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Abstract

Peer-to-peer systems have grown significantly in popularity over the last
few years. An increasing number of research projects have been closely fol-
lowing this trend, looking at many of the paradigm’s technical aspects. In the
context of data-sharing services, efforts have focused on a variety of issues
from object location and routing to fair sharing and peer lifespans. Over-
all, the majority of these projects have concentrated on either the whole P2P
infrastructure or theclient-side of peers. Little attention has been given to
the peer’sserver-side, even when that side determines much of the everyday-
user’s experience. In this paper, we make the case for looking at the server-
side of peers, focusing on the problem of scheduling with the intent of min-
imizing the average response time experienced by users. We start by char-
acterizing server workload based on extensive trace collection and analysis.
We then evaluate the performance and fairness of different scheduling poli-
cies through trace-driven simulations. Our results show that average response
time can be dramatically reduced by more effectively scheduling the requests
on the server-side of P2P systems.

1 Introduction

The popularity and tremendous success of peer-to-peer systems have motivated
considerable research on many of the paradigm’s technical aspects. In the context
of data-sharing services, a number of projects have explored a wide variety of
issues including more scalable object location and routing protocols, fair resource
sharing, and high churn-resilient systems, just to name a few. The majority of
these projects have, so far, concentrated on either the whole P2P infrastructure or
theclient side of a peer. Little attention has been given to the peer’sserver-side,
although that side determines much of the everyday user’s experience.
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After determining alternative sources for a desired object, a peer must initiate
the object download from a subset of possible providers; each party effectively
adoptingclient andserverroles. Looking at the client-side of peers, we are only
aware of Bernstein et al. [7] where the authors propose using machine learning for
the construction of server peer selection strategies for faster download speed. The
server-side, on the other hand, remains mostly ignored.

However, recent studies suggest that servers in a P2P data-sharing system often
turn out to be a performance bottleneck. From the analysis of P2P traffic collected
at border routers at the University of Washington, Saroiu et al. [15] report that
a small number of Kazaa [3] servers are responsible for serving the majority of
requests for content. Their traces indicate that over 80% of all download requests
are rejected because of the saturation of server capacity. Similarly, another study
of P2P workload by the same group [11] shows that object downloading in Kazaa
can be extremely slow, with 50% of all requests for large objects (>100MB) taking
more than one day and nearly 20% taking over one week to complete!

These results clearly argue for taking a closer look at the server-side of peers,
and this paper reports on our initial steps. We focus here on the scheduling prob-
lem, and our goal is to design efficient and fair scheduling algorithms for P2P
servers that result in a lower average response time (a.k.a. sojourn time) for client
peers. Despite the similarity in purpose with research on scheduling algorithms for
web servers [5, 9, 6, 12], a closer look at the characteristics of P2P request traces
indicate that many findings from the web context are not directly applicable to our
problem:

• The fetch-at-most-oncebehavior of P2P client makes the distribution of ob-
ject popularity decidedlynotconform to Zipf or other power-laws [11].

• Requests to P2P servers are often not for the whole object, but instead for
only a small chunk (with the remaining parts downloaded from other servers).
In fact, as our traces show, the amount of data actually served is often just a
fraction of the requested size.

• While web servers can reasonably assume full control over resources, P2P
servers are commonly configured with quite conservative upper bounds for
resource consumption to control their impact on their users’ other tasks.

• Although web servers often experience high load1, close to1, they are typi-
cally not overloaded. Popular P2P servers, on the other hand, normally oper-

1In this paper, the load is defined as mean job arrival rate over mean service rate, as is the standard
definition for load in queuing theory [17].
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ate overloaded [15] due in part to low resource availability and, on average,
large object sizes.

We start by characterizing server workload through trace collection and anal-
ysis. Our traces of download requests were collected from a set of P2P servers
behind 100Mbps and cable modem connections. To the best of our knowledge,
ours is the first attempt at characterizing server workload on P2P systems.

We study the performance and fairness of different scheduling policies us-
ing our workload characterization and trace-driven simulations. Our results show
that average response time can be dramatically reduced by scheduling jobs on the
server-side of P2P systems using policies based on preemtiveShortest-Remaining-
Processing-Time (SRPT).

We describe our trace collection methodology in Section 2 and characterize
different aspects of server workload in Section 3. Section 4 presents our trace-
based evaluation of various scheduling policies for P2P servers. We summarize
our results, conclude and indicate directions for future work in Section 5.

2 Trace Collection

In order to collect a large number of client requests we built ahoney-pot, a peer
offering a large set of popular files selected based on query-related traffic observed
through passive monitoring. To create our shared directory, we modified an open-
source Gnutella client [4] that passively monitors all query and query-hit strings
routed through it, analyzes the popularity of different objects, and automatically
initiates the downloading of randomly chosen objects based on the popularity dis-
tribution. We run our honey-pot with a total of 1,533 different objects, most of
them highly popular, and for each incoming request, we record request arrival time,
object name, size of requested and served data chunk and transfer finish time for
further analysis.

To avoid potential bias in data collection, we constructed multiple honey-pots
at different hosts, each serving its own collection of objects, and each configured
with different upper bounds for outgoing bandwidth and number of threads serving
requests. To ensure we capture the behavior of busy server peers, most of these
limits were set much higher than their default settings. In order to capture potential
differences due to bandwidth classes, we also collected traces using a peer behind
a cable connection. Some key parameters of our traces are summarized in Figure 1.
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Connection Number of Number of Number of
Type Threads Objects Requests

100Mbps Ethernet 200 1,533 300,000
100Mbps Ethernet 100 1,533 150,000
100Mbps Ethernet 50 500 80,000

Cable Modem 20 1,533 40,000

Figure 1: Key parameters of collected traces from P2P servers.Number of Threads
is the number of available server threads.

3 Server Workload Characterization

Server workload characterization forms the basis for any work on scheduling poli-
cies. In this section we address the following questions for the case of data-sharing
P2P servers. We use the terms “job” and “request” interchangeably.

• What is the distribution of job interarrival time?

• Are the job arrivals independent?

• What is the distribution of job service time2?

• What is the likely performance bottleneck? To understand which of the P2P
server’s resources needs to be scheduled, we need to understand which one
is the bottleneck.

• What are the implications of our findings on P2P system scheduling?

3.1 Job Arrivals Form a Poisson Process

We characterized job interarrival times for P2P servers based on our collected
traces. Figure 2 gives the complementary cumulative distribution function (CCDF)
of job interarrival time at a P2P server for a typical trace. Notice that the vertical
axis is logarithmic; the straight line of the CCDF curve strongly indicates that the
arrival process can be modeled by an exponential. The least-squares curve-fitting
using an exponential function, indicated by the dash-line in Figure 2, with coeffi-
cient of determinationR2 = 0.9943 quantifies our argument.

We tested the independence of job arrivals by computing the serial correla-
tion of their interarrival times, as shown in Figure 3. Clearly, the correlation be-
tween any two separate interarrival times is effectively nil. Since each of our traces

2In this paper, we define job service time as the wall clock time it takes a server to finish sending
data to a client over the Internet given the bounded outgoing bandwidth for the job. Similarly, the
response time of a job is the sum of its service time and its total waiting time in the queue.
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exhibits similar behavior, job interarrivals for a P2P server can be well modeled
as independent of each other, clearly a significant difference from the web server
case. Exponentially distributed, independent interarrival times are the definition of
a Poisson process.

Previous research [13, 10] has shown that Poisson processes are valid for mod-
eling the arrival of user-initiated TCP sessions such as TELNET and FTP connec-
tions. HTTP arrivals, on the other hand, have been shown not to be Poisson. Deng
et al [10] point out that the aggregated interarrival times of HTTP requests can
better be modeled by a heavy-tailed Weibull distribution. This is because HTTP
document transmissions are not entirely initiated by the user; some are automat-
ically generated by the browser (requesting embedded files), resulting in a more
bursty process.

Although P2P server requests, like web requests, are not solely initiated by the
users, there are some interesting peculiarities of client peers that may explain the
observed differences. For example, a client searching for a given object collects a
set of candidate servers from which it later initiates parallel downloads. In addition,
clients can abandon (switch) servers in the middle of a download, after finding an
alternative source with higher available bandwidth [7].

3.2 Job Sizes are Pareto

Job size is another important property for queuing models. Interestingly, for P2P
scheduling, there are three different possible definitions for job size:full object
size, requested data chunk size, andserved data chunk size. While the full object
size is usually very large, most requested data chunks are small, covering only a
small fraction of the whole object. More importantly, there is usually also a signif-
icant difference between the requested data chunk size and the actual served data
chunk size. We discuss some possible explanations for this difference in Section 4.

The CCDFs of the three job sizes are depicted in log-log scale in Figure 4. As
it is clear from the graph, the three often differ by several orders of magnitude.
This clearly distinguishes P2P server requests from web requests and supports the
argument for taking a closer look at the server side of P2P systems. For the re-
mainder of this paper, we focus mainly on the requested and served data chunk
sizes as these two are the main determinants of P2P server performance. For all of
our traces, the distribution of these sizes can be modeled as a Pareto with highR2

values (0.9293 and 0.9452 for the example in Figure 4).
Given the relatively limited number of requests (up to 300,000) in our traces,

one may question if these results could not be strongly related to our particular
traces. While this is certainly possible, the fact that we see similar results in each
trace gives at least some confidence that we have captured general behavior. We
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are working to expand the set of traces.
As we did for job arrivals in subsection 3.1, we also performed time series anal-

ysis for arrived job sizes. Our traces show that there are no correlations between
arrived job sizes.

3.3 Server Resource Utilization Is Low

Despite their apparent similarities with web servers, the resource utilization of P2P
servers could be quite different. Web servers typically try to serve requests as
quickly as possible and, as it has been shown, their bottleneck resource is com-
monly the limited bandwidth of the outgoing link [6]. P2P servers, on the other
hand, are normally run on the background of common users’ machines and are
thus more conservative in their use of resources.

To understand resource utilization on P2P servers, we instrumented our honey-
pots3 to periodically (every three seconds) record different metrics such as CPU
and memory usage. Our traces show that even when our servers support 200 con-
current downloads and use up to 2 MBytes/second of bandwidth, CPU utilization
is always between 1.2% and 20%, and memory usage is consistently below 20
MBytes. Thus, unlike the web server case, neither CPU, memory, nor bandwidth
turn out to be the performance bottleneck for a P2P server, not even for the most
popular of our honey-pots.

The service capacity of most P2P servers is limited by user-defined bandwidth

3Each of our servers is a dual 1 GHz Pentinum III machine with 1 GB RAM and two 30GB IDE
disks running Red Hat Linux 7.3.
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usage and concurrent server thread upper bounds. It is clear that the bottleneck
resource we want to schedule is the number of server threads on a server, i.e., the
number of concurrent jobs that a server can serve. Thus, our scheduling problem
can be formulated as following: Given the total number of concurrent jobs that
a server can take, how should we schedule the incoming jobs so that their mean
response time is minimized?

4 Early results: Evaluation of Scheduling Policies

4.1 Scheduling Policies

A good scheduling policy should minimize the average waiting time without starv-
ing any jobs. More generally, fairness has several metrics, with the most recent
work [6] using slowdown – defined as a request’s response time divided by the
time it would require if it were the sole request in the system.

The most commonly used scheduling polices areProcessor Sharing (PS)and
First Come First Serve (FCFS). PS is commonly employed for CPU scheduling
and in the current Apache web server, while FCFS is used by common Gnutella
implementations such as Mutella, the implementation we use [4]. Neither of these
policies makes use of other available information, such as size of a job, to improve
performance.4

Shortest Remaining Processing Time (SRPT)has been studied since the 1960s [17].
For a general queuing system (G/G/1) Schrage [16] proved that SRPT is optimal
in the sense that it yields – compared to any other conceivable strategy – the small-
est mean value of occupancy and thus also of minimum waiting and delay time.
Perera [14] and Harchol-Balter, et al [6] evaluated SRPT in term of fairness. Per-
era [14] studied the variance of delay time inM/G/1/SRPT queuing systems
and concluded that the variance is lower than FIFO and LIFO [14], while in [6] the
authors proved that SRPT also outperforms PS in terms of mean slowdown, their
fairness metric. SRPT has been successfully applied to a number of application
areas. Bux [8], for example, introduced SRPT into packet networks using the mes-
sage size as the service time. More recently, Harchol-Balter et al. [6] proposed the
use of SRPT in web servers, relying on file sizes as the estimator of service time.

In this paper we introduce SRPT into P2P server-side scheduling. The adoption
of SRPT faces some challenges, however. To begin with, ideal SRPT requires
knowledge of requests’ service times, something not available a priori. In addition,
while it may be possible to estimate it [8, 6], the estimation is in itself challenging

4However, some P2P systems (such as eDonkey [2]) consider reputation (scores) as part of their
scheduling policy.
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due to the dynamic characteristics of P2P systems we have discussed.

4.2 SRPT Scheduling in P2P Systems

Since a typical P2P download request is for a specific chunk of the whole object, as
described in Section 3, we could use the requested chunk size as a rough estimate
of service time, and as the metric for SRPT scheduling. Unfortunately, as Figure 5
shows, there are only weak correlations between requested chunk size and either
served chunk size or the real service time, which implies that requested chunk size
may not be a good estimate of service time. This discrepancy between the re-
quested and served chunk sizes could compromise the performance of SRPT [12].

Statistics Service Served Requested
Time Chunk Size Chunk Size

Service Time 1.0000 0.7023 0.2833
Served Chunk Size 0.7023 1.0000 0.2339

Requested Chunk Size 0.2833 0.2339 1.0000

Figure 5: Correlation coefficients between service time, served chunk size and
requested chunk size.

Several characteristics of the P2P environment could help explain the weak
correlation:

• A client can exit at any time during the data transmission.

• As already discussed, a P2P client can switch servers for a given data chunk
before the request is completed. We speculate that the more popular the
object, the more likely this switching is.

• Although each downloading process is supposed to share equal outgoing
bandwidth from the P2P server, bandwidth bottlenecks along the path to the
destination can make the individual download speed vary.

Figure 5 also shows a much stronger correlation between served chunk size
and service time, indicating that chunk size can be a very good estimate for service
time.

Despite the aforementioned discrepancies between requested and served chunk
sizes and the weak correlation between requested chunk size and service time, it
may be still interesting to evaluate SRPT performance using requested chunk size
as its scheduling metric. Lu et al. [12] have studied the behavior of size-based
schedulers such as SRPT with different correlation coefficientR between actual
service time and estimated service time, concluding that SRPT is very robust in
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the face of inaccurate job service time information and outperforms PS as soon as
R > 0.15.

We explored how SRPT performs when using requested chunk size (CS) and
served chunk size (SS) as the scheduling metric. For comparison purposes, we
will also present the scheduling performance for ideal SRPT. The three scheduling
policies are denoted as SRPT-CS, SRPT-SS, and SRPT, respectively. Notice that
SRPT-CS can be directly implemented with current tools, while SPRT-SS would
require an accurate estimator.
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4.3 Performance Analysis

We built a general purpose queuing simulator to evaluate the performance of dif-
ferent policies, including PS, FCFS, SRPT-CS, SRPT-SS and ideal SRPT. All sim-
ulations were driven by our server-side request traces. For all of our simulations
we set queue capacity to 500. A time slice of 0.01 seconds is used for PS. Besides
our own work [12], we are not aware of other previous research addressing SRPT
performance with inaccurate job size information.

Figure 6 gives the mean response time of the five scheduling policies handling
all requests for a P2P server, with the system load varying between 0.1 to 10. The
advantages of the three SRPT-based policies over PS and FCFS are clear, espe-
cially when the load is close to or above 15. When the load is 1.76, for instance,
mean response time is 2244.08 seconds under FCFS and 1569.89 seconds under
PS. For SRPT-CS, SRPT-SS, and SRPT, however, the number drops to 903.61
seconds, 322.621 seconds, and 151.451 seconds, respectively. This confirms our
expectations of SRPT performance.

Similar to what we have observed for web servers [12], even with only a
weak correlation between requested chunk size and actual service time, SRPT-
CS achieves considerable performance gains over both PS and FCFS. As would
be expected, due to the strong correlation between served chunk size and service
time, SRPT-SS performs significantly better and even approaches the performance
of ideal SRPT under several different system loads.

The actual served chunk size, upon which SRPT-SS relies, is not known un-
til the request is completed. However, we belive it should be possible to predict
it fairly accurately. One possible way of achieving this, which we are currently
exploring, is by finding correlations between object popularity and the level of dis-
crepancy between the requested and served data chunk size. Another approach
could be based on both the prediction of served chunk size and the download speed
of the client. For the latter, the connection type of the client and the network
distance of the client, such a domain-based scheduling [12], could be potentially
applied.

5In this paper we are mostly interested in the case where server load is larger than 1, which
is normal for a popular P2P server. Moreover, since job arrivals form a Poisson process and lack
burstiness, the queue length shrinks abruptly when the load drops below 1. In all scheduling policies
we evaluated, for example, the mean queue length drops to around 0.10 when system load is 0.75.
As can be seen in Figure 6, SRPT-based scheduling policies still outperforms FCFS and PS when the
load is smaller than 1, as long as there are jobs waiting in the queue.
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4.4 Fairness Concerns

One major concern with SRPT scheduling is that it is possible to design an adver-
sarial workload in which SRPT leads to starvation of large jobs. That is, SRPT
can be made to behave unfairly. Fortunately, previous research on M/G/1 queu-
ing systems with comparable workloads have shown that the starvation does not
occur [14, 6]. Perera [14] proves that the variance of delay time of ideal SRPT
is smaller than that of FIFO and LIFO, while Harchol-Balter [6] shows that the
mean slowdown of ideal SRPT is actually smaller than that of FCFS and PS. In
the context of P2P server scheduling, we consider fairness issues of a scheduling
policy from three different aspects: mean slowdown oflarge jobs, rejection rate
of requests, and distribution of rejected job size.

Figure 7 shows the rejection rates for the five policies under various system
loads. We can see that SRPT actually results in the lowest rejection rate; SRPT-
CS and SRPT-SS also reject fewer jobs than FCFS and PS. Our simulations also
demonstrate that the distribution of rejected job size is almost identical for all eval-
uated scheduling policies. Moreover, under various system loads, SRPT-based
scheduling policies yield lower mean slowdown for large jobs. When the system
load is two, for instance, the mean slowdown for the top 10% largest jobs in the
system are: 15.496 (FCFS), 25.615 (PS), 10.723 (SRPT-CS), 8.741 (SRPT-SS),
and 7.707 (SRPT).

5 Conclusions and Future Work

The server-side of P2P systems often turns out to be the performance bottleneck.
Surprisingly, it has received little attention from the research community. In this
paper, we start this exploration by looking at the problem of download request
scheduling. We collected trace data of P2P download requests experienced by
individual P2P servers and performed analysis and modeling of this server work-
load. We proposed two SRPT-based scheduling policies and show their advantages
through trace-driven simulations.

Analysis of several inherent characteristics of P2P server requests also re-
veals considerable room for improvement in estimating request service time, which
would let us approach the performance of ideal SRPT. Two possible approaches for
estimating service time we plan to explore include: predicting served data chunk
size based on object popularity and requested chunk size, and predicting transfer
rate based on client type and Internet path characteristics.

We also identified other interesting directions of future work in P2P server-side
scheduling:
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• Deeper and more thorough analyses of fairness issues for various scheduling
policies.

• P2P server trace collection from different hosts, increasing both the geo-
graphical and connection variety.

• Modeling and scheduling for cooperative uploading/downloading, as em-
ployed in [2, 1].

• Implementation and evaluation of various scheduling models in P2P soft-
ware and its evaluation on large-scale Internet testbeds.
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