

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-10-07

April 26, 2010

Comparing Approaches to Virtualized Page Translation in Modern VMMs

Chang Bae John R. Lange Peter A. Dinda

Abstract

Virtual machine monitors for modern x86 processors can use a variety of approaches to
virtualize address translation. These include the widely-used software approach of
shadow paging, with and without caching or prefetching, as well as the widely used
hardware approach of nested paging. We compare and analyze the measured performance
of these approaches on two different VMMs, KVM and Palacios, under a variety of
different workloads on physical hardware (AMD Barcelona). We find that which
approach is best is very dependent on the workload, and the differences can be quite
significant. The difference between the worst and best approach can be as much as a
factor of 53, with typical differences being a factor of 2. The difference between best
software approach and nested paging can be as much as a factor of 3, with typical
differences being small. These variations suggest that an adaptive approach to
virtualizing address translation is likely to be beneficial.

This project is made possible by support from the National Science Foundation (NSF) via
grant CNS-0709168, and the Department of Energy (DOE) via a subcontract from Oak
Ridge National Laboratory on grant DE-AC05-00OR22725. John Lange was partially
supported by a Symantec Research Labs Fellowship.

Keywords: virtual machine monitors, page translation, nested paging, shadow paging

Comparing Approaches to Virtualized Page Translation in Modern VMMs

Chang Bae John R. Lange Peter A. Dinda
Department of EECS; Northwestern University

Abstract
Virtual machine monitors for modern x86 processors can
use a variety of approaches to virtualize address transla-
tion. These include the widely-used software approach
of shadow paging, with and without caching or prefetch-
ing, as well as the widely used hardware approach of
nested paging. We compare and analyze the measured
performance of these approach on two different VMMs,
KVM and Palacios, under a variety of different work-
loads on physical hardware (AMD Barcelona). We find
that which approach is best is very dependent on the
workload, and the differences can be quite significant.
The difference between the worst and best approach can
be as much as a factor of 53, with typical differences be-
ing a factor of 2. The difference between best software
approach and nested paging can be as much as a factor of
3, with typical differences being small. These variations
suggest that an adaptive approach to virtualizing address
translation is likely to be beneficial.

1 Introduction

Virtual machine monitors (VMMs) must virtualize the
address space of guest operating systems. The guest OS
is presented with the illusion of controlling the transla-
tions from virtual addresses to physical addresses, how-
ever below the guest translations the VMM conceptually
adds an additional layer of indirection. What the guest
actually controls are the mapping from guest virtual
addresses (GVAs) to guest physical addresses (GPAs),
while the VMM controls the mapping from GPAs to host
physical addresses (HPAs).

On x86 and x86 64 processors from Intel and AMD,
VMMs implement two general approaches to these trans-
lations. In shadow paging, which does not require
special hardware support, the VMM essentially flat-
tens the GVA→GPA and GPA→HPA mappings into a

GVA→HPA mapping that the VMM implements us-
ing the existing paging mechanisms. In effect, the
GVA→GPA mappings are maintained as if they are con-
tained in the TLB, an approach described by Intel as a
“virtual TLB” [5, Chapter 26]. Guest operations, such as
page faults, page invalidations, etc, cause exits from the
guest to the VMM and are used to adjust the state of the
virtual TLB. The shadow page tables maintained by the
virtual TLB are used while the guest executes.

Shadow paging may have high overheads, particularly
when using architected hardware virtualization such as
Intel VT or AMD SVM since they have quite high costs
for entering or exiting the VMM [2], and the virtual TLB
may require many exits to maintain, especially when a
complex, multitasking workload is running in the guest.

The second general approach used by VMMs is known
as nested paging, which requires hardware support that is
available (in different forms) from both AMD and Intel.
In nested paging, the GPA→HPA mapping is made ex-
plicit and is supported, at the hardware level, by a second
set of page tables. The guest controls the GVA→GPA
translations by directly manipulating its own page tables
and doing localized TLB invalidations, without caus-
ing exits. The VMM controls the GPA→HPA mapping
by directly manipulating its page tables, which are visi-
ble only to the VMM. However, it should be noted that
during a page-walk, the“physical” addresses stored in
the guest’s page tables must themselves be translated
through the VMM’s page tables to be meaningful. These
translations “nest” inside of the steps of the guest’s page-
walk. If the page tables are n levels deep, an O(n)
page-walk from the guest’s perspective can, in fact, turn
into an O(n2) page-walk in the hardware. AMD (and
probably Intel) have attempted to address this slowdown
by extending page-walk caching (cf.[6]) to “two dimen-
sions” [4].

Even given earlier work showing that with two-

dimensional page-walk caching, nested paging has per-
formance that is near-native, it is not obvious that nested
paging is always preferable to shadow paging. In particu-
lar, shadow paging can also be optimized. One optimiza-
tion, which has been widely adopted is called shadow
paging with caching. A key performance hit in shadow
paging is that some guest operations, such as a CR3
write, are defined as flushing the TLB, and thus the vir-
tual TLB is flushed. In shadow paging with caching,
a much more subtle view of the guest’s paging struc-
tures is maintained, and this view allows many virtual
TLB flushes to be avoided. In effect, the virtual TLB
can maintain and switch among numerous guest con-
texts, selectively flushing entries only as needed. Due to
the complex nature of the semantics of x86 paging [7],
maintaining the correct behavior of caching given all a
guest may do is a significant challenge. Shadow paging
with caching has much more implementation complexity
in the VMM than either plain shadow paging or nested
paging.

Another potential shadow paging optimization, which
is not widely implemented, to the best of our knowledge,
is shadow paging with prefetching. Here, the idea is to
maintain the simple virtual TLB model, but to refill it
very quickly after any operation that flushes it. Essen-
tially, this relies on spatial locality of reference. When
we see a miss in the virtual TLB (a page fault that causes
an exit to the VMM), we fetch not only the relevant page
table entry from the guest, but nearby entries as well.
Such prefetching is more complex that it appears since
we must intercept guest changes to those entries that
have been prefetched, but not yet used. The hope is that
prefetching will provide many or most of the benefits of
shadow paging with caching while avoiding some of its
implementation complexity.

A natural question to ask is which of these four ap-
proaches is “best”?. The answer is unclear. For example,
in previous work in which we considered the virtualiza-
tion of a parallel supercomputer [10], we found a sur-
prising result. For a particular benchmark, a high speed
parallel conjugate gradient solver, shadow paging (with-
out caching or prefetching) performed better than nested
paging when a particular guest OS was used. When a
different guest OS was used, nested paging performed
better.

As far as we are aware, there has been no publica-
tion of a detailed performance evaluation of the four ap-
proaches to address space virtualization described above
when driven by a wide range of workloads. The goal
of this paper is to fill this gap. We consider imple-
mentations of shadow paging with and without caching,

and nested paging in the KVM virtual machine moni-
tor, and implementations of all four approaches in our
own Palacios VMM. On both VMMs, we run six differ-
ent benchmarks, ranging from microbenchmarks to high-
level benchmarks such as TPC-H. We measure perfor-
mance on real hardware (AMD Barcelona).

The primary contributions of our paper are the detailed
performance measurements. However, based on these
measurements, we can also draw several conclusions, as
follows.

• The choice of the best approach for address space
virtualization is heavily dependent on the workload.
There is no single best answer.

• The differences in performance between approaches
for a given workload can be significant. The differ-
ence between the worst and best approach can be as
much as a factor of 53, with typical differences be-
ing a factor of 2. The difference between best soft-
ware approach and nested paging can be as much as
a factor of 3, with typical differences being small.
The choice matters.

• The workload’s CR3 write rate and TLB miss rate
are strongly predictive of the best approach for a
given workload. The CR3 write rate can be mea-
sured by the VMM and the TLB miss rate can be
measured using the architectural performance coun-
ters.

• These differences strongly suggest that an adaptive
approach to virtual address translation in the VMM
seems like a good idea. Whether such adaptation
should be done at startup time or continuously re-
mains to be seen. Perhaps the choice should be
adaptive.

2 Paging approaches

Paging is the process of converting a process-specific
logical address into a system physical address. It is the
primary mechanism by which the operating system can
isolate the address space of processes and control the al-
location of physical memory. In a virtualized environ-
ment, paging is complicated because there are essentially
two levels of conversion that occur. We now describe the
conceptual model that the VMM creates for the guest OS
and some approaches to implementing it, shadow pag-
ing, shadow paging with caching, shadow paging with
prefetching and nested paging.

The VMM uses paging to create what appears to be
a physical memory map for the guest OS. On the x86

(or x86 64), for a non-paravirtualized guest, this guest
physical memory map typically corresponds to that of a
PC platform with a given amount of memory. We can
consider the guest physical memory map to consist of
regions, contiguous runs of pages starting at page bound-
aries. For historical reasons, a PC memory map is rather
complicated, with numerous specialized regions occur-
ring below the 1 MB “line”, another specialized region
from 1 MB to 16 MB, and others in at higher memory
locations (e.g., PCI devices and APICs). For a paravirtu-
alized [3] guest, the memory map can be made simpler
as the guest OS has been modified such that backward
compatibility is not required.

Some regions are mapped to physical memory, others
to physical, memory-mapped devices (passthrough I/O),
and still others to virtual, memory-mapped devices im-
plemented by the VMM itself. For the former two kinds
of regions, the VMM intends that any guest memory ref-
erence to the region be translated and handled by the
hardware ideally without VMM intervention. For the lat-
ter, it is intended that an exit occurs so that the VMM can
emulate the memory access.

Conceptually, in a non-paravirtualized VMM, the
guest OS controls the translation from guest virtual ad-
dresses (GVAs) to guest physical addresses (GPAs) by
manipulating page tables in its address space. In a par-
avirtualized VMM, these manipulations are made by ex-
plicit hypercalls, allowing the VMM to veto or transform
the requested manipulations. Conceptually, the VMM
controls the translation from GPAs to host physical ad-
dresses (HPAs) by manipulating some other structure
that implements the mapping. For the first two kinds of
regions on the guest physical memory map, mappings are
stored in the structure. For the third kind, the lack of a
mapping in the structure causes the desired exit.

2.1 Shadow paging

Shadow paging is virtualization support for paging that
is implemented in software. To understand shadow pag-
ing, it is helpful to differentiate the privilege level of the
guest page tables and the VMM page tables. The VMM
is more highly privileged and thus has ultimate control
over the control registers used to control the normal pag-
ing hardware on the machine. Because of this, it can al-
ways assure that the page tables in use are the page tables
it desires. These page tables, the shadow page tables,
contain mappings that integrate the requirements of the
guest and the VMM. The shadow page tables implement
a mapping from GVA to HPA and are in use whenever
the guest is running.

sCR3

Page
Frame

Page
Frame

Shadow Page
Table

gCR3

Guest Page
Table

Page
Directory

Page Table

Page
Directory

Page Table

Page
Frame

Figure 1: Shadow paging

The VMM must maintain the shadow page tables’ co-
herence with the guest’s page tables. A common ap-
proach to do so is known as the virtual TLB model [5,
Chapter 26]. The x86’s architected support for native
paging requires that the OS (guest OS) explicitly inval-
idate virtual address (GVAs) from the TLB and other
page structure caches when corresponding entries change
in the in-memory page tables. These operations (in-
cluding INVLPG and INVLPGWB instructions, CR31

writes, CR4.PGE writes, and others) are intercepted by
the VMM and used to update the shadow page tables, in
addition to the TLB and paging structures. The imple-
mentation must also use page protections so that it can
update the accessed bits in the guest page tables as appro-
priate. The interception of guest paging operations can
be expensive as each one requires at least an exit from the
guest, an appropriate manipulation of the shadow page
table, and a reentry into the guest. A typical exit/entry
pair, using hardware virtualization support, requires in

1CR3 contains the pointer to the current page table.

excess of 1000 cycles on typical AMD or Intel hardware.
Figure 1 illustrates the state involved in using shadow

page tables, using 32 bit, two-level page tables. 64 bit
page tables are similar, but four levels are possible. Here,
gray entries in guest page table and shadow page table
are synchronized, while black entries in guest page ta-
ble are not reflected in the shadow page tables. A guest
access to an address mapped by one of these missing en-
tries in the shadow page table will cause a page fault to
which the VMM will respond by updating the entry. On
a guest context switch, the guest will write CR3, and in
response the VMM will flush the contents of the shadow
page tables. As the guest executes, the shadow page ta-
bles will be rebuilt, one page table entry at a time.

2.2 Shadow paging with caching

The need to update the shadow page tables by page faults
can make shadow paging, as described above, quite ex-
pensive, especially when context switches are frequent.
Not only is the page fault cost incurred, but also the VM
exit/entry cost, and either a partial (e.g., with AMD’s
ASID tagged TLB) or complete physical TLB invalida-
tion.

Shadow paging with caching attempts to reuse shadow
page tables. Ideally, the reuse is sufficient that a context
switch can be achieved essentially with only one exit, to
change the CR3 value (the shadow CR3, marked as sCR3
in the figures). The VMM maintains in memory both
shadow page tables corresponding to the current context,
and shadow page tables corresponding to other contexts.
The distinction is not perfect—it is perfectly legitimate
for the guest to share guest page tables among multiple
contexts, or even at different levels of the same context.
Furthermore, the guest kernel has complete access to all
of the guest page tables, for all contexts, at any time.

While extending shadow page tables with caching is
conceptually simple, the implementation challenge lies
in being able to correctly invalidate shadow page table
entries in guest contexts other than the one currently ex-
ecuting, including in the presence of sharing. When any
guest page table is modified, the VMM must propagate
those changes to the relevant shadow page tables in the
cache. Usually, this change takes the form of an inval-
idation. That is, if the guest modifies a page table en-
try (PTE), the corresponding PTEs (there may be more
than one, since the page may be shared) in the shadow
cache must be invalidated. Further, the changes need to
be propagated. For example, if a change to a first level
page table entry (a “page directory entry” or PDE in x86
terminolgy), lower-level PTEs must also be updated.

gCR3

Guest Page
Table

Page Table

Page
Directory

Page Table

sCR3

Shadow
Page Table
w/ Caching

Cached Page
Table

Page
Directory

Page Table

Page
Frame
Page

Frame
Page

Frame

Page
Frame
Page

Frame

Write Protect

Figure 2: Shadow paging with caching

Notice furthermore that it is perfectly legitimate for
the guest to modify a PTE for a context different from the
one that is currently in use, and not immediately invali-
date it via an INVLPG instruction. This is because the
guest can assume that the needed TLB flush will happen
when there is a switch back to the now modified context,
as a CR3 write forces a TLB flush.

To keep the shadow page table cache coherent and
synchronized with respect to the guest page tables, the

Page
Frame

sCR3

Shadow
Page Table

w/ Prefetching

gCR3

Guest Page
Table

Page
Directory

Page Table

Page
Directory

Page Table

Page
Frame

Write Protect

Page
Frame

Page
Frame

Figure 3: Shadow paging with prefetching

VMM needs to be aware of when any guest page table for
which it has a cached shadow representation, is changed.
To do this, we write-protect pages used as page tables in
the guest by marking their corresponding entries in the
shadow page tables as read-only. When the guest mod-
ifies one of its page tables, a page fault occurs, and the
VMM now has the opportunity to invalidate (or update)
relevant entries in the shadow page table cache. It also
emulates the relevant write to the guest page table entry,
or simply marks the guest page writable and restarts the
faulting instruction. These operations are summarized in
Figure 2.

Notice that it is not necessarily the case that caching
will improve the performance of shadow caching. While
it having cached shadow page tables will make context
switch costs much lower, it is also the case that we are
introducing more exits due to the monitoring of the guest
page tables.

2.3 Shadow paging with prefetching

Shadow paging with management according the virtual
TLB model updates at most one shadow page table en-
try per paging-related exit to the VMM. While this has
the virtue of simplicity, it means that rebuilding shadow
page tables, say on a context switch, involves many exits.
Shadow paging with caching attempts to ameliorate this
through reuse. We also consider ameliorating it through
prefetching, by amortizing many shadow page table en-
try updates per exit. Figure 3 illustrates how this shadow
paging with prefetching works. The basic idea is that
when a page fault occurs due to a shadow page table en-
try being out of sync with the guest page table entry, we
update not only the faulting entry, but also all the other
entries (1024 entries total for 32 bit machines) on the
shadow page table.

Because prefetching does not need to handle sharing
from one guest context to another, the hope is that it
will provide many of the performance benefits of shadow
paging with caching, while having a lower implementa-
tion complexity. However, prefetching does need a more
complex synchronization scheme. In particular, after a
context switch (CR3 write), a guest OS need not execute
INVLPG instructions because the write assures an empty
TLB according to the architectural specification. Sup-
pose we prefetch all of a guest page table’s entries on the
first access to a page table entry on it. The guest can then
modify one of those other entries without invalidation,
but the VMM would be unaware of the change. To han-
dle such cases, the VMM must write protect shadow page
table entries mapping guest page tables in order to be
aware of these modifications. The infrastructure to cap-
ture these modifications is the same as for shadow paging
with caching, but the work that is done in response to a
modification is much simpler.

2.4 Nested paging

Nested paging is a hardware mechanism that attempts to
avoid the overhead of the exit/entry pairs needed to im-
plement shadow paging by making the GVA→GPA and
GPA→HPA mappings explicit and separating the con-
cerns of their control, making it possible to avoid VMM
intervention except when a GPA→HPA change is de-
sired. Both AMD and Intel have developed variants of
nested paging.

In nested paging, the guest page tables are used in
the translation process to reflect the GVA→GPA map-
ping, while a second set of page tables, visible only to
the VMM, are used to reflect the GPA→HPA mapping.
Both the guest and the VMM have their own copy of

1
gL4

6
gL3

11
gL2

16
gL1

nL4 nL2nL3 nL1

21 24

nCR3

gVA

gCR3

gPA

hPA

Nested page table

G
u
e
s
t

p
a
g
e
 t

a
b
le

Figure 4: Nested paging

the control registers, such as CR3. When a guest tries
to reference memory using a GVA and there is a miss in
the TLB, the hardware page-walker mechanism performs
a two dimensional traversal using the guest and nested
page tables to translate the GVA to HPA. This process
is shown in Figure 4, adopting the style of Bhargava,
et al [4]. When the page walk completes, the result is
that the translation is cached in the TLB. Intermediate
results may also be cached in a structure referred to as a
page-walk cache (PWC) by AMD and a paging-structure
cache (PSC) by Intel.

We now explain the page walk in more detail, using
Figure 4. The guest CR3 register provides a pointer to
the guest page tables. This pointer is a GPA. Using this
GPA, the page-walker goes through as many as 4 lev-
els of nested page tables (nL1 to nL4) before the HPA
is obtained. This is the actual physical address of the
top level guest page table. This HPA along with the next
chunk of the original address provides us with the appro-
priate entry in that table. This entry is again a GPA, and
thus needs to be translated through a nested page walk
to arrive at an HPA for the second level guest page ta-
ble. This process continues through the next two levels
of guest page tables. At this point, the original guest vir-
tual address has been translated to a final guest physical
address. This is mapped through the nested page tables
to arrive at the final host physical address.

A TLB miss under nested paging incurs a very heavy
cost, as compared to all forms of shadow paging. This
is because of the two dimensional walk we have just de-
scribed. A four level guest page table walk could invoke
up to 5 accesses to the nested page tables for every level
of guest page tables. This means, the cost for a TLB miss

KVM Palacios
VMM + shadow paging 47037 30458

VMM + shadow paging with caching 48368 31558
VMM + shadow paging with prefetching - 31655

VMM + nested paging 46952 28593

Figure 5: Implementation complexity of different ap-
proaches in the KVM and Palacios VMMs. Measure-
ment is in lines of code as measured using wc. Shadow
paging with prefetching is not implemented in KVM.

is 24 memory references, providing no other support.
Recently, researchers at AMD have developed ap-

proaches to mitigate the cost of these multi-level nested
page walks [4]. The concept of a page walk cache is
extended to be “two dimensional”, allowing for signif-
icant reuse in page-walks. The upshot of this is that
the expected number of memory references in a nested
page walk can be considerably lower than 24. The au-
thors also introduced a nested TLB, which is a ded-
icated guest physical address to host physical address
TLB. This nested TLB can “short circuit” the rows in
the page walk shown in the Figure. Combining the two
dimensional page walk cache and the nested TLB results
in 86% − 93% of native (no virtualization) performance
for a range of server, integer and floating benchmarks.
While these improvements are impressive, in the worst
case, a page walk can still result in up to 24 memory
references. The authors do not consider the effects of
context-switching among multiple guests.

3 Experimental setup

We now describe our experimental setup, beginning with
the implementations of the four paging virtualization ap-
proaches used in the KVM and Palacios VMMs, and
then describing the machines we used to measure per-
formance and the emulator we used to get a finer grain
view of behavior.

3.1 Implementations in KVM

The Kernel-based Virtual Machine (KVM) [8] is a Linux
subsystem that allows virtual machines to be instantiated
directly on top of Linux. KVM supports hardware vir-
tualization extensions from AMD [1] and Intel [13]. It
supports full system virtualization.

We started from the first version of KVM that sup-
ported AMD’s nested paging, KVM 61. This version
of KVM also supports shadow paging without caching
in addition to shadow paging with caching, although not

by default. Newer versions of KVM have retired sup-
port for shadow paging without caching. Using KVM
61 allows us to readily evaluate the paging virtualization
approaches described in Section 2 in a modern, widely
used VMM, with the exception of shadow paging with
prefetching.

It is important to illustrate the complexity of the differ-
ent approaches, which we do in Figure 5. Here, we show
the lines of code using wc over the core KVM 61 imple-
mentation, excluding the QEMU-derived I/O back-end.
As we can see, the least complex implementation is for
nested paging, with shadow paging being close behind.
Caching adds over 1300 lines of code.

3.2 Implementations in Palacios

Our implementation is in the context of the Palacios
VMM. Palacios is an OS-independent, open source,
BSD-licensed, publicly available type-I VMM designed
as part of the V3VEE project (http://v3vee.org).
The V3VEE project is a collaborative community re-
source development project involving Northwestern Uni-
versity and the University of New Mexico, with close
collaboration with Sandia National Labs for our efforts
in the virtualization of supercomputers. Detailed infor-
mation about Palacios can be found elsewhere [10, 9, 17]
with code available from our site.

Palacios achieves full system virtualization for x86
and x86 64 hosts and guests using either the AMD SVM
or Intel VT hardware virtualization extensions and either
shadow or nested paging. Currently, the entire VMM, in-
cluding the default set of virtual devices is on the order
of 47 thousand lines of C and assembly. When embed-
ded into Sandia National Labs’ publicly available, GPL-
licensed Kitten lightweight kernel, as done in this work,
the total code size is on the order of 108 thousand lines.
Palacios is capable of running on environments ranging
from commodity Ethernet-based servers to large scale
supercomputers, specifically the Red Storm Cray XT su-
percomputer located at Sandia National Labs.

We have added shadow paging with caching as well
as shadow paging with prefetching to Palacios. Previous
versions of Palacios already supported plain shadow pag-
ing and nested paging. Our implementation of shadow
paging with caching is similar to KVM’s, and our imple-
mentation of shadow paging with prefetching uses the
same invalidation detection logic that the caching im-
plementation uses. Prefetches involve the entire faulting
page table (1024 entries in 32 bit mode).

It is important to point out that KVM and Palacios
are configured to handle TLB updates due to exits dif-

ferently in this study. KVM uses AMD’s Address Space
ID (ASID) construct for tagged TLBs, including selec-
tive flushing on VM exit/entry. In this study, Palacios is
configured not to use ASIDs, and to do TLB flushes on
VM exit/entry.

Figure 5 shows implementation complexity as lines
of code for Palacios. Virtual devices are not counted,
similar our exclusion of QEMU back-end code from
the KVM numbers. As with KVM, nested paging
has the simplest implementation. Unlike with KVM,
shadow paging requires considerably additional code
(about 2000 lines). Adding caching requires an addi-
tional 1100 lines. Here, prefetching is implemented in
the caching framework, so we cannot measure its com-
plexity directly. However, it is interesting to see that only
an addition 100 or so lines of code needed to be added to
shadow paging with caching.

In Palacios, we also implemented an approach that,
while not intended to be practical, helps us to measure
costs. This is referred to as shadow paging with synchro-
nization. This approach is essentially plain shadow pag-
ing but with the page table monitoring needed for shadow
paging with caching or prefetching. This lets us decou-
ple the costs of page table monitoring from the costs of
maintaining the caching or prefetch structures.

3.3 Hardware testbed

Our experiments were performed on a Dell PowerEdge
SC1450 that has an AMD Opteron 2350 processor with
2GB of RAM. This model of AMD CPU is based on
the Barcelona architecture, which supports nested pag-
ing. Both KVM and Palacios are measured on this ma-
chine. We also conducted some measurements on a ma-
chine with an AMD Opteron 3276 processor, which im-
plements the newer Shanghai architecture. We would
like to compare nested paging with and without the two
dimensional page walk caching described earlier. How-
ever, we have been unable to determine which specific
AMD processors support this new optimization.

3.4 Simulation testbed

Beyond determining “which is best” for a given work-
load, we would also like to identify the characteristics
of the workloads that correlate with performance in dif-
ferent approaches. To characterize our workloads, we
examined microarchitectural metrics. Basically we tried
to figure out the frequency of memory accesses by look-
ing at cache transactions and miss rates. Furthermore,
since MMU systems are virtualized in our work, we also

CPU a generic 64-bit AMD Athlon 64
(Opteron processor w/o on-chip devices)

Cache 16KB (line number: 256,
line size: 64, associativity 2,

replacement: LRU)
TLB DTLB: 64 entries 4K (associativity: 4)

64 entries 4M (associativity: 4)
ITLB: 64 entries (associativity: 4)

64 entries 4M (associativity: 4)
Memory 1.5GB

Figure 6: Architectural configuration of SIMICS used to
characterize workloads.

TLB CR3 Memory accesses
miss write per instruction

Worst case High Low 0.91
Boot Low - 0.28
SpecCPU VPR High Low 0.52
HPCC - High 0.58
TPC-H Low - 0.60
Kernel compile - - 0.52

Figure 7: Overall characteristics of the workloads.

examined TLB behavior such as TLB misses, fills, inval-
idates, and replacements. The rate of context switches at
the guest level is also important.

To measure such microarchitectural metrics, we used
the SIMICS full system simulator [16, 12]. The specific
SIMICS configuration we employed is presented in Fig-
ure 6.

4 Workloads

We employed a range of different workloads to evaluate
the virtualization approaches implemented in the VMMs.
The same benchmark binaries were used in all cases,
with the exception of kernel compilation. For KVM, the
guest ran Fedora Core 5 (Linux kernel 2.6.15 for 64 bit),
while for Palacios, Puppy retro 3.01 (Linux kernel 2.6.18
for 32 bit) was used. In both cases, workloads were
scaled to available guest physical memory to avoid I/O
operations as much as possible. It is important to point
out that due to these differences, and others, performance
cannot be compared between VMMs.

Our purpose in considering both 32 and 64 bit guests
was to try to capture the different page walk behavior
in nested paging, in particular the quadratic growth in
page walk depth when we move from 32 bit (2 level page
tables) to 64 bit (4 level page tables).

We used SIMICS to carefully characterize our work-

0.18

0.68

0.33
0.42 0.37 0.41 0.11

0.23

0.19
0.16 0.22 0.19

0.00

0.20

0.40

0.60

0.80

1.00

D
-C

ac
h

e
 A

cc
e

ss
 p

e
r

In
st

ru
ct

io
n

data write

data read

Figure 8: Characteristics of workloads: cache accesses
per instruction.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Read Hit ratio

Write hit ratio

Figure 9: Characteristics of workloads: cache misses per
instruction.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

data miss

data fill

data invalidate

data replace

inst. miss

inst. fill

inst. invalidate

inst. replace

Figure 10: Characteristics of workloads: TLB misses per
instruction.

3.01E-06 7.78E-09 6.50E-07 3.24E-09

1.30E-04

5.16E-07
0.00E+00

4.00E-05

8.00E-05

1.20E-04

1.60E-04

Figure 11: Characteristics of workloads: CR3 writes per
instruction.

loads. Probably the most important figure summariz-
ing the characteristics of the workloads is Figure 7. As
we will see the characteristics shown there (in particular
the characterizations of the TLB miss rate and the CR3
write rate) are predictive for which paging approaches
are likely to work well.

Figure 8 shows the overall ratio of cache accesses per
instruction, broken down by data reads and writes, while
Figure 9 presents the cache hit rates. Memory access
operations are dominant, except for kernel compilation.

Figure 11 shows the frequency of CR3 writes per in-
struction, which is essentially the context switch rate.
Figure 10 shows the TLB misses per instruction. Note
that CR3 writes and (virtual) TLB misses are what drive
shadow paging approaches.

4.1 Worst case

Worst case is a microbenchmark that we wrote to strike
a pain point for nested paging. It has a reference pattern
that touches data such that there is minimal spatial and
temporal locality both for the accessed data and for the
page tables that support it. That is, it tries to maximize
both data cache miss rate and TLB miss rate.

4.2 Boot

The boot benchmark measures the time to boot the guest
OS into interactive mode, including both kernel boot-
strap and init. Different from the other workloads, except
kernel compilation, this workload results in the guest us-
ing large pages. Also, the memory access rate during
execution is quite low compared to the other workloads.

0.78
0.84

0.90
0.95

0.75

0.88
0.80 0.83

0.87 0.84

Native runtime / Nested paging runtime

Figure 12: Performance comparison of SpecCPU 00:
Native versus Nested paging

This helps us to consider the effect of memory access
rate on the performance of the different approaches.

4.3 SPEC CPU 2000 VPR

The SPEC CPU 2000 1.2 suite [14] contains computa-
tionally intensive benchmarks based on real-life applica-
tions, some of which have large data footprints which
stress memory hierarchy. We evaluated various Spec-
CPU benchmarks, comparing native execution (without
any virtualization) and KVM-based virtualized execution
using nested paging. Figure 12 shows the performance
of the virtualized benchmarks compared to native execu-
tion. The benchmark 175.vpr shows itself one of most
affected benchmarks under nested paging, and thus we
selected it.

Versatile Place and Route (VPR) is an integrated cir-
cuit computer-aided design program, automatically plac-
ing and routing logic blocks and I/O pads in a Field-
Programmable Gate Array chip. This benchmark has a
very low context switch rate, as shown in Figure 11.

In addition to exhibiting the most significant decline
in performance when run with virtualization, VPR is also
distinguished by its microarchitectural characteristics, as
illustrated in the earlier figures. It has a moderate work-
ing set size, and memory access rate per instruction. The
TLB miss rate is quite high. On the other hand, the CR3
write rate indicates that context switches are infrequent.

4.4 HPC Challenge

HPC Challenge 1.3 [11] is collection of eight bench-
marks, each of which measures performance focusing
on a different part of the memory hierarchy. HPL and

DGEMM stress computation performance. PTRANS
measures data transfer rate. FFT computes discrete
Fourier Transform with stresses on interprocess com-
munications. STREAM targets measurement for mem-
ory bandwidth and its computation rate. RandomAc-
cess updates some memory location randomly selected
and stresses interprocess communication. Section 5 de-
tails how this characteristic affects performance results.
LatencyBandwidth measures latency and bandwidth of
communication patterns. In most of the benchmarks, the
memory system is measured with high stressful patterns
of accesses.

In contrast with the other workloads, the context
switch rate is quite high in the HPC Challenge bench-
marks. We expected therefore that this benchmark
will best showcase the benefits of shadow paging with
caching and nested paging.

4.5 TPC-H

TPC-H is a benchmark that emulates a decision-support
system (DSS) [15]. We run it with the scale factor set to
one (1 GB) which significantly scales down the work-
ing set size to fit into main memory. DSS workloads
run at low concurrency level, and DSS queries are ta-
ble scans or clustered index scans. From the 22 available
queries, we selected the pricing summary report query.
Prior measurements [18] show that this query is domi-
nated by read and write system operations.

4.6 Kernel compile

Kernel compilation is compute-intensive work and it
generates many different processes. Our benchmark
measures the elapsed time to do a complete build of min-
imal configuration of a Linux kernel (2.6.14 for KVM
and 2.6.17 for Palacios) tree stored on local ram disk.
This workload performs a moderate amount of accesses
to small files as well as spending time on process man-
agement, hampering performance. As Figure 8 shows,
the kernel compile has moderate memory access rate per
instruction. It also features moderate TLB miss and con-
text switch rates, as shown in earlier figures.

5 Results

As described in Section 4, our evaluation focused on a
set of workloads with largely different behaviors. We
ran each benchmark on the hardware testbeds described
in Section 3 and measured their performance under each
of the combinations of VMM and paging approach. The

evaluation resulted in the average, min, and max times
from five runs of each workload. We note again that the
structure of the experiments does not allow direct com-
parisons between the two VMMs. We now describe the
most important points we found from our measurements,
and present the raw data as well.

There is no one best virtual paging approach. Fig-
ures 13 (KVM) and 14 (Palacios) summarize our results,
showing the best approaches for each combination of
VMM and workload. As we can see, the best virtual
paging approach is most strongly dependent on the work-
load.

Expanding on the summary figures, Figure 15 shows
the detailed runtime results for each workload in sec-
onds, comparing the four different MMU virtualization
approaches for both VMMs. The error bars indicate the
minimum and maximum run-times.

The performance differences between the ap-
proaches are significant. The summary figures (Fig-
ures 13 (KVM) and 14 (Palacios)) also indicate the rel-
ative speedups between the best and worst paging ap-
proaches for each workload, and the relative speedups
between the best shadow paging approach and nested
paging. These speedups range from 0.5x to 3x for com-
paring the best shadow paging approach to nested pag-
ing, and from 1.0x to 53x for comparing the best ap-
proach and the worst approach overall.

It should also be noted that generally the performance
of nested paging versus the best shadow paging approach
is much more consistent than the overall best approach
versus the worst approach. Nested paging never outper-
forms the best shadow paging approach by more than a
factor of 3 and never under-performs by more than a fac-
tor of 2. However when the overall best and worst ap-
proaches are compared, the performance range is much
larger. As an extreme case the best approach for the
HPCC workload demonstrates a speedup of 17(KVM)
and 52(Palacios) over the worst approach. This clearly
demonstrates how certain workloads can result in rad-
ically different performance profiles depending on the
type of virtual paging being used.

A workload’s CR3 write rate and TLB miss rate
are predictive for the best performing virtual paging
approach. Figure 7 shows a high level view of how each
workload interacts with the memory system. As a re-
minder, we derived the table from a study where we used
SIMICS to collect a set of low-level microarchitectural
measurements for insight into the memory access behav-
ior of each workload. When Figure 7 is compared and
contrasted with the high-level summary of the results of
our hardware performance measurements, given in Fig-

Workload Best Approach Speedup (Best / Worst) Speedup (Best shadow / nested)
Worst case shadow/shadow+cache 2.56x 2.56x
Boot nested/shadow/shadow+cache 1.06x 0.94x
SpecCPU VPR shadow+cache 1.19x 1.19x
HPCC nested/shadow+cache 17.52x 0.98x
TPC-H all same 1.03x 0.98x
Kernel compile nested 1.59x 0.75x

Figure 13: High level comparison of KVM workload results showing the best paging approach, speedups between the
best and worst approaches, and speedups between the best shadow approach and nested paging

Workload Best Approach Speedup Speedup
(Best / Worst) (Best shadow / nested)

Worst case shadow/shadow+cache/shadow+prefetch 2.86x 2.86x
Boot nested 1.57x 1.16x
SpecCPU VPR shadow/shadow+cache/shadow+prefetch 1.08x 1.08x
HPCC nested 52.79x 0.75x
TPC-H nested/shadow 1.73x 0.88x
Kernel compile nested 3.49x 0.57x

Figure 14: High level comparison of Palacios workload results showing the best paging approach, speedups between
the best and worst approaches, and speedups between the best shadow approach and nested paging

ures 13 (KVM) and 14 (Palacios), it is clear that CR3
write rate and TLB miss rate are highly correlated with
the preferred paging approach(es) for each workload.

We now consider why this is likely the case. First,
nested paging is well documented to perform poorly
when the TLB hit rate is low. As we mentioned ear-
lier this is due to the nested page table walks requiring
n2 as opposed n memory accesses to walk the page ta-
ble hierarchy. This would imply that workloads such as
WorstCase and SpecCPU VPR, that experience a high
TLB miss rate, would prefer shadow approaches over
nested paging. However, workloads such as Boot and
TPC-H which experience low TLB miss rates would per-
form better using nested paging.

Second, all shadow paging approaches are extremely
sensitive to shadow page table flushes (guest CR3
writes), because in the worst case it leads to a very large
number of exits that are needed to populate the shadow
page tables. It is this behavior that caching and prefetch-
ing are designed to mitigate. However workloads that
do not often perform CR3 writes do not suffer the same
penalty, and will actually experience less virtualization
overhead using a naive shadow approach than any of the
other approaches. This would imply that shadow pag-
ing approaches without caching or prefetching would be
the best approach to use for the worst case and SpecCPU
VPR workloads. Conversely, HPCC, which has a high
rate of CR3 writes, should experience the best perfor-
mance with nested page tables.

The SpecCPU VPR and Worst case workloads, with
have high TLB miss rates and few CR3 writes, perform
better using standard shadow paging approaches. Also
the HPCC workload, which contains a large number of
CR3 writes, clearly performs better using nested paging
than the standard shadow paging without caching. Fi-
nally TPC-H and Boot also perform better using nested
paging due to the low TLB miss rate. However, it should
also be noted that in most cases shadow paging with
caching is able to provide performance that is compa-
rable to nested paging.

The kernel compilation workload provides an example
in which CR3 writes and TLB misses are insufficient to
easily predict the best choice of virtual paging approach.
Based these metrics we might expect that the paging ap-
proaches would perform equally well. However, accord-
ing to our results, nested paging is clearly preferable on
both VMMs, and, on Palacios, shadow paging without
either caching or prefetching is the best shadow paging
approach.

The VMM architecture has a less significant impact
than the choice of virtual paging approach. The re-
sults show that while the VMM architecture and actual
implementation of the virtual page translation mecha-
nisms do have some impact on workload performance,
there is still a large correlation between the different
architectures. For example, for the HPCC and Spec-
CPU VPR workloads both KVM and Palacios exhibit
comparable relative performance for the same set of ap-

Worst
case

Boot
SpecCPU

VPR
HPCC

TCP-H
Query 1

Kernel
compile

Native 3.44 132.71 16.63 22.46 68.81

Shadow w/o Caching 3.97 66.53 160.63 418.10 22.88 112.21

Shadow w/ Caching 4.40 67.41 134.93 24.28 22.75 94.66

Nested Paging 10.19 63.54 161.04 23.87 22.29 70.72

0

20

40

60

80

100

120

140

160

180

(a) KVM

Worst
case

Boot
SpecCPU

VPR
HPCC

TPC-H
Query 1

Kernel
compile

Native 3.77 145.75 15.69 6.51 112.10

Shadow w/o Caching 3.27 20.54 145.68 798.92 7.60 228.18

Shadow (with
Synchronization)

3.69 31.07 149.42 1249.60 10.91 453.22

Shadow (Prefetching) 3.43 31.89 148.20 1305.63 11.65 368.65

Shadow w/ Caching 3.53 32.22 146.07 32.91 9.84 419.36

Nested Paging 9.34 23.74 156.93 24.73 6.72 130.05

0.00

50.00

100.00

150.00

200.00

250.00

(b) Palacios

Figure 15: Benchmark run-time.

0

100

200

300

400

Native

Shadow
w/o Caching

Shadow
w/ Caching

Nested
Paging

Figure 16: Breakdown of HPCC results (KVM).

proaches. Nested paging is clearly the best approach in
both VMMs for the kernel compilation workload. In
Palacios, the preferred approaches for both the TPC-H
and Boot workloads are a subset of the best approaches
for KVM. It should also be noted that no workload
demonstrates a preference for completely separate ap-
proaches between the VMMs. This indicates that the
workload and the paging approaches are the dominating
factors for performance.

Breakdown of HPCC workloads. To determine
the reason for the large performance disparity between
shadow paging without caching and all other approaches
for the HPCC workload, we break down the results for
the component sub benchmarks (running on KVM) in
Figure 16. As can be seen the runtime for the Rando-
mAccess benchmark clearly dominates the total run time.
This is to be expected since it is writing to a large num-
ber of memory locations located at different regions of
the page table hierarchy. Combined with a high CR3
write rate this benchmark not surprisingly achieves ter-
rible performance with shadow paging without caching.
However it is important to note that the shadow paging
with caching negates much of the performance penalty
and results in a runtime similar to nested paging.

6 Conclusions

We have studied the performance of four different ap-
proaches to virtualized paging in virtual machine moni-
tors for modern x86 architectures. Our results show that
despite the conventional wisdom, there is no single best
virtual paging approach, and that the differences in per-

formance between approaches can be significant. The
best approach is strongly dependent on the workload. We
further found that two workload characteristics, the CR3
write rate, which can be readily measured in a VMM, and
the TLB miss rate, which can be readily measured with
a architectural performance counter, are strongly predic-
tive of the best virtual paging approach.

Based on our results, it appears that a VMM would
ideally dynamically select the virtual paging approach
based on these easily measurable characteristics of the
workload and its microarchitectural interactions. This
could be readily done in our Palacios VMM. Palacios,
and we expect most other VMMs, must maintain a rep-
resentation of the guest physical memory map that is in-
dependent of the active paging approach. The necessary
interactions with the map are identical for both shadow
and nested paging approaches, which means the paging
approach could be switched with little overhead. In this
paper, we have shown that the prospects for such adap-
tive paging appear quite good, and have identified the
inputs to an adaptation control algorithm. We are now
constructing such a system.

References

[1] AMD-V Nested Paging. Tech. rep., AMD Inc.,
2008.

[2] ADAMS, K., AND AGESEN, O. A comparison of
software and hardware techniques for x86 virtual-
ization. In Proceedings of the 12th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS)
(October 2006).

[3] BARHAM, P., DRAGOVIC, B., FRASER, K.,
HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, I., AND WARFIELD, A. Xen and the art
of virtualization. In ACM Symposium on Operating
Systems Principles (SOSP) (2003), pp. 164–177.

[4] BHARGAVA, R., SEREBRIN, B., SPANINI, F.,
AND MANNE, S. Accelerating two-dimensional
page walks for virtualized systems. In Proceed-
ings of the 13th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS) (March 2008).

[5] INTEL CORPORATION. Intel 64 and IA-32 Ar-
chitectures Software Developer’s Manual, Volume
3B: System Programming Guide Part 2, November
2006.

[6] INTEL CORPORATION. TLBs, Paging-Structure
Caches, and Their Invalidation (revision 003), De-
cember 2008.

[7] KARGER, P. Performance and security lessons
learned from virtualizing the alpha processor. In
Proceedings of the 34th International Symposium
on Computer Architecture (ISCA) (June 2007).

[8] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U.,
AND LIGUORI, A. kvm: the linux virtual machine
monitor. In Linux Symposium (2007).

[9] LANGE, J., AND DINDA, P. An introduction to the
palacios virtual machine monitor. Tech. rep., De-
partment of Electrical Engineering and Computer
Science, Northwestern University, October 2008.

[10] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA,
P., CUI, Z., XIA, L., BRIDGES, P., GOCKE,
A., JACONETTE, S., LEVENHAGEN, M., AND

BRIGHTWELL, R. Palacios: A new open source
virtual machine monitor for scalable high perfor-
mance computing. In Proceedings of the 24th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS 2010) (April 2010).

[11] LUSZCZEK, P., BAILEY, D., DONGARRA, J.,
KEPNER, J., LUCAS, R., RABENSEIFNER, R.,
AND TAKAHASHI, D. The HPC Challenge
(HPCC) Benchmark Suite. In SC06 Conference Tu-
torial (2006).

[12] MAGNUSSON, P. S., CHRISTENSSON, M., ES-
KILSON, J., FORSGREN, D., HALLBERG, G.,
HOGBERG, J., LARSSON, F., MOESTEDT, A.,
AND WERNER, B. Simics: A Full System Sim-
ulation Platform. IEEE Computer 35, Issue 2 (Feb
2002), 50–58.

[13] NEIGER, G., SANTONI, A., LEUNG, F.,
RODGERS, D., AND UHLIG, R. Intel virtualization
technology: Hardware support for efficient pro-
cessor virtualization. Intel Technology Journal 10
(2006), 167–177.

[14] SPEC. SPEC CPU 2000.
http://www.spec.org/cpu2000.

[15] TRANSACTION PROCESSING PERFORMANCE

COUNCIL. TPC Benchmark H (Decision Support)
Standard Specification Revision 2.9.0. Tech. rep.,
Transaction Processing Performance Council,
2009.

[16] VIRTUTECH, I. Virtutech Simics.
http://www.virtutech.com.

[17] XIA, L., LANGE, J., DINDA, P., AND BAE, C.
Investigating virtual passthrough i/o on commod-
ity devices. Operating Systems Review 43, 3 (July
2009). Initial version appeared at WPIO 2008.

[18] ZHANG, Y., ZHANG, J., LIU, C., AND FRANKE,
H. Decision-support workload characteristics on
clustered database server from the os perspective.
In Proceedings of the International Conference on
Distributed Computing Systems (2003).

