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We studied how successfully students could use examples and procedures to construct equations 
for work problems. According to the proposed theory, the procedures indicate how to generate 
values that differ in structure from the example. The fLrst experiment compared 3 groups of 
students who received a simple example, a set of procedures, or both. A mathematical model 
with 3 parameters (the probability of generating a correct value by matching the example, 
following a procedure, or using general knowledge) accounted for 94% of the variance for how 
the 3 instructional groups performed over 4 levels of transformation. A second experiment 
extended the predictions of the model to include either a complex example, a complex example 
and procedures, or a complex example and a simple example. 

Two alternative approaches for instructing people about a 
task are to present either a detailed example or a set of 
procedures. Each method has its advantages and disadvan- 
tages. The advantage of an example is that it illustrates how 
the procedures are applied to a particular situation. For ex- 
ample, students in a college algebra class could be given a 
detailed solution to the following problem: 

Ann can type a manuscript in 10 hr, and Florence can type it in 
5 hr. How long will it take them if they both work together?. 

The disadvantage of an example is that it may not be very 
helpful for solving problems that are slightly different. Stu- 
dents often have difficulty in solving variations of the exam- 
pies, such as a problem in which one person worked more 
hours than the other (Reed, Dempster, & Ettinger, 1985). 

The advantage of procedures or rules is that they can specify 
the component steps for solving a variety of problems. One 
rule might specify what to do when one person works longer 
than another, and another rule might specify what to do when 
rate rather than time is the unknown. The disadvantage of 
procedures is that they can be rather abstract and isolated, 
resulting in minimal understanding of the task as a whole. 
Thus learning to operate a device can be facilitated if a set of 
procedures is supplemented with additional material (func- 
tional, structural, or diagrammatic information) that enables 
students to better understand and integrate the procedures 
(Kieras & Bovair, 1984; Smith & Goodman, 1984; Viscuso 
& Spoehr, 1986). 
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When students receive both procedures and examples for 
solving problems, they seem to emphasize examples. Pirolli 
and Anderson (1985) collected detailed verbal protocols of 
two college students and one 8-year-old child learning to 
program recursive functions. The protocols suggested that 
problem solving by analogy to worked examples was frequent 
during the initial programming attempts. A particularly dra- 
marie demonstration of the power of examples occurred in a 
series of experiments conducted by LeFevre and Dixon 
(1986). Written instructions for solving inductive reasoning 
problems were accompanied by an example that conflicted 
with the instructions. Most of the subjects in the six experi- 
ments consistently used the example and disregarded the 
procedure described in the instructions. 

Sweller and Cooper (1985) proposed that students need to 
be shown a wide range of worked examples to become profi- 
cient in solving problems. But they also anticipated a possible 
criticism of this conelusion--a worked example of every 
conceivable problem would require too many examples. An 
alternative approach would be to use some combination of 
examples and rules in which the rules would inform students 
what to do when the test problems differed from the examples. 

We follow this approach in the two experiments reported 
in this article. The problem set for both experiments are work 
problems (see Appendix A for examples) that can be solved 
by the equation: 

Rate~ x Time1 + Rate2 x Time2 = Tasks. (1) 

The rates refer to how long it takes each of two workers to 
complete a task, the times refer to how long each worker 
spends on the task, and the task refers to how many tasks 
they must complete. Even when two problems share the same 
equation, however, students are often unable to use the solu- 
tion of one to solve the other because they cannot generate 
new values to fit the slots of the equation (Reed & Ettinger, 
1987). 

Schema-Based Theories of  Problem Solving 

Our attempt to improve students' ability to transfer a 
solution was influenced by work in artificial intelligence on 
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schema-based theories of problem solving. The Knowledge 
Representation Language (KRL) constructed by Bobrow and 
Winograd (1977; Winograd, 1975) provided the initial frame- 
work for such theories. The data structures of KRL are built 
of descriptions that are clustered into structures called units. 
Each unit is assigned to a category type and contains slots 
that are associated with the conceptual entities referred to by 
the units. Associated with each slot are a set of procedures 
that can be used to instantiate values for that slot. 

The application of this approach to problem solving is 
illustrated by an artificial intelligence system called FERMI 
(Larkin, Reif, Carbonell & Gugiiotta, 1988). FERMI is capa- 
ble of calculating pressure drops in fluids, potential drops in 
electric circuits, and centers of mass for planar objects. Knowl- 
edge is stored at various levels of generality so a specific 
schema can inherit the content of a general schema (including 
slots and attached procedures), causing some transfer of 
knowledge across different domains. 

Several investigators, including Larkin and her colleagues, 
have argued that such schema-based systems offer promise 
for improving instruction and providing insights into effective 
ways of organizing human knowledge. Greeno (1983) also 
discussed several examples of how schema-based learning 
might facilitate understanding in mathematical problem solv- 
ing by either teaching new applications of an existing schema 
or new procedural attachments. 

In our view a schema is a cluster of knowledge that provides 
a skeleton structure that can be instantiated or filled out with 
the detailed properties of a particular instance (Thorndyke, 
1984). We propose that Equation 1 provides a skeleton struc- 
ture for solving many work problems, but students will fail to 
solve these problems correctly if they cannot enter the appro- 
priate values into the slots of the equation. An example shows 
them how to construct these values but is not helpful when 
the value has to be modified (such as when one worker works 
more hours than the other or when part of the task is already 
completed). In this case, it may be helpful to have a set of 
procedures or rules associated with each of the concepts in 
the equation that inform students how to construct a value 
for these different situations. According to this view, an 
equation provides an organizational framework for showing 
the formal relations among concepts, an example provides an 
integrated solution showing how values are instantiated for a 
particular problem, and procedures show how to modify these 
values for variations of the example. 

We follow this general approach in the current study by 
giving students a detailed solution and a set of procedures 
that should help them apply the solution to similar problems. 
The first experiment compares three groups of students who 
receive either an example, procedures, or both the example 
and procedures. The data allow us to evaluate a simple 
mathematical model of how students attempt to solve prob- 
lems in each of these three situations. We extend the model 
in the second experiment by including additional instructional 
conditions, such as providing two examples that span the test 
problems. 

Experiment I 

The primary purpose of Experiment 1 was to evaluate a 
model of how students use an example and procedures. We 

compared three groups of students---one group received the 
set of procedures shown in Appendix B, a second group 
received a solution to the simple example in Appendix A, and 
a third group received both the example and procedures. 

Appendix A also shows the set of test problems that differed 
from the simple example by either zero, one, two, or three 
transformations. The first test problem in Appendix A is 
equivalent to the example and therefore differs by zero trans- 
formations. The problems that differ by one transformation 
were transformed by changing either the rate, the time, or the 
task. A change in the rate involved expressing the rate of one 
worker relative to the other worker rather than as an inde- 
pendent number (see Problem 2). A time change occurred 
when one worker labored longer than the other (Problem 3). 
A change in task occurred when part of the task had been 
completed earlier (as in Problem 4). Problems that differ from 
the test problem by two transformations were created by 
changing either rate and time (Problem 5), rate and task 
(Problem 6), or time and task (Problem 7). And, of course, 
the test problem that differed by three transformations was 
created by changing the rate, the time, and the task (Problem 
8). 

The four transformation levels and three instructional 
methods enabled us to evaluate the predictions of a model for 
each of these 12 conditions. Because both the example and 
the procedures provide students with the basic equation for 
solving these problems, we assume that the probability of 
generating a correct equation is equal to the probability of 
correctly generating the values for the five quantities: Rate~, 
Time1, Rate2, Time2, and Tasks Completed. Students can 
generate these values by using either the information provided 
in the example, information provided in the procedures, or 
their general knowledge about these problems. According to 
our model, students attempt to generate the values by first 
using the example, then the procedures, and finally their 
general (prior) knowledge. 

The model has three parameters. A student can generate a 
correct value by either correctly matching the structure of a 
corresponding value in the example (m), correctly applying a 
rule in thc procedures (r), or correctly using general knowledge 
(g). Consider the predictions for the instructional group who 
receives the example and the procedures. When the test 
problem is equivalent to the example, a student can generate 
all five values by using the matching operation. The proba- 
bility of generating a correct equation is therefore mS--the 
probability that the student correctly applies the matching 
operation to each of the values in the example. When the test 
problem differs by one transformation the probability of a 
correct equation is m4r. In this case the student can match 
four of the quantities but must use the procedures to generate 
the transformed value. Following the same logic, the proba- 
bility of correctly generating an equation should be m3r 2 for 
two transformations and m2r 3 for three transformations. As- 
suming that it is easier to match values in an example than 
follow procedures (m > r), the model predicts a decline in 
performance as the number of transformations increase. 

When students have only the example, they must rely on 
their general knowledge to generate the transformed quan- 
tities. The probability of constructing a correct equation 
should therefore be m 5 for zero transformations, m4g for one 
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transformation, m3g 2 for two transformations, and m2g 3 for 
three transformations. The generalization gradient should be 
steeper for the example group than for the example and 
procedures group if the rules increase the probability of  cor- 
rectly generating the transformed values (r > g). 

When students have only the rules, there should not be a 
generalization gradient. In this case, the probability of  con- 
structing a correct equation should simply be r 5, the proba- 
bility of  correctly applying a rule to generate each of  the five 
values. The following experiment was designed to collect the 
data required to evaluate the model. 

Method 

Subjects. The subjects were 65 students in two college algebra 
classes at Florida Atlantic University and were tested during class. 
The students (n ffi 47) in one class were ready to begin working on 
word problems in the course. The students in the other class (n ffi 18) 
had just begun working on word problems but hadn't received any 
of the problems used in the experiment. The students in each class 
were randomly assigned to the three instructional conditions, result- 
ing in 22 students in the example group, 21 students in the procedures 
group, and 22 students in the example and procedures group. The 
experimenter informed them that they would receive copies of the 
instructional material and the correct answers when they completed 
the task. 

Procedure. Students were informed that the purpose of the ex- 
periment was to compare several different instructional methods for 
teaching students how to construct equations for algebra word prob- 
lems. All students were initially given 3 rain to attempt to construct 
a correct equation for the example problem. They then spent 5 rain 
studying the instructional material, which consisted of a detailed 
solution ofthe example for the example group, the set of procedures 
in Appendix B for the procedures group, and both the example and 
procedures for the example and procedures group. 

The eight test problems occurred on a single page in the order 
shown in Appendix A for approximately half of the subjects in each 
group and in the reverse order for the remainder. Students had 16 
rain to construct the eight equations and could work on the problems 
in any order. They were allowed to refer back to the instructional 
material as they worked on the problems. 

Results 

An equation was scored as correct if it had the same 
structure as Equation l, with the correct values entered for 
the two rates, the two times, and the task. A value was scored 
as correct if it was mathematically equivalent to the correct 
answer; for instance, both 1 - 1/3 and 2/3 were scored as 
correct for the tasks variable in Problem 4. Equations that 
were mathematically equivalent to the correct answer were 
also scored as correct, such as adding 1/3 to the left side of  
the equation rather than subtracting 1/3 from the right side 
of  the equation. However, mathematically correct transfor- 
mations of  Equation 1 rarely occurred. We did require that 
students group values such as h + 2 when one worker labored 
more hours than the other to show that the rate was multiplied 
by the entire quantity, rather than simply by h. We were 
flexible in allowing any letter to represent the unknown 
variable, as long as the same letter was used for both of  the 
time variables in the equation. 

Figure 1 shows how well the three groups performed at each 
of  the four transformation levels. The results confirm the 
expected generalization gradients for the two groups that 
received the example. Also, as expected, the gradient was not 
as steep for the group that received the example and proce- 
dures. We first report an analysis of  variance (ANOVA) of  
these results to determine which differences are significant. 
We then evaluate how well these results fit the predictions of  
the proposed model (see Table 1 for data on individual 
problems). 

Tests of significance. The data in Figure 1 were analyzed 
in a two-factor ANOVA in which instructional method was a 
between-subjects factor and transformations was a within- 
subjects factor. Significant effects were found for instructional 
method, F(2, 62) = 6.01, MS~ ffi 0.273, p < .01, transforma- 
tions, F(3, 186) = 60.68, MSe = 0.057, p < .001, and their 
interaction, F(6, 186) ffi 9.91, MSe = 0.057, p < .001. 

The percentage of  correct equations for each of  the instruc- 
tional groups across the four transformations was 15% for the 
procedures group, 34% for the example group, and 42% for 
the example and procedures group. A Newman-Keuls test 
indicated that both the example and the example and proce- 
dures group differed significantly from the procedures group, 
but these two groups did not differ significantly from each 
other. 

The effect of  instruction was also analyzed at each transfor- 
mation level because of  the Instruction × Transformation 
interaction. The ANOVA revealed a significant effect at zero 
transformation, F(2, 62) = 17.75, MS, = 0.158, p < .001. The 
effect of  instruction was not significant at one transformation, 
F(2, 62) -- 2.61, MSe = 0.121, or at higher levels of  transfor- 
marion. 

This analysis was supplemented with a planned comparison 
of  the example and procedures and the procedures group for 
each transformation level. These two groups differed signifi- 
cantly for 0, t(62) = 5.18, p < .001, and one transformation, 
t(62) = 2.21, p < .05. 

Predictions of the model. The purpose of  the model was 
to fit the 12 data points in Figure 1 by estimating values for 
the three parameters. The model has the basic form: 

probability correct = mXrYg ~, 

in which x is the number of  values generated by matching the 
example, y is the number of  values generated by using the 
rules, and z is the number of  values generated by using general 
knowledge. The parameters m, r, and g were estimated by 
using multiple linear regression after using logs to create a 
linear equation: 

log (probability correct) 

= x × l og  m + y × l og  r + z × log  g.  (2)  

Applying Equation 2 to the 12 data points in Figure 1 
resulted in parameter estimates of  .96 for m (the probability 

Our analysis of the data in terms of number of transformations 
required that we combine the data from Problems 2, 3, and 4 to form 
the one-transformation problems and from Problems 5, 6, and 7 to 
form the two-transformation problems. Results for each of these six 
problems are reported in Table 1. 
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Figure 1. Percentage correct equations for the 3 instructional groups 
over the 4 levels of transformation in Experiment 1. 

of correctly matching the example), .65 for r (the probability 
of correctly applying a rule), and .45 for g (the probability of 
correctly applying general knowledge). Table 2 shows the 
observed and predicted values. The model accounts for 94% 
of the variance. 

Evaluation of  the parameters. The parameter estimates 
attempt to predict the probability of correctly generating the 
entire equatton from the probability of correctly generating 
each of its values. We tested the estimates by separately scoring 
how many of the values were correct in each of the generated 
equations. 2 For the example and example-and-procedures 
groups, 28 of the 40 values (8 equations x 5 values) could be 
generated by matching the example. Subjects in the example 
groups correctly generated 77% of these quantities, and sub- 
jects in the example and procedures group correctly generated 
76% of the quantities. Subjects in the example group were 
correct on 37% of the 12 transformed quantities, compared 
with 50% for subjects in the example and procedures group. 
And finally, subjects in the procedures group, who had to rely 

Table 1 
Percentage Correct on Individual One- and 
Two- Transformation Problems 

Problem 

Group 2 3 4 5 6 7 
Expenment l 

Example 55 18 36 9 36 9 
Procedures 19 14 24 14 19 19 
Example and procedures 55 32 45 27 41 23 

Experiment 2 
Procedures 14 8 14 3 7 0 
Simple example 62 21 21 21 31 21 
Complex example 28 14 45 14 48 48 
Simple example and 59 28 62 31 48 34 

procedures 
Complex example and 34 45 62 41 62 69 

procedures 
Simple example and 83 48 79 55 66 66 

complex 
Note. Problems 2, 3, and 4 are one-transformation problems and 
Problems 5, 6, and 7 are two-transformation problems for all groups 
except the complex example and the complex example and proce- 
dures groups. The classification is reversed for these two groups. 

on the procedures to generate all of the quantities, were correct 
on 46% of the values. 

Comparing these results with the parameter estimates re- 
veals (a) an excellent qualitative fit that corresponds to the 
expected pattern of relations but (b) a poor quantitative fit in 
which the parameter estimates are too high. The pattern of 
relations is consistent with the assumption of the model that 
the success of using the example or rules is independent of 
whether the example and rules occur separately or are com- 
bined. The probability of correctly generating a quantity from 
an example was almost identical for subjects in the example 
and example-and-procedures groups, and the probability of 
correctly applying a rule was very similar for subjects in the 
procedures and example-and-procedures groups. Also con- 
sistent with the parameter estimates is the finding that stu- 
dents did much better in generating quantities when they 
could match the example and did better on the transforma- 
tions when they had the procedures. 

However, the parameter estimates of m = .96, r = .65, and 
g -- .45 indicate that subjects should have done better in 
generating the individual quantities. Because all the individual 
quantities are correct in the correct equation, this discrepancy 
is caused by the incorrect equations being more incorrect 
(having fewer correct values) than is predicted by the esti- 
mated parameters. Part of this discrepancy may be caused by 
the absence of any answer on 62 of the 520 items. We suspect 
that had subjects generated equations for these items, the 
equations would be partially correct, increasing the number 
of correct quantities in the incorrect equations. 

Transformations. The claim that some subjects are per- 
forming consistently well across problems can be evaluated 
by analyzing whether a subject's success on problems with 
one transformation indicates that they will do well on prob- 
lems with two or three transformations. This analysis was 
guided by the concept of knowledge spaces. The knowledge 
state of a subject can be represented by the particular subset 
of problems that the subject is capable of solving (Falmagne, 
Koppen, ¥illano, Doignon, & Johannesen, 1990). 

An interesting special case involves problems that consist 
of components that can be tested either individually or in 
logical combinations. For instance, if there are three basic 
components, c,, c2, c3, then the logical combinations are CLC2, 
ClC3, c2c3, and clc2c3. One assumption is that a hierarchical 
relationship exists in which success on any combination re- 
quires success on all of the individual components (Marshall, 
198 I). If  this assumption is correct, it will be unnecessary to 
separately test individual components if a person is successful 
on the combination. However, the hierarchical assumption 
does not imply that mastery of the individual components 
implies mastery of the combination. Failure on the combi- 

2 The analysis of individual quantities raises the issue of whether it 
is possible to correctly generate all five quantities but incorrectly 
generate the equation. This rarely occurred. For example, using the 
large data base from Experiment 2, we found only six instances in 
1,392 equations. Two instances occurred when subjects forgot the 
addition sign. Three instances occurred when subjects incorrectly 
paired the rate and time quantities in the two products. The last 
instance also involved a grouping error. 
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Table 2 
Observed and Predicted Values for Three Groups in Experiment I 

Example Procedures Example and procedures 
Trans- 
forma- Pre- Pre- Pre- 
tions Observed dieted Model Observed dieted Model Observed dieted Model 

0 82 81 m 5 19 12 r 5 82 81 rn 5 
1 36 37 m4g 19 12 r 5 42 55 m4r 
2 18 17 m3g: 17 12 r 5 30 37 m3r 2 
3 0 7 m2g 3 5 12 r 5 14 25 m2r 3 

Note. The predictions are based on parameter estimates of m = .96 (the probability of correctly 
matching the example), r = .65 (the probability of correctly applying a rule), and g = .45 (the probability 
of correctly applying general knowledge). 

nation can result from either the necessity to perform the 
component skills in a certain order or simply some confusion 
factor (perhaps resulting from cognitive overload) when sev- 
eral components are in the same item. 

Marshall's analysis provides a framework to test how indi- 
vidual subjects perform across problems that require one, two, 
and three transformations. If  there is cognitive overload, then 
subjects who correctly solve two single-transformation prob- 
lems may not solve a problem that contains both transfor- 
mations. This hypothesis can be evaluated in the top half of  
Table 3, which shows how success in solving two one-trans- 
formation (It) problems (zero, one, or two solutions) relates 
to solving the corresponding two-transformarion (20 problem. 
The data in the bottom row of Experiment 1 do not support 
an overload hypothesis: 33 of  the 36 correct solutions (92%) 
of  the two It problems were accompanied by a correct solution 
of  the 2t problem. 3 

Another comparison related to cognitive overload is the 
number of  subjects who correctly solve two It problems but 
fail to solve the 2t problem (3 cases in Table 3) versus the 
number of  subjects who solve the 2t problem but fail to solve 
both It problems (10 cases in Table 3). The hierarchical model 
discussed previously suggests that there should be more sub- 
jects in the first group, but our model correctly predicts that 
there should be more  subjects in the second group. The 
prediction is based on the greater number of  pattern-matching 
operations that are required to correctly solve two It problems 
(eight) than are required to solve one 2t problem (three). Both 
cases require that students are correct on the two transfor- 
mations. The fact that they occur in the same problem for 

Table 3 
Effect of Solving One-Transformation (10 Problems on 
Solving the Corresponding Two- Transformation (20 Problem 

2t solution 

Experiment It solutions No Yes 

1 0 100 2 
1 49 8 
2 3 33 

2 0 156 1 
1 66 28 
2 15 82 

Note. These results are total cases based on transformations of rate 
and time (Problems 2, 3, and 5), rate and task (Problems 2, 4, and 
6), and time and task (Problems 3, 4, and 7). 

the 2t case does not matter because our model assumes that 
the probability of  correctly generating a transformed value is 
independent of  how many transformations appear in the 
problem. 

A greater challenge of this assumption is the three-transfor. 
marion problem (Problem 8). This problem appears very 
difficult, and it seems reasonable that some students might be 
able to solve all three It problems but fail on the 3t problem. 
Unfortunately, the cognitive overload hypothesis is difficult 
to test for this condition because so few students solved all 
three It problems and the 3t problem. Three students solved 
the three It problems but failed the 3t problem, 1 student 
solved the 3t problem without solving all three It problems, 
and 3 students solved all four problems. This pattern is quite 
different from the pattern of  the 2t problems and suggests 
that there is cognitive overload with three transformations. 
This hypothesis is also consistent with the finding that our 
model overpredicts performance on the 3t problem (see 
Table 2). 

Discussion 

We believe the proposed model provided a useful frame. 
work for analyzing the results. First, it provided a reasonably 
good fit of  how subjects in the three instructional groups 
performed over four levels of  transformation. Second, detailed 
analyses of  the data were generally supportive of  various 
assumptions regarding the context-free nature of  the proposed 
operations across instructional conditions and transforma- 
tions. Success in both pattern matching and rule application 
was not influenced by whether examples and rules occurred 
together or alone. In addition, there was no evidence in the 
two-transformation problems for a cognitive overload hypoth- 
esis that increasing the number of  transformations increases 
the difficulty of  each individual transformation. However, 
there may be some overload in the three-transformation 
problem. 

A disappointing aspect of  our results was the ineffectiveness 
of  the rules, and one goal of  Experiment 2 was to provide 
more effective rules. There are several ways to modify the 

3 A model does not need to assume cognitive overload to generate 
a generalization gradient. A person who could solve two of the three 
It problems should be able to solve the 0t problem but would fail on 
two of the three 2t problems and on the 3t problem. 
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rules that may increase their effectiveness. First, the relevant 
rules could be elaborated to provide more information. For 
example, students sometimes fail to place parentheses around 
the expression h + I to represent that one worker labored for 
1 hr more than the other. Parentheses are required to indicate 
that h + 1, rather than simply h, is multiplied by the rate. 
Providing such information in the rules should increase their 
effectiveness. Second, rules that are not needed to solve a 
particular set of test problems could be eliminated. It would 
be desirable to have an extensive set of rules, but the gradual 
introduction of the rules might be a more effective instruc- 
tional technique. 

A second goal of Experiment 2 was to apply the model to 
a greater range of instructional conditions. This would enable 
us to test the generality of the model and determine whether 
there are better instructional techniques for generating trans- 
formed values. 

Exper iment  2 

We designed Experiment 2 to modify the rules and expand 
the instructional conditions used in Experiment 1. Appendix 
C shows the modified set of rules, which we hoped would be 
more effective. Representing the relative rate of work is ex- 
plained by using numbers (1 / 10 and 1/5) rather than variables 
(r and 4r in the previous set) because rate is never the 
unknown variable in the test problems. Students were also 
instructed to place parentheses around a quantity such as 
h + 3 when representing how much more time one worker 
spends on the task than another worker. And finally, the rules 
explicitly stated how to calculate the number of tasks when 
part of the task had been completed. The part completed 
should be subtracted from the total number of tasks. 

In addition, we added three new instructional conditions 
to the three conditions evaluated in Experiment 1. Except for 
the change in rules, the initial conditions remained the same. 
Each new condition included an example (the complex ex- 
ample in Appendix A) that was equivalent to the most com- 
plex test problem (Problem 8). The three new conditions were 
(a) the complex example, (b) the complex example and pro- 
eedures, and (c) the complex and simple examples. 

We included a complex example in the new conditions to 
test the generality of the model. Transformations from the 
simple example in Experiment I created more complex prob- 
lems. Thus the steep generalization gradients could be caused 
by both increased complexity and increased dissimilarity from 
the example. When a complex example is used, the transfor- 
mations produce simpler problems. This should produce a 
generalization gradient that is less steep than the gradients 
obtained for the simple example and allow us to apply the 
model to a different pattern of results. 

The instructional condition that included both a simple 
and a complex example should be interesting for practical 
and theoretical reasons. The practical reason is that the inef- 
fectiveness of  the rules in Experiment I requires the search 
for other approaches. Examples that are equivalent to Prob- 
lems I and 8 in Appendix A span the set of eight test problems 
because the information needed to solve each test problem is 
contained in the two examples. According to the proposed 
model, students should apply the pattern-matching operation 

to the quantities in the two examples. All five quantities can 
be obtained from the simple example for Problem 1. Problems 
2--4 can be solved by matching the simple example on four 
quantities and the complex example on one quantity. Prob- 
lems 5-7 can be solved by matching the complex example on 
four quantities and the simple example on one quantity. And 
finally, Problem 8 can be solved by matching the complex 
example on all five quantities. 

A fourth issue was forced upon us during the analysis of 
the results. We discovered that we had unintentionally mod- 
ified Problem 8 to read that John works 1 hr longer, rather 
than Paul works 1 hr longer. In the other test problems (as in 
the complex example), students were asked to find the time 
of the person who worked fewer hours when the hours dif- 
fered. This issue is somewhat analogous to the role of object 
correspondences studied by Ross (1987), who found that 
reversing object correspondences caused a significant decre- 
ment in substituting the correct values into a formula. We 
will discuss the impact of this change when presenting the 
results. 

Method 

Subjects. The 174 subjects were enrolled in introductory psy- 
chology courses at San Diego State University and received course 
credit for their participation. They were tested in small groups and 
assigned randomly to the six instructional conditions except for the 
constraint that there would be an equal number of subjects (29) in 
each condition. The instructional conditions consisted of the three 
conditions used in Experiment 1 (simple example, procedures, simple 
example and procedures) and three new conditions (complex exam- 
ple, complex example and procedures, simple example, and complex 
example). 

Procedure. The procedure was nearly identical to the procedure 
followed in Experiment 1. Students were initially given 5 rain to 
attempt to construct a correct equation for the simple and complex 
examples. They then spent 5 min studying the instructional material, 
which consisted of either a single example, procedures, an example 
and procedures, or two examples. Finally, they were given 20 rain to 
construct equations for the eight test problems that appeared on a 
single page in the two orders described for Experiment 1. 

Results 

Pretest. There was only one correct equation--the equa- 
tion for the simple example--on the pretest. 

Effect of instruction. The data were analyzed in a two- 
factor ANOVA in which instructional method was a between- 
subjects factor and transformations was a within-subjects 
factor. For subjects in the simple example, procedures, simple 
example and procedures, and simple example and complex 
example groups, transformations were measured from the 
simple example as described for Experiment 1. For subjects 
in the complex example and the complex example and pro- 
cedures groups, transformations were measured from the 
complex example. Problem 8 was zero transformations, Prob- 
lems 5-7 were one transformation, Problems 2-4 were two 
transformations, and Problem 1 was three transformations 
from the complex example. 

Significant effects were found for instructional method, 
F(5, 168) = 10.96, MSc = 0.386, p < .001, transformations, 
F(3, 504) = 44.91, MSo = 0.072, p < .001, and their interac- 
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tion, F(15, 504) = 7.65, MSe = 0.072, p < .001. The percent- 
age of correct equations for each of the instructional groups 
across the four transformations was 7% for the procedures, 
32% for the complex example, 38% for the simple example, 
45% for the complex example and procedures, 47% for the 
simple example and procedures, and 65% for the simple and 
complex examples. According to a Neuman-Keuls analysis, 
the procedures group performed substantially worse than all 
other groups at the p < .01 confidence level. The group that 
received two examples performed substantially better at the p 
< .01 level than the groups that received either the procedures, 
simple example, or complex example and substantially better 
at the p < .05 level for the groups that received the procedures 
and an example. None of the other paired comparisons was 
significant. 

As mentioned previously, we accidently changed one word 
in Problem 8. Problem 8 then stated that John, rather than 
Paul, worked l hr longer. To compensate for this change, we 
did a second analysis of the equations for Problem 8 and 
scored them as correct if they were correct except for inter- 
changing the variables h and h + 1. This was the way in which 
the variables were assigned in the complex example and the 
other test problems. This change had virtually no effect on 
the three instructional groups that did not receive a complex 
example, but increased the overall score by approximately 5 % 
for those groups that received the complex example. The 
rescored means were 7% correct for the procedures, 38% 
correct for the simple example, 38% correct for the complex 
example, 48% correct for the simple example and procedures, 
49% correct for the complex example and procedures, and 
70% correct for the two examples. The F tests and Neuman- 
Keuls analysis of the rescored data produced the same pattern 
of results, at the same confidence levels, as reported above. 

Predictions of the model. Because Problem 8 should be 
zero transformations from the complex example, we used the 
more lenient criteria of allowing reversed assignments of h 
and h + 1 when judging the correctness of an equation. Figure 
2 shows the generalization gradients for four of the instruc- 
tional groups, in which transformations are measured from 
the simple example. Figure 3 shows the transformations for 
the other two groups, in which transformations are measured 
from the complex example. 

The most extensive version of our model contains six 
parameters to account for the 24 data points in Figures 2 and 
3. The parameters result from crossing the three operations 
described previously with two levels of complexity. We again 
used multiple linear regression to estimate the parameters, 
which accounted for 94% of the variance as measured by the 
square of the correlation coefficient. The six parameters in- 
volve generating a correct value by either of the following: 
matching the simple example (m = .97), matching the com- 
plex example (m = .91), applying a rule to a simple transfor- 
mation (r = .66), applying a rule to a complex transformation 
(r = .56), applying general knowledge to a simple transfor- 
mation (g = .64), or applying general knowledge to a complex 
transformation (g = .52). 

The application of the model to the six instructional groups 
is shown in Table 4. Consistent with Figures 2 and 3, trans- 
formations are measured from the simple example (Figure 2) 
except for the complex example and the complex example 
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Figure 2. Percentage correct equations for 4 of the instructional 
groups over the 4 levels of transformation in Experiment 2. (Simple 
= simple example; complex = complex example.) 

and procedures conditions (Figure 3). The model predicts that 
the probability of generating a correct equation for the pro- 
cedures group ranges from. 13 for the simple test problem to 
.08 for the complex test problem, in which three of the five 
quantities are complex. 

Predictions for the two single-example conditions follow 
the same pattern as in Experiment 1 by replacing pattern 
matching with general knowledge for each transformation. 
The parameters m = .97 andg = .52 were used for the simple 
example and m -- .91 and g = .64 were used for the complex 
example. Notice that transformations from the simple exam- 
pie produce more complex problems, whereas transforma- 
tions from the complex example produce simpler problems. 
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Figure 3. Percentage correct equations for 2 of the instructional 
groups over the 4 levels of transformation in Experiment 2. 
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Table 4 
Observed and Predicted Values for  S ix  Groups in Experiment 2 

Procedures Simple example Complex example 
Trans- 
forma- Pre- Pre- Pre- 
tions Observed dieted Model Observed dicted Model Observed dicted Model 
0 14 13 r 5 79 85 m 5 62 63 m 5 
1 12 11 r4r 36 45 m4g 37 44 m4g 
2 3 9 r3r 2 24 24 m3g 2 28 31 m3g ~ 
3 0 8 r2r 3 14 13 m2g 3 24 21 m2g 3 

0 
1 
2 
3 

Simple example Complex example Simple and 
and procedures and procedures complex examples 

76 85 m 5 48 63 m s 90 85 m 5 
48 49 m4r 57 46 m4r 70 79 m4m 
39 29 rn3r 2 48 33 mar s 66 67 m4m 
28 17 rn2r 3 41 24 m2r 3 55 63 m s 

Note. The predictions are based on parameter estimates of m ffi .97 (matching the simple example), m 
= .91 (matching the complex example), r = .66 (applying a rule to a simple transformation), r = .56 
(applying a rule to a complex transformation), g = .64 (applying general knowledge to a simple 
transformation), and g = .52 (applying general knowledge to a complex transformation). 

Correspondingly, the rule application parameters (r = .56 and 
r = .66) replace the general knowledge parameters to predict 
the generalization gradients for the simple example and pro- 
cedures and the complex example and procedures groups. 

Although the model provides fairly accurate predictions for 
the simple and the complex examples, it predicts gradients 
that are too steep when the examples are combined with the 
procedures. The problem is that students perform so poorly 
when they receive only the procedures that the parameter 
estimates for correctly applying a procedure are too low to 
predict the improvement that occurs from having both an 
example and the set of  procedures. In this particular case, the 
rule application and general knowledge parameters are suffi- 
ciently similar that the number of  parameters could be re- 
duced from six to four without having much effect on the 
accuracy of  the predictions. 

The final result is the high level of  performance that oc- 
curred when students received two examples. The generali- 
zation gradient in this case is consistent with the differential 
performance on the two examples. The model assumes that 
students use pattern matching to the simple example at zero 
transformations and pattern matching to the complex exam- 
ple at three transformations. At one transformation four of  
the quantities can be obtained from the simple example and 
one quantity can be obtained from the complex example. At 
two transformations (which is one transformation from the 

Table 5 

complex example) four of  the quantities can be obtained from 
the complex example and one quantity can be obtained from 
the simple example. The high level of  performance across 
transformations suggests that students are very efficient at 
performing pattern-matching operations, even when they 
must use more than one example. 

Evaluation o f  the parameters. We again analyzed the 
probability of  generating correct values for the different op- 
erations and instructional conditions. Table 5 shows these 
probabilities and the parameter estimates for simple and 
complex values. For the pattern-matching operation, the sim- 
ple values are the data from subjects who have the simple 
example and the complex values are from subjects who have 
the complex example. Because the rule application and gen- 
eral knowledge operations apply to transformations, the sub- 
jects who have the simple example apply these operations to 
complex values and subjects who have the complex example 
apply these operations to simple values. 

The parameter values are again generally higher than the 
observed values, particularly for subjects in the procedures 
group. Although subjects in the example and procedures 
group were adequate in applying the procedures, subjects who 
received only the procedures did poorly. We do not have an 
explanation of  why this context effect occurred. Although we 
expected the modified procedures to be easier to use, our 
attempt to improve the procedures was clearly not successful. 

Observed and Predicted Probability o f  Generating Correct Values 

Operation Instruction Simple value Complex value 

Pattern matching Example .79 .69 
Example and procedures .79 .79 
Two examples .90 .87 
Parameter value .97 .91 

Rule application Procedures .31 .28 
Example and procedures .65 .55 
Parameter value .66 .56 

General knowledge Example .53 .40 
Parameter value .64 .52 

Note. Parameter values are in italics. 
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This failure is partially compensated for the by the success 
of the group that received two examples. We expected that 
this group would do well because of the success of pattern 
matching in Experiment 1. However, we still had some res- 
ervations because two examples require that students select 
the appropriate example when the values differ in the two 
examples. The pattern-matching data in Table 7 show that 
subjects generated more correct values when they had two 
examples than when they had only a single example. Having 
two examples actually improved pattern matching, perhaps 
because there was greater opportunity to practice using this 
skill. 

Transformations. This analysis extends the data in Table 
4 showing how individual subjects perform across transfor- 
mations. The data in the bottom half of the table are from 
the four groups shown in Figure 2. Because we are measuring 
transformations from the simple example, these data are from 
the same groups of problems analyzed in Experiment 1. 

The pattern of data is similar to the pattern obtained in 
Experiment 1. Again a high percentage of subjects (82 of 97, 
or 85%) who solved both single-transformation (It) problems 
also solved the corresponding double-transformation (2t) 
problem. Also, as predicted by our model more subjects solved 
the 2t problem without solving both It problems (29) than 
there were subjects who solved the two It problems without 
solving the 2t problem (15). A similar pattern occurred for 
the two groups shown in Figure 3 in which transformations 
are measured from the complex example. Eight subjects 
solved both It problems without solving the 2t problem, 12 
subjects solved the 2t problem without solving both It prob- 
lems, and 52 subjects solved all three problems. 

These data support the conclusion from Experiment 1 that 
there is not a cognitive overload for the 2t problems. However, 
as in Experiment l, there is a suggestion of an overload on 
the 3t problem for the four groups in Figure 2. In contrast to 
our model, there were more subjects (8) who solved all three 
I t problems but failed on the 3t problem than there were 
subjects who solved the 3t problem without solving all the 1 t 
problems (5). Seventeen subjects solved all four problems, but 
the percentage of subjects who should have been able to solve 
the 3t problem based on their correct solutions of the It 
problems (17 of 25 or 68%) was lower than the percentage 
for the 2t problems. 

The inclusion of a complex example in Experiment 2 
provides the opportunity to examine whether the 3t problem 
would produce an overload if the transformations produced 
simple values. We analyzed the two groups in Figure 3 who 
had the complex example and found no support for the 
overload hypothesis. Twelve of the 13 subjects (92%) who 
solved the three It problems (Problems 5, 6, and 7) could 
solve the 3t problem (Problem l). In addition, there were 7 
subjects who solved the 3t problem without solving all three 
It problems. Overload therefore only occurred when subjects 
solved a 3t problem that had complex values. 

Discussion 

We discuss the instructional implications of our results in 
this section and then conclude by evaluating the proposed 

model in the general discussion. An encouraging aspect of the 
results is that there was little evidence of an overload with 
increased transformations. Although performance declined 
with more transformations, students who could do the appro- 
pilate single transformations could usually solve problems 
that involved combinations of these transformations. The one 
exception is the 3t problem with complex values, but even 
here the evidence is not overwhelming in supporting the 
overload hypothesis. 

These findings are encouraging because John Sweller and 
his colleagues have recently demonstrated numerous instances 
in which overload is a serious limitation in problem solving. 
One set of problems included mathematics and science prob- 
lems in which the cognitive demands of means-end analysis 
interfered with learning the solutions (Sweller, 1989). Another 
set of problems involved the demands of integrating text and 
diagrams when solving geometry problems (Sweller, Chand- 
ler, Tierney, & Cooper, 1990). Although we did not find an 
overload with our measures and materials, it is possible that 
a closer integration of the rules within the example would 
enhance performance, as Sweller and his colleagues found 
when they integrated text within the diagrams. 

A disappointment from an instructional perspective was 
the inadequacy of the procedures. However, we believe that 
it would be premature to argue that we should abandon the 
procedure approach and always rely solely on carefully se- 
lected examples. It is possible that procedures may work better 
on other tasks or that someone may design a better set of 
procedures for this task. For instance, rules and examples 
were equally effective for instructing students about condi- 
tional reasoning (Cheng, Holyoak, Nisbett, & Oliver, 1986) 
and the law of large numbers (Fong, Krantz, & Nisbett, 1986). 
We do claim that the successful integration of rules and 
examples is an important issue because we need to find 
effective ways to increase transfer to test problems that are 
not equivalent to examples. 

A particularly effective method of increasing transfer was 
the presentation of two examples. The success of this condi- 
tion is consistent with Sweller and Cooper's (1985) emphasis 
on examples, but shows that it is not necessary to provide an 
example for each possible test problem. Our two examples 
provided enough information to solve each of the test prob- 
lems, but students had to selectively use information from 
both examples to solve six of the eight problems. Students' 
success in using two analogous examples provides empirical 
support for the claim made by Spiro, Feltovich, Coulson, and 
Anderson (1989) that multiple analogies are often required to 
teach complex concepts. 

It should be noted that this beneficial effect of two examples 
is a different effect from that obtained by Gick and Holyoak 
(1983) in their promotion of transfer from the fortress prob- 
lem to Duncker's radiation problem. Transfer between these 
two isomorphic problems represents between-domain transfer 
in which the difficulty is caused by the lack of physical 
similarity between the concepts in the two problems. Com- 
paring two examples in their research resulted in the creation 
of a more abstract convergence schema that facilitated finding 
corresponding concepts. In contrast, our research required 
within-domain transfer in which problems shared identical 
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concepts. The difficulty was not in matching concepts but in 
instantiating quantities when they differed from the example. 
We consider this last point in greater detail as we examine 
how our model might be extended to other within-domain 
analogies. 

General  Discussion 

This research was influenced by the formulation of schema- 
based models of problem solving in which attached proce- 
dures could be used to generate the values for slots in the 
schema (Bobrow & Winograd, 1977; Larkin et al., 1988; 
Winograd, 1975). The "slots" in our task refer to the different 
concepts in an equation that are replaced by values when 
students solve algebra word problems. We conclude with a 
final evaluation Of the proposed model, including its possible 
extension to complex statistics and physics problems. 

creasing the instructional material would make students less 
efficient in using that material. 

One caution in interpreting the parameter estimates is that 
our model assumes that students are using the instructional 
material. An estimate for correctly applying a procedure 
assumes that students attempted with limited success to apply 
the rules. If some students ignored the set of rules, the param- 
eter (and level of performance) would underestimate the 
effectiveness of the rules for students who use the material. 
This criticism is less applicable to the pattern-matching pa- 
rameter (because the parameter estimates are so high) and to 
the general knowledge parameter (because appropriate in- 
structional material is not provided). We also do not want to 
imply that general knowledge is never used when students 
receive instructional material. The difference between the 
general knowledge parameter and the other two parameters 
reflects the usefulness of the instructional material relative to 
relying solely on general knowledge. 

Evaluation of the Model Extension of the Model 

We designed Experiment 1 to evaluate a model of how 
students use examples, procedures, and general knowledge to 
construct equations for test problems that have different 
values than the example problems. The model assumes that 
students attempt to match concepts (Rate, Time, and Tasks) 
in the test problem to concepts in the example. If the values 
of matching concepts have the same structure, then this 
structure is copied for the test problem. Otherwise, students 
search the procedures, if available, or use general knowledge 
to construct the values. If students have only the procedures, 
they search the procedures for relevant information. 

The stated order of using the different sources of informa- 
tion--example, procx~ures, and general knowledge--reflects 
the likely success of each source. According to our parameter 
estimates in Experiment 1, the probability of correctly con- 
structing a value was .96 when using the example, .65 when 
using the procedures, and .45 when using general knowledge. 
The success of the model was demonstrated by the finding 
that it accounted for 94% of the variance for how three 
instructional groups would perform on test problems that 
differed from zero to three transformations from the example. 
In the second experiment we extended the application of the 
model to three additional instructional groups that included 
a complex example by itself or combined with either the 
procedures or a simple example. The model was again fairly 
successful in predicting the general pattern of results, account- 
ing for 94% of the variance. 

Although there were deviations from the predictions of the 
model, the deviations can often be useful in evaluating the 
simplifying assumptions of the model. For instance, the model 
assumes that the probability of correctly applying each of the 
three operations is independent ofthe amount of instructional 
material. The data from Experiment 1 supported this assump- 
tion, but two discrepancies in Experiment 2 suggested that 
additional material might be beneficiai. Subjects did better in 
applying the rules when they had the example and did better 
in pattern matching when they had two examples. Both 
findings are the opposite of an overload prediction that in- 

A motivating factor for this research was the previous 
finding that a tingle instructional example was insufficient 
when students had to solve algebra word problems that had 
values that differed from the example (Reed et al., 1985; Reed 
& Ettinger, 1987). Before considering whether the proposed 
model can be extended to other problems, it will be helpful 
to list the possible limitations of a single analogy. Spiro et al. 
(1989) described eight ways in which a single analogy can 
cause misconceptions including (a) the analogy may have 
missing properties, (b) the analogy may have too many prop- 
erties leading to the creation of nonexisting slots in the target, 
and (c) the analogy may have misleading properties, causing 
an incorrect transfer of an instantiated value. This latter 
misconception fits our problems. 

The first two misconceptions occur because the analogy has 
either fewer slots or more slots than the target. For example, 
a work problem in which there is only a single worker would 
have fewer slots, and a work problem in which there are three 
workers would have more slots than the two-worker problem. 
In principle, our model should be able to apply to these 
variations, in which transformations are defined as either 
changes in slots or changes in values. Reed, Ackinclose, and 
Voss (1990) found that students were more successful in 
applying a more inclusive solution, which has either more 
slots or a more complex value than the test problem, than in 
applying a less inclusive solution, which has fewer slots or a 
less complex value. We may therefore need to distinguish 
between whether the test problems add or delete slots when 
estimating parameters, as we distinguished between simple 
and complex values. 

Another way in which within-domain problems can differ 
from each other is in the subgoals and procedures that are 
required to solve the problem. Catrambone and Holyoak 
(1990) defined a subgoal as an unknown entity (numerical or 
conceptual) that needs to be found to achieve a higher level 
goal. A method is a series of steps for achieving a particular 
subgoal. Their example of a subgoal for calculating the Pois- 
son distribution of a random variable is to find the expected 
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value of that variable. This task is similar to our task because 
it requires entering a value into an equation. However, the 
method for calculating this value may be considerably more 
complex than matching or generating values for algebra word 
problems. 

In addition, some amount of search may be required to 
find the appropriate method. This is illustrated by how 
FERMI searches for a solution to a complex problem (Larkin 
et al., 1988, pp. 122-125). To solve an equation it was 
necessary to find an unknown value for current, which re- 
suited in the subgoal of finding an unknown voltage. FERMI 
has several methods for finding voltage and searched for the 
appropriate one by determining which method satisfied the 
constraints of the problem. 

These problems have a more complex level of organization 
than typical algebra word problems. They fit the general 
procedural-attachment framework in which procedures, at- 
tached to slots in a schema, compute values for those slots. 
But our model would require additional elaboration to apply 
to these more challenging problems, in which a procedure 
consists of a series of steps and requires the evaluation of 
several constraints before it can be evoked. 

Alternative Models 

We conclude by comparing the proposed schema model 
with an alternative model suggested by a reviewer, which we 
call the independent sources model. This alternative approach 
is designed to predict the performance of subjects who have 
two sources of information from the performance of subjects 
who have only a single source of information. Assuming that 
the probability of a correct solution by using an example is 
independent of the probability of a correct solution by using 
the procedures results in the prediction that: 

Pr(E or P) = Pr(E) + Pr(e) - Pr(E)Pr(P), (3) 

in which Pr(E or P) is the probability of generating a correct 

equation from either the example or the procedures, Pr(E) is 
the probability of generating a correct solution from the 
example, and Pr(P) is the probability of generating a correct 
solution from the procedures. 

We used Equation 3 to predict the performance of the 
example and procedures group in Experiment 1 and the 
simple example and procedures group, the complex example 
and procedures group, and the simple and complex examples 
group in Experiment 2. In each instance we used the observed 
probabilities from the two groups that had a single source of 
information to predict the performance of the group that had 
both sources of information. The last column of Table 6 
shows the predictions of the independent sources model 
(Equation 3), and the preceding column shows the previously 
described predictions of the schema model. The predictions 
of the models are of approximately equal accuracy when 
students combine the example with the procedures. The ab- 
solute deviation between predicted and observed values is 8% 
(schema model) versus 5% (independent sources model) for 
the first set of data, 8% versus 9% for the second set of data, 
and 15% versus 15% for the third set of data. The fourth set 
of data is from combining two examples, and the schema 
model (6% deviation) is more accurate than the independent 
sources model (12% deviation) in predicting these results. 

An advantage of the independent sources model is that it 
is a simple model that does not require any parameter esti- 
mates. A disadvantage is that it does not make predictions for 
single sources of information because it uses these results for 
making predictions about combined information. It is also 
not a process model, without additional assumptions. 

A difficulty for a process interpretation of Equation 3 is 
that subjects do not produce two solutions, which is implied 
by a strict interpretation of the equation. If students inde- 
pendently use the example and the procedures to produce 
two solutions, then they have to decide which one to submit. 
The simplicity of using Equation 3 to make predictions may 
therefore be partially overshadowed by complex assumptions 
regarding how subjects arrive at a final solution. 

Table 6 
Comparison of the Schema and Independent Sources Models 

Observed 
Information Transformations (% correct) 

Predictions 

Schema Independent 
Simple example, procedures 0 82 81 86 

(Experiment 1) 1 42 55 48 
2 30 37 32 
3 14 25 5 

Simple example, procedures 0 76 85 82 
(Experiment 2) 1 48 49 44 

2 39 29 26 
3 28 17 14 

Complex example, procedures 0 48 63 67 
(Experiment 2) 1 57 46 45 

2 48 33 30 
3 41 24 "24 

Simple and complex examples 0 90 85 84 
(Experiment 2) 1 70 79 54 

2 66 67 52 
3 55 63 67 
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A major difference between the two models is that the 
schema model assumes that students start by using an example 
to construct an equation and consult either the procedures or 
the other example only to generate the transformed values. 
The model implies that subjects try to integrate the two 
sources of  information whenever a single source is inadequate. 
In contrast, the independent sources model assumes that 
subjects sequentially use one source of  information followed 
by the other source. The model suggests that subjects do not 
integrate knowledge from the two sources, but rather use 
them independently, and then decide which solution to sub- 
mit. More detailed data, such as an analysis of  search patterns 
and verbal protocols (see Payne, 1976) should therefore be a 
valuable addition to the quantitative models explored in this 
article. 
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A p p e n d i x  A 

P r o b l e m s  U s e d  in  E x p e r i m e n t s  1 a n d  2 

Simple Example 

A. Ann can type a manuscript in 10 hours and Florence can type 
it in 5 hours. How long will it take them when they can both work 
together? 

Complex Example 

B. Jill can complete an audit in 12 hours and Barbara is three 
times as fast. They both complete 1/8 of the audit before being 
interrupted. How long will it take Jill to complete the audit if she and 
Barbara work together but Barbara works 2 hours longer? 

Test Problems 

1. Bob can paint a house in 12 hours and Jim can paint it in 10 
hours. How long will it take them to paint a house if they both work 
together? 

2. Susan can sew a dress in 9 hours and Sherry is three times as 
fast. How long will it take them to sew a dress if they both work 
together? 

3. An expert can complete a technical task in 5 hours but a novice 
requires 7 hours to do the same task. When they work together, the 
novice works 2 hours more than the expert. How long does the expert 
work? 

4. Bill can mow his lawn in 4 hours and his son can mow it in 6 
hours. How long will it take both to finish mowing the lawn if they 
have already mowed 1/3 of it? 

5. Jack can build a stereo in 8 hours and Bob is four times as fast. 
When working together to build a stereo, Bob works l hour more 
than Jack. How long does Jack work? 

6. Tom can clean a house in 4 hours and Stun is twice as fast. 
They clean 1/4 of the house in the morning. How long will it take 
them to finish cleaning if they continue to work together? 

7. A carpenter can build a fence in 7 hours and his assistant can 
build a fence in l0 hours. On the previous day they built 1/2 of the 
fence. How long will it take the carpenter to finish the fence if he and 
his assistant work together, but the assistant works for 3 hours more 
than the carpenter? 

8. John can sort a stack of mail in 6 hours and Paul is twice as 
fast. They both sort 1/5 of the stack before their break. How long will 
it take John to sort the remainder if he and Paul work together, but 
Paul works 1 hour longer? 

A p p e n d i x  B 

P r o c e d u r e s  fo r  S o l v i n g  W o r k  P r o b l e m s  

Work problems typically describe a situation in which two people 
work together to complete a task. The following equation can be used 
to solve these problems: 

Rate, x Time~ + Rate2 x Time2 = Tasks Completed, 

where Rate~ x Time1 is the amount of work completed by the first 
worker, Rate2 x Time2 is the amount of work completed by the 
second worker, and Tasks Completed is the total work completed by 
both workers. 

These rules should be used for entering values into the equation. 

Rate 
1. The rate specifies how much of a task is completed per unit of 

time. If this value is known, enter it into the equation. 
2. These problems usually state how long it takes to complete a 

task. The reciprocal of this number is then the rate. For example, if 
a worker needs 3 hours to complete a task, he will complete 1/3 of 
the task in 1 hour. 

3. If rate is unknown, use a variable to represent it. Be sure to 

represent the relative rate of the workers. If one worker is 4 times as 
fast as the other, their rates will be r and 4r. 

Time 

1. Time refers to the amount of time each worker contributes to 
the task. If this value is stated in the problem, enter it into the 
equation. For example, if one person works for 5 hours, enter 5 hours 
into the equation for that worker. 

2. Time is often the unknown variable in these problems. Be sure 
to represent the correct relative time among workers if they do not 
work for the same time. If one worker works 3 hr more than the 
value (h) you are trying to find, enter h + 3 for that worker. 

Tasks Completed 

I. The number of tasks completed is usually 1 but the number 
may be greater than l, or even less than 1 if part of the task is already 
finished. 

A p p e n d i x  C 

M o d i f i e d  P r o c e d u r e s  fo r  S o l v i n g  W o r k  P r o b l e m s  

Work problems typically describe a situation in which two people 
work together to complete a task. The following equation can be used 
to solve these problems: 

Rater x Time~ + Rate2 x Time2 --- Tasks Completed, 

where Rate~ x Time~ is the amount of work completed by the first 
worker, Rate2 x Time2 is the amount of work completed by the 
second worker, and Tasks Completed is the total work completed by 
both workers. 

These rules should be used for entering values into the equation. 
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Rate 

1. The rate specifies how much of a task is completed per unit of 
time. If the problem states how long it takes someone to complete a 
task, the reciprocal of this number is the rate. For example, if a 
worker needs 3 hours to complete a task, she will complete 1/3 of 
the task in 1 hour. 

2. The rate of one worker is sometimes expressed relative to the 
rate of another worker. If one person can complete a task in 10 hours, 
a person who is twice as fast can complete the task in 5 hours. The 
first worker can therefore complete 1/I0 of the task in I hour and 
the second worker can complete 1/5 of the task in 1 hour. 

Time 

2. Be sure to represent the correct relative time among workers if 
they do not work for the same amount of time. If one worker works 
3 hours more than the value (h) you are trying to find, then enter (h 
+ 3) for this worker. Place parentheses around this quantity because 
the entire quantity, h + 3, is multiplied by the rate. 

Tasks Completed 

1. The number of tasks completed is usually 1 but the number 
may be greater than 1, or even less than 1 if part of the task is already 
finished. 

2. If part of the task is already finished, subtract that amount from 
the total number of tasks. For example, if there is 1 task and 1/4 of 
it is finished, then there are 1 - 1/4 tasks to complete. 

1. Time refers to the amount of time each worker contributes to 
the task. If this value is stated in the problem, enter it into the 
equation. If you have to find how long someone works, represent this 
quantity as a variable, such as h for h hrs. 
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