
Online Prediction of the Running Time of Tasks �

Peter A. Dinda
Department of Computer Science
Northwestern University
pdinda@cs.northwestern.edu

Abstract. We describe and evaluate the Running Time Advisor (RTA), a system that can pre-
dict the running time of a compute-bound task on a typical shared, unreserved commodity host.
The prediction is computed from linear time series predictions of host load and takes the form
of a confidence interval that neatly expresses the error associated with the measurement and
prediction processes—error that must be captured to make statistically valid decisions based
on the predictions. Adaptive applications make such decisions in pursuit of consistent high
performance, choosing, for example, the host where a task is most likely to meet its deadline.
We begin by describing the system and summarizing the results of our previously published
work on host load prediction. We then describe our algorithm for computing predictions of
running time from host load predictions. We next evaluate the system using over 100,000
randomized testcases run on 39 different hosts, finding that is indeed capable of computing
correct and useful confidence intervals. Finally, we report on our experience with using the
RTA in application-oriented real-time scheduling in distributed systems.

Keywords: performance prediction, performance analysis, adaptive applications

1. Introduction

To provide consistent high performance when running on typical shared,
unreserved distributed computing environments, adaptive applications must
exploit the degrees of freedom such environments offer, carefully choosing
how and where to run their tasks [4, 2]. To make such decisions, applications
require predictions of the performance of each of the alternatives. This paper
addresses one form of such application-level performance predictions.

Consider an adaptive application, such that as a distributed scientific visu-
alization system [1, 18, 4], that needs to schedule a real-time task with known
resource requirements on one of several hosts. If the application could predict
the running time of the task on each of the available hosts, it could trivially
choose an appropriate host to run the task. Even if no host existed on which
the task could meet its original deadline, such predictions of running time
would permit the application to modify the resource requirements of the task
or its deadline until an appropriate host could be found.

This paper describes a system, the Running Time Advisor (or RTA), that
can supply these predictions for the case of compute-bound tasks. To char-

� Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-
0112891, and EIA-0130869.

c� 2001 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 19/11/2001; 19:35; p.1



2 Peter A. Dinda

int PredictRunningTime(RunningTimePredictionRequest &req,
RunningTimePredictionResponse &resp);

struct RunningTimePredictionRequest {
Host host;
double conf;
double tnom;

};

struct RunningTimePredictionResponse {
Host host;
double tnom;
double conf;
double texp;
double tlb;
double tub;

};

Figure 1. Running Time Advisor (RTA) API.

acterize the variability inherent to distributed systems and to the process of
prediction, the RTA predicts a task’s running time as a confidence interval
computed to the application’s requested confidence level. Confidence inter-
vals provide a simple abstraction to the application, but still provide sufficient
information to enable valid statistical reasoning in the scheduling process.

The RTA’s response is computed from host load predictions, a topic we
have thoroughly reported on in previous papers [5, 8, 7, 6]. We have im-
plemented an extremely low overhead online host load prediction system
based on our results and our general purpose RPS Toolkit. In this paper, we
describe the algorithm the RTA uses to compute a confidence interval for the
running time of a compute-bound task from such host load predictions. We
then evaluate the RTA using a randomized evaluation approach.

The evaluation, in which we use a 95% confidence level, takes place in
a real environment where the background load on a host is supplied by host
load trace playback [9], a new technique that lets us reconstruct a realistic
repeatable workload using a host load trace collected on a real machine. We
use 39 traces that are described in detail in a previous paper [5] and are
representative of production and research clusters, application servers, and
desktops.

The main conclusion is that the RTA and its algorithm can indeed predict
the running time of tasks in a useful and effective way. Furthermore, our
experience with predictive real-time scheduling based on the RTA suggests
that these predictions are quite useful. The software and traces described in
this paper are all publicly available. 1

2. RTA API, system, and metrics

Figure 1 presents the interface of the Running Time Advisor. A query takes
the form of a host, a confidence level conf (���� , e.g., 95%), and a nomi-

1 http://www.cs.nwu.edu/�pdinda/�RPS.html,LoadTraces�.

paper.tex; 19/11/2001; 19:35; p.2



Online Prediction of the Running Time of Tasks 3

Host Load Measurement System

Host Load Prediction System

Running Time Advisor

Real-time Scheduling Advisor

Application

Measurement Stream

Load Prediction
Request

Load Prediction
Response

Nominal time
confidence, host

Running time estimate
(confidence interval)

Nominal time, slack,
confidence, host list

Host, running time
estimate

D
ae

m
on

L
ib

ra
ry

T
hi

s
P

ap
er

Figure 2. RTA system and context.

nal time tnom (����), which is the running time of the task on an otherwise
vacant machine. A response consists of a copy of the request’s fields, the
expected running time of the task texp (����), and the upper and lower
bounds of the ���� confidence interval for the running time, [tlb, tub]
(����� �	��.) ���� is a point estimate which represents the most likely running
time. The actual running time, �
��, will likely be different from ���� but be
near it. The confidence interval represents a range of values around ���� such
that �
�� will be in the range a fraction ���� of the time. Because the lower
bound of the confidence interval is artificially limited due to the fact that load
cannot drop below zero, the expected time is not necessarily in the middle of
the confidence interval.

Figure 2 shows the structure of the RTA and the broader context of which
it is a part. The system is based on the measurement, characterization, and
prediction of host load, which we describe in the next section. This paper
is primarily concerned with the Running Time Advisor part of the system,
which predicts the running time of tasks based on the host load predictions.
The Real-time Scheduling Advisor (RTSA) component of the system sug-
gests, for interactive applications such as scientific visualizations [1, 18], the
host where a just-submitted soft real-time task is most appropriately run. We
will return briefly to the RTSA in Section 8, and it is also described in detail
elsewhere [6, Chapter 6].

Evaluating the quality of the confidence interval, ����� �	��, is a somewhat
complex endeavor. Suppose we ran a wide variety of testcases with a specified
confidence, say 95%. If we used the ideal algorithm for computing confidence
intervals and the best possible predictor, the lengths of the tasks’ confidence

paper.tex; 19/11/2001; 19:35; p.3



4 Peter A. Dinda

intervals would be the minimum possible such that 95% of the tasks would
have running times in their predicted intervals. An imperfect algorithm, such
as ours, will compute confidence intervals that were larger or smaller than
ideal where fewer or more than 95% of the tasks complete in their intervals.
The important point is that to evaluate a confidence interval algorithm, we
must measure the lengths of the confidence intervals it produces and the num-
ber of tasks which complete within these confidence intervals. To evaluate
confidence intervals, we will use following two metrics:

� Coverage: the fraction of tasks which complete with their predicted
confidence intervals

� Span : the average width of the confidence interval width in seconds

The ideal system will have the minimum possible span such that the coverage
is 95%. We will also briefly touch on how well the ���� point estimate predicts
�
��. Generally, an adaptive application will use the confidence intervals.

3. Measurement and prediction of host load

The Running Time Advisor’s predictions of running time are computed from
the nominal time of the task, ����, and predictions of host load. The host load
measure that we use is the Digital Unix 5 second load average. Conceptually,
the kernel samples the length of the run queue at some frequency, computes
an exponential average over the samples with a time constant of five seconds,
and then presents this measure to applications. Our load sensor samples this
measure at a rate of 1 Hz, which is twice the empirically determined kernel
frequency. It is this discrete-time signal that we predict.

We began our investigation of host load by creating a public archive of
a large family of long host load traces taken on a wide variety of machines.
There are 39 traces, each roughly one week long, and sampled at the appro-
priate 1 Hz frequency. The traces include production cluster machines at the
Pittsburgh Supercomputing Center (PSC), research cluster machines in the
Computing, Media, and Communication Lab (CMCL) at Carnegie Mellon
University (CMU), big memory application servers in the CMCL, and desk-
top workstations at CMU. We studied the statistical properties of these traces
and presented a detailed description of the traces and the results in an earlier
paper [5].

We evaluated different predictive models on the traces in a large scale
randomized study. Surprisingly, despite the complex statistical properties that
we identified in our earlier study, which included self-similarity and epochal
behavior, simple linear time series models proved to be most appropriate for
host load prediction. In fact, the best all around model for host load predic-
tions of 1-30 seconds into the future, in terms of predictive power and low

paper.tex; 19/11/2001; 19:35; p.4



Online Prediction of the Running Time of Tasks 5

overhead, was the AR(16) model [8]. In this paper, we shall present results
that use the AR(16) model, as well as the simple LAST model (last mea-
surement is prediction for all future measurements), and the MEAN model
(prediction is the long-term arithmetic average of the load signal.)

It is important to note that linear time series models do not merely provide
point predictions for future values of the load signal. Such models also pro-
vide a characterization of their prediction errors, and how prediction errors
for different time horizons are related. This characterization takes the form of
a covariance matrix, and is critical to computing a confidence interval for the
running time, as we shall see in the next section. To compute the covariance
matrix for the LAST model, we treat it as an AR(1) with a pole at unity. To
compute the covariance matrix for MEAN, we compute the autocovariance
function of the signal.

We developed the RPS toolkit to simplify the construction of online pre-
diction systems. RPS provides components which can be linked together at
run-time using different communication methods [7]. Such a composition
forms a prediction system. We implemented the online host load measure-
ment and prediction systems of Figure 2 using RPS. These systems have have
extremely low overhead, consuming much less than one percent of the CPU
time of a typical desktop host to predict the load on that host.

4. RTA algorithm

We relate the running time of a task, �����, to the average load it experiences
while it runs using the following continuous-time model:

�����

� � �
�����

� �����
� ������

� ����

Here ���� is the load signal, shifted such that ���� is the value of the signal
at the current time, ���. We introduce this shift to simplify the presentation
of our algorithm, and to conform to the Box-Jenkins notation for time series
analysis. This simplification does not affect the results. ���� is the nominal
running time of the task, which quantifies the CPU demand (or “size”) of the
task as its running time on an unloaded machine.

This continuous-time equation is basically a fluid model of a priority-less
host scheduler. We will use this simple model to describe our estimation pro-
cedure. However, real schedulers incorporate priorities that can change over
time. We assume that the majority of the workload runs at similar priorities.
In particular, we assume that there are no processes whose priorities have
been drastically increased or decreased, such as with the Unix “nice” facility.
Ultimately, we will relax this assumption slightly and model the temporary
priority boosts that most Unix implementations give processes immediately

paper.tex; 19/11/2001; 19:35; p.5



6 Peter A. Dinda

after they become unblocked. Given this extension, the procedure we outline
in this section works quite well.

Continuous-time: The above equation is somewhat unwieldy to discretize
and use, so, before we continue, let’s define the available time function

����� �
�

� � �����
� � � � (1)

which depends on the average load function

����� �
�

�

� �

�

������ � � � � (2)

����� represents the available CPU time over the next � seconds, which is
inversely related to the average load during that interval, �����. As the average
load increases, the available time decreases. ����� is then the minimum � for
which ����� � ����	 Using this available time function function makes it
easier to explain how our algorithm estimates the running time of a task,
and, of course, the available time function is offered directly through the API
described in Section 2.

Discrete-time: In our system, � is not a continuous-time signal, but rather
it is a discrete-time approximation of the continuous-time signal with a sam-
pling interval of 	 seconds, ����, 
 � �� 
� 	 	 	 ��, where ���� represents ����
for � � � � 	, and so on. We approximate ���� as ���� � ������. This lets
us write a discrete-time approximation of ����� and �����:

��� �

�
� 
 � �
��

��
��

 � �

(3)

��� �
�




��
���

���� � 
 � � (4)

��� is the the time available during the next 
	 seconds and ��� is the average
load that will be encountered over the next 
	 seconds. We then estimate the
available time ����� by linear interpolation:

����� � ������� �
�� ���	�

	
�������� � �������� (5)

Using host load predictions: Given these definitions, we substitute the pre-
dicted load signal ����� for ���� resulting in the predicted average load ����,

paper.tex; 19/11/2001; 19:35; p.6



Online Prediction of the Running Time of Tasks 7

and continue substituting back to give the predicted available time ���� and its
corresponding continuous-time approximation:

���� �
�
� 
 � �
��

���
�� 
 � � (6)

���� � �




��
���

����� � 
 � � (7)

������ � �������� �
�� ���	�

	
� �������� � ��������� (8)

Then, the expected running time of the task, ����, is simply the smallest � for
which ������ � ����.

Confidence intervals: Because host load predictions are not perfect, we also
report the running time or available time as a confidence interval, computed to
a user-specified confidence level. The better the predictions are, the narrower
the confidence interval is.

The predicted load signal is ����� � ���������, where ���� is the real value
of the signal and ���� is the 
-step-ahead prediction error term which we sum-
marize with a variance �
��. Our uncertainty in estimating the available time
��� is due to our uncertainty in estimating the average load ���, which is due
in turn to these error terms and their variance. To represent this uncertainty in
the form of a confidence interval, we must push the underlying error variances
through the above equations to arrive at a variance for the average load ���

Notice that the average load (Equation 7) sums the estimates�����. Rewrit-
ing the equation, we can see that

���� � ��� �
�




��
���

���� (9)

By the central limit theorem, then, ���� will become increasingly normally
distributed with increasing 
. Given that the errors ���� are of zero mean, ����
has an expected value of ��� and a variance that depends on the sum of the
prediction errors ����:

���� � �

���������
�	
�




��
���

����

��
�� (10)

It is important to note that for short jobs or large 	, this normality assumption
may be invalid. We will evaluate the system later and determine whether the
results of the assumption are reasonable.

paper.tex; 19/11/2001; 19:35; p.7



8 Peter A. Dinda

Suppose the user requests a confidence interval at 95% confidence. We
can then compute a confidence interval for ��� (for 
 � �):

������ � ������� � � ���� � �	���



��������

�	

��

���

����

�� (11)

What this means is that we predict that ��� will be in the range ������ � ������� �
with 95% probability. The �	�� is the number of standard deviations of a
standard normal needed to capture 
	�% of values. ����� is set to the maxi-
mum of the computed value from above and zero. This is important because
the average load cannot drop below zero, although the prediction errors can
make that appear to be the case.

We can now back-substitute these upper and lower bounds of the confi-
dence interval into �����, resulting in upper and lower confidence intervals
for ����� � ��������� ����������. Then the confidence interval on the running
time is ����� �	��, where ��� is the minimum � for which ��������� � ���� and
�	� is the minimum � for which ������� � ����.

Correlated prediction errors: Given the discussion of the previous section,
we must still determine the variance of a sum of consecutive prediction errors
in Equation 11 to compute the confidence interval. This is one of the subtler
issues in converting from load predictions to running time predictions.

To correctly compute the variance of the sum of load predictions, we must
compute the covariance of each of the prediction errors with each of the other
prediction errors and then sum all 
� terms of this covariance matrix. Entry
�� � of this matrix is �����	���� � ����
 � 
��
�� and is the covariance
of the �-step-ahead prediction with the �-step-ahead prediction. Notice that
variances of the individual predictions are simply the diagonal elements of
the matrix.

The prediction errors’ correlation over lead time is akin to a signal’s auto-
correlation over time. Recall that an autocorrelation sequence is simply a nor-
malized autocovariance sequence. The covariances are easily computed from
the autocovariance sequence. In particular, 
��
�� � �����	���� � ����
 �
	
�������	��� ������
.

The host load prediction system uses the algorithm of Box, et al to com-
pute the autocovariance sequence for any linear model [3, pp. 159–160].
Since the LAST predictor is simply an AR(1) model with �� � �, its au-
tocovariances can also be computed using Box, et al’s method. In the case of
the MEAN predictor, the autocovariances are simply the autocovariances of
the signal itself.

paper.tex; 19/11/2001; 19:35; p.8



Online Prediction of the Running Time of Tasks 9

(a) Without load discounting

(b) With load discounting

Figure 3. Relative error and load discounting.

The variance of the sum of the first 
 prediction errors, which we will write
as ���� is then computed as

���� � ���

�	

��

���

����

�� �
��

���

��
���


��
�� (12)

To avoid communicating the whole covariance matrix, the sum is computed
by the host load prediction system.

Load discounting: Figure 3(a) shows the result of running many tasks whose
���� times vary from 100 ms to 10 s using the algorithm described thus far.

paper.tex; 19/11/2001; 19:35; p.9



10 Peter A. Dinda

The background load was from a machine in the Pittsburgh Supercomputing
Center’s Alpha cluster, while the model used was an AR(16). The figure plots
the relative error (����� � �
��������) of the predictions versus the nominal
time of the task.

Notice that relative error is always positive and increases markedly as
nominal time decreases. For one second tasks, the running time is over-predicted
by 80%. The confidence intervals were also skewed, with far too many points
falling below the lower bounds of the intervals. The problem is that the Dig-
ital Unix scheduler gives an “I/O boost” to the priority of a process when a
blocking I/O operation completes. Over time, the process’s priority will “age”
to its baseline level. The result is that the awakened process will get more than
its fair share of the CPU until its priority has degraded. The shorter the task,
the more this mechanism will benefit it, and the more inaccurate our running
time estimate will be, as we can see in the figure.

Our solution to this problem is load discounting. We exponentially de-
cayed the load predictions ����� , the discounted load,������ , being

������ � ��� ������������	
������ (13)

How quickly the initial load discount decays depends on the setting of ������	��.
We determined the value of ������	�� empirically by again running a large
number of randomized testcases as described above and varying ������	��
randomly in the range 0 to 10 seconds. This gives us a relative error as a
function of ������	��, which, turns out to be linear. We fitted a line to the
points and determined that it crossed zero relative error at ������	�� � 	�
seconds. This value is used throughout this paper and seems to be a property
of the operating system that can be computed offline.

Figure 3(b) shows the result of using load discounting. As can be seen,
the appropriate ������	�� value has eliminated the dependence of the relative
error on the nominal time and has further reduced the average relative error to
almost exactly zero, which we would also expect from these point estimates.

Load discounting is an effective solution to the priority boosts that most
Unix schedulers give to processes that have become unblocked. It is impor-
tant to note, however, that other priority problems remain. For example, a
background process which has had its priority significantly reduced (e.g., a
process which has has been “reniced”) but which remains compute bound
will result in artificially exaggerated predictions. Similarly, a process with
high priority will result in predictions that are too low.

5. Experimental infrastructure

Our infrastructure hardware consists of two Alphastation 255 hosts connected
with a private network. Both machines run Digital Unix 4.0D. One host is

paper.tex; 19/11/2001; 19:35; p.10



Online Prediction of the Running Time of Tasks 11

referred to as the measurement host while the other is called the recording
host. The hosts have no other load on them.

The recording host runs software that interrogates the components run-
ning on the measurement host and then submits tasks to it. The measurement
host runs the following components: a host load playback tool to provide a
background workload, a host load sensor, one or more host load prediction
systems, and a spin server.

The playback tool uses a new technique in which the workload is gen-
erated according to a load trace [9]. With no other work on the host, this
background load results in the host’s load signal repeating that of the load
trace. The host load sensor provides an interface for the recording host to
request the latest load measurement on the host.

The reader may wonder why we do not use a synthetic workload generator.
There are two reasons. First, because the behavior of host load is so complex,
creating a model that captures its relevant properties is a hard problem. Fur-
thermore, in the prediction context, it is not clear a priori what the relevant
properties of the workload are. The second reason is that the predictability
of a synthetic workload is inherent in the model used to generate it. Simply
put, our predictor may very well “discover” our workload model and produce
overstated results. The beauty of using host load trace playback is that the
predictor is operating on a real workload, and yet the workload is repeatable.

The host load prediction systems (described in Section 3) provide an in-
terface for the recording host to request the latest host load predictions using
an experiment-specific prediction model.

The spin server runs tasks—it takes requests to compute (using a busy
loop) for some number of CPU-seconds and then returns the wall-clock time
that the task took to complete. It looks like a CORBA ORB [21]. The busy
loop is carefully calibrated, and the server monitors the amount of CPU it has
consumed as it computes. The relative error is much less than 1%.

6. Evaluation methodology

To evaluate the RTA given a particular traced host, we started up the ex-
perimental infrastructure described in Section 5 on the measurement and
recording hosts. The host load playback tool was set to replay the selected
trace (all 39 were used). The host load sensor was configured to run at 1 Hz.
Three host load prediction systems were started: MEAN, LAST, and AR(16).
The systems were configured to fit to 300 measurements (5 minutes) and
to refit themselves when the absolute error for a one-step-ahead prediction
exceeds 0.01 or the average measured one-step-ahead mean squared error ex-
ceeds the estimated one-step-ahead mean squared error by more than 5%. The
minimum interval between refits was 30 seconds and the maximum interval

paper.tex; 19/11/2001; 19:35; p.11



12 Peter A. Dinda

before the measured mean squared error was tested was 300 seconds. These
parameters were found based on previous experiments [8].

The prediction and measurement software were then permitted to quiesce
for at least 600 seconds. Then 3000 consecutive testcases were run on the
recording host, each according to this procedure:

1. Wait for a delay interval, �������
�, randomly selected from a uniform
distribution from 5 to 15 seconds.

2. Get the current time ���.

3. Select the task’s nominal time, ���� randomly from a uniform distribu-
tion from 100 ms to 10 seconds.

4. Select a random host load prediction system from among MEAN, LAST,
AR(16).

5. Use the PredictRunningTime API to compute the expected run-
ning time ���� and the 95% confidence interval ����� �	�� using the latest
predictions from the selected host load prediction system.

6. Run the task on the spin server and retrieve its actual running time, �
��.

7. Record the timestamp ���, the prediction system used, the nominal time
����, the expected running time ����, the confidence interval ����� �	��,
and the actual running time �
��.

After all 3000 testcases were run, their records were imported into a database
table corresponding to the trace.

It takes approximately 13 hours to complete 3000 testcases. To evaluate
the running time predictions, we mined the database of 114,000 testcases.
The results of this analysis are described in the following section.

7. Evaluation results

In examining our testcases, we wanted to answer several questions. The most
important of these is (1) does our system provide useful predictions of task
running times in the form of valid confidence intervals? In addition we wanted
to understand (2) how the choice of underlying host load predictor affects
performance, and (3) how that performance depends on the nominal time of
the task?

To address these questions, we looked at the testcases in several ways.
First, we measured the quality of the confidence intervals independently of
the nominal time of the task. For each trace, we computed the confidence

paper.tex; 19/11/2001; 19:35; p.12



Online Prediction of the Running Time of Tasks 13

interval metrics of coverage and span. Then we compared the different predic-
tors based on these per-trace metrics. Next, we conditioned this comparison
on the nominal time of the task, dividing the range in to small, medium, and
large tasks. Finally, we hand-classified each trace based on the relationship of
the performance metrics and the nominal time. This resulted in five classes.
We then developed a recommendation for each class. In the following discus-
sion, when we refer to a “significant” difference, we mean that the difference
is significant at a 95% confidence level.

In the following, we will begin by showing exemplars from each of the five
classes of behavior we saw. The goal is to give the reader a visual idea of the
performance of this system on hosts with different behaviors. After discussing
each class, we will generalize our results and explain the conclusions we
reached.

7.1. CLASSES OF BEHAVIOR

For each individual load trace, we plotted our performance metrics versus the
nominal time ����. When we did this, we found that an interesting pattern
emerged. By visual inspection, the results for the 39 traces could be placed
into five classes. It is enlightening to examine representatives of each of these
classes in detail, and doing so permits us to make recommendations for each
of them.

Class I: Class I, which we also call the “typical low load host” class repre-
sents the most common behavior by far that we have encountered. The class
consists of 29 of the 39 hosts (76%). A representative of class I is plotted
in Figure 4. Each point in the graph represents the average of about 200
testcases and represents a 2 second span of nominal time, extending from one
second before the point’s x-coordinate to one second after. The remainder of
the figures in the paper have the same semantics.

The main characteristics of the class are the following. The coverage is
only slightly dependent on the nominal time, increasing slightly for all predic-
tors as the nominal time increases. The MEAN predictor typically has almost
100% coverage and is closely followed by the AR(16) and then the LAST
predictor. The LAST and AR(16) predictors have significantly narrower spans
than the MEAN predictor, with AR(16) producing slightly wider spans than
LAST.

We believe that the AR(16) is the best predictor for this most common
class of host. The coverage is nearly as good as MEAN and is typically
near the target 95% point, while LAST tends to lag behind, especially for
smaller tasks. Furthermore, the span of AR(16) is typically half that of MEAN
and only slightly wider than LAST. In most hosts, then, a better predictor
produces much narrower accurate confidence intervals.

paper.tex; 19/11/2001; 19:35; p.13



14 Peter A. Dinda

(a) Coverage

(b) Span

Figure 4. Coverage and Span, Class I hosts

Class II: Class II hosts, which we refer to as being in the “atypical low load
host” class, represent the second most common behavior among our traces.
The class consists of 4 of the 39 hosts (10%). An exemplar of Class II is
plotted in Figure 5.

An important distinguishing feature of this class is that the coverage of
the MEAN predictor drops precipitously with increasing nominal time be-
cause the span of its confidence interval is not sufficiently large. In contrast,
LAST and AR(16) compute slightly larger confidence intervals which result
in excellent coverage that increases with increasing nominal time. LAST and
AR(16) have similar coverage (in this example LAST is slightly ahead, in
other cases AR(16) is slightly ahead).

paper.tex; 19/11/2001; 19:35; p.14



Online Prediction of the Running Time of Tasks 15

(a) Coverage

(b) Span

Figure 5. Coverage and Span, Class II hosts

In terms of computing confidence intervals, either AR(16) or LAST seems
adequate for producing confidence intervals for this class of host. Compared
to MEAN, both produce significantly larger spans that result in much better
coverage. Computationally, AR(16) is almost as inexpensive as LAST.

Class III: The remainder of the five host classes all contain high load hosts.
There does not seem to be a “typical” behavior on a high load host, so we will
simply enumerate these classes. Class III, which we also call “high load 1”,
consists of a 3 of the 39 hosts (8%). Figure 6 plots the performance metrics
as a function of the nominal time for an exemplar.

paper.tex; 19/11/2001; 19:35; p.15



16 Peter A. Dinda

(a) Coverage

(b) Span

Figure 6. Coverage and Span, Class III hosts

Compared to the low load hosts, this high load 1 host displays much more
complex behavior. The predictor with the best coverage depends strongly on
the nominal time. For very short tasks, MEAN is slightly better than AR(16),
which is much better than LAST, although the coverage is quite poor with all
three predictors. For medium size tasks, AR(16) provides the best coverage,
followed at a distance by MEAN and LAST, which become interchangeable.
For large tasks, AR(16) and LAST have similar coverage, with AR(16) lag-
ging slightly, while MEAN’s coverage is far behind. In terms of the span,
AR(16) and LAST both compute much wider (and thus more appropriate)
confidence intervals than MEAN, which explains why their coverage is so
much better. MEAN is unable to understand the dynamicity of this kind of

paper.tex; 19/11/2001; 19:35; p.16



Online Prediction of the Running Time of Tasks 17

(a) Coverage

(b) Span

Figure 7. Coverage and Span, Class IV hosts

host. Predictably, for the nominal times where AR(16) is preferable to LAST,
it has a larger span.

In terms of computing accurate confidence intervals, the best predictor
is highly dependent on the nominal time. For very short tasks, MEAN or
AR(16) is preferable, but either has rather poor coverage. For medium tasks,
AR(16) produces the best performance. For large tasks, LAST is best. Clearly,
there is room for improvement on this class of hosts.

Class IV: This class, which we also refer to as the “high load 2” class,
contains two hosts (5%). Figure 7 plots the performance of the predictors
on a representative trace.

paper.tex; 19/11/2001; 19:35; p.17



18 Peter A. Dinda

(a) Coverage

(b) Span

Figure 8. Coverage and Span, Class V hosts

We can see that the coverage of LAST and AR(16) are virtually identical
here and both increase slowly with nominal time. MEAN has similar cov-
erage for small tasks, but then behaves increasingly poorly, with coverage
decreasing rapidly with nominal time. In terms of the span, LAST grows
much more quickly than MEAN with increasing nominal time, while AR(16)
is almost exactly in between them. For very short nominal times the spans are
all identical.

In terms of computing confidence intervals, AR(16) clearly produces the
best results for this class of hosts, getting coverage identical to that of LAST
with a span that is often half as wide.

paper.tex; 19/11/2001; 19:35; p.18



Online Prediction of the Running Time of Tasks 19

Class V: Class V, which we also refer to as the “high load 3” class, consists
of a single host (2.5%). Figure 8 plots the performance of the predictors on
that host.

In terms of coverage, AR(16) is clearly the winner here, especially for
medium sized tasks. It achieves its reasonable coverage (the goal is 95%) by
computing slightly larger confidence intervals than MEAN. LAST computes
confidence intervals that are far too small, resulting in abysmal coverage.

AR(16) is clearly the preferable predictor for this class of hosts in terms
of computing confidence intervals.

7.2. GENERALIZED RESULTS

The class-by-class analysis of the preceding section makes it clear what the
LAST and AR(16) predictors generally provide quite different performance
results than the simple MEAN predictor, and that performance can vary with
nominal time. In this section, we will generalize the results we saw over all
of the testcases and traces.

The RTA works: Looking at the exemplars of the five classes, one can see
that the RTA system works, for the most part, as advertised. This inference is
supported by a broader examination of the testcases. With almost every load
trace in our study, the coverage of either the AR(16) or LAST predictor is very
close to the target 95% coverage. Furthermore, these predictors, especially
AR(16), do so with reasonable spans.

Of course, there are some rare cases (consider the Class IV exemplar)
where coverage is significantly lower than desired. Also, it may be possible to
reduce spans even further while maintaining the same coverage. These issues
point to questions of the inherent predictability of distributed systems: what
is the optimal predictability and the optimal characterization of prediction
error that can be achieved? Without answers to these questions, it is difficult
to know if performance can be better in these rare cases or if the span can
be reduced. However, even without answering these questions, this study
provides evidence for the effectiveness of the RTA.

LAST and AR(16) produce better coverage on heavily loaded hosts: On nine
of our traces, LAST and AR(16) simultaneously produce better coverage and
worse spans than MEAN. These nine traces correspond to the hosts that are
more heavily loaded, and thus, correspondingly, exhibit greater variability in
load [5]. The LAST and AR(16) predictors are better able to “understand”
such hosts and compute appropriately wider confidence intervals compared
to MEAN. These wider confidence intervals result in a far greater chance of
a task’s actual running time falling within its computed confidence interval.
This is precisely the behavior that we want. Our goal is that 95% of tasks

paper.tex; 19/11/2001; 19:35; p.19



20 Peter A. Dinda

fall within their confidence intervals. With the AR(16) predictor, of the 39
cases, only 5 cases have coverage less than 90%, and only one less that 85%,
whereas with the MEAN predictor, only one of the high load traces is better
than 85%. The percentage point gain from MEAN to AR(16) can be as much
as 30%, and it is typically around 15%.

Two effects are at work here. First, the predictions of the LAST and AR(16)
predictors depend most strongly on recent measurements. The MEAN predic-
tor, on the other hand, always presents the long term mean of the signal. As
a result, the LAST and AR(16) predictors will respond much more quickly
during the period after an epoch transition (Section 3) and before a model
refit happens. This means that their predictions, and thus the center point of
the confidence interval will much more likely be in the right place in these
situations

The second effect results from how the confidence interval length is com-
puted. Recall that with the MEAN predictor the autocovariance of the signal
is used to compute the confidence interval, while for the LAST and AR(16)
predictors it is the autocovariance of their prediction errors that is used. On a
high load, high variability host, an epoch transition is more likely than on a
low load, low variability host to make the “old” autocovariance of the signal
fail to characterize the new epoch well. The structure of the autocovariance of
the prediction errors will not change at all, although the individual predictions
may be less accurate.

LAST and AR(16) produce better spans on lightly loaded hosts: For those
hosts which have lower load and variability, the LAST and AR(16) predic-
tors produce significantly narrower confidence intervals than MEAN while
still capturing an appropriate number of tasks within their computed con-
fidence intervals. On average, the confidence intervals are shrunk by 2-3
seconds while the fraction of tasks within their confidence intervals shrinks
by about 5%. Since for these lightly loaded hosts, the MEAN predictor results
in coverages that are significantly larger than the target 95%, this is not an un-
reasonable tradeoff. Essentially, on average, for these low load hosts, moving
from MEAN to AR(16) reduces coverage by about 5% while decreasing the
span by 2-3 seconds (about 33%).

AR(16) performs better than LAST: At this point, we have shown that the
RTA does indeed compute reasonable confidence intervals for task running
times and that it does so more accurately when using a more sophisticated
predictor than MEAN. Now we would like to know whether we should prefer
the LAST predictor or the AR(16) predictor. We have already pointed out
some of the differences between these two.

If we consider the aggregate performance of the different predictors on
each of the traces and compare LAST and AR(16) we see that the confidence

paper.tex; 19/11/2001; 19:35; p.20



Online Prediction of the Running Time of Tasks 21

intervals computed using AR(16) generally include more of their tasks than
those computed using LAST. Using the AR(16) predictor, only five of the
traces are at less than 90% and only one less than 85%. Using LAST, 9 are less
than 90%, while four are less than 85%. This gain is due to AR(16) predictors
producing wider confidence intervals on heavily loaded hosts. There is a cor-
responding performance gain on lightly loaded hosts, where AR(16) produces
narrower confidence intervals than LAST because it is able to appropriately
relax its coverage even more than LAST.

In essence, the use of AR(16) instead of LAST brings coverage closer
to the target coverage, from above or below, through adjusting span size ac-
cordingly. In moving from LAST to AR(16), we either see a large increase in
coverage, on the order of 10 percentage points or more, combined with a span
increase of 2-3 seconds, or there is a slight decline of 5 percentage points or
less combined with a span decrease of 1-2 seconds.

Performance is slightly dependent on the nominal time: For very small tasks,
especially those on the order of the measurement period (1 second) or smaller,
coverage is worse than for larger tasks. This is not too surprising given the
normality assumption we make about the sum of load predictions. With these
tiny tasks, the sum is over a single prediction and the point prediction error
is not usually normally distributed. As tasks increase beyond 1-2 seconds in
duration, coverage improves to near optimal. For very long tasks, we see a
decline in performance on some hosts. Generally, then, as the nominal time
increases, coverage improves slightly.

Obviously, the quality of our predictions should be as independent of the
nominal time as possible. In fact, the level of dependence we noted is quite
low. Consider Figures 4–8, our exemplars of the five behavior classes. Note
that the coverage of AR(16), for example, is only slightly dependent on nom-
inal time for the vast majority of the traces in our study. It is only in class III
(8% of the traces) that we see unhappy behavior out of AR(16).

Not surprisingly, spans grow with nominal times. A longer task requires
looking over a longer prediction horizon, which introduces more error. Gen-
erally, the span grows linearly with the nominal time of the task, with AR(16)
having the flattest slope.

Predictions of expected running time behave similarly: For space reasons,
we have not talked about the quality of the ���� point predictions, concentrat-
ing instead on the quality of the confidence intervals ����� �	��. The quality of
the the ���� predictions, as measured using the �� metric [14, pp. 226–228]
behaves in similar ways to the span and coverage metrics for the confidence
intervals. Generally, the system is able to achieve �� in excess of 0.9. For low
load hosts, �� is typically even higher.

paper.tex; 19/11/2001; 19:35; p.21



22 Peter A. Dinda

8. Experience with predictive real-time scheduling

Earlier, we introduced the Real-time Scheduling Advisor (RTSA) as a client
of the Running Time Advisor. We’ll briefly revisit it here as an example of this
adaptation advisor can benefit from the RTA. An in-depth study of the RTSA
is available elsewhere [6, Chapter 6] and it is the subject of a forthcoming
paper.

The goal of the RTSA is to help the application select a host on which
a real-time task, eligible to run immediately, is likely to finish on time. The
application supplies to the RTSA the nominal time of the task (����), a con-
fidence level (���� ), a slack factor (�� ), and a list of hosts on which the task
may be run. The goal is that �
�� � �� � �� �����. The RTSA returns an
appropriate host and the RTA prediction of the running time on that host.

The RTSA determines the appropriate host by getting RTA predictions
for each host on the list, selecting the subset of hosts for which �	� � �� �
�� �����, and then returning a randomly selected host in that subset. Recall
that �	� is the upper limit of the ���� confidence interval for the running time.
If the subset is null, then the host with the lowest ���� (point estimate of the
running time) is returned. Because the RTSA also returns the RTA prediction
for the host, it can quite naturally inform the application whether it is possible
to meet the deadline given the constraints.

Figure 9 shows an example of the performance of the RTSA. Scheduling
is being done to a collection of four hosts playing back relatively difficult-
to-predict traces. The randomly generated tasks range in size from 0.1 to 10
seconds. Figure 9(a) shows the fraction of tasks that meet their deadline as a
function of the slack factor. It compares the predictive RTSA (denoted “ar16”
after the underlying host load prediction model) to randomly selecting hosts
(“random”), and to selecting hosts with the lowest measured load (“mea-
sure”). We can see that the predictive scheme works especially well when
tightly constrained. When loosely constrained, the predictive RTSA’s per-
formance converges on ���� while measurement-based RTSA’s performance
conferences on �	�.

Figure 9(b) shows the fraction of deadlines met when the RTSA has pre-
dicted that they will be met through the returned RTA prediction. Clearly, by
using the RTA, the predictive RTSA is able not only to provide reliable high
level adaptation advice to the application, but it is also able to signal that what
the application asks is likely to be impossible.

9. Related work

Work on the explicit prediction of the dynamic behavior of distributed sys-
tems, particularly to support adaptive applications, has a surprisingly short

paper.tex; 19/11/2001; 19:35; p.22



Online Prediction of the Running Time of Tasks 23

(a) fraction of deadlines met

(b) fraction of deadlines met when predicted

Figure 9. RTSA scheduling performance versus slack factor.

history. The parallel computing community has studied application-level load
balancing for some time [23, 25, 10], but this work has treated prediction
only implicitly. The operating systems community has studied existing work-
loads [20, 11, 16, 13] to support distributed load sharing, and developed
innovative system-level scheduling policies based on queueing theoretic mod-
els [13]. In contrast to these two threads, our work is done entirely at the
user level and considers prediction explicitly. Our goal is to provide high
level predictive services in shared, unreserved distributing computing envi-
ronments that are useful to applications make different kinds of scheduling
and adaptation decisions.

paper.tex; 19/11/2001; 19:35; p.23



24 Peter A. Dinda

The notion of such application-level scheduling is due to Berman and
Wolski [2]. It has been shown that application-level scheduling is feasible not
only in tradition parallel load balancing, but also in distributed object systems
like CORBA [29] and distributed interactive applications such as scientific
visualization [1, 18]. It is also becoming increasingly clear that Grid [12]
applications will have to rely on adaptation. Our work supports adaptation
frameworks by providing performance predictions on which statistically valid
scheduling decisions can be made. The system described in this paper has
been incorporated in one such framework, BBN’s QuOiN [29].

Starting in the late 90s, research began on how to build scalable systems
for measuring the dynamic properties of distributed environments, leading to
such well known systems as the Network Weather Service [27] (NWS) and
Remos [19]. Over time, NWS incorporated time series prediction for host
and network load [27, 28], while Remos did the same, using our work (the
RPS toolkit [7]). With regard to this paper, we and the NWS group have
independently demonstrated that host load prediction is feasible and have in-
dependently reached similar conclusions about what form of predictive model
is preferable [28, 8].

This paper demonstrates that host load prediction is not only feasible,
but also useful, in that such predictions permit us to cheaply and scalably
predict the running time of tasks as confidence intervals. This form of higher
level prediction is extremely useful in adaptation. In other work, we have
shown, for example, that these predictions allow us to make scheduling deci-
sions to meet real-time goals with high probability [6, Chapter 6]. In general,
our confidence intervals can provide support for many forms of stochastic
scheduling [24].

Real-time scheduling work dates back to the early 1970s [17] and includes
work on collaboratively scheduled distributed real-time systems [15, 26].
Perhaps closest to the spirit of the RTSA is the work of Ramamritham, et
al [22].

10. Conclusion and future work

We have described an algorithm that can estimate, on a typical shared, un-
reserved host running a commodity operating system, the running time of
a compute-bound task given the task’s CPU demand and time series pre-
dictions of the load on the host. A prediction of running time is presented
to the application as a confidence interval, which enables the application to
make statistically valid decisions based on the prediction. We summarized
how our host load prediction system works (the full details are presented
elsewhere), and then showed how we implemented the algorithm on top of it.
We then evaluated the composite system using a large number of randomized

paper.tex; 19/11/2001; 19:35; p.24



Online Prediction of the Running Time of Tasks 25

testcases. The main conclusion is that the algorithm, when paired with an
appropriate predictive model for host load, does indeed compute valid con-
fidence intervals. Experience with predictive real-time scheduling suggests
that these intervals have real value in adaptive applications.

We are currently working on a similar system to predict communication
times. The goal is to be able to predict, again as a confidence interval, how
long it will take to transfer a given number of bytes between two hosts. In
addition to predicting resource supply, we are also very interested in pre-
dicting the resource demand of applications. Finally, we are studying how to
automatically learn models of resource schedulers with hopes to improve on,
for example, the simple Unix scheduler model we used here.

Acknowledgements

This paper benefited from discussions with David O’Hallaron, Bruce Lowekamp,
Peter Steenkiste, Jaspal Subhlok, Thomas Gross, Dean Sutherland, David
Bakken, and Nancy Miller. Effort sponsored by the National Science Foun-
dation under Grants ANI-0093221, ACI-0112891, and EIA-0130869

References

1. Aeschlimann, M., P. Dinda, L. Kallivokas, J. Lopez, B. Lowekamp, and D. O’Hallaron:
1999, ‘Preliminary Report on the Design of a Framework for Distributed Visualization’.
In: Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99). Las Vegas, NV, pp. 1833–1839.

2. Berman, F. and R. Wolski: 1996, ‘Scheduling From the Perspective of the Applica-
tion’. In: Proceedings of the Fifth IEEE Symposium on High Performance Distributed
Computing HPDC96. pp. 100–111.

3. Box, G. E. P., G. M. Jenkins, and G. Reinsel: 1994, Time Series Analysis: Forecasting
and Control. Prentice Hall, 3rd edition.

4. Dinda, P., B. Lowekamp, L. Kallivokas, and D. O’Hallaron: 1999, ‘The Case for
Prediction-Based Best-Effort Real-Time Systems’. In: Proc. of the 7th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 1999), Vol. 1586
of Lecture Notes in Computer Science. San Juan, PR: Springer-Verlag, pp. 309–318.
Extended version as CMU Technical Report CMU-CS-TR-98-174.

5. Dinda, P. A.: 1999, ‘The Statistical Properties of Host Load’. Scientific Programming
7(3,4). A version of this paper is also available as CMU Technical Report CMU-CS-TR-
98-175. A much earlier version appears in LCR ’98 and as CMU-CS-TR-98-143.

6. Dinda, P. A.: 2000, ‘Resource Signal Prediction and Its Application to Real-time
Scheduling Advisors’. Ph.D. thesis, School of Computer Science, Carnegie Mellon
University. Available as Carnegie Mellon University Computer Science Department
Technical Report CMU-CS-00-131.

7. Dinda, P. A. and D. R. O’Hallaron: 1999, ‘An Extensible Toolkit for Resource Predic-
tion In Distributed Systems’. Technical Report CMU-CS-99-138, School of Computer
Science, Carnegie Mellon University.

paper.tex; 19/11/2001; 19:35; p.25



26 Peter A. Dinda

8. Dinda, P. A. and D. R. O’Hallaron: 2000a, ‘Host Load Prediction Using Linear Models’.
Cluster Computing 3(4). An earlier version of this paper appeared in HPDC ’99.

9. Dinda, P. A. and D. R. O’Hallaron: 2000b, ‘Realistic CPU Workloads Through Host
Load Trace Playback’. In: Proc. of 5th Workshop on Languages, Compilers, and
Run-time Systems for Scalable Computers (LCR2000), Vol. 1915 of Lecture Notes in
Computer Science. Rochester, New York, pp. 246–259.

10. Dusseau, A. C., R. H. Arpaci, and D. E. Culler: 1996, ‘Effective Distributed Scheduling
of Parallel Workloads’. In: Proceedings of the 1996 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. pp. 25–36.

11. Eager, D. L., E. D. Lazowska, and J. Zahorjan: 1988, ‘The Limited Performance Benefits
of Migrating Active Processes for Load Sharing’. In: SIGMETRICS ’88. pp. 63–72.

12. Foster, I. and C. Kesselman (eds.): 1999, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann.

13. Harchol-Balter, M. and A. B. Downey: 1996, ‘Exploiting Process Lifetime Distributions
for Dynamic Load Balancing’. In: Proceedings of ACM SIGMETRICS ’96. pp. 13–24.

14. Jain, R.: 1991, The Art of Computer Systems Performance Analysis. John Wiley and
Sons, Inc.

15. Kurose, J. F. and R. Chipalkatti: 1987, ‘Load sharing in Soft Real-Time Distributed
Computer Systems’. IEEE Transactions on Computers C-36(8), 993–1000.

16. Leland, W. E. and T. J. Ott: 1986, ‘Load-balancing Heuristics and Process Behavior’. In:
Proceedings of ACM SIGMETRICS, Vol. 14. pp. 54–69.

17. Liu, C. L. and J. W. Layland: 1973, ‘Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment’. Journal of the ACM 20(1), 46–61.

18. Lopez, J. and D. O’Hallaron: 2000, ‘Runtime Support for Adaptive Heavyweight Ser-
vices’. In: Proc. of 5th Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR2000), Vol. 1915 of Lecture Notes in Computer Science.
Rochester, NY, pp. 221–234.

19. Lowekamp, B., N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok: 1998,
‘A Resource Monitoring System for Network-Aware Applications’. In: Proceedings of
the 7th IEEE International Symposium on High Performance Distributed Computing
(HPDC). pp. 189–196.

20. Mutka, M. W. and M. Livny: 1991, ‘The Available Capacity of a Privately Owned
Workstation Environment’. Performance Evaluation 12(4), 269–284.

21. Object Management Group: 1999, ‘The Common Object Request Broker: Architecture
and Specification (version 2.3.1)’. Technical report, Object Management Group.

22. Ramamrithham, K., J. A. Stankovic, and W. Zhao: 1989, ‘Distributed Scheduling of
Tasks with Deadlines and Resource Requirements’. IEEE Transactions on Computer
Systems 38(8), 1110–1123.

23. Rinard, M., D. Scales, and M. Lam: 1993, ‘Jade: A High-Level Machine-Independent
Language for Parallel Programming’. IEEE Computer 26(6), 28–38.

24. Schopf, J. M. and F. Berman: 1999, ‘Stochastic Scheduling’. In: Proceedings of
Supercomputing ’99. Also available as Northwestern University Computer Science
Department Technical Report CS-99-03.

25. Siegell, B. and P. Steenkiste: 1994, ‘Automatic Generation of Parallel Programs with
Dynamic Load Balancing’. In: Proceedings of the Third International Symposium on
High-Performance Distributed Computing. pp. 166–175.

26. Stankovic, J., K. Ramamritham, D. Niehaus, M. Humphrey, and G. Wallace: 1999,
‘The Spring System: Integrated Support for Complex Real-Time Systems’. Real-Time
Systems Journal 16(2/3).

27. Wolski, R.: 1997, ‘Forecasting Network Performance to Support Dynamic Scheduling
Using the Network Weather Service’. In: Proceedings of the 6th High-Performance

paper.tex; 19/11/2001; 19:35; p.26



Online Prediction of the Running Time of Tasks 27

Distributed Computing Conference (HPDC97). pp. 316–325. extended version available
as UCSD Technical Report TR-CS96-494.

28. Wolski, R., N. Spring, and J. Hayes: 1999, ‘Predicting the CPU Availability of Time-
shared Unix Systems’. In: Proceedings of the Eighth IEEE Symposium on High
Performance Distributed Computing HPDC99. pp. 105–112. Earlier version available
as UCSD Technical Report Number CS98-602.

29. Zinky, J. A., D. E. Bakken, and R. E. Schantz: 1997, ‘Architectural Support for Quality
of Service for CORBA Objects’. Theory and Practice of Object Systems 3(1), 55–73.

Author’s Vitae

Peter A. Dinda
Peter Dinda is an assistant professor in the Department of Computer Science
at Northwestern University. He holds a B.S. in electrical engineering from the
University of Wisconsin and a Ph.D. in computer science from Carnegie Mel-
lon University. His research centers on the intersection of interactive applica-
tions and high performance computing, and in particular on statistical signal
processing approaches to analyzing and predicting the dynamic behavior of
such systems. He is a member of ACM and IEEE.

paper.tex; 19/11/2001; 19:35; p.27



paper.tex; 19/11/2001; 19:35; p.28


