bms-wire Resistive-thermal-conductor 

atmosphere-pointer Resistive-thermal-conductor 

atmosphere-bms Resistive-thermal-conductor 

atmosphere-battery Resistive-thermal-conductor 

thermistor-i Thermal-object Thermal-object 
Dynamic-thermal-model Constant-temperature-model 
Thermal-thermistor Thermal-thermistor 

Rotating-object 
Thermal-object 
Dynamic-thermal-model 

Thermal-bimetallic-strip 
Dynamic-thermal-model 

Thermal-object 
Dynamic-thermal-model 
Electrical-conductor 
Resistor 
Temperature-dependent resistance 
Thermal-resistor 

Rotating-object 

Thermal-bimetallic-strip 
Equilibrium-thermal-model 

Thermal-object 
Equilibrium-thermal-model 
Electrical-conductor 
Resistor 
Constant-resistance 
Thermal-resistor 

Voltage-source 
Constant-voltage-source 

Thermal-object 
Constant-temperature-model 

Resistive-thermal-conductor 

Resistive-thermal-conductor 

tion Constant-voltage-source is applicable. Similarly, wire-l’s resistance can be 
assumed to be constant, rather than temperature dependent. The simplification process 

also determines that the thermal properties of pointer-l and battery-l are irrele- 
vant, and hence it drops the corresponding model fragment classes from the model. The 
adequate model, resulting from this simplification process, is shown in the third column 

of Table 2.4 

7. Implementation and results 

We have implemented the model composition algorithm in Common Lisp and tested 
it on a variety of electromechanical devices. This section presents the results of the 

implementation. 
We constructed a library of 20 components, such as wires, bimetallic strips, springs, 

and permanent magnets. The library consists of about 150 model fragment classes 
including descriptions of electricity, magnetism, heat, elasticity, and the kinematics and 

4Thi~columnincludesmodelfragmentsthatonlyprovideparameters,butdonotdirectlyintroduceequations 
into the model (e.g., (Rotating-object pointer-l)).Hence,the model fragmentsin this column arc a 
superset of the model fragments listed in Fig. 3. 
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Fig. 7. Car distributor system. 

dynamics of fixed rotations and translations. Each component class has an average of 
30 model fragment classes describing different aspects of its behavior. 

We chose ten electromechanical devices from several encyclopedias [ 2,20,3 11. We 
carefully selected these devices to have similar components that needed different models. 
The devices range in complexity from 10 to 54 components. The bimetallic strip tem- 
perature gauge in Fig. 1 is one of the devices. The most complex one, a car distributor 
system, is shown in Fig. 7. The function of the distributor is to ensure that the spark 
plugs in the piston chamber fire in sequence at the right time. It works as follows: as 
the cam rotates, it opens the contact breaker, causing the current in the primary wind- 
ings to drop rapidly (the condenser prevents a spark from jumping across the contact 
breaker). The rapid change in current in the primary winding causes a large induced 
electromotive force in the secondary winding. At the same time, the distributor rotor 
connects the secondary winding to one of the spark plugs (the rightmost spark plug in 
the figure). The large induced electromotive force causes a spark to jump across the 
spark plug. Descriptions of the other devices can be found in [ 241. 

Table 3 summarizes the results of our experiments. The first and second column show 
the device name and the number of components in each device. This number includes 
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Table 3 

Summary of experimental results 

Device name Number of 

components 

Number of 

regions 

Estimated 

space 
Generated 

space 

Time 

(set) 

Bimetallic strip temperature gauge 

Bimetallic strip thermostat 

Flexible wire temperature gauge 

Galvanometer temperature gauge 

Electric bell 

Magnetic sizing device 

Carbon pile regulator 

Electromagnetic relay thermostat 

Tachometer 

Car distributor system 

12 

10 

13 

19 

22 

22 

26 

30 

34 

54 

1 3.8e16 46 28.4 

2 5.4e12 85 43.7 
1 2.6e20 78 59.9 
1 6.le31 120 149.8 
2 6.6e40 117 262.4 
1 2.le51 117 456.0 
1 1 Se49 115 262.5 

3 8.7e49 293 472.7 
1 6.8e58 195 503.6 

1 9.9e72 160 352.6 

the components created by the program to account for possible component interaction 
paths. The third column shows the number of operating regions of each device that the 
model selection program was run on. The fourth column shows the estimated number of 

consistent and complete device models. These models have at most one model fragment 
from each assumption class, and a model fragment from each required assumption class. 
The estimates, derived from the size and organization of the knowledge base, clearly 
show that a brute-force search for adequate models is totally impractical, The fifth 

column shows the total number of models actually examined by the program. This is 
the sum of the number of models examined when the program constructs an initial 
model and then simplifies it. These low numbers show why our model selection method 
is practical. The last column shows the actual run time on a Texas Instruments Explorer 
II workstation. 5 

Table 4 shows the characteristics of the models. The first three columns show the 
number of model fragments in the most accurate model, in the initial model, and in the 

(final) adequate model for each device. Multiple entries for a single device correspond 

to running the program on the different operating regions of that device. The last two 
columns show the number of equations in the initial and adequate models. Automatically 

generated device models usually contain a very large number of equations and parameters 
(e.g., a current for each end of an electrical conductor, and the corresponding Kirchhoff’s 

Current Law equations). We drastically decrease the number of equations by elementary 
simplifications, e.g., replacing equals by equals. The number of equations reported in 
Table 4 is the number remaining after such simplifications. 

Note that the number of model fragments in the initial model is about half the number 
in the most accurate model. This demonstrates that the heuristic method is effective in 
finding an initial model that is significantly simpler than the most accurate model. Note 
also that, in most cases, the adequate model has on average two-thirds less model 
fragments than the initial model. This indicates that the heuristic method of finding an 
initial model is not, by itself, sufficient to find an adequate model, or even a model that 

5 Significantly faster runs have been observed on different machines using different Lisp implementations. 

For example, the tachometer example has been run in a little over a minute and a half on a Spare Station 2 

under Lucid Lisp version 4.1 [Jon L. White, personal communication]. 
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Table 4 
Characteristics Iof the models 

Device name 

Number of model fragments 

Most accurate Initial Adequate 
model model model 

Number of 
model equations 

Initial Adequate 
model model 

Bimetallic strip temperature gauge 
Bimetallic strip thermostat 

Flexible link temperature gauge 
Galvanometer temperature gauge 
Electric bell 

Magnetic sizing device 
Carbon pile regulator 
Electromagneti’: relay thermostat 

Tachometer 
Car distributor system 

15 36 21 33 13 
54 38 14 31 6 
54 39 31 36 11 
94 60 25 52 13 

154 98 28 93 17 
177 7 6 6 6 
117 108 45 122 35 
202 122 43 126 32 
211 122 51 131 36 
211 117 31 102 13 
211 119 36 119 30 
211 74 14 13 3 
285 170 44 164 30 
348 178 28 192 21 

is close to being an adequate model; it must be simplified as described in the previous 
section. 

In conclusion, these results show that the space of complete and consistent device 
models is too large for brute-force search. The use of causal approximations, as im- 
plemented in the model composition algorithm described above, allows the program to 
systematically explore only a tiny fraction of the search space, making model selection 
practical. We also conclude that the heuristic technique for finding an initial model is 
effective in finding significantly simpler than the most accurate model, but is insufficient 
for finding adequate models. It still needs to be significantly simplified to produce an 
adequate model. 

8. Related work 

Our work shares the motivation and builds upon Falkenhainer and Forbus’ work 
on compositional modeling [ lo]. In their work, they organize their model fragment 
library by (conditioning each model fragment on a set of modeling assumptions. A 
set of domain-independent and domain-dependent constraints govern the use of these 
modeling assumptions. Given a user query, they define an adequate model as one that 
contains all the terms mentioned in the query, and which uses only model fragments 
that are emailed by a set of assumptions that satisfy the constraints. They construct 
adequate models using dynamic constraint satisfaction [ 211, and validate them using 
either qualiltative or numerical simulation. If the validation discovers any inconsistencies, 
the process repeats with the additional information. 

While the underlying motivations are similar, our work differs from theirs in a number 
of significant ways. First, our work focuses on compositional modeling for generating 
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causal explanations of the expected behavior of the device. The expected behavior 
provides more constraints on model adequacy than a query since not only does it 
specify the terms that must be included in an adequate model, but it also specifies 

the causal relations required between parameters. This additional constraint leads to the 
expected behavior being the central determinant of model adequacy, thereby diminishing 

the importance of the modeling constraints. Hence, we are able to use less expressive 
constraints, avoiding the intractability inherent in constraint satisfaction. 

Second, we use an order of magnitude reasoning technique for behavior generation, 
rather than qualitative or numerical simulation. Order of magnitude reasoning is at the 
right level of abstraction for this application: it doesn’t require exact parameter values 
like numerical methods, while being better than qualitative methods in discriminating 

between different models. Furthermore, our model selection algorithm incorporates be- 
havior generation correctly, ensuring that behavioral constraints are evaluated against 

the (relevant part of the) predictions of the most accurate device model. On the other 
hand, Falkenhainer and Forbus validate a model using behavior generated from the 
same model. The results of such a validation are questionable if this model incorpo- 
rates any approximations: while all constraints may be satisfied by the approximate 
behavior, they may not be satisfied by the behavior predicted by the most accurate 

model. 
Third, we presented a richer, more refined organization of the model fragment library 

that facilitates knowledge base construction and maintenance and supports focused gen- 
eration of device models. This organization allows the model selection algorithm to only 
instantiate those model fragments that are actually used in the search process, instead of 
instantiating the complete domain theory for the scenario description, as in Falkenhainer 

and Forbus’ algorithm. 
Nayak introduced and rigorously analyzed the theoretical basis of causal approxima- 

tions in [ 251. The model composition algorithm developed there simplifies the most 
accurate model. We built upon this work and extended it in four ways. First, we showed 
how practical class level descriptions of model fragments should be represented and 

organized within a model fragment library. Second, we extended the model selection 
algorithm by including behavior generation using order of magnitude reasoning. This 

allowed us to ensure that all significant phenomena are included in adequate models. 
Third, we introduced the component interaction heuristic, which allowed us to find an 
initial model that is significantly simpler than the most accurate model. Fourth, we 
tested our implementation on a variety of examples, providing empirical validation of 

the theoretical claims of [ 251. 
The work on graphs of models [ 1 ] discusses a technique for selecting models of 

acceptable accuracy. A graph of models is a graph in which the nodes are models and 
the edges are assumptions that have to be changed in moving from one model to another. 
A model in this graph has acceptable accuracy if its predictions are free of conflicts, 
which are detected either empirically or internally. Empirical conflicts are detected by 
experimentally verifying a model’s predictions, while internal conflicts are detected by 
checking the model’s predictions against a set of consistency rules that capture the 
model’s assumptions. When a conflict is detected, a set of domain-dependent parameter 
change rules help to select a more accurate model, and the above process is repeated. 
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Analysis begins with the simplest model in the graph of models, and terminates when 
an accurate enough model has been found. Weld [ 321 extends this work by introducing 
jitting approximations that form the basis for a domain-independent method for switching 

to more accurate models. 
The main (difference between the graphs of models approach and ours is that the 

graphs of models approach explicitly represents the space of models, while we represent 
the space of models implicitly using model fragments. Our method leads to greater 

flexibility in Moring models to specific situations and provides a compact representation 
of exponentiallly many models. To get comparable flexibility in the graphs of models 

approach is clearly impractical. An advantage of the graphs of models approach is that it 
identifies well-understood models and can associate with them more efficient specialized 
problem solvers instead of a general purpose problem solver that is applicable to all 
models. 

The consistency rules used to verify a model’s predictions are similar to our behav- 
ioral preconditions and coherence constraints. However, we do not validate a model’s 
predictions empirically, and we have not explicitly addressed the problem of switching 

to a more accurate model when an empirical conflict arises. Our techniques are best 
viewed as providing an intelligent method for selecting an initial model. Since they 
always start the analysis with the simplest model, making no effort to identify a better 

starting model, our techniques are complementary to theirs: select an initial model using 
our technique:, and do model switching using theirs. 

Williams’ work on producing critical abstractions [36] shares our motivations for 
finding adequate models-we are both striving to find parsimonious descriptions of how 
a device works. A critical abstraction is a parsimonious description of a device rela- 
tive to a set of questions. Given a device model, he constructs a critical abstraction in 
three steps: ( a) eliminating superfluous interactions; (b) aggregating interactions that 
are local to a single mechanism using symbolic algebra; and (c) further abstracting the 
aggregated interactions. Williams’ abstraction process is similar to our model simplifi- 
cation procedure. Specifically, his first step, which eliminates superfluous interactions, 
is similar to our simplification operator that drops irrelevant model fragments. The pri- 

mary difference between our approaches is one of emphasis: we have focused on the 

problem of slelecting approximations from a prespecified space of possible approxima- 
tions, while he has focused on finding techniques for automatically abstracting a base 
model. 

Davis’ work on model-based diagnosis [ 61 has been one of the original inspirations 

for our work.. Davis describes a diagnostic method based on tracing paths of causal 
interactions. He argues that the power of the approach stems not from the specific 
diagnostic method, but from the model which specifies the allowed paths of causal 
interaction. He shows that efficient diagnosis, while retaining completeness, can be 
obtained by initially considering models with only a few paths of interactions, and 
adding in ad,ditional paths when the model fails to account for the symptoms. Our 

simplicity ordering on models follows Davis’ diagnostic technique: diagnosis starts at 
an adequate model, with successively more complex models being used if a model is 
unable to account for the symptoms. The use of causal approximations ensures that using 
more complex models will add new paths of causal interaction. We have used Davis’ 
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definition of component adjacency (two components are adjacent if they can interact 
with each other by some means). In particular, the component interaction heuristic is 
closely related to the notion of adjacency: adjacent components must have compatible 
models. 

Reasoning about accuracy is a key aspect of generating adequate device models: a 
model must be sufficiently accurate to be useful. Recent work has investigated the issues 
involved in selecting models of acceptable accuracy [ 8,9,22,29,32,37]. In this paper 
we have not developed sophisticate techniques for reasoning about model accuracy. A 
model is deemed to be accurate enough if it satisfies all the behavioral preconditions 
and coherence constraints, with different levels of accuracy corresponding to different 
settings of the thresholds. However, our system does not reason about the settings of 
the thresholds, whose values are part of the input. 

In other related work, Liu and Farley present a query-driven method for selecting 
and shifting between macroscopic and microscopic domain theories [ 191. The selection 
and shift of ontologies is driven by a set of on~o~og~cff~ choice r&s. Iwasaki and Levy 
show how relevance reasoning can be used for efficiently selecting model fragments for 
simulation [ 161. The efficiency of their algorithm is also based on the use of causal 
approximations. The primary difference is that they replace our component interaction 
heuristic with backward chaining along causal influences. Rickel and Porter 1271 present 
an algorithm for selecting appropriate system boundaries for answering prediction ques- 
tions. The primary difference is that instead of using behavioral constraints to determine 
the significance of phenomena, they use time scale information. 

9. Conclusion and future work 

We have presented an efficient model selection algorithm for cons~cting device 
models that causally explain how a device functions. Given a structural description of the 
device and an expected behavior, the algorithm produces a parsimonious device model 
that causally explains the expected behavior by first constructing an initial model and 
then simplifying it. The algorithm uses a model fragment library containing class level 
descriptions of model fragments and their relationships organized for efficient retrieval. 
It uses the expected behavior and the structural and behavioral contexts of the device 
to provide task focus and constraints that define model adequacy and restrict the search 
for adequate models. It uses order of magnitude reasoning to predict device behavior, 
and component interaction heuristics to produce simpler initial models. By requiring 
all model fragment approximations to be causal approximations, we guarantee that the 
number of device models searched by the ~gorithm is linear in the number of model 
fragments in the library. We have implemented the algorithm and have successfully used 
it to produce adequate models and causal explanations for a variety of electromechanical 
devices from several engineering encyclopedias. 

We contemplate several extensions. The model com~sitio~ ~go~thm can be easily 
adapted for incremental model revision and modification to avoid having to construct 
a new model from scratch in each situation. Incremental model revision is necessary 
to answer a series of queries, to account for more causal relationships, or to refine 
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an existing model. Instead of starting with an empty model, the model composition 
algorithm can start with a base model, validating and modifying it as described in steps 

l-6 (Fig. 6). 
We currently restrict expected behavior descriptions, which have proved to be a useful 

characterization of device function, to causal relations between parameters. Causal rela- 
tions are both expressive and can be efficiently checked using causal ordering algorithms. 
More expressive languages, including additional aspects of function [ 51, could allow 
us to represent a wider range of expected behaviors. However, the languages must be 

tractable for otherwise they compromise the effectiveness of selecting adequate device 
models, and hence of problem solving. 

Accuracy is a very important characteristic of adequate device models. Currently, we 
do not allow the user to directly specify the desired accuracy of the model, for example 
by specifying tolerances on certain parameters; we only allow an indirect specification 
via thresholds in behavioral constraints. Incorporating direct accuracy specifications 

requires that we develop techniques for finding models that guarantee that predictions 
will lie within the specified tolerances. 

Modeling devices with multiple operating regions is another important capability. 
Many devices go through multiple operating regions during the course of their normal 

operations. Different operating regions can have different characteristics, requiring the 
use of different models. We are currently investigating how to generalize the single- 

region model composition algorithm to handle multiple operating regions. This will 
require (a>1 generalizing the present order of magnitude reasoning technique to allow 
temporal simulation; and (b) techniques for inferring the expected behavior of each 
operating region, given the overall expected behavior of the device. 

We believe that the compositional modeling framework can be effectively applied 
to a variety of tasks. Most prominently, we see its use in producing adequate device 
models for fault diagnosis and monitoring, where recent research has shown an emerging 
understanding of model adequacy [ 6,141. We believe that the techniques developed in 
this paper will prove valuable in developing methods for building adequate models for 

diagnosis and monitoring. 
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