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Abstract
Places bring new support for message-passing parallelism to
Racket. This paper gives an overview of the programming model
and how we had to modify our existing, sequential runtime-system
to support places. We show that the freedom to design the pro-
gramming model helped us to make the implementation tractable;
specifically, we avoided the conventional pain of adding just the
right amount of locking to a big, legacy runtime system. The paper
presents an evaluation of the design that includes both a real-world
application and standard parallel benchmarks.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors — Run-time environments

General Terms Parallelism, Languages, Design

1. Introduction
The increasing availability of multicore processors on commodity
hardware—from cell phones to servers—puts increasing pressure
on the design of dynamic languages to support multiprocessing.
Support for multiprocessing often mimics the underlying hardware:
multiple threads of execution within a shared address space. Unfor-
tunately, the problems with threads of execution in a single address
space are well known, non-trivial, and afflict both programmers us-
ing a language and the implemetors of the language. Programmers
and language implementors alike need better alternatives.

A message-passing architecture, with threads of execution in
separate address spaces, is widely recognized as a more scalable
design and easier to reason about than shared memory. Besides
avoiding the interference problems created by shared memory, the
message-passing model encourages programmers to consider the
data-placement and communication needs of a program to enable
sustained scalability. The design and success of languages like Er-
lang demonstrate the viability of this model for parallel program-
ming.
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Racket’s new place1 construct supports message-passing paral-
lelism layered on top of a language that (unlike Erlang) was not
originally designed for parallelism. Racket’s existing threads and
synchronization support for concurrency are kept separate from
new places support for parallelism, except to the degree that mes-
sage receipt interacts with other concurrent activities within a sin-
gle place. Message-passing parallelism is not novel in Racket, but
our design and experience report for layering places on top of an
existing language should be useful to other designers and imple-
mentors.

The conventional approach to adding this style of parallelism
to a language implementation that has a large, sequential run-
time system is to exploit the unix fork() primitive, much in the
way Python’s multiprocessing library works. This approach, how-
ever, limits the communication between cooperating tasks to byte
streams, making abstraction more difficult and communication less
efficient than necessary. We have decided to implement places di-
rectly in the runtime system, instead of relying on the operating
system. This approach allows the runtime system to maintain more
control and also fits our ongoing effort to explore the boundary be-
tween the operating system and the programming language (Flatt
and Findler 2004; Flatt et al. 1999; Wick and Flatt 2004).

The Racket runtime system begins with a single, initial place.
A program can create additional places, send messages to places
over channels—including channels as messages, so that any two
places can communicate directly. Messages sent between places are
normally immutable, preventing the data races that plague shared-
memory designs. To allow lower-level communication when appro-
priate, however, places can share certain mutable data structures,
including byte strings, fixnum arrays, and floating-point arrays, all
of which contain only atomic values.

As part of Racket’s broader approach to parallelism, places
fully support our previously reported construct for parallelism, fu-
tures (Swaine et al. 2010). In particular, each place can spawn
and manage its own set of future-executing threads. Places and fu-
tures are complementary; places support coarse-grained parallelism
without restrictions on the parallel computations, while futures sup-
port fine-grained parallelism for sufficiently constrained computa-
tions (e.g., no I/O).

The rest of the paper proceeds as follows. Section 2 explains in
more detail the design rationale for places. Section 3 briefly out-
lines the places API. Section 4 demonstrates how message passing,
shared memory, and higher-level parallelism constructs can be built
on top of place primitives. Section 5 explains the implementation

1 The choice of the name “place” is inspired by X10’s construct. (Charles et
al. 2005)



of places within the Racket virtual machine. Section 6 evaluates the
performance and scaling of places using the NAS Parallel Bench-
marks. Section 7 describes related work.

2. Design Overview
Each place is essentially a separate instance of the Racket virtual
machine. All code modules are loaded separately in each place,
data is (almost always) allocated in a specific place, and garbage
collection proceeds (almost always) independently in each place.

Places communicate through place channels, which are end-
points for communication channels that are shared among pro-
cesses in much the way that Unix processes use file descriptors
for endpoints of shared pipes. Unlike file descriptors, a place
channel supports structured data across the channel, including
booleans, numbers, characters, symbols, byte strings, Unicode
strings, filesystem paths, pairs, lists, vectors, and “prefab” struc-
tures (i.e., structures that are transparent and whose types are uni-
versally named). Roughly speaking, only immutable data can be
sent across a place channel, which allows the implementation to
either copy or share the data representation among places as it sees
fit. Place channels themselves can be sent in messages across place
channels, so that communication is not limited to the creator of a
place and its children places; by sending place channels as mes-
sages, a program can construct custom message topologies.

In addition to immutable values and place channels, special
mutable byte strings, fixnum vectors, and floating-point vectors can
be sent across place channels. For such values, the runtime system
is constrained to share the underlying value among places, rather
than copy the value as it is sent across a channel. Mutation of the
value by one place is visible to other places. By confining shared
mutable values to vectors of atomic data, race conditions inherent
in sharing cannot create safety problems for the runtime system
or complicate garbage collection by allowing arbitrary references
from one address space to another. At the same time, shared vectors
of atomic data directly support many traditional parallel algorithms,
such as a parallel prefix sum on a vector of numbers. Other mutable
values could be allowed in place messages with the semantics that
they are always copied, but such copying might be confusing, and
explicit marshaling seems better to alert a programmer that copying
is unavoidable (as opposed to any copying that the runtime system
might choose as the best strategy for a given message).

The prohibition against sharing arbitrary mutable values implies
that thunks or other procedures cannot be sent from one place to
another, since they may close over mutable variables or values.
Consequently, when a place is created, its starting code is not
specified by a thunk (as is the case for threads) but by a module
path plus an exported “main” function. This specification of a
starting point is essentially the same as the starting point in Racket
itself, except that the “main” function receives a place channel to
initiate communication between the new place and its creator. The
place form simplifies place creation where a procedure would be
convenient, but it works by lifting the body of the place form to
an enclosing module scope at compile time.

Additional place channels can be created and sent to places, al-
lowing the creation of specific constructed capabilities. One com-
mon pattern is to have a master place spawn worker places and
collect all of the initial place-channels into a list. This list of place
channels can then be sent to all the places, which permits all-to-
all communication. Place channels are asynchronous, so that the
sender of a message need not synchronize with a recipient. Place
channels are also two-way as a convenience; otherwise, since a typ-
ical communication patterns involve messages in both directions, a
program would have to construct two place channels. Finally, place
channels are events in the sense of Concurrent ML (Reppy 1999;
Flatt and Findler 2004). Place channels can be combined with other

events to build up complex synchronization patterns, such as fair
choice among multiple place channels.

Our current initial implementation of places shares little read-
only data among places. Longer term, we would like to automati-
cally share read-only code modules and JIT-generated code across
places in much the same way that operating systems share libraries
among separate applications. In general, places are designed to al-
low such sharing optimizations in the language runtime system as
much as possible.

3. Places API
The Racket API for places2 supports place creation, channel mes-
sages, shared mutable vectors, and a few administrative functions.

(dynamic-place module-path start-proc) → place?
module-path : module-path?
start-proc : symbol?

Creates a place to run the procedure that is identified by module-
path and start-proc.3 The result is a place descriptor value that
represents the new parallel task; the place descriptor is returned
immediately. The place descriptor is also a place channel to initiate
communication between the new place and the creating place.

The module indicated by module-path must export a function
with the name start-proc. The exported function must accept a
single argument, which is a place channel that corresponds to the
other end of communication for the place channel that is returned
by dynamic-place. For example,

(dynamic-place "fib.rkt" ’go)

starts the module "fib.rkt" in a new place, calling the function
go that is exported by the module.

(place id body ...+)

The place derived form creates a place that evaluates body expres-
sions with id bound to a place channel. The bodys close only over
id plus the top-level bindings of the enclosing module, because the
bodys are lifted to a function that is exported by the module. The
result of place is a place descriptor, like the result of dynamic-
place.

For example, given the definitions

(define (fib n) ....)

(define (start-fib-30)
(place ch (fib 30)))

then calling start-fib-30 creates a place to run a new instanti-
ation of the enclosing module, and the fib function (which need
not be exported) is called in the new place.

(place-channel-put ch v) → void?
ch : place-channel?
v : place-message-allowed?

(place-channel-get ch) → place-message-allowed?
ch : place-channel?

The place-channel-put function asynchronously sends a mes-
sage v on channel ch and returns immediately. The place-
channel-get function waits until a message is available from
the place channel ch. See also sync below.

2 This paper describes the API of places for the 5.1.2 release version of
Racket at http://racket-lang.org/download/.
3 The dynamic- prefix on the function name reflects the similarity of this
function to Racket’s dynamic-require function.

http://racket-lang.org/download/


As an example, the following start-fib function takes a
number n, starts (fib n) in a new place, and returns a place
descriptor to be used as a place channel for receiving the result:

(define (fib n) ....)

(define (start-fib n)
(define p

(place ch
(define n (place-channel-get ch))
(place-channel-put ch (fib n))))

(place-channel-put p n)
p)

The start-fib function could be used to start two computations
in parallel and then get both results:

(define p1 (start-fib n1))
(define p2 (start-fib n2))
(values (place-channel-get p1)

(place-channel-get p2))

(place-channel-put/get ch v)
→ place-message-allowed?
ch : place-channel?
v : place-message-allowed?

A convenience function to combine a place-channel-put with
an immediate place-channel-get.

(place-channel) → place-channel? place-channel?

Returns two place channels that are cross-linked through an un-
derlying data channel. Data sent through the first place channel is
received through the second place channel and vice versa.

For example, if buyer and seller places are given channel
endpoints, they can communicate directly using the new channel
and report only final results through their original channels:

(define b (dynamic-place "trade.rkt" ’buyer))
(define s (dynamic-place "trade.rkt" ’seller))

(define-values (b2s s2b) (place-channel))
(place-channel-put b b2s)
(place-channel-put s s2b)
; ... buyer and seller negotiate on their own ...

(values (place-channel-get b)
(place-channel-get s))

(sync evt ...+) → any?
evt : evt?

Blocks until at least one of the argument evts is ready, and re-
turns the value of the ready evt. A place channel as an event be-
comes ready when a message is available for the channel, and the
corresponding value produced by sync is the channel message.
Thus, (sync ch1 ch2) receives a message from ch1 or ch2—
whichever has a message first.

Racket includes other synchronization constructs, such as the
sync/timeout function to poll an event. Our examples in this
paper need only sync.

(handle-evt evt handle) → handle-evt?
evt : (and/c evt? (not/c handle-evt?))
handle : (any/c . -> . any)

Creates an event that is in a ready when evt is ready, but whose
result is determined by applying handle to the result of evt.

(place-wait p) → void?

p : place?

Blocks until p terminates.

(make-shared-fxvector size [x]) → fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

(make-shared-flvector size [x]) → flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a mutable, uniform vector of fixnums or floating-point
numbers that can be shared across places. That is, the vector is
allowed as a message on a place channel, and mutations of the
vector by the sending or receiving place are visible to the other
place. The concurrency model for shared data is determined by
the underlying processor (e.g., TSO (Sewell et al. July 2010) for
x86 processors). Places can use message passing or functions like
place-wait to synchronize access to a shared vector.

For example,

(define (zero! vec)
(define p
(place ch

(define vec (place-channel-get ch))
(for ([i (fxvector-length vec)])
(fxvector-set! vec i 0))))

(place-channel-put p vec)
(place-wait p))

fills a mutable fixnum vector with zeros using a separate place.
Waiting until the place is finished ensures that the vector is ini-
tialized when zero! returns.

(processor-count) → exact-positive-integer?

Returns the number of parallel computation units (e.g., processors
or cores) that are available on the current machine.

4. Design Evaluation
We evaluated the design of places in two main ways. First, we used
places for Racket’s parallel-build infrastructure, where the imple-
mentation uses Erlang-style message handling. Second, we ported
the NAS Parallel Benchmark suite to Racket using MPI-like paral-
lelism constructs that are built on top of places. In addition to our
main experiments, we present a Mandelbrot example that demon-
strates how atomic-value vectors can be shared among places. To-
gether, these examples demonstrate the versatility of places for im-
plementing different patterns of parallelism.

4.1 Parallel Build
The full Racket source repository includes 700k lines of Racket
code plus almost 200k of documentation source (which is also
code) that is recompiled with every commit to the repository. A
full build takes nearly an hour on a uniprocessor, but the build
parallelizes well with places, speeding up by 3.2x on 4 cores.

The build is organized as a controller in the main place that
spawns workers in their own places. One worker is created for
each available processor. The controller keeps track of the files that
need to be compiled, while each worker requests a file to compile,
applies the compile function to the file, and repeats until no more
files are available from the controller.

Concretely, the workers are created by place in a for/list
comprehension that is indexed by an integer from 0 to (processor-
count):



(define ps ;list of place descriptors
(for/list ([i (processor-count)])

(place ch
(let worker ()

(match (place-channel-put/get ch ’get-job)
[’done (void)]
[job
(compile job)
(define msg (list ’job-finished job))
(place-channel-put ch msg)
(worker)])))))

Each worker runs a worker loop that sends a ’get-job mes-
sage to the controller via ch and then waits for a response. If
the response to the ’get-job request is the symbol ’done, the
controller has no more jobs; the place quits running by returning
(void) instead of looping. If the controller responds with a job,
the worker compiles the job, sends a completion message back to
the controller, and loops back to ask for another job.

After spawning workers, the controller waits in a loop for mes-
sages to arrive from the workers. Any worker might send a mes-
sage, and the controller should respond immediately to the first
such message. In Concurrent ML style, the loop is implemented
by applying sync to a list of events, each of which wraps a place
channel with a handler function that answers the message and re-
curs to the message loop. When no jobs are available to answer
a worker’s request, the worker is removed from the list of active
place channels, and the message loop ends when the list is empty.

The message-handling part of the controller matches a given
message m, handles it, and recurs via message-loop (lines 21-
33 in figure 1). Specifically, when the controller receives a ’get-
job message, it extracts a job from the job queue. If the job queue
has no remaining jobs so that (get-job job-queue) returns #f,
the ’done message is sent to the worker otherwise, the job from
the queue is sent back to the worker. When the controller instead
receives a (list ’job-finished job) message, it notifies the
job queue of completion and resumes waiting for messages.

Figure 1 contains the complete parallel-build example. Racket’s
actual parallel-build implementation is more complicated to handle
error conditions and the fact that compilation of one module may
trigger compilation of another module; the controller resolves con-
flicts for modules that would otherwise be compiled by multiple
workers.

4.2 Higher-level Constructs
Repeatedly creating worker modules, spawning places, sending ini-
tial parameters, and collecting results quickly becomes tiresome
for a Racket programmer. Racket’s powerful macro system, how-
ever, permits the introduction of new language forms to abstract
such code patterns. The Racket version of the NAS parallel bench-
marks are built using higher-level constructs: fork-join, CGfor
and CGpipeline.

4.2.1 CGfor
The CGfor form looks like the standard Racket for form, except
for an extra communicator group expression. The communicator
group records a configuration in three parts: the integer identity of
the current place, the total number of places in the communicator
group, and a vector of place channels for communicating with
the other places. The CGfor form consults a given communicator
group to partition the loop’s iteration space based on the number
of places in the group, and it executes the loop body only for
indices mapped to the current place’s identity. For example, if a
communication group cg specifies 3 places, then (CGfor cg ([x
(in-range 900)]) ...) iterates a total of 900 times with the

1 #lang racket
2 (require "job-queue.rkt")
3

4 (define (main)
5 (define ps ;list of place descriptors
6 (for/list ([i (processor-count)])
7 (place ch
8 (let worker ()
9 (place-channel-put ch ’get-job)
10 (match (place-channel-get ch)
11 [’done (void)]
12 [job
13 (compile job)
14 (define msg (list ’job-finished job))
15 (place-channel-put ch msg)
16 (worker)])))))
17

18 (define job-queue (build-job-queue))
19

20 (define (make-message-handler p ps)
21 (define (message-handler m)
22 (match m
23 [’get-job
24 (match (get-job job-queue)
25 [#false
26 (place-channel-put p ’done)
27 (message-loop (remove p ps))]
28 [job
29 (place-channel-put p job)
30 (message-loop ps)])]
31 [(list ’job-finished job)
32 (job-finished job-queue job)
33 (message-loop ps)]))
34 (handle-evt p message-handler))
35

36 (define (message-loop ps)
37 (define (make-event p)
38 (make-message-handler p ps))
39 (unless (null? ps)
40 (apply sync (map make-event ps))))
41

42 (message-loop ps))

Figure 1: Parallel Build

first place computing iterations 1–300, the second place iterating
301–600, and the third place iterating 601–900.

The fork-join form creates a communicator group and binds
it to a given identifier, such as cg. The following example demon-
strates a parallel loop using fork-join and CGfor, which are de-
fined in the "fork-join.rkt" library:

1 #lang racket
2 (require "fork-join.rkt")
3

4 (define (main n)
5 (fork-join (processor-count) cg ([N n])
6 (CGfor cg ([i (in-range N)])
7 (compute-FFT-x i))
8 (CGBarrier cg)
9 (CGfor cg ([i (in-range N)])

10 (compute-FFT-y i))
11 (CGBarrier cg)
12 (CGfor cg ([i (in-range N)])
13 (compute-FFT-z i))))

The fork-join form on line 5 creates (processor-count)
places and records the configuration in a communicator group cg.
The ([N n]) part binds the size n from the original place to N



1 (define-syntax-rule
2 (fork-join NP cg ([params args] ...) body ...)
3 (define ps
4 (for/list ([i (in-range n)])
5 (place ch
6 (define (do-work cg params ...) body ...)
7 (match (place-channel-get ch)
8 [(list-rest id np ps rargs)
9 (define cg (make-CG id np (cons ch ps)))

10 (define r (apply do-work cg rargs))
11 (place-channel-put ch r)]))))
12

13 (for ([i (in-range NP)] [ch ps])
14 (place-channel-put
15 ch
16 (list i NP ps args ...)))
17

18 (for/vector ([i (in-range NP)] [ch ps])
19 (place-channel-get ch)))

Figure 2: fork-join

in each place, since the new places cannot access bindings from
the original place. The (CGBarrier cg) expression blocks until
all of the places in the communication group cg reach the barrier
point.

The complete implementation for fork-join is shown in fig-
ure 2. First fork-join spawns places (line 4), sends a message to
each place containing the place’s identity and other communication-
group parameters, and other arguments specified in the fork-join
use (line 13). It then waits for each place to report its final result,
which is collected into a vector of results (line 18).

Each worker place waits for a message from its controller con-
taining its communicator group settings and initial arguments (lines
7-8). The place builds the local communicator group structure (line
9) and evaluates the fork-join body with the received arguments
(line 10). Finally, the result of the place worker’s computation is
sent back across a place channel to the place’s controller (line 11).

4.2.2 CGpipeline
In the same way a CGfor form supports simple task parallelism, a
CGpipeline form supports pipeline parallelism. For example, the
LU benchmark uses a parallel pipeline to compute lower and upper
triangular matrices. As a simpler (and highly contrived) example,
the following code uses pipeline parallelism to compute across the
rows of a matrix, where a cell’s new value is the squared sum of
the cell’s old value and the value of the cell to its left. Instead of
treating each row as a task, each column is a task that depends
on the previous column, but rows can be pipelined through the
columns in parallel:

1 (define v (flvector 0.0 1.0 2.0 3.0 4.0
2 0.1 1.1 2.1 3.1 4.1
3 0.2 1.2 2.2 3.2 4.2
4 0.3 1.3 2.3 3.3 4.3
5 0.4 1.4 2.4 3.4 4.4))
6

7 (fork-join 5 cg ()
8 (for ([i (in-range 5)])
9 (CGpipeline cg prev-value 0.0

10 (define idx (+ (* i 5) (CG-id cg)))
11 (define (fl-sqr v) (fl* v v))
12 (fl-sqr (fl+ (fl-vector-ref v idx)
13 prev-value)))))

(define-syntax-rule
(CGpipeline cg prev-value init-value body ...)
(match cg
[(CG id np pls)
(define (send-value v)
(place-channel-put (list-ref pls (add1 id)) v))

(define prev-value
(if (= id 0)

init-value
(place-channel-get (car pls))))

(define result (begin body ...))
(unless (= id (sub1 np)) (send-value result))
result]))

Figure 3: CGpipeline

The pipeline is constructed by wrapping the CGpipeline form
with a normal for loop inside fork-join. The fork-join form
creates five processes, each of which handles five rows in a particu-
lar column. The CGpipeline form within the for loop propagates
the value from previous column—in the variable prev-value,
which is 0.0 for the first column—to compute the current column’s
value. After a value is produced for a given row, a place can proceed
to the next row while its value for the previous row is pipelined to
later columns. Like the CGfor form, the CGpipeline form uses a
communicator group to discover a place’s identity, the total number
of places, and communication channels between places.

Figure 3 shows the implementation of CGpipeline. All places
except place 0 wait for a value from the previous place, while place
0 uses the specified initial value. After place i finishes executing
its body, it sends its result to place i+1, except for the final place,
which simply returns its result. Meanwhile, place i continues to the
next row, enabling parallelism through different places working on
different rows.

4.3 Shared Memory
Certain algorithims benefit from shared-memory communication.
Places accommodates a subset of such algorithms through the use
of shared vectors. Shared-vector primitives permit a restricted form
of shared-memory data structures while preserving the integrity of
the language virtual machine. Shared vectors have two integrity-
preserving invariants: their sizes are fixed at creation time, and they
can only contain atomic values.

In the following example, the mandelbrot-point function is
a black-box computational kernel. It consumes an (x, y) coordinate
and returns a Mandelbrot value at that point. The argument N
specifies the number lines and columns in the output image.

1 #lang racket
2 (require "fork-join.rkt"
3 "mandelbrot-point.rkt")
4

5 (define (main N)
6 (define NP (processor-count))
7 (define b (make-shared-bytes (* N N) 0))
8

9 (fork-join NP cg ([N N] [b b])
10 (CGfor cg ([y (in-range N)])
11 (for ([x (in-range N)])
12 (define mp (mandelbrot-point x y N))
13 (byte-2d-array-set! b x y N mp))))
14

15 (for ([y (in-range N)])
16 (write-bytes/newline b y N)))



In this implementation, workers communicate mandelbrot-
point results to the controller through a shared byte vector b.
Vector b’s size is fixed to (* N N) bytes, and all b’s elements
are initialized to 0. The fork-join construct spawns the worker
places, creates the communicator group cg, and sends the line
length (N) and the shared result vector (b) to the workers.

Having received their initial parameters, each place computes
its partition of the Mandelbrot image and stores the resulting image
fragment into the shared vector (b). After all of the worker places
finish, the controller prints the shared vector to standard output. The
shared-memory implementation speeds up Mandelbrot by 3x on 4
cores.

5. Implementing Places
Prior to support for places, Racket’s virtual machine used a single
garbage collector (GC) and single OS thread:

OS Process

Garbage Collector

Single OS Thread

Although Racket has always supported threads, Racket threads
support concurrency rather than parallelism; that is, threads in
Racket enable organizing a program into concurrent tasks, but
threads do not provide a way to exploit multiprocessing hardware
to increase a program’s performance. Indeed, although threads are
preemptive at the Racket level, they are co-routines within the
runtime system’s implementation.

Racket with places uses OS-scheduled threads within the Racket
virtual machine. Each place is essentially an instance of the se-
quential, pre-places virtual machine. To achieve the best parallel
performance, places are as independent and loosely coupled as pos-
sible, even to the point of separating memory regions among places
to maximize locality within a place. Even better, separate address
spaces mean that each place has its own GC that can collect inde-
pendently from other places.

Racket Process

Master Garbage Collector

GC

Place

GC

Place

GC

Place

Each place-local GC allocates and manages almost all of the ob-
jects that a place uses. An additional master GC is shared across
all places to manage a few global shared objects, such as read-only
immortal objects, place channels, and shared vectors of atomic val-
ues. Object references from places to the shared master heap are
permitted, but references are not permitted in the opposite direc-
tion.

Racket Process

Global Garbage Collector

Place GC Place GC Place GC

Disallowing references from the master space to place-specific
spaces maintains isolation between places, and it is the invariant
that allows places to garbage collect independently of one another.
Only a global collection of the shared master space requires the
collective cooperation of all the places, and such collections are
rare.

The implementation of places thus consists of several tasks:
adding OS schedulable threads to the runtime system, converting
global state variables within the runtime system to place-local vari-
ables, modifying garbage collection strategies for concurrent-place
execution, and implementing channels for communicating between
places.

5.1 Threads and Global Variables
The Racket runtime system has been continuously developed for
the past decade and a half. Like other mature runtime systems, the
Racket implementation includes many global variables. The pres-
ence of such global variables in the code base was the largest obsta-
cle to introducing OS-scheduled threads into the runtime system.

Using grep and a simple CIL (Necula et al. 2002) analysis, we
conducted an audit of the 719 global variables within the Racket
implementation. The audit found 337 variables that fell into the cat-
egory of read-only singleton objects once they were set (during VM
initialization). A few of the variables encountered during the au-
dit, such as scheme_true, scheme_false, and scheme_null,
were easy to identify as read-only singleton objects. These were
annotated with a READ_ONLY tag as documentation and to support
further analysis. The auditing of most variables, however, required
locating and reviewing all code sites where a particular variable
was referenced. About 155 global variables were deemed permis-
sible to share and annotated as SHARED_OK. The remaining 227
variables needed to be localized to each place and were tagged as
THREAD_LOCAL_DECL.

Tool support simplifies the arduous task of annotating and audit-
ing global variables. Tools that simply identify all global variables
are remarkably helpful in practice. Finding all the code sites where
a global variable is used helps the runtime developer ensure that
isolation invariants are preserved in each place that a global vari-
able is referenced.

Testing the global variable audit was relatively easy. We ran
the entire Racket test suite in multiple places simultaneously. For
almost all global variables that we overlooked or misclassified,
parallel execution of the test suite identified the problem.

5.2 Thread-Local Variables
To prevent collisions from concurrent access, many global variables
were localized as place-specific variables. We considered moving
all global variables into a structure that is threaded through the en-
tire runtime system. Although this restructuring is clean in princi-
ple, restructuring the runtime system along those lines would have
required extensive modifications to function signatures and code
flow. Instead, we decided to use thread-local variables, as supported
by the OS, to implement place-local state.

OSes support thread-local variables through library calls, such
as pthread_get_specific() and pthread_put_specific(),



and sometimes through compiler-implemented annotations, such as
__threadlocal or __declspec(thread). Compiler-implemented
thread-local variables tend to be much faster, and they work well
for Racket on Linux and most other variants of Unix. Although
Windows supports compiler-implemented thread-local variables,
Windows XP does not support them within DLLs (as used by
Racket); Vista and later Windows versions remedy this problem,
but Racket 32-bit builds must work on older versions of Win-
dows. Finally, Mac OS X does not currently support compiler-
implemented thread-local variables.

Our initial experiments indicated that using library calls for
thread-local variables on Windows and Mac OS X would make the
runtime system unacceptably slow. Reducing the cost of thread-
local variables on those platforms requires two steps.

First, all place-local variables were first collected into a single
table. Each place-local variable, such as toplevels_ht, has an
entry in the table with an underscore suffix:

struct Thread_Locals {
struct Scheme_Hash_Table *toplevels_ht_;
....

};

inline struct Thread_Locals *GET_TLV() { ... }

#define toplevels_ht (GET_TLV()->toplevels_ht_)

A preprocessor definition for each variable avoids the need to
change uses in the rest of the source. Collecting all thread-local
variables into a table supports threading a pointer to the table
through the most performance-sensitive parts of the runtime sys-
tem, notably the GC. Along similar lines, JIT-generated code keeps
a pointer to the thread-local table in a register or in a local variable.

Second, for uses of thread-local variables outside the GC or
JIT-generated code, we implement GET_TLV() in a way that is
faster than calling pthread_get_specific(). In 32-bit Win-
dows, a host executable (i.e., the one that links to the Racket
DLL) provides a single thread-local pointer to hold the table of
thread-local variables; inline assembly in GET_TLV() imitates
compiler-supported access to the executable-hosted variable. For
Mac OS X, GET_TLV() contains an inline-assembly version of
pthread_get_specific() that accesses the table of thread-
local variables.

5.3 Garbage Collection
At startup, a Racket process creates an initial GC instance and des-
ignates it the master GC. Read-only global variables and shared
global tables such as a symbol table, resolved-module path table,
and the type table are allocated from the master GC. After the pre-
requisite shared structures are instantiated, the initial thread dis-
connects from the master GC, spawns its own GC instance, and be-
comes the first place. After the bootstrapping phase of the Racket
process, the master GC does little besides allocating communica-
tion channels and shared atomic-value containers.

Places collect garbage in one of two modes: independently,
when collecting only the local heap, or cooperatively as part of a
global collection that includes the master GC. Place-local GCs col-
lect their local heap without any synchronization; a place collector
traverses the heap and marks objects it allocated as live, and all
other encountered objects, including objects allocated by the mas-
ter GC, are irrelevant and ignored.

When the master GC needs to perform a collection, all places
must pause and cooperate with the master GC. Fortunately, most
allocation from the master GC occurs during the initialization of a
program. Thus, the master GC normally reaches a steady state at
the beginning of some parallel program, allowing places to run in
parallel without interruption in common situations.

To initiate a global collection, the master GC sends a signal to
all places asking them to pause mutation and cooperatively collect.
Each place then performs a local collection in parallel with one
another. During cooperative collection, a place GC marks as live
not only traversed objects it allocated but also objects that were
allocated by the master GC; races to set mark bits on master-GC
objects are harmless. Master-GC objects that are referenced only
by place-local storage are thus correctly preserved.

After all place-specific collections have finished, each place
waits until the master GC marks and collects. Although place-
specific collection can move objects to avoid fragmentation, the
master GC never moves objects as it collects; master-GC allocation
is rare and coarse-grained enough that compaction is not needed.
Each place can therefore resume its normal work as soon as the
master-GC collection is complete.

5.4 Place Channels
To maintain the invariant that allows the place-specific GCs to work
independently, sending a message over a place channel copies data
from the originating place to the destination place.

Place channels implement efficient, one-copy message passing
by orphaning memory pages from the source place and adopting
those memory pages into the destination place. A place channel
begins this process by asking its local allocator for a new orphan
allocator. The orphan allocator groups all its allocations onto a new
set of orphaned memory pages. Orphaned pages are memory blocks
that are not owned by any GC. The place channel then proceeds to
copy the entire message using the orphan allocator. After the copy
is completed, the new orphaned message only contains references
to objects within itself and shared objects owned by the master GC.
The originating place sends this new message and its associated
orphaned memory pages to the destination place.

A place channel, receiving a message, adopts the message’s or-
phaned memory pages into its own nursery generation and returns
the received message to the user program. Message contents that
survive the nursery generation will relocate to memory more lo-
calized to the receiving place as the objects are promoted from the
nursery to the mature object generation. This orphan-adoption pro-
cess allows for single copy asynchronous message passing without
needing to coordinate during message allocation.

Messages less than 1024 bytes in length are handled in a slightly
different manner. These short messages are allocated onto an or-
phan page and sent to the destination place exactly as described
above. At the short message’s destination, instead of adopting the
messages orphaned pages, the destination place copies the mes-
sage from the orphan page into its local allocator. By immediately
copying short messages into the destination place allocator, the or-
phaned page can be returned to the system immediately for use by
subsequent place-channel messages.

The graphs in figure 4 summarize the performance of place-
channel communication. The first graph compares memcpy() in C,
place channels in Racket, and pipes in Racket on a byte-string mes-
sage. The results, which are plotted on a log scale, show that place
channels can be much slower than raw memcpy() for small mes-
sages, where the cost of memory-page management limits place-
channel throughput. Messages closer to a page size produce simi-
lar throughput with all techniques. The second graph shows place-
channel, pipe, and socket performance when the message is a list,
where Racket’s write and read are used to serialize lists for pipes
and sockets. The graph shows that place-channel communication
remains similar to pipe and socket communication for structured
data. Together, the results show that our communication strategy
does not make communication particularly cheap, but it is compet-
itive with services that have been optimized by OS implementors.
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Figure 4: Place-Channel Performance

5.5 OS Page-Table Locks
Compilation of Racket’s standard library was one of our early
tests of performance with places. After eliminating all apparent
synchronization points as possible points of contention, we found
that using separate processes for the build scaled better than using
places within a single Racket process. On closer inspection of the
system calls being made in each case, we saw that the build used
many mprotect() calls that took a long time to complete.

The Racket generational garbage collector uses OS-implemented
memory protection to implement write barriers. Each garbage col-
lection uses mprotect() to clear and set read-only permissions
on memory pages. After consulting the Linux source code, we
realized that mprotect() acquires a lock on the process’s page
table. When two or more places garbage collect at the same time,
contention for the process’s page table lock greatly increased the
time for mprotect() calls to complete. To avoid this problem,
we implemented an extra layer for the Racket allocator to produce
larger blocks of contiguous mature objects; issuing a single mpro-
tect() call for the contiguous block reduces the overall number
of mprotect() calls by an order of magnitude, which eliminates
the bottleneck.

The more general lesson is that OSes are designed to support
separate processes with minimal interference, but some corners
of an OS rely on relatively heavy locks within a single process.
Fortunately, we do not encounter these corners often—for example,
concurrent filesystem access seems to perform as well with places
as with separate processes—but the possibility is an extra concern
for the implementation.

5.6 Overall: Harder than it Sounds, Easier than Locks
The conversion of Racket to support places took approximately
two graduate-student years, which is at least four times longer

than we originally expected. At the same time, the implementation
of places has proven more reliable than we expected; when we
eventually flipped the default configuration of Racket from no-
places (and a parallel library build based on OS processes) to
places (and using them for building libraries), our automatic test
builds continued exactly as before—with the same success rate and
performance. Further deployments uncovered memory leaks, but
those were quickly corrected.

Our experience with places contrasts sharply with our previous
experience introducing concurrency into the runtime system, where
months of additional testing and use were required to uncover many
race conditions that escaped detection by the test suite. We attribute
this difference primarily to the small amount of sharing among
places, and therefore the small number of locking locations and
potential races in the code.

While implementing places, we made many mistakes where
data from one place was incorrectly shared with another place,
either due to incorrect conversion of global variables in the runtime
system or an incorrect implementation of message passing. Crashes
from such bugs were highly reproducible, however, because a bad
reference in a place tends to stick around for a long time, so it is
detected by an eventual garbage collection. Bugs due to incorrect
synchronization, in contrast, hide easily because they depend on
relatively unlikely coincidences of timing that are exacerbated by
weak memory models.

In adding places to Racket, we did not find as easy a path to
parallelism as we had hoped. We did, however, find a preferable
alternative to shared memory and locks.

6. Performance Evaluation
We evaluated the performance of places by running the NASA Ad-
vanced Supercomputing (NAS) Parallel Benchmarks (Bailey et al.
Aug. 1991).4 These benchmarks represent simplified kernels from
computation fluid-dynamics problems. This section presents results
for Racket,5 Java, and Fortran/C versions of the NAS benchmarks.

We use two high-end workstations that might be typical of a
scientist’s desktop machine. Penghu is a dual socket, quad-core per
processor, Intel Xeon machine running Mac OS X. Drdr is a dual
socket, hex-core per processor, AMD machine running Linux.

The NAS Parallel Benchmarks consists of seven benchmarks.
Integer Sort (IS) is a simple histogram integer sort. Fourier Trans-
form (FT) is a 3-D fast Fourier transform. FT computes three 1-D
FFTs, one for each dimension. Conjugate Gradient (CG) approx-
imates the smallest eigenvalue of a sparse unstructured matrix,
which tests the efficiency of indirect memory access. MultiGrid
(MG) solves a 3-D scalar Poisson equation and exercises mem-
ory transfers. Scalar Pentadiagonal (SP) is a 3-D Navier-Stokes
solver using Beam-Warming approximate factorization. Block
Tridiagonal (BT) is a Navier-Stokes solver using Alternating Di-
rection Implicit approximate factorization. Lower and Upper (LU)
is a Navier-Stokes solver using the symmetric successive over-
relaxation method.

Each NAS benchmark consists of a range of problem size
classes, from smallest to largest they are S, W, A, B, and C. We
ran the A size class on the shorter IS, FT, CG, MG benchmarks. On
the longer benchmarks, SP, BT, and LU, we ran the W size class.

Each benchmark is represented by a row of graphs in Figure 6
and Figure 7. The raw-performance graphs for each of the two
benchmark machines comes first, followed by the speedup graphs.
The raw-performance graph plots the number of threads versus the
time to complete the benchmark with the left-most point (labelled

4 http://www.nas.nasa.gov/Resources/Software/npb.html
5 The Racket version of the NAS Parallel Benchmarks is available at
https://github.com/tewk/racketNAS.

http://www.nas.nasa.gov/Resources/Software/npb.html
https://github.com/tewk/racketNAS


“S”) indicating the time for running the sequential benchmark
without creating any places. The speedup graphs plot the number
of threads versus the benchmark runtime divided by the benchmark
time for one parallel thread. The gray line in the speed up graphs
indicates perfect linear speedup.

In terms of raw performance, the Fortran/C implementation is
the clear winner. Java comes in second in most benchmarks. Racket
is third in most benchmarks, although it handily wins over Java in
the SP and LU benchmarks.

More importantly, the Racket results demonstrate that our
places implementation generally scales as well as the Java and
Fortran/C versions do. In many of the benchmarks, running the
Racket code with one parallel place takes only slightly longer than
running the sequential code. The small difference in run times be-
tween sequential and one-place parallel versions suggests that the
runtime cost of places for parallelization is practical.

The IS C result for Penghu (Mac OS X) machine is uncharacter-
istically slower than the Java and Racket run times. The IS bench-
mark on the Drdr (Linux) machine is much faster. The NPB im-
plementors wrote all the reference benchmarks in Fortran, except
for IS. The NPB developers wrote the IS benchmark in C, using
OpenMP’s threadprivate directive. GCC versions prior to 4.6
refused to compile the IS benchmark under Mac OS X, emitting an
error that __threadlocal was not supported. However, the pre-
release GCC 4.6 successfully compiles and runs the IS benchmark.
We believe that GCC 4.6 calls the pthread_get_specific()
API function to implement OpenMP thread private variables, which
increases the runtime of the IS implementation on Mac OS X.

The 3x difference in FT performance between Racket and Java
is most likely due to Racket’s lack of instruction-level schedul-
ing and optimization. The negative scaling seen in the CG bench-
mark on Drdr for processor counts 7-12 is likely a chip locality
issue when the computation requires both processor sockets. Un-
like all the other benchmark kernels, the CG benchmark operates
on a sparse matrix. The extra indirection in the sparse matrix rep-
resentation reduces the effectiveness of memory caches and tests
random memory accesses.

The MG benchmark stresses a machine’s memory subsystem in
a different manner. During its computation, MG copies data back
and forth between coarse and fine representations of its grid. On
Mac OS X, we had to increase the Java maximum heap size from
128MB to 600MB for the MG benchmark to finish successfully.
Java’s maximum heap size on Linux appears to default to approx-
imately 1/4th of the total system memory, which was sufficient for
the MG benchmark to finish on our Linux test platform.

The 4x difference in runtimes between Java and Racket in SP
and LU is most likely due to poor common sub-expression elimi-
nation. While porting the Java benchmarks to Racket, we manually
eliminated hundreds of common sub-expressions by introducing lo-
cal variables. The reference implementation’s Fortran code has the
same duplicated sub-expressions as the Java version. In contrast
to Java, the Fortran compiler appears to have a very effective sub-
expression elimination optimization pass.

7. Related Work
Racket’s futures (Swaine et al. 2010), like places, provide a way
to add parallelism to a legacy runtime system. Futures are gener-
ally easier to implement than places, but the programming model is
also more constrained. Specifically, a place can run arbitrary Racket
code, but a future can only run code that is already in the “fast path”
of the runtime system’s implementation. There are, however, a few
situations where futures are less constrained, namely when operat-
ing on shared, mutable tree data structures. Some tasks (including
many of the benchmarks in Section 6), are well-supported by both

Penghu Drdr
OS OS X 10.6.2 Ubuntu 10.4
Arch x86_64 x86_64
Processor Type Xeon Opteron 2427
Processors 2 2
Total Cores 8 12
Clock Speed 2.8 GHz 2.2 GHz
L2 Cache 12MB 3MB
Memory 8 GB 16 GB
Bus Speed 1.6 GHz 1 GHz
Racket v5.1.1.6 v5.1.1.6
gfortran 4.6.0 2010/7 4.4.3
Java 1.6.0_20 OpenJDK 1.6.0_18

Figure 5: Benchmark Machines

futures and places and, in those cases, the performance is almost
identical. We expect to develop new constructs for parallelism in
Racket that internally combine futures and places to get the advan-
tages of each.

Concurrent Caml Light (Doligez and Leroy 1993) relies on a
compile-time distinction between mutable and immutable objects
to enable thread-local collection. Concurrent Caml Light gives its
threads their own nurseries, but the threads all share a global heap.
Concurrent Caml Light is more restrictive than Racket places. In
Concurrent Caml Light, only immutable objects can be allocated
from thread-local nurseries; mutable objects must be allocated di-
rectly from the shared heap. Concurrent Caml Light presumes al-
location of mutable objects is infrequent and mutable objects have
longer life spans. Racket’s garbage collector performs the same re-
gardless of mutable object allocation frequency or life span.

Erlang (Sagonas and Wilhelmsson Oct. 2006) is a functional
language without destructive update. The Erlang implementation
uses a memory management system similar to Racket’s master and
place-local GCs. All Erlang message contents must be allocated
from the shared heap; this constraint allows O(1) message passing,
assuming message contents are correctly allocated from the shared
heap, and not from the Erlang process’s local nursery. The Erlang
implementation employs static analysis to try to determine which
allocations will eventually flow to a message send and therefore
should be allocated in the shared heap. Since messages are always
allocated to the shared heap, Erlang must collect the share heap
more often then Racket, which always allocates messages into
the destination place’s local heap. Erlang’s typical programming
model has many more processes than CPU cores and extensive
message exchange, while places are designed to be used one place
per CPU core and with less message-passing traffic.

Haskell (Marlow et al. 2008; Marlow et al. 2009) is a pure func-
tional language with support for concurrency. Currently, Haskell
garbage collection is global; all threads must synchronize in order
to garbage collect. The Haskell implementors plan to develop lo-
cal collection on private heaps, exploiting the predominance of im-
mutable objects similarly to Concurrent Caml Light’s implementa-
tion. In contrast to pure functional languages, Racket programs of-
ten include mutable objects, so isolation of local heaps, not inherent
immutability, enables a place in Racket to independently garbage-
collect a private heap.

Manticore (Fluet et al. 2008) is designed for parallelism from
the start. Like Erlang and Haskell, Manticore has no mutable
datatypes. In contrast, places add parallelism to an existing lan-
guage with mutable datatypes. As the implementation of places
matures, we hope to add multi-level parallelism similar to Manti-
core.
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Figure 6: IS, FT, CG, and MG results
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Figure 7: SP, BT, and LU results

Matlab provides programmers with several parallelism strate-
gies. First, compute intensive functions, such as BLAS matrix op-
erations, are implemented using multi-threaded libraries. Simple
Matlab loops can be automatically parallelized by replacing for
with parfor. Matlab’s automatic parallelization can handle reduc-
tions such as min, max and sum, but it does not parallelize loop
dependence. Matlab also provides task execution on remote Mat-
lab instances and MPI functionality. Rather than adding parallelism
through libraries and extensions, places integrate parallelism into
the core of the Racket runtime.

Python’s multiprocessing library (Python Software Founda-
tion 2011) provides parallelism by forking new processes, each of
which has a copy of the parent’s state at the time of the fork. In con-
trast, a Racket place is conceptually a pristine instance of the vir-
tual machine, where the only state a place receives from its creator

is its starting module and a communication channel. More gener-
ally, however, Python’s multiprocessing library and Racket’s places
both add parallelism to a dynamic language without retrofitting the
language with threads and locks.

Communication between Python processes occurs primarily
through OS pipes. The multiprocessing library includes a shared-
queue implementation, which is implemented by using a worker
thread to send messages over pipes to the recipient process. Any
“picklable” (serializable) python object can be sent through a
multiprocessing pipe or queue. Python’s multiprocessing library
also provides shared-memory regions implemented via mmap().
Python’s pipes, queues and shared-memory regions must be allo-
cated prior to forking children, which need to use them. Racket’s
approach offers more flexibility in communication; channels and
shared-memory vectors can be created and sent over channels to



already-created places; and channels can communicate immutable
data without the need for serialization.

Python and Ruby implementors, like Racket implementors,
have tried and abandoned attempts to support OS-scheduled threads
with shared data (Beazley 2010; Python Software Foundation 2008;
Schuster July 31, 2009). All of these languages were implemented
on the assumption of a single OS thread—which was a sensi-
ble choice for simplicity and performance throughout the 1990s
and early 2000s—and adding all of the locks needed to support
OS-thread concurrency seems prohibitively difficult. A design like
places could be the right approach for those languages, too.

X10 (Charles et al. 2005) is a partitioned global address space
(PGAS) language whose sequential language is largely taken from
Java. Although our use of the term “place” is inspired by X10,
places are more static in X10, in that the number of places within
an X10 program is fixed at startup. Like Racket places, objects
that exist at an X10 place are normally manipulated only by tasks
within the place. X10 includes an at construct that allows access
to an object in one place from another place, so at is effectively
the communication construct for places in X10. Racket’s message-
passing communication is more primitive, but also more directly
directly exposes the cost of cross-place communication. We could
implement something like X10’s cross-place references and at on
top of Racket’s message-passing layer.

8. Conclusion
Places in Racket demonstrate how adding a message-passing layer
to an existing runtime system can provide effective support for par-
allelism with a reasonable implementation effort. Our benchmark
results demonstrate good scaling on traditional parallel tasks, and
the use of places for parallel library compilation demonstrates that
the implementation holds up in real-world use. We are currently de-
veloping new tools based on places, including background parsing
and compilation of programs within DrRacket.

Although places are primarily designed for message-passing
parallelism, shared mutable vectors of bytes, fixnums, or floating-
point numbers are also supported; careful programmers may have
good reasons to use these structures. Crucially, shared vectors of
atomic data create few problems for the language implementation,
so they are easily accommodated by the places API. Meanwhile,
the Racket implementation is free to implement message-passing
of immutable objects through sharing, if the trade-off in implemen-
tation complexity versus performance favors that direction, since
sharing of immutable data is safe.

We are particularly convinced that places are a better model than
the conventional “add threads; add locks until it stops crashing; re-
move locks until it scales better; repeat” approach to programming-
language concurrency. Simply running the Racket test suite in mul-
tiple places uncovered the vast majority of bugs in our implemen-
tation. The same has not been true of our attempts to support con-
currency with shared memory (e.g., with futures). Indeed, there
seems to be no comparably simple way to find race conditions with
threads and locks; many tools have been designed to help program-
mers find concurrency bugs, and many—from Eraser (Savage et
al. 1997) to GAMBIT (Coons et al. 2010)—but they suffer from
problems with false positives, restrictions on supported code, prob-
lems scaling to large systems, or requiring assertions or other man-
ual annotations. In contrast, bugs in the implementation of places
were easy to find because they create permanently broken refer-
ences (that are detected by the garbage collector) rather than fleet-
ing timing effects.
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