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ABSTRACT
How vulnerable are scientific applications to attack through their

inputs? We approach this question in two ways. First, we apply

general purpose input fuzzing and vulnerability analysis to a range

of scientific codebases to identify bugs that permit an attack with
code injection. Our process finds 100s-1000s of cases in under one

day, with at least 1-5% likely exploitable. Second, we explore a novel

attack that is specific to scientific applications. Here the attacker

adds tiny manipulations to the normal floating point inputs (e.g.,

sensor data) of a programwith the goal of controlling the program’s

outputwithout code injection. We develop a system for finding such

attacks, and find proofs of concept for this attack on simulations of

specific physical systems. Our results suggest scientific applications

are vulnerable to attack through classic and novel means.

1 INTRODUCTION
Software typically has numerous vulnerabilities, which an attacker

can use to gain control over the software and the system on which it

is running. Every day, additional vulnerabilities are found and some

are documented as CVEs (Common Vulnerabilities and Exposures)

and fixed. An unknown number lie dormant or have been discov-

ered and stockpiled by malicious actors. Vulnerabilities that can

be triggered by a carefully crafted input are of particular interest

in this paper. Numerous varieties of these exist, starting with the

common buffer overflow vulnerabilities that allow the creation of

direct code injection attacks or indirect code execution attacks such

as ROP/JOP attacks [5, 29]. More complex vulnerabilities, such as

those based on integer overflow, can result in out-of-bounds data

accesses, which can be used to leak information from the program

or to indirectly control it, even with no unusual execution paths.

The outputs of scientific applications are increasingly being used

in ways that are consequential in the “real world”. This is clearly

the case even for open science, with an example being climate

modeling and its input into international policy and economics. This

increasing importance arguably makes scientific applications prime

targets for attackers. How vulnerable are scientific applications to

attack through their inputs? Are there vulnerabilities that are novel

and specific to scientific applications? There exists little work that

we are aware of that addresses these questions. We consider both.

Figure 1 illustrates the nature of scientific application develop-

ment, as well as our two attack models, classical and novel. In both

cases, the goal of the attacker is to control the output of the scien-

tific application through manipulation of its input. Being software,

scientific applications are likely prone to the same sorts of problems

found in other software. Our classical attack model focuses on such

problems.

Scientific software is also rather different from most software in

This project was partially supported by the United States National Science Founda-

tion (NSF) under awards CNS-2211315, CCF-2119069, and CNS-2211508.

that it is typically based on a physical model that is expressed in

terms of continuous mathematics. This is the case for simulation.

Alternatively, the application may focus purely on mathematics,

for example to compute a matrix inverse. Again, continuous math-

ematics are almost always the order of the day.

An algorithm designer creates or leverages numerical methods

that play a critical role in approximating the continuous mathemat-

ics on actual computers, which only performantly execute a specific

set of discrete mathematical operations. Mistakes can be made in

such algorithm design, and, arguably, the designer is thinking in

terms of random error that can result from the discretization rather

than intentional, possibly collusionary error from an attacker.

One aspect of discretization, in many cases, is the use of IEEE

floating point arithmetic to approximate continuous arithmetic. As

has been demonstrated by user studies [11, 13], software developers,

and perhaps even more so scientific software developers may have

misconceptions about the nature and issues of this standard. This

introduces an additional potential source of vulnerability. Typical

analysis for error accumulation in IEEE floating point also considers

random error, not a situation in which an attacker is trying to

construct a catastrophic input.

The actual source code produced by the developer, typically in

a language without formal semantics, such as C, C++, Fortran, or

Julia, is then lowered to object code via a compiler. A range of

results within the HPC community [24, 32] that have demonstrated

that compilers can introduce bugs and subvert the intent of the

developer for their floating point-based code. The aggressive use of

undefined behavior in optimizers can also lead to problems. Library

support routines (e.g., libm) that the developer may depend on may

also have bugs [20]. At the end of the day, the compilation toolchain

produces a binary today that may have different problems than the

binary produced yesterday.
The hardware itself may provide implementation-specific sur-

prises. For example, as happened with CESM [24], a new machine

might provide a new “higher” precision instruction that the com-

piler then uses, with the overall result being hard-to-diagnose re-

gressions. Some hardware may not even implement full IEEE com-

pliance, or the OS may disable it. For example, if the hardware/OS

disable subnormal numbers for performance, any analysis that

assumes them (“gradual underflow”) may be incorrect. Other hard-

ware, including high-end GPUs and ARM server processors, do

not implement traps on the IEEE condition codes. Software that

assumes these traps exist, and uses them to fail-stop, will instead

silently barrel ahead in all cases.

At the end of this long, complex chain, is a job running on a

machine that consumes some input and produces some scientific

output. For example, the input might be a data file, or it might

be a measurement stream from a sensor. We consider an attacker

who has control over this input, both full control (classical attack)

and limited control (novel attack). In such cases, we consider the
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Figure 1: The milleiu of scientific software development and the two attack models considered in this paper. In the “classical”
model, the attacker crafts an input that achieves arbitrary code execution and controls outputs through that capability. In the
“novel” model specific to scientific applications, the attacker imperceptibly “nudges” a valid input to cause the application to
compute the attacker’s desired output through its normal computation.

possibility that the input may be audited and otherwise sanity-

checked to be sure that it is physically possible, and meets other

acceptance criteria developed by the designer and developer.

Study of Classical Attacks on Scientific Applications:Given
this context, we first consider the classical attack model noted in

Figure 1. Here, the attacker is able to craft an input to the application

that exercises a vulnerability (such as stack or heap buffer overflow)

in order to achieve the ability to do arbitrary code execution. Once

this capability is gained, the attacker has total control over how to

use it. In addition to obvious denial of service or output corruption

goals, the attacker can also force the application to produce any

desired output surreptitiously.

We consider the prospects for the classical attack model by em-

ploying tools and techniques commonly used for finding vulner-

abilities in general purpose software, but directing them against

scientific applications. More specifically, we use AFL++, a coverage-

guided fuzzer, which searches for inputs that cause an abnormal

exit (e.g., segfault) in the program, normally referred to as a “crash”.

AFL++ attempts to maximize the rate of finding crash-inducing

inputs by maximizing control flow path coverage in the executable.

We take each crash case and then analyze it using a widely used gdb

plugin called Exploitable. Exploitable categorizes the crash based

on whether a view of particulars of the crash suggests it can be

used for achieving control, for example through code injection,

return-oriented programming, and other means.

By considering the indicidence of control-providing crashes in a

set of open-source scientific programs, we address the first question

given above. The incidence is surprisingly high. Our process finds

100s-1000s of crash cases in one day, with at least 1-5% likely to be

exploitable.

Study of A Novel Attack on Scientific Programs:We next

consider an example of the novel attack model noted in Figure 1,

which we believe is specific to scientific applications.

The goal of the attacker in this model is to modify the input

slightly, with their “nudge” being imperceptible with regard to any

audits and sanity checks. Note that when a human is involved in

the check and input data is displayed, this is done with limited

precision. For example, there are about 2
64

values for a double, but
a screen has far fewer pixels. Also, a floating point value contains

a binary exponent and mantisa. When this is printed for human

consumption, a conversion to base-10 is almost always done. Since

this produces many digits, the display is almost always truncated.

Both the graphical and textual outputs effectively truncate floating

point data, creating an opportunity for a nudge that cannot be seen

by a human auditor.

For an automated auditor, note that almost all applications as-

sume a certain amount of “input noise.” If the input comes from a

sensor, this is inevitable. If the input is lossily compressed [10] this

is also inevitable. Input noise provides an avenue to hide the nudge

from automated tools.

We develop a system, MEDES, that searches through the space of

floating point nudges of a scientist’s input to a black-box program

with the goal of finding a nudge that causes the output to approach

a target value, diverge from the true value, or produce a denial

of service effect. The system trades off the strength of the desired

effect on the output with the scale of the nudge, with a typical

constraint being to select a nudge that is small enough to be hidden

from a human auditing the input.

We use MEDES in this paper to find chaos control attacks, which
are specific to simulations of chaotic dynamical systems. In a chaotic

dynamical system, which are extremely common in the physical

sciences, a small perturbation of the input can lead to a large change

in the output. This property is baked into the physics, typically,

or into the continuous mathematics. The goal of the attacker is

to create the smallest input nudge that leads to a result that the

attacker wants, and thus chaotic dynamical systems present a clear

opportunity. We demonstrate proofs of concept of chaos control

attacks. For very simple systems, attacks can be found in minutes.

It remains to be seen whether this generalizes to more complex

systems and codebases.
1

It is important to note that unlike classical attacks, our novel

attacks achieve their ends without any arbitrary code execution.

Consequently, none of thewide range of techniques used tomitigate

classical attacks (e.g., non-executable stack/heap, pointer validation,

address space layout randomization, etc) can thwart them.

1
We have also used MEDES to search for a second, related form of attack, slow poison,
which seeks to find an small input nudge that leads the computation to compute an

infinity, NaN, or similar garbage item, which then spreads through the state.
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Our contributions are as follows:

• We lay out the case for studying how scientific applications

might be attacked through their inputs with the goal of

controlling their outputs.

• We consider classical attacks against scientific applications and

find that common, off-the-shelf tools for finding exploitable

vulnerabilities via fuzzing work well against these targets.

Fuzzing typically results in 100-1000s of inputs that trigger

potential vulnerabilities found in under a day, with at least 1-5%

of these appearing to be exploitable to achieve arbitrary code

execution. To the best of our knowledge, no previous study of

this kind has been performed.

• We describe the design and implementation of MEDES, a system

for finding novel attacks on scientific programs in which valid

inputs are subtly altered with the goal of having normal program

execution compute outputs intended by the attacker.

• We use MEDES to find proof-of-concept novel attacks against

simulations that model physical systems with chaotic dynamics.

To the best of our knowledge, such chaos control attacks have

not previously been described. They can be found.

Our fuzzing framework for finding classical attacks and the MEDES

system for finding novel attacks will be made publicly available on

publication of this paper.

Related Work: To the best of our knowledge, there is no prior

work on either classical or novel attacks on scientific applications.

Interest in correctness in scientific computing has been growing

for years, and has recently crystalized in a DOE/NSF workshop on

the topic [17], which led to the joint CS2 program. There is a long

history of work on tools to improve source code and numerical

methods (e.g. [2–4, 7, 8, 12, 15, 19, 21, 22, 27, 30, 31]). However,

there is an implicit assumption in such work that errors, even large

errors, are the outcomes of random processes instead of being due

to an intentional attacker.

Closest to the work that we consider here is XScope [20] which

uses Bayesian optimization to find any inputs to functions (e.g.,

libm implementations or selected functions from programs) that re-

sult in floating point problems such as NaNs or overflows. These are

then used to improve the quality of those functions. In contrast our

classical attack search uses fuzzing to find arbitrary code execution

vulnerabilities in applications, and our novel attack search finds

tiny nudges on a scientist-selected input that lead to computing the

attacker’s desired results.

2 FUZZING FRAMEWORK
To explore the prospects for classical attacks where the attacker has

control over the whole input, we assembled a fuzzing framework.

Fuzzing is a very successful method of finding bugs in software,

and its internals have been the subject of significant research in the

domains of security, reliability, and software engineering. Security-

oriented fuzzing focuses on memory safety issues in C and C++

because a significant number of such issues harbor the primitives

for arbitrary code execution (ACE) exploits. We adopt this focus.

We apply AFL++ [18], a well-known coverage-guided fuzzer. We

modify each program with a fuzz harness that normalizes the way

in which it takes input, and launch a parallel fuzzing job. After a

period of time, we take the corpus of crashing inputs discovered by

AFL++ and run all of them under gdb up to the crashing instruction,

at which point we use the widely employed Crashwalk [26] and

Exploitable tools [16] to classify the crashes. Several recent stud-

ies [23, 34, 35] have similarly relied on Exploitable for vulnerability

assessment.

Software engineering complexity:Our combination of AFL++,

Crashwalk, and Exploitable makes targeting programs very simple.

Targeting a new program involves writing a fuzz harness that is on

the order of a few dozen lines of C or C++. Although we focus on

memory safety exploits, we have also tried out (and found) others,

such as floating point problems like NaN generation. It is important

to understand that executing a fuzzing based search for classical

attacks on scientific applications is likely to be open to all.

2.1 Setup
For reproducibility and consistency, each application is compiled,

fuzzed, and analyzed inside a container. The containers are based

on the official AFL++ Docker container, which sits atop Ubuntu

22.04 at the time of writing. AFL++ is instructed to limit, for each

program invocation, the maximum memory usage to 1024MB and

the runtime to 100 seconds. The entire container also receives a

memory limit of 4-8GB as a precaution. Each application is fuzzed

using 16 parallel instances of AFL++ running on 16 cores of an Intel

Xeon 4509Y or AMD EPYC 7443P CPU. Compile-time dependencies

for the application are added to each container, along with patches

specific to each application that that enable proper fuzzing, as de-

scribed in the next section. The target program is compiled with the

AFL++ instrumenting compiler, afl-cc. The instrumentation this

adds to the binary allows AFL++ to track the new code reached by

performing an input mutation, enabling coverage-based decisions.

2.2 Target fuzz harnesses
Before most programs can be fuzzed, they require a fuzz harness, a
shim embedded in the program that transmutes the mutated raw

input from the fuzzer into the program’s expected input structures.

In the simplest case, the mutated input bytes are interpreted as argc
different strings and placed into argv[], thus mimicking an invo-

cation of the program from the shell. For some programs, though,

it is necessary to combine values passed as arguments in argv with
input read by the program from one or more files. In such cases,

file-reading functions are replaced with shims that read data from

the mutated input instead.

AFL++ has an additional performance-enhancing feature com-

patible with custom fuzz harnesses called “persistent mode”, which

we use for some targets. This feature enables AFL++ to maintain a

single running instance of the target program and internally call

the program’s entry point from the fuzz harness in lieu of spawning

a new copy of the process for each input. This requires that the

target program have no effective global state persisting between

invocations, a condition many programs meet.

Some applications additionally need constraints applied on the

transmuted input when it is obvious that such inputs will interfere

with fuzzing (e.g. by controlling the path of an output file which

will be written on every single invocation of the target program).
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2.3 Analyzing crashes
While fuzzing a program, AFL++ creates a directory containing a

corpus of inputs that caused any abnormal exit condition (commonly

called a crash). The corpus contains unique crashes; no two crash-

inducing inputs that cause the same execution (control-flow) path

in the program are kept simultaneously.

Not all crashes are useful to an attacker. Some result from inter-

nal program logic designed to abort on unexpected states (typically

resulting in a SIGABRT) or unexploitable conditions such as a fully

deterministic null pointer dereference. Hence, we need to deter-

mine which crash-inducing inputs are vulnerabilities, specifically

constituting memory corruption primitives usable in an attack. Ex-

ploitable, a gdb plugin, provides heuristics to make such predictions.

Using crashwalk, we run the target program under gdb with every

crash-inducing input and record Exploitable’s classifications.

3 STUDY OF CLASSICAL ATTACKS
We now describe our experiences with finding exploitable vulnera-

bilities in scientific applications via security-focused fuzzing. The

upshot of our study is that we found numerous such vulnerabilities

with just days worth of fuzzing time.

3.1 Targets
We targeted four open-source scientific codebases of varying spe-

cialization and complexity: (a) LAMMPS [28] is a molecular dy-

namics program from Sandia National Laboratories. It has a C++

codebase. Because all of the program’s important behavior is con-

trolled by a single input file, there was no need for a fuzz harness

and AFL++ directly mutated this input file. (b) LAGHOS [14] is a

fluid dynamics application. It has a C++ codebase. The program is

controlled by a combination of command-line arguments and an

input file, so we modify it to read the input file as another command

line argument.We use “persistent mode” in its harness. (c) ENZO [6]

is a simulation application for computational astrophysics. Its code-

base consists of C and Fortran. Input and configuration are read

from a file. Changes were made to remove a barrage of crashes from

internal error handling. (d) GROMACS [1] is a molecular dynamics

program with more features and higher complexity compared to

LAMMPS. It has a C++ codebase. Many CLI commands are bundled

into its single executable gmx, but we focus on the one performing

numerical simulation (mdrun). This command can read input from

a file, which allows us to omit a fuzz harness.

AFL++ requires seeds, or testcases containing valid input for a

target program, in order to begin fuzzing by mutating the input. We

use the following seeds: (a) For LAMMPS we used all the provided

examples. (b) For LAGHOS we created seed files by concatenating

CLI arguments and mesh data files from the provided examples. (c)

For ENZO we used a ingle provided example–SedovBlast.enzo. (d)

For GROMACS we used a single provided example in .tpr format.

3.2 Crashes
We allow AFL++ to fuzz each program. Figure 2 shows the cumu-

lative statistics for each target. Note that our findings reflect only

4-13% code coverage, suggesting that many more vulnerabilities

are available to be found.

Figure 3 shows the number of crashes found as a function of

Program Runtime Invocations Crashes Coverage

LAMMPS 163 3.29 mil 446 12.62%

LAGHOS 185 0.46 mil 1240 3.90%

ENZO 302 209 mil 42 4.07%

GROMACS 135 6.09 mil 2898 4.55%

Figure 2: Runtime (in CPU-hours), number of program invo-
cations, total number of discovered crashes, and total code
coverage for each program as reported by AFL++.
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Figure 3: Number of unique crashes found over time. Despite
low code coverage and a short running time, AFL++ discovers
hundreds to thousands of crash-inducing inputs, with at least
1% being exploitable vulnerabilities, for most applications.

wall clock time (recall fuzzing is parallelized). We plot total crashes

and a breakdown. The’ “likely exploitable” curve are those that Ex-

ploitable classifies as “exploitable” or “probably exploitable”. These

have very high likelihood of being usable as primitives an attacker

could manipulate to achieve arbitrary code execution (ACE) via

memory safety issues.
2
. The “Exploitability unknown” curve is for

those crashes that Exploitable cannot discard but that do not match

any of its heuristic rules. The majority of these are SIGSEGVs, which
are indicative of a memory safety issue, and a small number are

SIGFPEs, indicative of floating point issues.

3.3 Discussion
Within a short period – less than one day – AFL++ found hundreds

to thousands of crashes with a unique control-flow path. With the

exception of ENZO, at least 1% – and as many as 45% – of these are

classified as “exploitable”.

We note that the rate at which new crashes can be found in these

programs is not approximated neatly by a continuous function. This

is because single inputs that increase coverage to a critical area of

the program are able to “open up” the input space to mutations

2
Amusingly, even though we did not search for exploits, just vulnerabilities, AFL++

managed in one instance to trick LAMMPS into spawning a separate shell running a

nonterminating, livelocked command with the coreutils program yes.
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based on those inputs. This is a direct consequence of the genetic

algorithms used by AFL++. The discontinuities representing new

coverage can be approached faster with a varied set of seed inputs,

which only some of our target programs were given. Proper seed

inputs may be readily available if the attacker chooses to attack an

application whose configuration and typical input is known, such

as an open science application.

Individual programs: ENZO had a proportionally lower crash

rate than other programs we fuzzed. One reason for this is our

explicit patching of improperly-bounded sscanf() calls early in

the program, which were permitting large numbers of crashes.

These uses of sscanf()would have been exploitable. A “real world”

attacker would just selectively target this input code, however.

The crash corpus for LAGHOS shows a significantly higher frac-

tion of crashes resulting in a SIGABRT. This suggests good error-

handling practices in the codebase or the libraries on which it

depends, likely with C++ exceptions. The other corpora are domi-

nated by SIGSEGV terminations.

Security boundaries and user guidance: Only 2 of the appli-

cations we analyzed – LAMMPS and GROMACS – include explicit

warnings
34

to their users about malicious input. Such guidance

should be more prevalent.

Undefined behavior attack vector: During some rounds of

fuzzing on the target programs, we enabled the AFL++ flags

AFL_USE_UBSAN and AFL_HARDEN, which add the undefined behav-

ior sanitizer (-fsanitize=undefined) and stack hardening op-

tions (-D_FORTIFY_SOURCE=2 and -fstack-protector-all), re-
spectively. When sanitizers are enabled, the compiler inserts checks

into the binary to catch logical violations at runtime and executes

an x64 ud2 that causes a SIGILL when the occur.

We then observed an explosion of crashes terminating with

SIGILL in the crash corpora produced with UBSAN and the stack

protector enabled. This strongly suggests many undefined behavior

corner cases are being encountered. Standard sanitizers, it appears,

could be very useful in finding and fixing bugs in these applications.

For an attacker, undefined behavior is a potentially additional source

of exploitable vulnerabilities.

4 MEDES SYSTEM
To explore the prospects for attacks mounted by input nudging, we
have developed a system, MEDES,

5
that effectively plays the role of

the “novel” attacker in Figure 1 and attempts to find a good input

nudge that results in a desired effect. A good input nudge is one

that is difficult to detect. The desired effect up to the attacker.

We now introduce some of the terminology used in MEDES. The

target is the application we are trying to attack. We interact with

the application through a simple target interface which can even

be implemented around an unmodified target binary. A collection

of metrics are available, and can be easily extended. Some of these

metrics are generic and can be applied to any target, while it is

also possible to create metrics specific to the target using themetric
interface. MEDES searches the nudge space of the target’s input,

3
https://github.com/lammps/lammps/blob/develop/SECURITY.md

4
https://manual.gromacs.org/documentation/current/user-guide/security.html

5
So named due to the parallelism used in the system, which is evocative of the Persian

attack on the Greeks at Thermopylae. The Persians were known asMedes to the Greeks.

While many 10,000s of Medes were slain at the pass, they eventually got through.

void system_getinfo(char** sys_name,
uint64_t* num_params,
char** param_help,
uint64_t* state_veclen);

int system_config(double params[]);
int system_simulate(const double initial_state[],

double final_state[]);

Figure 4: MEDES target interface. Any application that can
fit into this model can be attacked.

trying to optimize a selected target metric. All available metrics are

also evaluated during the search, allowing for discovery of good

solutions for other attack goals in addition to the one embodied

in the target metric. MEDES can be directed to do apply nudge

discounting to any metric, which can account for larger nudges

being less desirable even if the metric itself does not account for

this. A nudge cost function is used to evaluate the nudge, while a

nudge discount function combines this cost and the metric value.

The specific search process, called the mode, is pluggable, and a

mode interface allows the creation of additional modes. The nudge

space abstraction allows for the independent development ofMEDES,

metrics, andmodes without reference to each other or to specific tar-

gets. In support of the search process, the MEDES parallel execution
core allows running many instances of the target simultaneously.

The user can determine how many cores to allow, as well as to

restrict the search process to a time limit, or stop search once the

target metric is within a threshold. The user can also kill MEDES at

any time, resulting in the availability of the best targeting solutions
seen up to that point.

Software engineering complexity:MEDES comprises approx-

imately 5000 lines of code, most of which is in C++ with some small

elements written in C. A typical integration with a target comprises

dozens to 100s of lines of code.

4.1 Target interface
MEDES is designed to be mostly agnostic to the target application

that it is attacking. The entire interface, lifted directly from the

source code, is shown in Figure 4. The model is that of a parame-

terized physical system in which an initial state vector, derived in

part or in whole from the input, evolves into a final state vector.

The final state vector is what the attacker is attempting to achieve

control over. MEDES helps the attacker do so.

MEDES invokes system_getinfo() to determine the set of pa-

rameters and the state vector length from the target. The param-

eters are not attacked in our model. Instead, system_config()
is invoked in order to set the parameters that will be used for

multiple executions of the target. The target is executed by a call

to system_simulate(), which transforms the input state vector

(initial_state) into an output state vector (final_state).
system_simulate() is invoked repeatedly, and, if the target sup-

ports it, in parallel. For each invocation, MEDES will subtly manip-

ulate (“nudge”) the initial state vector.

An “unnudged” invocation of system_simulate() is run first to

determine the mapping of the scientist’s initial state to the scientist’s
final state or truth.

Note that while the target interface’s abstraction is designed

7
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around the notion of the simulation of a physical system, the ab-

straction can also fit non-physical processes, such as general numer-

ical methods. Fundamentally, it fits anything that can be modeled

as parameters, inputvector ⇒ outputvector .
Inclusive target model: The target can be compiled or linked

directly into MEDES, which results in a zero cost boundary. This

is convenient if the state vector length is large and/or the target

already provides a similar interface.

RPC target model: The target can also be kept completely in-

dependent from the MEDES codebase. A very simple RPC version

of the target interface has been designed and implemented using

pipes that connect to the separate target process’s STDIN and STD-

OUT. When used in this way, all that is needed is to make a target

amenable for MEDES is to either directly add STDIN/STDOUT sup-

port for the simple RPC encoding, or to create a wrapper script that

translates from the simple RPC encoding to the target’s internal

representation. In this manner, a completely unmodified binary

target can be attacked by MEDES.

4.2 Nudges and nudging
A good input nudge is one that is difficult to detect since it is so

slight. MEDES nudges the initial_state vector, an array of dou-

bles.
6
Conceptually, MEDES will generate a corresponding nudge

vector and apply it elementwise to the initial statevector. What then

is a “nudge” for a single double?

We take advantage of the structure of a double. An IEEE double

precision floating point number consists of a sign bit, an 11 bit

exponent field, and a 52 bit mantissa or fraction field. The frac-

tion is interpreted as a fixed point number (1.xxxxx or 0.xxxxx

depending on whether the double is in normal or subnormal form).

Ignoring the 0 or 1 since it only matters later, we are left with

xxxxx, a 52 bit unsigned integer. We consider a nudge yyyyy to

be a 52 bit signed integer that is added to xxxxx using standard

2’s complement semantics. The resulting number is considered as

the nudged mantissa. The carry out / overflow out is then used to

update the exponent and sign bits. For example, if yyyyy is neg-

ative, and overflow occurs, then the exponent decrements. If we

passed the smallest normal exponent (1), we update the exponent

and mantissa to reflect we now have a denormalized number. If

we crossed zero, we update the sign bit, and so on. Starting with a

large, finite positive number, successive negative nudges would first

slowly span the positive normal numbers, then cross the positive

normal/subnormal boundary, then the zero boundary, then the neg-

ative subnormal/normal boundary, then slowly span the negative

normal numbers, and eventually saturate at −∞. The symmetric

case would span the negative normal numbers, then cross the nega-

tive normal/subnormal boundary, then the zero boundary, then the

postive subnormal/normal boundary, then span the postive normal

numbers, and eventually saturate at +∞.

Fast nudger: Conceptually, a +1 nudge to a double number 𝑧

corresponds to an invocation of the standard math function

nextafter(𝑧, +INF) while a −1 nudge corresponds to
nextafter(𝑧, -INF).7 We have designed and implemented a

6
Extending the methodology of this paper to attack, for example, complexes, floats, or

other basic types used to represent a component of a state vector, is certainly possible.

7
The standard nextafter() function returns the next representable double in either

the negative or positive direction.

nudge(𝑧, 𝑛) function that computes the effect of a nudge of size 𝑛,

where −251 ≤ 𝑛 ≤ +251 − 1, which is the equivalent of applying

the library nextafter() function |𝑛 | times. However our nudge()
works in fast 𝑂 (1) time independent of 𝑛.

Nudge space:Given that the fast nudger allows us to manipulate

each double in the initial state by a nudge in the range [−2−51, 251),
it can be easily seen that this generates a space of possible nudges

whose dimensionality is the input state vector length, and each

dimension has the range. MEDES explores this nudge space. Notice

that by optimizing over the nudge space of the target, almost no

components of MEDES need to care about or even be aware of the

value of either the initial state vector or the target state vector.

4.3 Nudge discounting
Onemight observe that a maximumnudge of a single double is quite

small because it does not affect the exponent, except incidentally.

This was a conscious design choice. For the most part, a nudged

initial state will print in decimal (e.g., with printf("\%lf'') and
similar) with an unperturbed exponent and with a mantissa value

similar to the unnudged initial state. The largest nudges will gener-

ally appear as changes to the most significant digits, while a small

nudge will likely appear below the threshold of printed output and
thus appear to be invisible.. w%lf prints 6 decimal digits by default.

Consequently, the low order 53 − 3.3 × 6 = 33 bits of a mantissa

can potentially be manipulated without visible output changes, if

carefully done. This corresponds, though imprecisely, to absolute

nudge range of about 2
32
, well within our available nudge range.

One can also approach this from the perspective of visualiza-

tion. With a sufficiently small nudge, even a very high resolution

visualization will not differentiate a nudged and unnudged value.

Here, it is a bit more complicated since generally a visualization will

allowing easy zooming in, while changing the number of output

digits in a print statement is much more onerous.

Whatever the available nudge range, the larger a nudge is the

more likely it is to be spotted. Therefore, we would like to be able

to have any metric include this cost. A large nudge that gets close

to the attacker’s desired result may not be better than a very small

nudge that doesn’t get quite as close.

Since all metrics in MEDES are provided with the current nudge,

they can take into account the size of the nudge internally. However,

we also support such nudge discounting as part of MEDES itself,

allowing the inclusion of very simple attack goal-oriented metrics

while we internally push towards less obvious nudges.

For nudge discounting within MEDES we incorporate two con-

cepts: the nudge cost function and the nudge discount function. The
nudge cost function translates the nudge vector into a scalar figure

of merit, while the nudge discount function combines the nudge

cost function and the target metric.

Euclidean nudge cost function: Here the cost is the Euclidean
distance of the nudge vector from the zero point.

𝑙𝑜𝑔10 nudge cost function :Here, we find the maximum base 10

logarithm across the elements of the nudge vector. This estimates

the number of decimal digits, starting from the right hand side that

the nudge would likely effect. This is also quite fast.

Levenshtein distance nudge cost function: Here, we attempt

to more closely approximate the printf("%lf") analysis given

8



earlier. The 𝑙𝑜𝑔10 approach will not catch cascades in which small

changes in low order bits propagate up to high-order bits. Here,

for every element in the nudge vector, we sprintf() the corre-

sponding state vector element to a string, once in its unnudged

form, and once applying the current nudge. We then compute the

Levenshtein distance between the two strings and record it. The

overall discount is the maximum Levenshtein distance recorded for

any element/nudge. This approach captures the effect of cascades,

but is more expensive than the 𝑙𝑜𝑔10 approach.

Nudge discount functions: The metric and the nudge cost are

combined either additively, as a ratio, or as the log of the ratio. The

first is in the spirit of an AIC scheme for combining model size and

model accuracy. The last two are in the spirit of log-likelihood.

4.4 Metrics and metric interface
MEDES allows an arbitrary number of metrics to be plugged in,

as long as they conform to a standard interface. Beyond lifecycle

control and registration, the interface just includes one function

for evaluation which is passed the nudge vector to be evaluated,

the resulting state vector, called the shot, the unnudged final state

vector, called the truth, and the list of floating point exceptions that
occurred while computing the shot.

8
The purpose of passing the

exception list is to enable metrics that value creating an exception,

such as Overflow or Invalid.
9

Metrics can be written as part of the MEDES codebase, as sepa-

rate shared libraries that are dynamically included when MEDES

starts, or via an RPC mechanism similar to that described in §4.1.

The RPC mechanism allows writing a metric in any language as

long as it is possible to read STDIN and write STDOUT. External

metrics, whether written as shared libraries or for invocation via

the RPCmechanism, allow for creating target-specific metrics or for

encoding more complex attack goals such as “make the simulated

wind blow east to west”.

The following target-agnostic metrics are included in the basic

MEDES codebase:

• Euclidean distance from point truth: Here the attacker has no

specific target, but wants to push the final state as far as possible

from the true result.

• Euclidean distance to point target: This allows the attacker to

aim for a specific point in the target’s state space.

• Euclidean distance to sphere target: This allows the attacker to

aim for a (hyper)sphere in the target’s state space.

• Euclidean nudge distance to infinity: Here the attacker is trying

to find the smallest nudge that poisons the result with an infinity.

• Euclidean nudge distance to NaN: Here the attacker is trying to

find the smallest nudge that poisons the result with a NaN.

• Exponent distance to infinity: Here the attacker is trying to find

a nudge that pushes a state vector exponent as close to the

infinity poison.

• Exponent distance to subnorm: Here the attacker is trying to

push search toward hitting subnormals and thus underflow.

8
The exceptions or condition codes are sticky, allowing the hardware to track the

existence of Invalid, Overflow, Underflow, Inexact, DivideByZero, and Denorm (on x64)

events during execution of a segment of code, here the run of system_simulate().
9
Such as in the slow poison attack noted earlier. Overflow or Invalid would effectively

create a denial of service condition.

The first three metrics are intended to support the chaos control at-

tack modality, while the latter four are intended to support an attack

modality not described in this paper. The last two are influenced

by FPBoxer[33]. Sadly, there is no “distance to a NaN”.

4.5 Modes and mode interface
MEDES allows an arbitrary number of search modes to be added,

with one mode being chosen for use when it starts an attack search.

“internal” modes are simply added to the MEDES codebase. Our

approach for supporting “external modes” (those outside the code-

base) is complicated by the fact that, unlike for target and metric

interfaces, where MEDES is the driver, it is the mode that drives

MEDES. MEDES also has four built-in modes, and we use two:

• Sphere: Here, the nudge space is explored by uniformly

randomly sampling the surface of a hypersphere centered

around 0 (the scientist’s input), up to some limit. Because this

approach is not exhaustive, it is tractable to apply it to targets

that have arbitrary dimensionality.

• Hill climbing: Here, the search process steps through the nudge

space, with each step taken in the direction (only the

dimensional directions) that most optimizes the metric. To avoid

local minima, this metric considers exponentially expanding step

sizes when stuck. If even the biggest step is insufficient, it will

fall back to trying a new random starting point near 0. Because

target applications can have a huge number of dimensions, this

metric can also take steps based on a random sample of the

possible next steps.

4.6 Parallel execution core
MEDES manages evaluation requests issued by the mode. It does

this using a master/worker model built directly on pthreads. The

mode runs as the master thread and its requests turn into jobs

queued for worker threads. If necessary, the mode can wait on the

completion of a job. In handling a job, a thread can also spawn

a process to run the target via the RPC interface. Additionally, if

external metrics or an external mode is to be used, the execution

core starts these as processes and synchronizes with them before

using them during the execution of jobs. Each job comprises an

execution of the target given a selected nudge, and the evaluation

of all metrics over the results.

A considerable amount of engineering allows for early termina-

tion of the search process for any reason. No meaningful work is

ever lost, and at any one point in time, there is a best solution for the

goal metric, as well as for all the other metrics. The embarrassingly

parallel nature of the system allows for considerable scalability.

5 NOVEL CHAOS CONTROL ATTACKS
We used MEDES to attempt to find chaos control attacks against a

range of benchmarks and small applications. We believe our results

provide evidence for the following points.

• It is feasible to find a effective chaos control attack in a tractable

amount of time.

• It is easier to find such attacks if the attacker’s goal is

application-specific, but application-agnostic goals can also be

reached.
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• Pushing the application away from its correct output is generally

easier than pushing it toward a desired target output. However,

this depends on how “target” is defined.

• Successful infinity- or NaN-poisoning attacks seem unlikely

given the small nudges of our attack model, at least for physical

simulations.

5.1 Chaos
Chaos theory is a broad area, spanning both physical systems and

computational systems. We focus here on chaotic dynamical phys-

ical systems and their simulation on real computers. A chaotic

dynamical physical system is one in which the equations governing

its trajectory in phase space result in evolutions that exhibit high

complexity (“chaos”) while being entirely deterministic [25]. The

system is also highly sensitive to its initial state. If the initial state

is one that leads to chaos, then nearby states are highly likely to

follow very different evolutions in phase space. The maximal Lya-

punov exponent of the system determines whether the system and

initial state will result in chaotic behavior. In this case, two very

similar initial states can result in exponentially diverging phase

space trajectories.

Many physical systems exhibit chaos, such as the classic Lorenz

system that spawned the idea, the double pendulum, an 3-body

gravitational systems, all of which we include in our study. It is

suspected, but not known whether fluid dynamics (i.e., systems

governed by the Navier-Stokes equations) exhibit chaos, although

their complex behavior (e.g., turbulence) is suggestive. Systems

need not are of course of interest outside of their chaotic behaviors,

but it is arguably the case that systems in chaos or at the “onset of

chaos” hold considerable interest.

In a computational simulation of such a physical system, dis-

cretization must occur, both in terms of space and time, but also in

terms of the very numbers used to represent variables within the

continuous system (e.g., floating point arithmetic). And, of course,

the various other aspects of the scientific software development

process noted in Figure 1 all play a role before we are left with a

binary program that can be attacked.

The goal of a chaos control attack is to select a minimal nudge

to the original program input (the initial state) that optimizes the

attacker’s target metric.

5.2 Environment and targets
All results in this study are due to runs of MEDES and the target

applications on a server equipped with four Intel Xeon 6238 CPUs

operating at 2.1 GHz connected to 384 GB of RAM. The machine

provides 176 hardware threads (22 cores/socket, 2 hyperthreads

each), but we constrain our attack searches to use 64 threads. All

reported times are the cumulative system and user time across

the threads used, and represent the cost to the attacker of finding

nudges of a given quality for the target metric.

Our targets include the following. The size of the state vector is

noted because it is initial state vector (the input) that we nudge in

our attack search process, and it also defines the dimensionality of

the nudge space over which the attacker is optimizing.

• Lorenz Attractor: This is the classic 3 dimensional system

described by Konrad Lorenz in his seminal identification of

chaotic dynamical systems. The state vector of this system has

three elements. We have implemented this system using an RK4

implementation in Boost.

• Double Pendulum: This classic 2 dimensional problem, also

known as the double-rod pendulum, consists a rigid pendulum

with a mass at its end. Also attached to the end is a second rigid

pendulum with a second mass at its end. The state vector of this

system has four elements. We have implemented this system

using our own RK4 implementation.

• Three Body in 2D: This is an adaption of Burkardt’s code for the

three body problem in gravitational mechanics. It includes an

RK45 solver. The state vector of this system has 12 elements.

• Three Body in 3D: This is an n-body gravitational mechanics

simulation that we limit to n=3. State evolution is done with

fixed (small) steps directly using the gravitational influences.

The state vector consists of 18 elements.

• Miniaero: Miniaero [9] is a computational fluid dynamics proxy

application noted by the ECP project (and earlier). Our adaption

is the same as the one used in our classical attack study (§3.

Here, we run it with a state vector consisting of 20,480 elements.

5.3 Metrics, modes, and discounting
In our study, all seven metrics described in §4.4 are used because

they are genericmetrics that can be applied to any target. In turn, we

select each one as the goal metric for the search process. However, in

all cases, every metric is being computed—an attack search process

can stumble upon a good solution for a metric even if it is not the

metric it is optimizing for. In the case of double pendulum, we also

include double pendulum-specific metrics, as we discuss in §5.4.

MEDES searches can take a long time, particularly when targets

with long running times and/or large state vectors are combined

with exhaustive modes. In this work, we ameliorate this by using

only two of the modes described in §4.5, Sphere and Hillclimbing.

For Sphere, we consider radii from 4 to 1024, with 1024 random

samples per radius. For Hillclimbing, we allow a walk of 1024 steps,

with the largest step size allowed for getting out of a local minimum

being 128. For Minaero, we use only Sphere and we focus on the

distance from truth metrics.

We do not use nudge discounting in this study. However, both

modes we employ are limited to nudges of magnitude 1024 for any

floating point number. This means the nudge targets the the last 11

bits of the floating point mantissa, which corresponds to the last

three decimal meaningful digits of meaningful output precision

when the number is printed in decimal. As described in more detail

in §4.3, the 53 effective mantissa bits of a double correspond to

about 16 decimal digits of precision. Therefore, our nudges would

only become visible when more than 12 decimal digits of output

precision would be used. Of note, a standard %lf corresponds to

only 6 digits, and thus our nudges would be far below this floor.

5.4 Double pendulum deep dive
We will consider the Double Pendulum target along with the others

in §5.5, evaluating attacks for the general purpose target metrics

MEDES supports. However, we also developed several target met-

rics specifically for Double Pendulum, which we consider here. Note

that target application-specific metrics are likely to be common in
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Figure 5: Double pendulum evaluated with specialized attack
objectives. It is straightforward to find successful attacks that
achieve application-specific goals for this target.

finding real attacks. An attacker’s macroscopic goals are likely to

admit a wide range of possible solution nudges, while the general

purpose metrics admit very few.

Figure 5 shows results for our Double Pendulum-specific metrics.

These graphs are in a common format that we will use throughout

our presentation of this study. Each graph is in log-log scale. On

the y-axis is the amount of compute time that has been expended,

while on the y-axis we have the value of the target metric. Two

curves appear on each graph, one for the Hillclimbing mode, and

one for the Sphere mode. Each data point in a curve corresponds

to an improved solution being found.

Figure 5(a) considers the attack goal of pushing the output as far

away from the truthful (un-nudged) output as possible. A larger

metric value is better. Expressing this in Double Pendulum requires

some care as the state vector contains angles, and there is enough

energy in the system for the lower pendulum to completely a full

rotation. Furthermore, after one 𝜋 of difference, angles are less

different, not more different. The metric used here takes these

complexities into account. As can be readily seen in the figure,

both Hillclimbing and Sphere quickly find solutions and improve

on them. In less than 10 seconds of CPU time, we approach the

maximum possible distance from truth (bounded by the maximum

angles possible and the maximum angular velocities possible given

the initial energy of the system.)

Figure 5(b) considers the attack goal of pushing the second pen-

dulum’s mass to a specific x,y coordinate (a “point target”). Here a

smaller metric value is better. While neither search mode finds a

perfect solution, it takes just a few seconds to find a solution within

a short distance.

Figure 5(c) expands the point target to a circular target—the goal

now is to get the second pendulum’s mass to be within a circle of

radius 0.1 located in the middle of the upper left quadrant of the

space. Here a smaller metric value is better. Both search modes

quickly find solutions and then improve on them. In a little more

than 10 seconds, Hillclimbing has completed the task (the distance

to the circle becomes zero, which cannot be plotted on a log scale).
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Figure 6: Evaluation of common distance from point truth
objective. Larger is better. It is tractable to find attacks that
achieve the general goal of pushing application output away
from its true output.

Figure 5(d) considers a very loosely construed target—the goal

now is to get both pendulum’s masses into the upper-left quadrant

of the space. Once again, a smaller metric value is better. It takes

less than a second of CPU time to find a nudge that accomplishes

this task using Hillclimbing.

5.5 Application-oblivious results
We now describe the results of searching for chaos control attacks

on all of our targets using the general purpose, application-oblivious

metrics. The format of the graphs in this section is the same as

described in 5.4.

Pushing outputs away from truth is usually both effective
and tractable: Figure 6 shows the results of optimizing for the

Euclidean distance from point truth metric. Note that even the

leftmost data point on each graph represents a successful push,

and it is found very early, in less than a second. Within about

10,000 seconds of CPU time, we are able to improve on the distance

from truth by anywhere from a factor of 3 to about four orders of

magnitude. Generally, the guided approach of Hillclimbing finds

solutions earlier and faster, while the extremely simple randomized

search of Sphere takes longer, but finds better solutions. There are a

range of parameters that affect Hillclimbing, so this generalization

should be taken with a grain of salt. What’s more interesting is that

an incredibly simple search scheme is able to find effective attacks.

Pushing outputs toward a target produces mixed results:
Figure 7 shows the results of the Euclidean distance to point target

11



10 3 10 2 10 1 100 101 102 103

Time to Compute Attack (sec)

100

101

102

Eu
cli

de
an

 d
ist

an
ce

 to
 p

oi
nt

 ta
rg

et
[lo

we
r i

s b
et

te
r]

Hillclimbing
Sphere

10 2 10 1 100 101 102 103 104

Time to Compute Attack (sec)

100

101

102

Eu
cli

de
an

 d
ist

an
ce

 to
 p

oi
nt

 ta
rg

et
[lo

we
r i

s b
et

te
r]

Hillclimbing
Sphere

(a) Lorenz (b) Double pendulum

10 2 10 1 100 101 102 103 104

Time to Compute Attack (sec)

102

103

2 × 102

3 × 102

4 × 102

6 × 102

Eu
cli

de
an

 d
ist

an
ce

 to
 p

oi
nt

 ta
rg

et
[lo

we
r i

s b
et

te
r]

Hillclimbing
Sphere

10 3 10 2 10 1 100 101 102 103 104

Time to Compute Attack (sec)

1013

1014

Eu
cli

de
an

 d
ist

an
ce

 to
 p

oi
nt

 ta
rg

et
[lo

we
r i

s b
et

te
r]

Hillclimbing
Sphere

(c) Three body, 2D (d) Three body, 3D

Figure 7: Evaluation of commondistance to point target objec-
tive. Smaller is better. Results are mixed on tractably finding
attacks that push outputs toward an non-application-specific
target. Targeting a sphere produces similar results.

metric. In all cases here, the point target that has been chosen

here is the initial state of the system. For example, we attempt

to push Lorenz to have its trajectory terminate at the point at

which it started. Using the Euclidean distance to sphere target

metric, wrapping a sphere of radius 0.1 around the same target

point, produces similar results.

Our results are mixed. For Lorenz and Double Pendulum, we

had no difficulty in quickly finding a solution and then refining

the solution by an order of magnitude or more within 1000 CPU-

seconds or less. As with previous results, the very simple Sphere

search mode takes longer than Hillclimbing, but can produce better

attacks. Unfortunately, such fast refinement does not happen for

the other target applications. Instead, it is quite slow. Additionally,

the ultimate attack found is not very good.

For the negative results, we considered the possibility that the

initial state of the system is not one that leads to chaos. This does

not appear to be the case given the results of Figure 6, and using

alternative initial states did not seem to have much of an effect.

Another possibility is that the target state is impossible to reach.

Recall that for this part of the study, we set the target state to be

the initial state. It may simply be physically impossible for the

system to return to the initial state during the timescale that is sim-

ulated. However, spot-checking for this possibility using different

randomly chosen targets did not seem to lead to any better target

acquisition in the search process. At this point, we do not know

why these applications are resilient in this manner.

TargetingNaNs or infinitieswas unsuccessful:Weoptimized

for the Euclidean nudge distance to NaN and Euclidean nudge

distance to infinity metrics as well. As a reminder, the goal here is

to find the smallest nudge that will lead to the target producing a

NaN or infinity as detected using the sticky floating point condition

codes. Unfortunately, no nudges were found that could induce a

NaN or infinity in any of of the targets applications.

Of course, the maximum magnitude nudge per dimension in

this study was +/-1024 (we modify the last 11 bits of the mantissa),

so it is possible that we simply cannot push the system enough.

That said, this may well be true of the extremes of the MEDES

model, where the nudge per dimension is at most the 53 bits of the

mantissa, including the implied leading bit. It may be the case that

to trigger a NaN or infinity requires nudging of the exponent as

well. But this would make the nudge easier to detect as well.

Reducing output distance to an underflow or overflow
had minimal success: We optimized for the Exponent distance to

subnorm and Exponent distance to infinity metrics as well. The goal

here is to find tiny nudges that result in an output value’s exponent

being pushed up (toward infinity) or down (toward a subnormal

number or zero). Across our targets, our search processes very

quickly found nudges that slightly changed such an exponent, but

then search was the unable to improve on this early change.

We note that our results on targeting NaNs, infinities, and sub-

norms contrasts with work such as XScope [20], which has found

numerous examples of functions that fail in this manner. Such work

considers the entire input space of the function, while the work

described here focuses on small manipulations of specific inputs.

It is also the case that in our study, we use specific inputs cho-

sen as examples by the benchmark/application authors, and these

presumably have been well-vetted for sensible behavior.

We speculate that targeting NaNs, infinities, or subnorms is more

likely to work for purely numerical algorithms (e.g., matrix inverse)

than the simulations of physical systems we include in our study.

The thought is that our nudges could make a well-conditioned prob-

lem into an ill-conditioned one quickly. That said, a conditioning

step is common in numeric algorithms, which would argue against

this.

6 CONCLUSIONS
We have raised the spectre of deliberate attacks on scientific applica-

tions through manipulation of their inputs, and provided evidence

for two forms that such attacks could take. In the first form, we

have used the classic attack formation strategy of fuzzing to find

common vulnerabilities in full applications that could be used to

execute arbitrary code. Using such vulnerabilities, an attacker could

then deny service to the users or cause the application to produce

arbitrary outputs. Our results suggest that scientific applications are

not much different from run-of-the-mill applications in providing

plenty of vulnerabilities.

In the second form of attack, which we believe is specific to

scientific codes, the attacker finds a minimal size, hard to detect

floating point format-specific “nudge” that is added to the user’s

actual input. The attacker selects a nudge that results in the program

computing, without arbitrary code execution involved, an output that
the attacker desires, instead of the true output of the program given

the user’s input. We developed a system for finding appropriate

nudges given a specific attack goal and provided existence proofs

that such nudges can be found. It is generally easier for the attacker

to find nudges that “push away” from the correct output than “push

towards” a desired output.

As far as we are aware, neither form of attack on scientific ap-

plications has been previously described or evaluated. We are now

considering such attacks on purely numerical computations, as well

as how to guard against both kinds of attacks.
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