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ABSTRACT

Sensor networks have the potential to empower domain ex-
perts from a wide range of fields. However, presently they
are notoriously difficult for these domain experts to pro-
gram, even though their applications are often conceptu-
ally simple. We address this problem by bringing the BA-
SIC programming language to sensor networks. BASIC has
proven highly successful in the past in allowing even children
to write useful programs on home computers. Our contri-
butions include: (1) a BASIC implementation for modern
sensor networks, (2) the first-ever user study evaluating how
well novice (no programming experience) and intermediate
(some programming experience) users can accomplish simple
sensor network tasks in our BASIC and in TinyScript (an
alternative also designed for inexperienced programmers),
and (3) an evaluation of power-consumption issues in in-
terpreted languages like BASIC. 45–55% of novice users can
complete simple tasks in BASIC, while only 0–17% can do so
in TinyScript. Users generally succeeded best using impera-
tive loop-oriented programming. The use of an interpreter,
such as our BASIC implementation, has little impact on the
power consumption of applications in which computational
demands are low. Further, when in final form, BASIC can
be compiled to reduce power consumption even further.

1. INTRODUCTION

Wireless sensor networks (WSNs) can be viewed as general
purpose distributed computing platforms defined by their
spatial presence and an emphasis on environment monitor-
ing. The most prominent applications of sensor networks
have thus far included monitoring applications with a va-
riety of requirements, although WSNs need not be limited
to these tasks. While WSNs are currently of great interest
to the research communities concerned with the design and
implementation of efficient methods of distributed commu-
nication and computation, it is ultimately communities and
users outside of these areas—application domain experts—
that have the most to gain from the functionality that WSNs
can provide. We focus on application domain experts who
are programming novices and not experts on WSNs, and
who cannot afford such experts. Our goal is to make the
development of WSN applications by such individuals and
groups tractable and, ideally, straightforward.

To deliver the power of wireless sensor networks into the
hands of such application domain experts, the barrier to en-
try must be modest. In terms of raw hardware, this point
has already mostly been reached, provided custom hardware
is not needed. However, through our interaction with a civil
engineering group that is designing, implementing, and de-
ploying an autonomous crack monitoring application [20, 10,
11, 2], we have become convinced that sensor network pro-
gramming languages and systems have not yet reached this

point. Current languages require knowledge of either very
low-level systems development (including the details of sen-
sor hardware and embedded system design), or high-level
programming concepts and abstractions that are not obvi-
ous to most application domain experts, who generally have
little programming experience almost all of which is with
with simple single-threaded imperative programming mod-
els. Regardless of the language, the developer must keep
in mind many of the details that motivate continued WSN
research such as the reliability of communication and power
consumption.

It cannot be assumed that an application domain expert
who stands to benefit from a WSN possesses a background
in embedded systems development, can devote time to a
programming curriculum, or has the funds to hire an em-
bedded systems expert. Even if such an expert is available,
the capabilities of a sensor network are tightly coupled to
its hardware and software design, making any disconnect
between the application domain expert and embedded sys-
tems expert a barrier to achieving the domain expert’s goals.

It is vital that application domain experts not be confused
with traditional application developers. A Unix, Windows,
or web developer may be able to stretch his capabilities to
write a WSN application. For example, someone familiar
with writing Microsoft Windows applications in C++ or
C# already has some of the conceptual framework needed
to grasp event-driven programming in a C-like language on
a sensor network node. We believe that application domain
experts generally start much closer to zero than application
programmers. For this reason, it is unlikely that program-
ming languages and concepts that have found strong adop-
tion and demonstrated productivity gains in the WSN or
general software development communities will give appli-
cation domain experts similar results. We can only assume
that the application domain expert will remain a perpetual
novice1, or, at best, an intermediate programmer.

The sensor network research community has made several
efforts to simplify the development of WSN applications by
creating a range of languages and programming systems de-
signed specifically for the platform (see Section 2 for more).
These languages span a number of programming paradigms
and each targets a different type of developer. However, as
far as we are aware, there do not exist any studies of the
efficacy of these languages and systems when used by ap-
plication domain experts. Indeed, we are also unaware of
proposed metrics for such assessment.

We are addressing this shortcoming by bringing novices,
including application domain experts as previously described,
into the core of the language design and implementation
“loop” via rigorous user studies. We run user studies to

1We use this term in the sense meant by Dineh Davis [8],
who argues that instead of searching for ways to make users
experts in the use of computers and technology, we should
seek ways to make them better novices.



• evaluate how our target users respond to different
languages and systems,

• determine how quickly and correctly they can complete
tasks using each language and how power-efficient the
solutions are, and

• inform future language, system, and interface design
targeting these users.

As far as we are aware, we are the first to evaluate a sensor
network programming language and system in this fashion.

This paper focuses on our first iteration in applying user
studies to the problem of making WSNs easy to program
by application domain experts. We focus on the problem
of programming individual nodes, including sensing, send-
ing information back to a centralized aggregator, and node-
based actuation. Although this problem is more limited in
scope than general WSN programming, and the kinds of
programming supported by other languages/programming
systems, it is nonetheless an interesting problem. As we
describe in Section 2.3, a study of extant sensor network ap-
plications suggests that node-programming of this kind has
very broad applicability.

Extrapolating from the undeniable success that the BA-
SIC programming language had in the late 1970s and early
1980s in engaging extreme novices—children—in program-
ming, and the similarities between the home computer plat-
forms of that era and the sensor network nodes of today,
we consider the use of BASIC as a WSN node programming
language. Our specific contributions are as follows.

• We ported a small BASIC interpreter to a modern
sensor network node and operating system, extending
the language and implementation with simple features
for communication, power management, sensing, and
actuation.

• We created a simple integrated development
environment (IDE) for our port, as well as a tutorial for
our extended BASIC, both targeting the kinds of users
described earlier.

• We evaluated our extended BASIC, IDE, and tutorial
by conducting a rigorous user study involving novices.

• We also evaluated TinyScript, a high-level, event-driven
node-level programming language for sensor networks
using a set of exercises identical to those used to
evaluate BASIC.

• We measured the computational and power costs
involved in using our interpreter.

It is important to point out that the user studies noted above
are, as far as we are aware, the first ever done to evaluate
sensor network programming languages. Beyond letting us
evaluate the utility of our BASIC, they also provide a useful
characterization of user reaction to TinyScript, and proto-
types for future studies.2

Our evaluation found the following.

• Novice users are able to use our system to implement
simple sensor network programs on MicaZ motes that
include data acquisition, communication, and actuation
tasks.

• While results depend on the nature of the task, 45-55%
of novice users are likely to complete simple tasks in
BASIC, while only 0-17% are likely to do so in
TinyScript.

2All study materials will be made available for this purpose.

• Participants with programming experience had similar
rates of success using BASIC and TinyScript.

• Many participants struggled with developing
applications using an event-driven programming model.

• While our system incurs a significant computational
overhead (the interpreted code is, not surprisingly, much
slower than compiled C), for common application
patterns in which the hardware spends significant time
asleep, this overhead and its concomitant power costs
are negligible. A “sense-and-send” task with a one
second period, for example, consumes only 1.5% more
power when written in BASIC.

This experience underlines the value of using user studies
to evaluate languages and programming systems targeting
application domain experts. Our work shows that there is
value in using BASIC-like languages in the sensor network
domain and more broadly identified some of the language
features most appropriate for enabling novice programmers.

2. RELATED WORK

The architectural visions of Hill et al [18]; Polastre, Szewczyk,
and Culler [36]; as well as Cerpa and Estrin [5] have had
great impact on sensor network research and design. Our
work is more specifically related to work on sensor network
programming languages, measures of software engineering
productivity, and existing applications.

2.1 Sensor network programming languages
There are a number of programming languages, support li-

braries, and operating systems for sensor network nodes [15,
27, 1, 25, 6, 24, 13]. They provide support for modular
programming and the use of hardware modules, reaction
to events, and some degree of network abstraction. Some
languages focus on permitting specification of network-wide
behavior instead of specifying the behavior of individual
components [16, 33]. Bonivento, Carloni, and Sangiovanni-
Vincentelli propose a platform-based design methodology for
wireless sensor networks [4]. Recent improvements to sensor
network programming environments have been substantial.
However, these advances primarily benefit embedded system
design and programming experts, not application domain
experts.

Existing sensor network programming languages are ex-
plicitly designed to ease the development and deployment of
sensor applications. The languages borrow their semantics
from well-known programming paradigms, including struc-
tured query, functional and event-driven styles. The lan-
guages differ in the abstraction they provide for the under-
lying sensor network, treating the network as either a single
logical machine or a collection of communicating entities.

The Regiment [32], TinyDB [29], and Tables [19] lan-
guages are examples of macro-programming languages in
which the developer writes code that targets the entire sen-
sor network. Heterogeneous execution emerges based on lo-
cal conditions. Regiment follows a functional programming
design that treats each sensor as a stream of data. Regi-
ment allows programmers to partition streams into logical
neighborhoods based on network proximity, allowing event
detection that spans multiple sensors. In TinyDB, the pro-
grammer writes queries to a logical database table represent-
ing sensor values across the network. TinyDB’s SQL-like
syntax is assumed to be familiar to application developers.



Tables, a framework for programming sensor networks that
uses a spreadsheet model (specifically, pivot tables) to de-
scribe tasks, takes a similar approach.

In contrast to such network-level languages, NesC [18],
TinyScript [26], and embedded C languages are node-level
programming languages, targeting individual sensors. In
practice, however, the model is SPMD (Single Program Mul-
tiple Data)—the same code generally runs on all the nodes
in the network with the possible exception of a base-station
that acts as an accumulator of sensor data. All of these
languages provide an imperative syntax. In both NesC and
TinyScript, high-level program flow is controlled through
events that are triggered by communication, timers or are
user-defined.

Aside from their scope, these node-level languages tar-
get different kinds of programmers. The C-like syntax of
NesC is more appropriate for programmers with strong C
backgrounds. NesC also uses a form of event-driven pro-
gramming that seasoned developers might be accustomed
to but is unfamiliar to a large class of novice programmers.
TinyScript adopts a more simplified set of semantics in order
to make the NesC model more approachable for novices.

In addition to these node-level languages, higher level ap-
plication programming languages have also made inroads on
the WSN space. The Micro .NET Framework [30] and Java
Sun SPOTS [31] platforms leverage the C# and Java lan-
guages, respectively, which should be familiar to a range of
experienced application developers.

The present work focuses on node-level programming lan-
guages and systems for novice users, including application
domain experts. For the most part, the network-level and
node-level languages just described have the goal of mak-
ing expert developers more efficient. The exceptions are
TinyScript (node-level), on which we elaborate below, and
Tables. Tables specifically targets naive users. In contrast
with our work, however, Tables is a network-level program-
ming system, and, to the best of our knowledge, has not yet
been evaluated in a user study.

TinyScript. The goals of the present paper most closely
resemble those of TinyScript [26], a high level programming
language that is compiled to the byte-code of the Maté vir-
tual machine platform for sensor networks [25]. The creators
of TinyScript were early to expose the interesting problem
that we are now working on: how can one design a lan-
guage to make sensor network programming more accessi-
ble? Their answer, TinyScript, is a dynamically typed im-
perative language with an event-driven programming model.
TinyScript applications result in relatively few high-level
Maté instructions, allowing for straightforward application
distribution and updates within a sensor network.

Our work differs from TinyScript in several ways. First,
BASIC is a simple imperative language with no event model.
We have added minimal extensions to support node-level
programing. Our implementation is a simple interpreter
(which leverages the uBASIC codebase of Adam Dunkels [12])
with no underlying byte-code virtual machine.

A second difference is that we have focused, both in the
language and in the presentation of the language via the
IDE, on reducing complexity for shorter programs. A pro-
gram in our system is represented as a single source code file,
displayed (and hidden) in a custom IDE. All control flow is
in this file and is immediately visible to the programmer. In

contrast, in TinyScript, the programmer creates a separate
code block for each handled event, with code in one handler
being able to interact with that in another. The TinyScript
IDE further separates each event handler by allowing the
programmer to view and modify only one handler at a time.
There is no notion of scope in our BASIC—all variables
are at global scope. In contrast, variables in TinyScript
are either locally scoped to each event handler or globally
scoped across all handlers. All variables in our BASIC are
the same type (integer). In contrast, in TinyScript, data is
represented by several types and the application developer
must at times explicitly convert among types.

The extreme simplicity of BASIC makes it unsuitable for
the development of large software projects, and event-driven
control flow, scoping, and typing should be minor issues for
an experienced application developer. However, WSN nodes
are very resource constrained, so large software is physi-
cally impossible, and our target user is the novice, for whom
events, scoping, and typing are challenges.

We show here how these differences affect application de-
velopment for novice and intermediate users by carrying out
user studies comparing BASIC and TinyScript. We are un-
aware of a study of the effectiveness of TinyScript from the
user perspective. Evaluating our system with novice and
intermediate users is a critical component of our work. We
have intentionally sought out novices both to understand
how well our design succeeds at enabling sensor network
development by them, and to inform future language im-
provements.

2.2 Productivity measures

Although a range of software engineering metrics exist [14,
21], we are unaware of any proposed metric or benchmark for
sensor network application programming by novices. Per-
haps closest is work in developing metrics for evaluating
students in introductory programming courses [9], but this
doesn’t consider the power concerns and environmental cou-
pling of sensor network application programming.

All of the sensor network programming languages and sys-
tems discussed earlier include abstractions whose aim is to
simplify the process of writing code. Across this varied land-
scape of languages, there is little quantification of how well
each language suits the needs of different user communities,
particularly application domain experts acting as novice pro-
grammers. As far as we are aware, there is no agreed upon
set of benchmarks to assess the strengths or weaknesses of
each language. This degree of choice is common among lan-
guages targeting expert programmers, but probably over-
whelming for novices. Our work includes the rudiments of
an evaluation strategy that could provide solid data for rank-
ing languages/systems in terms of their utility for novices.

2.3 Existing applications

Node-oriented programming languages, such as our BA-
SIC implementation, are suitable for a set of applications in
the WSN design space. This set of applications is usually
based on homogeneous systems in which each node has the
same functionality. Many existing WSN applications fall
in to this category For example, structural health monitor-
ing applications [10, 23], environmental monitoring appli-
cations [37, 38, 17], and animal tracking applications [28].



With proper abstractions to hide communication details, it
is likely that node-oriented programming complexity can be
acceptable to novice programmers.

3. WHY BASIC?

As its name implies, the Beginners All-purpose Symbolic
Instruction Code (BASIC) is specifically designed to provide
programmers with a language that is complete, simple and
easy to understand [7]. A grammar for early versions of BA-
SIC confirms this: the language does not contain features
now considered necessary for the creation of large, maintain-
able applications such encapsulation, user-defined types or
in some cases even local variables.

Why then should we give users a programming language
that is primitive when compared to its more modern peers?
Many programming constructs have come about to promote
code maintainability as an application grows in size. For sen-
sor network applications characterized by relatively simple
high-level behavior, such features are not necessary. Main-
tainability of tiny code bases is often very easy regardless of
language.

The simple syntax offered by BASIC minimizes the num-
ber of concepts that need to be understood by the novice
programmer. The application domain expert views pro-
gramming sensor nodes as a means of conducting a single
aspect of her research. Given this, she has minimal time to
spend in learning programming concepts, particularly if they
are not critical for the typically small programs she writes.
Furthermore, if the frequency at which she programs is suf-
ficiently low, it is not unreasonable that the domain expert
will quickly forget programming concepts. Thus it is vital
that she be able to quickly “context switch” into program-
ming, even if she hasn’t done it for a while. BASIC’s extreme
simplicity has the advantage of making this easier.

It is important to point what specifically we mean by BA-
SIC. Although its original developers, John Kemeny and
Thomas Kurtz, feel that the language has been corrupted
since its origins at Dartmouth in the 1960s [22], it is prob-
ably more accurate to say that BASIC has come to refer to
an extremely widely varying family of languages. We are
interested in the minimal, interpreted form of BASIC that
emerged on home computers in the late 1970s. Those early
8-bit “microcomputers” were resource constrained in much
the same way as modern sensor network nodes. At its most
minimal this was TinyBASIC [35], which essentially the base
language of the work described here.

4. IMPLEMENTATION

Our platform is based on uBASIC [12], an open source
BASIC interpreter developed by Adam Dunkels and avail-
able under BSD license. uBASIC is written in C and is
designed for embedded systems. The grammar of uBASIC
resembles that of the TinyBASIC programming language.
As described previously, TinyBASIC is a simplified dialect
of BASIC designed for resource constrained computing envi-
ronments and provides only simple programming constructs.
We chose this variant of BASIC because its small memory
requirement enables us to target a wide range of sensor plat-
forms. Dunkels’ web site indicates that uBASIC is eventu-
ally intended for use in “adding a simple scripting language

to severely memory-constrained applications or systems (e.g.
a scripting language to the web server applications in uIP or
Contiki)”. Our purpose is to see whether novice program-
mers can write simple sensor network node applications us-
ing BASIC.

We ported the core interpreter to the Mantis Operating
System [3], a sensor network operating system that pro-
vides a consistent API for reading sensor values, network
communication and threading. The original code combined
with our extensions spans approximately 2000 lines of code.
After compilation for the Crossbow MicaZ, our interpreter
occupies 38kB of flash. For comparison, an empty Mantis
application has a 29kB footprint when compiled with the
same libraries. Our implementation is sufficiently compact
that we may later add more complex protocols for routing
and power management.

Our interpreter must be programmed directly through the
serial connection. This allows for rapid development and
testing but limits the extent to which motes can be repro-
grammed after being deployed. We are considering adding
programming via the network, which should not be onerous
as the interpreter stores the program in simple string form.

4.1 Language design and extensions

We extended the BASIC grammar to include statements
necessary for sensor network applications. Reading sensor
values occurs with the SENSE statement, which take an
expression indicating which sensor to read from (onboard
MicaZ sensors are supported) and the name of the variable
in which the value is to be stored. An analogous ADC state-
ment includes for reading arbitrary ADC channels. The
SENSE and ADC statements follow the semantics of the
INPUT statement found in almost all BASIC implementa-
tions.

The LED statement controls the onboard LEDs on the
platform. The LED statement is followed by a number spec-
ifying which LED is being manipulated and an expression
indicating if the LED is to be turned on or off. A simi-
lar BUZZ statement exists to control the sounder found on
many Crossbow sensor boards.

The SLEEP statement allows the programmer to halt op-
eration for a desired duration. SLEEP directly maps to the
thread sleep function provided by Mantis OS, which puts the
mote into a low-power state when no thread is scheduled to
run. The SLEEP statement is followed by an expression
indicating how long the mote is to sleep, given in millisec-
onds. As we will discuss later, it is critical that the novice
programmer understand the SLEEP statement.

To facilitate debugging, simple syntax checking is pro-
vided through error messages sent to the serial port. The
user can also debug using the PRINT statement, which out-
puts the given expression list to the serial port.

We expose one-hop communication in the form of the
SEND and RECEIVE statements. SEND mimics the func-
tionality of PRINT, but communicates the data using the ra-
dio on the mote. The user can construct a message string to
be broadcast using a combination of static text and integer
expressions. The RECEIVE statement listens for messages
sent with SEND. It mimics the BASIC INPUT statement.
In our user study, we do not expose the RECEIVE function
to the user but instead use it to implement base-station
functionality.



In our future work, we hope to evaluate how well naive
users respond to a range of communication options, each
providing different message abstractions, routing algorithms
and quality of service guarantees. A key challenge is how to
hide (or expose) unreliable message delivery to the novice.
However, this is beyond the scope of this paper.

In response to the user studies, we made several changes to
our BASIC implementation, described in 6.2. These changes
would not have been made without observation of the study
group and the code they produced.

5. USAGE
We now describe how a programmer interacts with our

BASIC implementation.
We have created a simple integrated development environ-

ment (IDE) for programming the sensor. When program-
ming, the sensor is attached to the development machine
via the serial port. When running, the sensor is detached,
and the IDE serves to print messages received from sensors.
Our interface has three main components. The first is a field
labeled “BASIC Code” that is used for entering and editing
user programs. The second field, “Mote Output” displays
any messages produced by the PRINT command as well as
any syntax errors generated by the program. This informa-
tion comes from the serial port-connected Mote. The final
field, “Base Station Output” displays any messages broad-
cast using the SEND message. These are received using
a Mote acting as a promiscuous listener. The programmer
may run and stop their application by selecting a menu item
within the environment.

We deliberately designed our IDE to allow novices to pro-
gram the motes without complication or external assistance.
In studying the efficacy of BASIC, we did not want the de-
velopment environment to be a distraction or source of fail-
ure. Furthermore, we wanted our user study to be runnable
without proctor intervention. Our intention with the study
is to focus on the difficulty of the programming language and
thus our interface does not provide additional support in the
form of code completion or line-by-line debugging. Our user
interface did not pose any known usability challenges during
our experimentation.

6. EVALUATION

The goals of our evaluation are

• to assess the ease at which novice and intermediate
users can develop correct and power efficient simple
sensor applications in both BASIC and TinyScript, and

• to determine the power and computational overhead of
BASIC.

We addressed the first goal by conducting a user study on
a population of novice and intermediate users, attempting to
mirror the “worst case” of application domain experts. Half
of users with absolutely no previous programming experi-
ence were able to complete simple sensor network tasks in
BASIC, while that same category of user had much less suc-
cess with TinyScript. Further, we found that novice and in-
termediate programmers both struggle with the event-driven
model provided in TinyScript. To address the second goal,
we directly measured power consumption as a function of
desired compute rate, comparing a BASIC implementation
with a C implementation. We found that interpreted BASIC
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Figure 1: Largest program sizes as reported by in-

termediate users in our two study groups. An ad-

ditional 23 users with no previous programming ex-

perience are not shown.

is, of course, considerably slower than C, and thus has a far
more limited maximum compute rate. Further, the power
consumption costs grow much faster with increasing com-
pute rate than C. However, for low rates, the two are quite
comparable. For example, for a “sense and send” applica-
tion running at a rate of 1 Hz, BASIC has only a 1.5% power
overhead compared to C. Finally, we show that a compiled
version of BASIC has a power profile similar to compiled C.

6.1 User study
To study the ease with which novices can use both BASIC

and TinyScript to write simple sensor network applications,
we conducted a user study with 40 participants.3 We re-
cruited participants from a population of current and recent
graduate and undergraduate students at a university, specif-
ically targeting persons with little to no programming expe-
rience. Our population includes a mix of students with con-
centration in both the sciences and liberal arts, and includes
roughly equal numbers of participants we consider novice

users and intermediate users. Novice users have no pro-
gramming experience, while intermediate users have mini-
mal programming experience. Users were randomly assigned
to BASIC or TinyScript. Figure 1 illustrates the number of
lines of code previously written by our intermediate users,
and shows that that similar participants were assigned to
each language.

For the BASIC study, we had 11 novices and 9 interme-
diate programmers while for the TinyScript study we had
12 novice and 8 intermediate programmers. The results we
report here are summarized according to these experience
levels, so the slight difference in the composition of the pop-
ulation sizes between the two languages is irrelevant. Among
intermediate programmers in both languages groups, the
mostly commonly reported languages with which the par-
ticipant had some previous experience were “C/C++” (9
participants), “Java/C#” (6 participants) and “Matlab” (6
participants).

3The study’s human subjects research protocol was ap-
proved by our Institutional Review Board, which permitted
us to recruit participants from a very large and diverse pool,
and to pay ($15) for their time.



6.1.1 BASIC experimental setup

Our experiments were carried out using two Crossbow Mi-
caZ motes connected to a single PC. The PC is a Dell desk-
top with a 2.0 GHz processor and 1.5 GB of RAM running
Windows XP. During the study, our software is the only
application visible to the user. Adjacent to the setup is a
desk lamp the user needs to complete the study. Only one
of the motes could be directly programmed by the partic-
ipant while the other acted as a base-station for receiving
data sent from the participant’s program. The BASIC inter-
preter is directly programmed via a serial connection that is
attached to the mote throughout the experiment.

At the beginning of the study, each participant is pre-
sented with a tutorial document4 explaining the BASIC pro-
gramming language and the sensor hardware. The tutorial is
broadly written to cover the entire (Tiny)BASIC grammar,
including such topics as variables and control flow. Addi-
tionally, the sensor network extensions supporting commu-
nication and reading sensor data are described.

Unless care is taken, the results of a study such as this
may be influenced by the quality of the tutorial. Before we
collected the results presented here, we conducted a prelimi-
nary study evaluating the clarity of the tutorial and iterating
its construction after each study. After evaluating the tu-
torial using three participants, we found that the tutorial
sufficiently clear for evaluation.

The participant is given 30 minutes to familiarize them-
selves with the language and programming environment.
During this time, they can use the IDE and mote to test
out program examples from the tutorial or otherwise. The
participant is not permitted to ask questions about the tuto-
rial. Once the tutorial is completed, we ask the participant
to fill out a questionnaire asking how difficult the tutorial
was to follow, how well the user understand BASIC, the ex-
tent to which they followed tutorial examples and whether
or not they felt the tutorial should be longer. The next
section discusses the questionnaire results.

After this questionnaire is filled out, three exercises are
given. We give the participant 20 minutes to complete each
exercise. The exercises and tutorial are designed such that
no example code in the tutorial can be easily transformed
into an exercise solution. In this way, the set of exercises is
non-trivial and forces the participant to apply the language
primitives learned in the tutorial to succeed. Each exercise
requires the use of at least three language features such as
sensing, delay, flow control and communication.

The exercises are as follows. Efficient solutions are illus-
trated in Figure 2.

1 The user is asked to write a simple program that blinks
one of the LEDs on the sensor hardware at the rate of 1
Hz. This tests the user’s understanding of basic node
programming and the use of actuation. A solution to
this exercise is possible with 4 to 5 lines of code.

2 The second exercise asks the user to write an
application that sends a message to the base-station
when a desk lamp next to the user is turned off. This
exercise requires that the user understand BASIC
control flow, base-station communication and reading
data from the sensors. The exercise instructs the user to

4The tutorial for each language, survey instru-
ments, and other materials are available at
http://www.eecs.northwestern.edu/∼pdinda/BASICSTUDY.

write power-efficient code and that a responsiveness of
1-2 seconds is adequate.

3 The final exercise transforms the second into an
actuation task in which an LED on the sensor is
controlled by measuring the ambient light. In the
exercise the user is instructed to illuminate an LED on
the mote if the desk lamp were turned off. Other than
this change, the exercises are identical.

After the participant completes the exercise or time expires,
we ask them to fill out a questionnaire describing the ex-
perience, soliciting how well they understood the problem
presented, the quality of their solution and the extent to
which they felt frustrated throughout the exercise.

Throughout the tutorial and exercises, we periodically
take a snapshot of the user’s program to provide insight into
the process of forming a solution and to identify any stum-
bling blocks. The final program is also saved so that we can
independently validate each solution and test its quality.

6.1.2 TinyScript experimental setup

We evaluate the TinyScript version distributed with TinyOS
version 1.1.15. Our experimental setup for evaluating TinyScript
is nearly identical to that used in the BASIC study. The
changes result from differences between the two development
environments.

The TinyScript evaluation used the same PC as that used
in the BASIC study, running a version of Ubuntu Linux in
a VMWare hosted virtual machine.5 While it is reasonable
to suspect our participants are more familiar with Windows
XP, no part of our study had the participants interacting
directly with operating system-level user interface and thus
we feel that the change does not influence our results.

We designed our TinyScript tutorial using existing tuto-
rial documents created by TinyScript’s authors. We edited
these tutorials into one cohesive document, elaborating on
certain concepts to make them more suitable for extremely
naive programmers. Further, we changed the tone and struc-
ture of the tutorial to match that of the BASIC tutorial,
making exceptions to increase the clarity of the language.
As with BASIC, we iterated on the TinyScript tutorial us-
ing participants recruited from the same population used
during the final study as to maximize the tutorial’s clarity.
In all, five participants were used. We also made a copy of
the tutorial available to the original author of the TinyScript
materials.

The remainder of the study, including the time allocated
to the tutorial and exercises and exercise ordering, was un-
changed for the TinyScript group.

6.1.3 Results

Tutorial questions. Following the tutorial, we asked par-
ticipants in each language study group to rate their experi-
ence with the tutorial across four questions. We used these
questions to get a sense for the participants response to
the language independent of their performance on the ex-
ercises. The four questions were as follows: “I felt the tuto-
rial was easy to understand”, “I feel that I understand [the
language]”, “I followed the tutorial and tried many of the
examples”, “I feel that the tutorial should be longer”. The
rating scale here, and in all figures that includes ratings is on

5Existence of the VM is invisible to the user.



10 led 1 0

20 sleep 1000

30 led 1 1

40 sleep 1000

50 goto 10

10 sense 0 a

20 if a < 800 then send "light is off"

30 sleep 1000

40 goto 10

10 sense 0 a

20 if a < 800 then led 1 1

30 if a > 800 then led 1 0

40 sleep 1000

50 goto 10
Exercise 1 Exercise 2 Exercise 3

Figure 2: Example efficient solutions for the exercises.
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(a) “I feel that I understand [the language].” (b) “I followed the tutorial and tried many of the examples.”
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(c) “I followed the tutorial and tried many of the examples.” (d) “I feel that the tutorial should be longer.”

Figure 3: User responses to prompts given after completion of tutorial.

a standard Leikert scale ranging from 1 to 7, where 1 corre-
sponds to “strongly disagree” and 7 corresponds to “strongly
agree” respectively. The results for each of the prompts are
given in Figure 3. They are broken down by language, and
by novice and intermediate users. The graphs are standard
Box plots showing the distribution of responses (25, 50, and
75 percentiles), with outliers shown individually.

Overall, we find similar trends across both languages. Par-
ticipants show slightly less confidence with TinyScript as in-
dicated by their response to “I felt the tutorial was easy to
understand”, with inexperienced TinyScript programmers
giving the lowest ratings. Likewise, the majority of the in-
experienced TinyScript programmers indicated that the tu-
torial was not long enough. We attribute the differences
in responses between the two languages to the difference in
complexity between BASIC and TinyScript, with TinyScript
asking its programmers to understand concepts such as event-
driven flow control and data types. Responses to the prompt
“I feel that I understand [the language]” are similar for each
experience level across both languages. We believe this re-
sult is due to the fact that the participants have not yet
experienced coding applications in either language.

User experience of tasks. After working on each exercise,
we asked participants to rate their experience. For each
exercise, we asked the following questions, using the same
scale used in the tutorial questions: “I understood what the
exercise was asking me to do”, “I was able to complete the
exercise in the provided time”, “I felt frustrated through the
exercise”. In Figure 4 we present these results. For the first
question, we see similar results between the two languages,
indicating that the communication of our exercises does not
seem to have introduced additional variation between the
languages. However, in the remaining questions we begin to
see more differentiation between the BASIC and TinyScript
programmers.

Measured performance on tasks. In Figures 5(a)–(d), we
present all data about the measured performance of users in
our study, as well as summaries by language and expertise.
As Figure 5(a) shows, all intermediate BASIC programmers
were able to complete at least one of the exercises.

In examining the BASIC solutions provided by partici-
pants, we discovered a common error in exercise 2 in which
participants reversed the usage of the PRINT and SEND
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Figure 4: User responses to a set of prompts given after each exercise. Columns correspond to different

exercises while rows indicate the question being answered.

statements. Recall that the semantics of the two statements
are nearly identical, which each taking a list of expressions
that is then communicated to either a “Base Station Out-
put” panel in BASIC IDE in the case of the SEND statement
and a nearly identical output window labeled “Mote Out-
put” contains data communicated via the PRINT statement.
We attribute the confusion between the two statements to
the design of our user interface and the lack of distinction be-
tween the two communication modalities. We note solutions
that use the PRINT statement instead of SEND but are oth-
erwise correct in the column titled “Correct (PRINT).” As
will be discussed, many participants using TinyScript expe-
rienced an identical confusion while attempting to complete
the second exercise.

Ignoring errors caused by this confusion, we find com-
pletion rates for intermediate programmers in BASIC were
100%, 89%, and 67% for exercises 1, 2, and 3, respectively.
In Figure 5(b), we present the comparable results for the in-
termediate programmers using TinyScript. For the first and
third exercises, the group performed approximately as well
as their counterparts using BASIC, with correct solutions
provided by 100% and 57% of the participants. However,
this trend does not continue for participants attempting the
second exercise, in which none of the TinyScript users were
able to provide correct solutions.

Inspection of participants’ solutions for exercise 2 reveals
that many struggled with using the array abstraction pro-
vided by TinyScript. Use of the arrays are required for

completing the exercise as the communication functions pro-
vided by TinyScript exclusively use array arguments. While
this fact makes direct comparison between BASIC and TinyScript
problematic for this exercise, there is nonetheless something
to be learned from the manner in which users struggled.
The array data structures provided by TinyScript appear to
have been designed to simplify their use: the arrays are of
a fixed size (10) and provide a shorthand for push and pop
operations, giving the structure the feeling of an array-stack
hybrid. Many participants struggled with this functionality,
creating solutions that would often cause the buffer to over-
flow. In Section 6.2 we discuss how we use these findings to
influence our implementation of arrays in BASIC.

The confusion regarding the distinction between serial and
wireless communication was also visible in the TinyScript
group. Analogous to the PRINT and SEND statements are
uart() and send() functions. Similar numbers of participants
confused their use as in the BASIC study, though no par-
ticipants were able to provide a solution that was otherwise
correct.

Finally, we find that both groups were able to provide effi-
cient implementations at similar rates. Efficient implemen-
tations are those that use each language’s (either implicit or
explicit) abstractions for power management.

We now draw our attention to the ability of novice par-
ticipants to complete the set of exercises. We report these
results for BASIC and TinyScript in Figures 5(c) and (d)
respectively. Here, the contrast between the two languages



Subject Correct LoC Efficient Correct Correct (PRINT) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 5 Yes Yes * 5 Yes No * * 2 2

2 Yes 5 Yes Yes * 3 No Yes 4 No 3 1

3 Yes 6 Yes No Yes 5 Yes Yes 6 Yes 2 3

4 Yes 5 Yes No Yes 4 Yes Yes 5 Yes 2 3

5 Yes 5 Yes No No * * No * * 1 1

6 Yes 5 Yes No Yes 5 Yes No * * 1 2

7 Yes 5 Yes No Yes 5 Yes Yes 4 No 2 2

8 Yes 5 Yes Yes * 5 Yes Yes 5 Yes 3 3

9 Yes 5 Yes Yes * 10 Yes Yes 5 Yes 3 3

100.0% 44.4% 66.7%

100.0% Percentage Correct (PRINT) 88.9% 66.7%

5.11 (0.33) 87.5% 4.83 (0.75)

TotalExercise 2Exercise 1 Exercise 3

Percentage Correct

Percentage Efficient

5.25 (2.05)

Percentage Correct

Percentage Efficient

Avg. LoC (Std. Dev.)Avg. LoC (Std. Dev.)

Percentage Correct

Percentage Efficient

Avg. LoC (Std. Dev.)

(a) Exercise results for intermediate programmers using BASIC.

Subject Correct LoC Efficient Correct Correct (Uart) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 8 Yes No No * * Yes 10 No 2 1

2 Yes 9 Yes No No * * Yes 12 No 2 1

3 Yes 8 Yes No No * * Yes 16 Yes 2 2

4 Yes 9 Yes No No * * No * * 1 1

5 Yes 8 Yes No No * * Yes 9 No 2 1

6 Yes 8 Yes No No * * No * * 1 1

7 Yes 6 Yes No No * * No * * 1 1

8 No * * No No * * Yes 10 Yes 1 1

100.0% 0.0% 71.4%

100.0% 0.0% 50.0%

8.00 (1.00) 0.0% 11.40 (2.79)

Exercise 1 Exercise 2 Exercise 3 Total

Percentage Correct Percentage Correct Percentage Correct

Percentage Efficient Total Correct (PRINT) Percentage Efficient

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) *

(b) Exercise results for intermediate programmers using TinyScript.

Subject Correct LoC Efficient Correct Correct (PRINT) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 5 Yes No Yes 4 Yes Yes 5 Yes 2 3

2 No * * No Yes 4 Yes No * * 0 1

3 Yes 5 Yes No No * * No * * 1 1

4 Yes 9 Yes Yes * 5 Yes Yes 6 Yes 3 3

5 No * * No * * * Yes 12 Yes 1 1

6 No * * No * * * No * * 0 0

7 Yes 5 Yes No * * * No * * 1 1

8 No * * No * * * No * * 0 0

9 Yes 5 Yes Yes * 4 Yes Yes 3 No 3 2

10 No * * No * * * No * * 0 0

11 Yes 5 Yes Yes * 3 No Yes 6 No 3 1

54.5% 27.3% 45.5%

100.0% Percentage Correct (PRINT) 45.5% 60.0%

5.66 (1.63) 80.0% 6.40 (3.36)

TotalExercise 1 Exercise 2 Exercise 3

Percentage Efficient Percentage Efficient

Percentage Correct Percentage Correct Percentage Correct

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) 4.00 (0.71)

(c) Exercise results for novice programmers using BASIC.

Subject Correct LoC Efficient Correct Correct (Uart) LoC Efficient Correct LoC Efficient Correct Efficient

1 No * * No No * * No * * 0 0

2 No * * No No * * No * * 0 0

3 No * * No No * * Yes 15 No 1 0

4 No * * No No * * No * * 0 0

5 No * * No No * * No * * 0 0

6 No * * No No * * No * * 0 0

7 No * * No No * * No * * 0 0

8 No * * No No * * No * * 0 0

9 No * * No No * * Yes 8 Yes 1 1

10 No * * No No * * No * * 0 0

11 No * * No No * * No * * 0 0

12 No * * No No * * No * * 0 0

0.0% 0.0% 16.7%

0.0% Percentage Correct (PRINT) 0.0% 50.0%

* 0.0% 11.50 (4.95)

Exercise 1 Exercise 2 Exercise 3 Total

Percentage Correct Percentage Correct Percentage Correct

Percentage Efficient Percentage Efficient

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) *

(d) Exercise results for novice programmers using TinyScript.

Figure 5: Exercise results for BASIC and TinyScript.



10 sense 0 a

20 if a < 800 then led 1 1

30 sleep 2000

40 if a > 800 then led 1 0

50 sleep 2000

60 goto 10

Figure 6: One participant’s solution to exercise 3.

The extra SLEEP statement indicates a misunder-

standing of proper duty cycling.

10 sleep period 1000

20 sense 0 a

30 if a < 800 then send "light is off"

40 resume

Figure 7: An example solution to exercise 2 using

the periodic sleep language extension made in re-

sponse to feedback from the user study.

becomes much more pronounced. For the first exercise,
54% of participants using BASIC were able to complete
the first exercise, whereas none of the participants using
TinyScript could do so. Likewise, 45% of the BASIC par-
ticipants completed exercise 2, while none of the TinyScript
participants had success. Finally, 17% of the participants
using TinyScript had success with exercise 3, compared to
46% of the BASIC group. Overall, on the order of half of

the novices—people who have never programmed before in

any language—were able to produce good solutions in BA-

SIC, a considerably larger fraction than with TinyScript.
We attribute the different rates of success between the two

groups to the relative complexity of the TinyScript language.
Each additional language feature (e.g., data types, event-
driven control flow, etc.) imposes a real cost on the novice
developer. Given the typical programming background of
our intermediate participants, it is likely that they have pre-
viously encountered topics such as types and variable scope.

Outside of the coarse categorization of “correct” versus
“incorrect” solutions, we observed another interested phe-
nomenon: few solutions submitted by the participants used
TinyScript’s event model and instead relied on an impera-
tive approach. Our TinyScript manual gives equal weight
to both approaches, and even provides an example of a pe-
riodic TinyScript program6. Only 3 out of the 15 total cor-
rect solutions across all of the TinyScript exercises used the
event-driven model.

Overall, our studies show that our extended BASIC allows
for novices who have never programmed before to complete
simple sensor network applications after a short tutorial.
We have also found that both novice and intermediate pro-
grammers struggle with the event-driven model provided by
TinyScript.

6.2 Language modifications
In examining the code produced by our study participants,

we found participants in both the BASIC and TinyScript
groups that either neglected to duty-cycle their applications

6This lead one participant to write “The solution is in the
manual!” in a free response question after exercise 1. The
example provided in the manual requires non-trivial modi-
fication to act as a solution to exercise 1.

or did so in such a way that introduced unnecessary delay to
event detection. An example of this can be seen in Figure 6.

In response to this issue, we designed and implemented a
simple extension to our BASIC interpreter to facilitate the
kind of duty-cycled applications common in WSNs. The
language extension adds the PERIOD keyword which can
be used as a modifier to the SLEEP statement along with
RESUME, a new statement that takes no arguments. An
example of how this statement can be applied to exercise 2
can be found in Figure 7. Should the execution time of the
code between the SLEEP and RESUME statement extend
beyond the given period, the interpreter issues a warning.

We also added array data structures to the uBASIC lan-
guage. Arrays variables are declared using the DIM key-
word followed by an array size enclosed in angle brackets.
Our decision to fix array size at allocation time and limit ar-
ray accesses to by-index comes from watching users struggle
with array indexing using TinyScript’s fixed-size buffers.

The study also prompted several smaller changes. In our
original implementation, arguments to SENSE and LED
functions specifying which sensor or LED to access were
given as integer expressions to maximize flexibility. These
arguments appeared to confuse several users of our language
during our evaluation so these arguments were changed to
keywords indicating the color of the LED actuated or the
name of the sensor. We believe that more semantic approach
will further ease without a major loss of flexibility.

To support a more diverse set of applications, we added
built-in function support to the BASIC interpreter, allow-
ing for collections of domain-specific functions to be added
to the interpreter at compile time. The functions are written
in embedded C, eliminating a potential energy and perfor-
mance bottleneck for complex operations. This extensibility
is intended for expert users who can build libraries that can
be easily used by novices.

Along with these changes, we are considering unifying
the PRINT and SEND statements into a single communica-
tion abstraction, with the interpreter handling the choice of
medium. Given our experience, such an abstraction would
prove less confusing for naive programmers. We plan on
exploring this idea as we focus on salient communication
abstractions novice WSN developers in future versions of
our BASIC implementation.

6.3 Power consumption
To understand the viability of using BASIC for sensor

network applications we measured the energy required to
execute typical sensor network tasks and provide an esti-
mate of the typical overhead we would expect for programs
written in BASIC. We also measured the overhead of purely
computational code in order to estimate the overhead in the
worst-case. For interpreted BASIC, we find that while com-
putationally intensive code sees a considerable drop in effi-
ciency compared to C, a typical sensor network task involv-
ing data acquisition and communication suffers only a 1.5%
increase in power consumption. Furthermore, compiled BA-
SIC shows performance comparable to code written directly
in embedded C.

6.3.1 Experimental setup

In all our experiments, we compare an application writ-
ten in BASIC to one written in embedded C using Mantis
OS for reading sensor values and performing communica-
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Figure 8: Power consumption as a function of exe-

cution rate.

tion. We compare the same BASIC code across our baseline
interpreter as well as a modified interpreter that maintains
a tokenized representation of the BASIC program. To eval-
uate compiled BASIC, as a proof-of-concept, we use an ex-
isting BASIC to C translator [34] to generate baseline C
code to which we then add the appropriate calls to Man-
tis. While we feel that the rapid development environment
provided by an interpreted language is one factor that aids
novice programmers, we imagine that an application devel-
oper could deploy a compiled version of his or her code after
it has been developed, debugged, and tested. In each power
comparison, the code is functionally identical, with both the
interpreter and both sets of embedded C code relying on the
same Mantis OS system calls.

To measure the worst-case overhead of the BASIC inter-
preter, we created a simple benchmark application that exe-
cutes a loop summing all integer values within a range, sleeps
for a fixed amount of time, and repeats. We use this applica-
tion to estimate the power requirements of several different
rates of execution between the two implementations. For
the purposes of our comparison, we equate one iteration of
the loop with one operation.

We also evaluate a typical sensor network use case by
comparing the power requirements of a “sense and send”
application. The goal of this application is to sense a value
from the environment at the rate of 1Hz and conditionally
send a message to a base station if that value passes a given
threshold. For this experiment, we set the threshold low
enough such that the value is always transmitted.

We perform our measurements using a Crossbow MicaZ
mote with an MTS300 sensor board. Power measurements
are taken using a National Instruments 6036E data acqui-
sition card connected to a PC running Windows XP. We
measure the voltage across a 10Ω resistor in series with the
power supply as a proxy for the current.

6.3.2 Results

Figure 8 illustrates the computational and power overhead
as we sweep the desired execution rate of our benchmark.
For an iteration rate of one operation (iteration), the in-

terpreter and native code solution result in a difference of
0.1 mW. The non-optimized, non-tokenizing BASIC inter-
preter reaches a saturation point at approximately 200 oper-
ations per second at which point the interpreter cannot exe-
cute any faster. The tokenizing implementation experiences
its saturation point at approximately 1800 operations per
second. At this execution rate, the interpreter uses about
18x more power than the native code solution. Note that
the compiled version of BASIC allows for an execution rate
roughly identical to that given by embedded C. This is be-
cause the limited semantics of our BASIC grammar allow
for a straight-forward translation into embedded C.

For the “sense and send” application, we measure a dif-
ference in power consumption of only 0.03 mW, with the
average power consumption of the BASIC application at
2.08 mW compared to the native C application at 2.05 mW.
The interpreted solution results in a 1.5% increase over C
in power consumption for a simple application. The tok-
enized version experiences a similar overhead of approxi-
mately 1.5%, while the compiled BASIC version has negli-
gible overhead.

Our results indicate that a purely interpreted language
like BASIC is acceptable for sensor network applications
that are not compute-intensive, which is many of them. To-
kenization increases the range of applications for which it is
appropriate. Finally, compiled BASIC has computation per-
formance and power characteristics that are virtually iden-
tical to native C.

7. CONCLUSIONS
We have addressed the problem of making sensor networks

easier to program by non-experts by exploring the use of
an extended BASIC programming language in this domain.
Our contributions include: (1) a BASIC implementation for
modern sensor networks, (2) the first-ever user study eval-
uating how well novice (no programming experience) and
intermediate (some programming experience) users can ac-
complish simple sensor network tasks in our BASIC and in
TinyScript (an alternative also designed for inexperienced
programmers), and (3) an evaluation of power-consumption
issues in interpreted languages like BASIC. Half of users
with no previous programming experience of any kind were
able to program simple network tasks using our BASIC.
Our experimental results show that use of a BASIC inter-
preter has little impact on the power consumption of ap-
plications in which computational demands are low, while
compiled BASIC behaves nearly identically to compiled C.
We strongly encourage further evaluation of prospective lan-
guages for sensor networks via carefully designed user stud-
ies.
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