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Abstract

\We describeand evaluatethe RunningTime Advisor (RTA), a
systenthat can predictthe runningtime of a compute-bounthask
on a typical shaed, unreservedcommodityhost. The prediction
is computedrrom linear time seriespredictionsof hostload and
takes the form of a confidencenterval that neatly expresseshe
error associatedvith themeasuementandpredictionprocesses—
error that mustbe captued to male statistically valid decisions
basedon the predictions. Adaptiveapplicationsmale sud de-
cisionsin pursuit of consistenthigh performance choosing for
example the hostwhele a taskis mostlikely to meetits deadline
We begin by describingthe systermand summarizinghe resultsof
our previously publishedwork on hostload prediction. We then
describeour algorithmfor computingpredictionsof runningtime
fromhostload predictions. Finally, we evaluatethe systenusing
over 100,000randomizedestcasesun on 39 differenthosts.

1. Intr oduction

To provide consistenthigh performancewvhen running
on typical shared,unresered distributed computingervi-
ronmentsadaptie applicationamustexploit the degreesof
freedomsuchenvironmentsoffer, carefully choosinghow
andwhereto runtheirtasks[4, 2]. To make suchdecisions,
applicationgequirepredictionsof the performanceof each
of the alternatves. This paperaddressesneform of such
application-leel performancepredictions.

Consideran adaptve application, such that as a dis-
tributedscientificvisualizationsystem1, 16, 4], thatneeds
to schedulea real-timetask with known resourcerequire-
mentson oneof severalhosts.If the applicationcould pre-
dict the running time of the task on eachof the available
hosts,it could trivially choosean appropriatehostto run
thetask. Evenif no hostexisted on which the task could
meetits original deadline suchpredictionsof runningtime
would permit the applicationto modify the resourcere-
quirementsof the taskor its deadlineuntil an appropriate
hostcouldbefound.

This paperdescribes system the RunningTime Advi-
sor (or RTA), thatcansupplythesepredictionsfor the case
of compute-boundasks.To characterizeéhe variability in-
herentto distributed systemsandto the procesof predic-
tion, the RTA predictsatask’s runningtime asa confidence
interval computedo the applications requestedonfidence
level. Confidencantervals provide a simpleabstractiorto
the application,but still provide sufficient information to
enablevalid statisticalreasoningn the schedulingorocess.

The RTA’s responsés computedrom hostload predic-
tions, a topic we have thoroughlyreportedon in previous
paperg5, 8, 7, 6]. We have implementedcan extremelylow
overheadonline hostload predictionsystembasedon our
resultsandour generalpurposeRPSToolkit. In this paper
we describahealgorithmthe RTA useso computea confi-
dencenterval for therunningtime of acompute-bounthsk
from suchhostload predictions.We thenevaluatethe RTA
usingarandomizedbvaluationapproach.

Theevaluation,in whichwe usea 95%confidencdevel,
takes placein a real ervironmentwhere the background
load on a hostis suppliedby hostload traceplayback[9],
a new techniquethat lets us reconstrucia realistic repeat-
able workload using a hostload trace collectedon a real
machine.We use39 tracesthatare describedn detailin a
previouspaper5] andarerepresentatie of productionand
researclelustersapplicationseners,anddesktops.

The main conclusion is that the RTA and its al-
gorithm can indeed predict the running time of tasks
in a useful and effective way. The software and
tracesdescribedin this paperare publicly available via
http://www.cs.nwu.edutpdindaf RPS.html,loadlraces}.

2.RTA API, system,and metrics

Figurel presentsheinterfaceof the RunningTime Ad-
visor. A querytakestheform of ahost , aconfidencdevel
conf (conf, eg, 95%),anda nominaltime thnom (¢,,om),
whichis therunningtime of thetaskon anotherwisevacant
machine. A responseconsistsof a copy of the requests
fields, the expectedrunningtime of the tasktexp (fezp),



int PredictRunningTime(RunningTimePredictionRequest &req,
RunningTimePredictionResponse &resp);
struct RunningTimePredictionRequest {
Host host;
double conf;
double thom;

struct RunningTimePredictionResponse {
Host host;

double thom;

double conf;

double texp;

double tlb;

double tub;

h

Figure 1. Running Time Advisor (RTA) API.
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Figure 2. RTA system and context.

andthe upperandlower boundsof the conf confidencen-
terval for therunningtime, [tlb , tub ] ([t tus]-) tezp iS
a point estimatewhich representshe mostlikely running
time. Theactualrunningtime, ¢,;, will likely be different
from ¢.,, but benearit. The confidencenterval represents
arangeof valuesaroundt,,, suchthatt,.; will bein the
rangeafraction conf of thetime. Becausehelowerbound
of the confidenceinterval is artificially limited dueto the
factthatload cannotdrop below zero,the expectedtime is
notnecessarilyn the middle of the confidencenterval.

Figure2 shaws the structureof the RTA andthe broader
contet of which it is a part. The systemis basedon the
measurementharacterizatiorandpredictionof hostload,
which we describein the next section. This paperis pri-
marily concernedvith the Running Time Advisor part of
the system which predictsthe runningtime of tasksbased
onthehostloadpredictions.TheReal-timeSchedulingAd-
visor (RTSA) componenbf the systemsuggestsfor inter-
active applicationssuchasscientificvisualizationq1, 16,
the hostwherea just-submittedsoft real-timetaskis most
appropriatelyrun. The RTSA is describedn detail else-
where[6, Chapter6].

Evaluating the quality of the confidence interval,
[tib, tup), IS @SOmavhatcomplex endeaor. Supposeve ran
awide variety of testcaseswvith a specifiedconfidencesay
95%. If we usedthe ideal algorithmfor computingconfi-
denceintervals andthe bestpossiblepredictor the lengths
of the tasks’ confidenceintervals would be the minimum
possiblesuch that 95% of the taskswould have running
timesin their predictedintervals. An imperfectalgorithm,
suchasours, will computeconfidenceintervals that were
largeror smallerthanideal wherefewer or morethan95%
of thetaskscompletein theirintervals. Theimportantpoint
is thatto evaluatea confidencanterval algorithm,we must
measurahe lengthsof the confidencantervalsit produces
andthe numberof taskswhich completewithin thesecon-
fidenceintervals. To evaluateconfidencentervals, we will
usefollowing two metrics:

e Coverage thefractionof taskswhich completewith their
predictedconfidencentervals

e Span: theaveragewidth of the confidencentenal width in
seconds

Theidealsystemwill have theminimumpossiblespansuch
that the coverageis 95%. We will also briefly touch on
how well the t.,, point estimatepredictst,... Generally
anadaptve applicationwill usetheconfidencentervals.

3. Measurementand prediction of hostload

TheRunningTime Advisor’s predictionsof runningtime
arecomputedrom the nominaltime of thetask,t,,,,,, and
predictionsof hostload. The hostload measurethat we
useis the Digital Unix 5 secondload average. Conceptu-
ally, thekernelsampleghelengthof therun queueat some
frequeng, computesan exponentialaverageover the sam-
pleswith atime constanof five secondsandthenpresents
this measurdo applications.Our load sensorsampleghis
measureat a rate of 1 Hz, which is twice the empirically
determinedkernelfrequeng. It is this discrete-timesignal
thatwe predict.

We began our investigationof hostload by creatinga
public archive of a large family of long host load traces
taken on a wide variety of machines.Thereare 39 traces,
eachroughly oneweeklong, andsampledat the appropri-
ate 1 Hz frequeng. The tracesinclude productioncluster
machinesat the Pittshurgh SupercomputingCenter(PSC),
researchcluster machinesin the Computing, Media, and
Communication_ab (CMCL) at Carngjie Mellon Univer-
sity (CMU), big memoryapplicationsenersin the CMCL,
anddesktopworkstationsat CMU. We studiedcthestatistical
propertiesof thesetracesand presented detaileddescrip-
tion of thetracesandtheresultsin anearlierpaper5].

We evaluateddifferent predictve modelson the traces
in alarge scalerandomizedstudy Surprisingly despitethe



comple statisticalpropertieshatwe identifiedin our ear
lier study which included self-similarity and epochalbe-
havior, simplelineartime seriesmodelsprovedto be most
appropriatefor hostload prediction. In fact, the bestall
aroundmodelfor hostload predictionsof 1-30secondsnto
the future, in termsof predictive power andlow overhead,
wasthe AR(16) model[8]. In thispaperweshallpresente-
sultsthatusethe AR(16) model,aswell asthesimpleLAST
model (last measuremenis predictionfor all future mea-
surements)andthe MEAN model(predictionis the long-
termarithmeticaverageof theloadsignal.)

It is importantto notethatlinear time seriesmodelsdo
notmerelyprovide point predictiongfor futurevaluesof the
load signal. Suchmodelsalso provide a characterization
of their predictionerrors,andhow predictionerrorsfor dif-
ferenttime horizonsarerelated.This characterizatiotakes
theform of acovarianceamatrix, andis critical to computing
aconfidencenterval for therunningtime, aswe shallseein
the next section. To computethe covariancematrix for the
LAST model,we treatit asan AR(1) with a pole at unity.
To computethe covariancematrix for MEAN, we compute
theautocwariancefunctionof thesignal.

We developedthe RPStoolkit to simplify the construc-
tion of online predictionsystems. RPS provides compo-
nentswhich canbelinkedtogetherat run-timeusingdiffer-
entcommunicatiormethodd7]. Suchacompositiorforms
a predictionsystem.We implementedhe online hostload
measuremergndpredictionsystem®f Figure2 usingRPS.
Thesesystemdave have extremelylow overheadconsum-
ing muchlessthanoneperceniof the CPUtime of atypical
desktophostto predicttheload on thathost.

4. RTA algorithm

We relatethe running time of a task, tozc., to the av-
erageload it experienceswhile it runsusingthe following
continuous-timenodel:

teaf:ec

1+ = [ z(t)dt

= thom

Here z(¢) is the load signal, shifted suchthat z(0) is the
valueof the signalat the currenttime, ¢,,,.,. We introduce
this shift to simplify the presentatiorof our algorithm,and
to conformto the Box-Jenkinsotationfor time seriesanal-
ysis. This simplificationdoesnot affect theresults.t,, o, is
the nominalrunningtime of the task,which quantifiesthe
CPUdemand(or “size”) of the taskasits runningtime on
anunloadedmachine.

This continuous-timesquationis basicallya fluid model
of a priority-lesshost scheduler We will usethis simple
modelto describeour estimationprocedure However, real
schedulersncorporateprioritiesthatcanchangeovertime.

We assumehat the majority of the workload runs at sim-
ilar priorities. In particular we assumethat thereare no
processesvhosepriorities have beendrasticallyincreased
or decreasedsuchaswith the Unix “nice” facility. Ulti-
mately we will relaxthisassumptiorslightly andmodelthe
temporarypriority booststhat mostUnix implementations
give processesmmediatelyafter they becomeunblocled.
Giventhis extension,the procedurewe outline in this sec-
tion works quitewell.

Continuous-time: The above equationis someavhat un-
wieldy to discretizeand use,so, beforewe continue,let’s
definetheavailabletimefunction

t

at(t) = Tral)’

t>0 Q)

which depend®ntheaverage load function

1

al(t) = ¢ /tz(T)dT, £>0 @)
0

at(t) representthe availableCPUtime overthenext ¢ sec-
onds,which is inverselyrelatedto the averageload during
thatinterval, al(t). As theaveragdoadincreasestheavail-
abletime decreaseg.. .. is thenthe minimumt for which
at(t) = tnom- Using this availabletime function function
malesit easierto explain how our algorithmestimateghe
runningtime of a task, and, of course,the available time
function is offered directly throughthe API describedin
Section2.

Discrete-time: In our system,z is nota continuous-time
signal,but ratherit is a discrete-timeapproximationof the
continuous-timesignalwith a samplingintenal of A sec-
onds, z¢44, ¢ = 1,2,...,00, Wherez;y; represents:(t)
for0 < ¢t < A, andsoon. We approximatez(t) as
2(t) = zr4/a7- This lets us write a discrete-timeapprox-
imationof at(t) andal(t):

0 i=0
at; = iA . 3)
’ { l—i—ali t > 0
1 1
alizgz;ztﬂ-,wo (4)
]:

at; is thethetime availableduringthenext i A secondsind
al; istheaveragdoadthatwill beencounteredverthenext
iA seconds.We then estimatethe availabletime at(t) by
linearinterpolation:

t— [t/A

at(t) = atjy/a| + %(atwm —atjya)) (5



Using hostload predictions: Giventhesedefinitions,we
substitutethe predictedload signal z;; for z;; resulting
in the predictedaverageload El,', andcontinuesubstituting
backto give the predictedavailabletime at; andits corre-
spondingcontinuous-timepproximation:

~ 0 1 =0
1+4al;

L1 d

alizlegt+jai>0 (7)
J:

at(t) = at|ya| + %(atwm —at|yya))  (8)
Then,the expectedrunningtime of thetask,t.,p, is simply
thesmallest for which at(t) = t,om.-

Confidenceintervals: Becauseéhostload predictionsare
notperfectwealsoreporttherunningtime or availabletime
asa confidencenterval, computedo a userspecifiecconfi-
dencdevel. Thebetterthe predictionsare,the narronverthe
confidencenterval is.

The predictedoadsignalis z;; = 2¢4; + a¢+i, Where
zt+; IS the real value of the signaland a,; is the i-step-
aheadprediction error term which we summarizewith a
varianceag,i. Our uncertaintyin estimatingthe available
time at; is dueto our uncertaintyin estimatingthe aver-
ageload al;, which is duein turn to theseerrortermsand
theirvariance.To representhis uncertaintyin theform of a
confidencenterval, we mustpushtheunderlyingerrorvari-
anceghroughtheabore equationdo arrive atavariancefor
theaveragdoadal;

Notice thatthe averageload (Equation7) sumsthe esti-
matesz; ;. Rewriting theequationwe canseethat

N 1
al; = al; + 7 Z Qg 9)

Jj=1

By the centrallimit theoremxhen,c?l,- will becomencreas-
ingly normally distributedwith increasing. Giventhatthe
errorsaz; areof zeromean,c?li hasan expectedvalue of
al; andavariancethatdepend®nthesumof the prediction
errorsas4;:

- 1¢
al; ~ N | al;, Var 7 j_zlat+j (10)

It is importantto note that for shortjobs or large A, this
normality assumptiormay be invalid. We will evaluatethe
systemlater and determinewhetherthe resultsof the as-
sumptionarereasonable.

Supposehe userrequestsa confidencenterval at 95%
confidence We canthencomputea confidenceanterval for
al; (for ¢ > 0):

ohy & _ 1.96
[all*", al*"] = al; F

7 Var Z Aty j (11)

J=1

What this meansis that we predictthat al; will bein the
range[allo®, al*"] with 95% probability. The 1.96 is the
numberof standardieviationsof a standarchormalneeded
to capture42.5% of values.al!°® is setto the maximumof
thecomputedvaluefrom above andzero. Thisis important
becausehe averageload cannotdrop below zero,although
thepredictionerrorscanmake thatappeato bethe case.

We can now back-substitutethese upper and lower
bounds of the confidenceinterval into at(t), resulting
in upper and lower confidenceintervals for at(t) =
[atlow (t), ath9" (t)]. Thenthe confidenceinterval on the
runningtime is [t5, tus)], Wherety, is the minimum ¢ for
whichat?" (t) = t,,,,, andt,; is theminimumt for which
at’? (t) = tpom.

Corr elated prediction errors:  Given the discussionof
the previous section,we muststill determinethe variance
of asumof consecutie predictionerrorsin Equationllto
computethe confidencenterval. Thisis oneof the subtler
issuesin corverting from load predictionsto runningtime
predictions.

To correctly computethe varianceof the sum of load
predictionswe mustcomputethe covarianceof eachof the
predictionerrorswith eachof theotherpredictionerrorsand
thensumall 42 termsof this covariancematrix. Entry j, k
of thismatrixis CoVar{ai+;, @ik} = 04,j04,, andis the
covarianceof the j-step-aheagbredictionwith the k-step-
aheadprediction. Notice that variancesof the individual
predictionsaresimply the diagonalelementof the matrix.

The predictionerrors’ correlationover leadtime is akin
to a signals autocorrelatiorover time. Recallthat an au-
tocorrelationsequenceés simply a normalizedautocwari-
ancesequenceThe covariancesare easilycomputedrom
the autocwariancesequence. In particulay o404, =
CoVar{aiyj,asyr} = AutoCoVar{as,aj;_}.

The hostload prediction systemusesthe algorithm of
Box, etal to computethe autocavariancesequencédor ary
linear model[3, pp. 159-160]. Sincethe LAST predictor
is simply anAR(1) modelwith ¢y = 1, its autocwariances
canalsobecomputedisingBox, etal’smethod.In thecase
of the MEAN predictor the autocwariancesaresimply the
autocwariance®f thesignalitself.

The varianceof the sum of thefirst ¢ predictionerrors,
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Figure 3. Relative error and load discounting.

whichwe will write aso? ; is thencomputedas

i

= Z Z O0a,jO0a,k (12)

i
2 — .
o5, = Var E Qtyj
j=1 j=1 k=1

To avoid communicatinghe whole covariancematrix, the
sumis computedoy the hostload predictionsystem.

Load discounting: Figure 3(a) shaws the resultof run-
ningmary taskswhoset,,,,, timesvaryfrom 100msto 10s
usingthealgorithmdescribedhusfar. Thebackgroundoad
wasfrom amachinen thePittshurgh Supercomputing€en-
ter's Alpha cluster while the modelusedwasan AR(16).
Thefigureplotstherelative error ((tezp — tact)/tesp) Of the
predictionsversushe nominaltime of the task.
Noticethatrelative erroris alwayspositive andincreases
markedly asnominaltime decreased-or onesecondasks,
therunningtime is over-predictedoy 80%. The confidence

intervalswerealsoskewed, with fartoo mary pointsfalling
below thelowerboundsof theintervals. Theproblemis that
the Digital Unix scheduleigivesan“l/O boost”to the pri-
ority of aprocessvhenablockingl/O operationrcompletes.
Over time, the processs priority will “age” to its baseline
level. Theresultis thatthe awakenedprocesswill getmore
thanits fair shareof the CPUuntil its priority hasdegraded.
The shorterthe task,the morethis mechanisnwill benefit
it, andthe moreinaccurateour runningtime estimatewill
be,aswe canseein thefigure.

Our solutionto this problemis load discounting. We
exponentially decayedthe load predictionsz;, ;, the dis-

countedoad, zd;. ;, being
;Et-i-] — (1 _ e_jA/Tdiscount)%\tJ’_j (13)

How quickly theinitial loaddiscountdecayslepend®nthe
settingof 7giscount- We determinedhe value of 74;scount
empirically by againrunning a large numberof random-
izedtestcaseasdescribedabove andvarying 7;scount ran-
domly in therangeO to 10 secondsThis givesusarelative
errorasafunctionof 74;scount, Which, turnsoutto belinear.
We fitted a line to the pointsanddeterminedhatit crossed
zerorelative error at 74i5count = 4.5 seconds.This value
is usedthroughouthis paperandseemso be a propertyof
theoperatingsystemthatcanbe computedoffline.

Figure 3(b) shaws the resultof usingload discounting.
As canbe seenthe appropriatery;scoun: Value haselimi-
natedthe dependencef the relative error on the nominal
time andhasfurtherreducedhe averagerelative errorto al-
mostexactly zero,which we would alsoexpectfrom these
pointestimates.

Load discountingis an effective solutionto the priority
boostghatmostUnix schedulergliveto processethathave
becomeunblocled. It is importantto note, however, that
otherpriority problemsremain.For example,abackground
processwhich hashadits priority significantlyreducedeg,
aprocesswvhich hashasheen“reniced”) but which remains
computeboundwill resultin artificially exaggerategbredic-
tions. Similarly, a processwith high priority will resultin
predictionghataretoo low.

5. Experimental infrastructur e

Ourinfrastructurenardwareconsistof two Alphastation
255hostsconnectedvith aprivatenetwork. Both machines
run Digital Unix 4.0D. Onehostis referredto asthe mea-
surementhostwhile the otheris calledthe recordinghost.
Thehostshave no otherload onthem.

The recordinghost runs software that interrogateshe
componentsunningonthemeasurementostandthensub-
mits tasksto it. The measuremerntiostrunsthe following



componentsa hostload playbacktool to provide a back-
groundworkload,a hostload sensoroneor morehostload
predictionsystemsanda spinsener.

The playbacktool usesa new techniquein which the
workloadis generatedaccordingto a load trace[9]. With
no otherwork on the host, this backgroundoad resultsin
the host’s load sighalrepeatingthat of the load trace. The
hostloadsensoprovidesaninterfacefor therecordinghost
to requesthelatestioadmeasuremertn the host.

The readermay wonderwhy we do not usea synthetic
workloadgeneratar Therearetwo reasons.First, because
the behavior of hostload is so comple, creatinga model
thatcapturests relevantpropertiess a hardproblem. Fur-
thermore,in the predictioncontext, it is not cleara priori
whatthe relevant propertiesof the workloadare. The sec-
ondreasoris thatthe predictabilityof a syntheticworkload
is inherentin themodelusedto generatat. Simply put, our
predictormayverywell “discover” ourworkloadmodeland
produceoverstatedresults. The beautyof usinghostload
traceplaybackis that the predictoris operatingon a real
workload,andyet theworkloadis repeatable.

Thehostloadpredictionsystemgdescribedn Section3)
provide aninterfacefor therecordinghostto requesthelat-
esthostload predictionsusingan experiment-specifigre-
dictionmodel.

The spinsener runstasks—ittakesrequestdo compute
(usinga busy loop) for somenumberof CPU-secondand
thenreturnsthe wall-clock time that the tasktook to com-
plete. It lookslike a CORBA ORB[19]. Thebusyloopis
carefully calibrated andthe sener monitorsthe amountof
CPUIt hasconsumedsit computes.Therelative erroris
muchlessthan1%.

6. Evaluation methodology

To evaluatethe RTA given a particulartracedhost, we
startedup the experimentainfrastructuredescribedn Sec-
tion 5 on the measuremerdnd recordinghosts. The host
load playbacktool wassetto replaythe selectedrace(all
39 wereused).The hostload sensomwasconfiguredto run
at1 Hz. Threehostload predictionsystemswere started:
MEAN, LAST, andAR(16). The systemswvereconfigured
to fit to 300 measurementés minutes)andto refit them-
selveswhenthe absolutesrrorfor a one-step-aheagredic-

tion exceedsD.01 or the averagemeasurene-step-ahead
meansquarederror exceedsthe estimatedone-step-ahead

meansquarederror by more than 5%. The minimum in-
tenval betweerrefits was 30 secondsaindthe maximumin-
tenal beforethe measuredneansquarederror was tested
was 300 seconds.Theseparametersvere found basedon
previousexperimentd8].
Thepredictionandmeasuremergoftwarewerethenper
mittedto quiescefor atleast600 secondsThen3000con-

secutve testcasesvererun on the recordinghost,eachac-
cordingto this procedure:

1 Waitfor adelayintenal, t;ntervai, randomlyselectedrom
auniformdistributionfrom 5 to 15 seconds.

2 Getthecurrenttimet,ow .

3 Selectthetask’s nominaltime, tom randomlyfrom a
uniform distribution from 100msto 10 seconds.

4 Selectarandomhostload predictionsystemfrom among
MEAN, LAST, AR(16).

5 UsethePredictRunningTime API to computethe
expectedrunningtime te,, andthe 95% confidencenterval
[tiv, tus] usingthelatestpredictionsfrom the selectedchost
loadpredictionsystem.

6 Runthetaskonthespinsenerandretrieve its actual
runningtime, £ ,.¢:-

7 Recordthetimestamp,.. , the predictionsystemused the
nominaltime t,om, theexpectedrunningtime ¢, the
confidencentenal [¢;5, 5], andthe actualrunningtime
tact-

After all 3000 testcasesvere run, their recordswere im-
portedinto a databas¢ablecorrespondingdo thetrace.

It takes approximatelyl3 hoursto complete3000 test-
cases.To evaluatethe runningtime predictions we mined
thedatabasef 114,000testcasesTheresultsof this analy-
sisaredescribedn thefollowing section.

7. Evaluation results

In examiningour testcasesye wantedto answerseveral
guestions.The mostimportantof theseis (1) doesour sys-
tem provide useful predictionsof taskrunningtimesin the
form of valid confidenceéntervals?In additionwe wantedto
understand?) how the choiceof underlyinghostload pre-
dictor affects performanceand (3) how that performance
depend®nthenominaltime of thetask?

To addresshesequestionsyve lookedat thetestcasem
several ways. First, we measuredhe quality of the con-
fidenceintervals independentlyof the nominaltime of the
task. For eachtrace,we computedthe confidencanterval
metricsof coverageandspan. Thenwe comparedhe dif-
ferent predictorsbasedon thesepertrace metrics. Next,
we conditionedthis comparisonon the nominal time of
the task,dividing therangein to small, medium,andlarge
tasks.Finally, we hand-classifiedachtracebasednthere-
lationshipof the performancenetricsandthenominaltime.
This resultedin five classes.We thendevelopeda recom-
mendatiorfor eachclass.In thefollowing discussionwhen
we referto a“significant” difference we meanthatthe dif-
ferenceis significantat a 95% confidencdevel.

In the following, we will begin by shaving exemplars
from eachof the five classe®f behaior we sav. Thegoal
is to give thereadera visualideaof the performancef this
systemon hostswith differentbehaviors. After discussing
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eachclass,we will generalizeour resultsand explain the
conclusionave reached.

7.1 Classesf behavior

For eachindividual load trace, we plotted our perfor
mancemetricsversusghe nominaltime t,,..,,,. Whenwe did
this, we found that an interestingpatternemeged. By vi-
sualinspectiontheresultsfor the39 tracescouldbeplaced
into five classes.lt is enlighteningto examinerepresenta-
tivesof eachof theseclassesn detail,anddoingsopermits
usto make recommendationfor eachof them.

Classl: Classl, which we alsocall the “typical low load
host” classrepresentthemostcommonbehaior by farthat
we have encountered.The classconsistsof 29 of the 39
hosts(76%). A representatie of classl is plottedin Fig-
ure 4. Eachpointin the graphrepresentghe averageof
about200testcaseandrepresenta 2 secondspanof nom-
inal time, extendingfrom onesecondbeforethe point’s x-
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coordinateo onesecondafter. Theremaindewof thefigures
in the paperhave the samesemantics.

The main characteristic®f the classare the following.
The coverageis only slightly dependenbn the nominal
time, increasingslightly for all predictorsasthe nominal
time increases.The MEAN predictortypically hasalmost
100%coverageandis closelyfollowed by the AR(16) and
thenthe LAST predictor TheLAST andAR(16) predictors
have significantlynarrover spanghantheMEAN predictor
with AR(16) producingslightly wider spanghanLAST.

We believe thatthe AR(16) is the bestpredictorfor this
mostcommonclassof host. The coverages nearlyasgood
asMEAN andis typically nearthe target95% point, while
LAST tendsto lag behind, especiallyfor smaller tasks.
Furthermore the spanof AR(16) is typically half that of
MEAN andonly slightly wider thanLAST. In mosthosts,
then, a better predictorproducesmuch narraver accurate
confidencentenals.
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Figure 6. Coverage and Span, Class Il hosts

Classll:  Classll hostswhichwe referto asbeingin the
“atypical low load host” class,representhe secondmost
commonbehaior amongour traces. The classconsistsof
4 of the 39 hosts(10%). An exemplarof Classll is plotted
in Figure5.

An importantdistinguishingfeatureof this classis that
the coverageof the MEAN predictor drops precipitously
with increasingnominaltime becausehe spanof its con-
fidenceinterval is not sufficiently large. In contrast LAST
and AR(16) computeslightly larger confidenceintervals
which resultin excellent coveragethat increaseswith in-
creasinghominaltime. LAST andAR(16) have similarcov-
eragdin thisexampleLAST is slightly aheadin othercases
AR(16)is slightly ahead).

In terms of computing confidence intenals, either
AR(16) or LAST seemsadequatdor producingconfidence
intervals for this classof host. Comparedo MEAN, both
producesignificantlylargerspanghatresultin muchbetter
coverage. Computationally AR(16) is almostasinexpen-
siveasLAST.

Classlll:  Theremainderof thefive hostclassesll con-
tain high load hosts. Theredoesnot seemto be a “typical”
behavior on a high load host,sowe will simply enumerate
theseclasses.Classlll, which we alsocall “high load 1,
consistof a 3 of the 39 hosts(8%). Figure6 plotsthe per
formancemetricsasa function of the nominaltime for an
exemplar

Comparedto the low load hosts,this high load 1 host
displaysmuchmorecomple« behaior. The predictorwith
the bestcoveragedependsstrongly on the nominal time.
For very shorttasks MEAN is slightly betterthanAR(16),
which is muchbetterthan LAST, althoughthe coverageis
quite poorwith all threepredictors.For mediumsizetasks,
AR(16) providesthe bestcoverage followed at a distance
by MEAN andLAST, which becomenterchangeablefor
largetasks,AR(16) andLAST have similar coverage with
AR(16)laggingslightly, while MEAN’ s coverageis far be-
hind. In termsof thespan AR(16) andLAST bothcompute
muchwider (and thus more appropriate)confidencenter-
valsthanMEAN, which explainswhy their coverageis so
muchbetter MEAN is unableto understandhe dynamic-
ity of this kind of host. Predictablyfor the nominaltimes
whereAR(16) is preferablego LAST, it hasalargerspan.

In termsof computingaccurateconfidencentervals, the
bestpredictoris highly dependendn thenominaltime. For
very shorttasks,MEAN or AR(16) is preferable,but ei-
ther hasratherpoor coverage. For mediumtasks,AR(16)
producesthe bestperformance.For large tasks,LAST is
best. Clearly, thereis room for improvementon this class
of hosts.

ClasslV: This class,which we alsoreferto asthe “high
load 2" class,containstwo hosts(5%). Figure7 plotsthe
performancef the predictorson arepresentatie trace.

We canseethatthe coverageof LAST and AR(16) are
virtually identicalhereandbothincreaseslowly with nom-
inal time. MEAN has similar coveragefor small tasks,
but then behaes increasinglypoorly, with coveragede-
creasingrapidly with nominaltime. In termsof the span,
LAST grows muchmorequickly thanMEAN with increas-
ing nominal time, while AR(16) is almostexactly in be-
tweenthem. For very shortnominaltimesthe spansareall
identical.

In terms of computing confidenceintervals, AR(16)
clearly produceghe bestresultsfor this classof hosts,get-
ting coverageidenticalto thatof LAST with a spanthatis
oftenhalf aswide.

ClassV: ClassV, whichwe alsoreferto asthe“high load
3” class,consistof asinglehost(2.5%). Figure8 plotsthe
performancef the predictorson thathost.

In termsof coverage AR(16) is clearlythewinnerhere,
especiallyfor mediumsizedtasks. It achiesesits reason-
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ablecoveraggthegoalis 95%)by computingslightly larger
confidenceintervals than MEAN. LAST computesconfi-
denceintenals thatarefar too small, resultingin abysmal
coverage.

AR(16) is clearly the preferablepredictorfor this class
of hostsin termsof computingconfidencentervals.

7.2 Generalizedresults

The class-by-classanalysis of the precedingsection
malesit clearwhatthe LAST and AR(16) predictorsgen-
erally provide quite differentperformanceesultsthanthe
simple MEAN predictor and that performancecan vary
with nominaltime. In this section,we will generalizethe
resultswe sav over all of thetestcaseandtraces.

The RTA works: Looking at the exemplarsof the five
classespone can seethat the RTA systemworks, for the
mostpart, asadwertised. This inferenceis supportecby a
broaderexaminationof the testcases.With almostevery
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load tracein our study the coverageof eitherthe AR(16)
or LAST predictoris very closeto the target 95% cover-
age. Furthermorethesepredictors,especiallyAR(16), do
sowith reasonablspans.

Of course therearesomerare caseqconsiderthe Class
IV exemplar)wherecoveragds significantlylowerthande-
sired. Also, it maybe possibleto reducespansevenfurther
while maintainingthe samecoverage. Thesassuegointto
guestionsof the inherentpredictability of distributed sys-
tems: what is the optimal predictability and the optimal
characterizatiorof predictionerror that can be achiezed?
Withoutanswergo thesequestionsit is difficult to know if
performancean be betterin theserarecaser if the span
can be reduced. However, even without answeringthese
guestionsthis studyprovidesevidencefor theeffectiveness
of the RTA.

LAST and AR(16) producebetter coverage on heavily
loaded hosts: On nine of our traces,LAST and AR(16)
simultaneouslyproducebetter coverageand worse spans



thanMEAN. Theseninetracescorrespondo the hoststhat
aremoreheavily loaded,andthus,correspondinglyexhibit
greatenvariability in load [5]. The LAST andAR(16) pre-
dictorsarebetterableto “understand’suchhostsandcom-
pute appropriatelywider confidencentervals comparedo
MEAN. Thesewider confidenceintervals resultin a far
greaterchanceof atask’s actualrunningtime falling within
its computedconfidencdnterval. This is preciselythe be-
havior that we want. Our goal is that 95% of tasksfall
within their confidencentervals. With the AR(16) predic-
tor, of the 39 casespnly 5 caseshave coveragelessthan
90%,andonly onelessthat85%, whereasvith the MEAN
predictor only one of the high load tracesis betterthan
85%. The percentageoint gain from MEAN to AR(16)
canbeasmuchas30%,andit is typically around15%.

Two effectsare at work here. First, the predictionsof
the LAST and AR(16) predictorsdependmoststronglyon
recentmeasurementsThe MEAN predictor on the other
hand, always presentgthe long term meanof the signal.
As aresult,the LAST and AR(16) predictorswill respond
muchmore quickly during the period after an epochtran-
sition (Section3) and beforea modelrefit happens.This
meanghattheir predictions andthusthe centempoint of the
confidenceinterval will much morelikely be in the right
placein thesesituations

Theseconcdeffectresultsfrom how the confidencenter-
val lengthis computed Recallthatwith the MEAN predic-
tor the autocwarianceof the signalis usedto computethe
confidenceinterval, while for the LAST and AR(16) pre-
dictorsit is theautocwarianceof their predictionerrorsthat
is used. On a high load, high variability host, an epoch
transitionis morelikely thanon alow load, low variability
hostto make the “old” autocwarianceof the signalfail to
characterizehe new epochwell. The structureof the au-
tocovarianceof the predictionerrorswill not changeat all,
althoughtheindividual predictionamaybelessaccurate.

LAST and AR(16) produce better spans on lightly
loadedhosts: For thosehostswhich have lowerloadand
variability, the LAST and AR(16) predictorsproducesig-
nificantly narrover confidencentervalsthanMEAN while
still capturingan appropriatenumberof taskswithin their
computecconfidencentervals. On average the confidence
intervals are shrunk by 2-3 secondawhile the fraction of
taskswithin their confidencentervalsshrinksby about5%.
Sincefor theselightly loadedhosts,the MEAN predictor
resultsin coverageghataresignificantlylargerthanthetar
get95%, this is not an unreasonablé&radeof. Essentially
on average for theselow load hosts,moving from MEAN
to AR(16) reducescoverageby about5% while decreasing
the spanby 2-3 secondgabout33%).

AR(16) performs better than LAST: At this point, we
have shavn thatthe RTA doesindeedcomputereasonable
confidencdntervalsfor taskrunningtimesandthatit does
so more accuratelywhen using a more sophisticatecpre-
dictor than MEAN. Now we would like to know whether
we shouldpreferthe LAST predictoror the AR(16) predic-
tor. We have alreadypointedout someof the differences
betweerthesetwo.

If we considerthe aggregateperformanceof the differ-
entpredictorson eachof thetracesandcompard AST and
AR(16) we seethatthe confidencentervals computedus-
ing AR(16) generallyincludemoreof their tasksthanthose
computedusing LAST. Using the AR(16) predictor only
five of thetracesareatlessthan90%andonly onelessthan
85%. Using LAST, 9 arelessthan90%, while four areless
than85%. This gainis dueto AR(16) predictorsproducing
wider confidencentenvalsonhewaily loadedhosts.Thereis
a correspondingerformancegain on lightly loadedhosts,
whereAR(16) producesiarraver confidencentervalsthan
LAST becausaét is ableto appropriatelyrelaxits coverage
evenmorethanLAST.

In essencethe useof AR(16) insteadof LAST brings
coveragecloserto thetargetcoveragefrom above or below,
throughadjustingspansize accordingly In moving from
LAST to AR(16),we eitherseealargeincreasen coverage,
ontheorderof 10 percentagpointsor more,combinedvith
aspanincreasef 2-3secondsor thereis aslightdeclineof
5 percentagointsor lesscombinedwith a spandecrease
of 1-2 seconds.

Performanceis slightly dependenton the nominal time:
For very small tasks,especiallythoseon the order of the
measuremenperiod (1 second)or smaller coverageis
worsethanfor largertasks.This is not too surprisinggiven
the normality assumptiorwe make aboutthe sumof load
predictions. With thesetiny tasks,the sumis over a sin-
gle predictionandthe point predictionerroris not usually
normallydistributed. As tasksincreasebeyond 1-2 seconds
in duration,coverageimprovesto nearoptimal. For very
long tasks,we seea declinein performanceon somehosts.
Generallythen,asthenominaltimeincreases;overagem-
provesslightly.

Obviously, thequality of our predictionsshouldbeasin-
dependenof the nominaltime aspossible In fact, thelevel
of dependenceve notedis quite low. ConsiderFigures4—
8, our exemplarsof the five behaior classesNotethatthe
coverageof AR(16), for example,is only slightly depen-
denton nominaltime for the vastmajority of the tracesin
our study It is only in classlll (8% of the traces)thatwe
seeunhappy behaior out of AR(16).

Not surprisingly spansgrow with nominal times. A
longertaskrequireslooking over a longer predictionhori-
zon, which introducesmore error. Generally the span



grows linearly with the nominal time of the task, with
AR(16) having theflattestslope.

Predictions of expectedrunning time behave similarly:
For spacereasonsye have not talked aboutthe quality of
thet.,, pointpredictionsconcentratingnsteacdnthequal-
ity of the confidenceantervals [t;, t.5]. The quality of the
the t.,, predictions,asmeasuredisingthe R? metric[14,
pp. 226—228]behaesin similar waysto the spanandcov-
eragemetricsfor the confidenceintervals. Generally the
systemis ableto achieve R? in excessof 0.9. For low load
hosts,R? is typically evenhighet

8. Relatedwork

Work on the explicit predictionof the dynamicbehar-
ior of distributed systemsparticularlyto supportadaptie
applications,hasa surprisingly short history. The paral-
lel computingcommunityhasstudiedapplication-leelload
balancingfor sometime [20, 22, 10], but this work has
treatedpredictiononly implicitly. The operatingsystems
communityhasstudiedexisting workloads[18, 11, 15, 13]
to supportdistributed load sharing, and developedinno-
vative system-lgel schedulingpoliciesbasedon queueing
theoreticmodels[13]. In contrastto thesetwo threadspour
work is doneentirely at the userlevel and considerspre-
diction explicitly. Our goalis to provide high level predic-
tive servicesin shared,unresered distributing computing
ervironmentsthatareusefulto applicationanake different
kinds of schedulingandadaptatiordecisions.

Thenotionof suchapplication-leel schedulings dueto
BermanandWolski [2]. It hasbeenshavn thatapplication-
level schedulingis feasiblenot only in tradition parallel
load balancing,but alsoin distributed objectsystemdike
CORBA [25] anddistributed interactve applicationssuch
as scientific visualization[1, 16]. It is alsobecomingin-
creasinglyclearthatGrid [12] applicationswill havetorely
on adaptation. Our work supportsadaptationframeaworks
by providing performanceredictionson which statistically
valid schedulingdecisionscan be made. The systemde-
scribedin this paperhasbeenincorporatedin one such
framework, BBN's QUOIN [25].

Startingin the late 90s,researctbeganon how to build
scalablesystemdfor measuringhe dynamicpropertiesof
distributedervironments Jeadingto suchwell known sys-
temsasthe Network WeatherService[23] (NWS) andRe-
mos[17]. Overtime, NWS incorporatedime serieredic-
tion for hostand network load [23, 24], while Remosdid
thesame usingourwork (the RPStoolkit [7]). With regard
to this paper we andthe NWS group have independently
demonstratethat hostload predictionis feasibleandhave
independentlyeachedimilar conclusionsboutwhatform
of predictve modelis preferablg24, 8].
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This paperdemonstratethathostload predictionis not
only feasible,but alsouseful,in that suchpredictionsper
mit usto cheaplyandscalablypredictthe runningtime of
tasksasconfidencentervals. This form of higherlevel pre-
diction is extremelyusefulin adaptationin otherwork, we
have shavn, for example,that thesepredictionsallow us
to malke schedulingdecisionsto meetreal-timegoalswith
high probability[6, Chapter6]. In general,our confidence
intervals can provide supportfor mary forms of stochastic
scheduling21].

9. Conclusionand futur e work

We have describedan algorithmthat canestimate,on a
typical shared,unresered hostrunning a commodity op-
eratingsystem,the runningtime of a compute-boundask
given the task’s CPU demandand time seriespredictions
of the load on the host. A predictionof runningtime is
presentedo the applicationasa confidencenterval, which
enabledghe applicationto make statisticallyvalid decisions
basedon the prediction.We summarizechow our hostload
predictionsystemworks (thefull detailsarepresentealse-
where), and then shoved how we implementedthe algo-
rithm ontop of it. We thenevaluatedthe compositesystem
using a large numberof randomizedeestcases.The main
conclusionis thatthealgorithm,whenpairedwith anappro-
priatepredictve modelfor hostload, doesindeedcompute
valid confidencentervals.

We are currentlyworking on a similar systemto predict
communicationtimes. The goal is to be able to predict,
againasaconfidencenterval, how longit will taketo trans-
fer agivennumberof bytesbetweentwo hosts.In addition
to predictingresourcesupply we arealsovery interestedn
predictingtheresourcaedemandof applicationsFinally, we
arestudyinghow to automaticallylearnmodelsof resource
schedulersvith hopesto improve on, for example the sim-
ple Unix schedulemodelwe usedhere.
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