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Abstract

We describeand evaluatethe RunningTime Advisor(RTA), a
systemthat canpredict therunningtimeof a compute-boundtask
on a typical shared, unreservedcommodityhost. Theprediction
is computedfrom linear time seriespredictionsof host load and
takes the form of a confidenceinterval that neatly expressesthe
error associatedwith themeasurementandpredictionprocesses—
error that mustbe captured to make statistically valid decisions
basedon the predictions. Adaptiveapplicationsmake such de-
cisionsin pursuit of consistenthigh performance, choosing, for
example, thehostwhere a taskis mostlikely to meetits deadline.
We begin by describingthesystemandsummarizingtheresultsof
our previouslypublishedwork on host load prediction. We then
describeour algorithmfor computingpredictionsof runningtime
fromhostload predictions.Finally, we evaluatethe systemusing
over 100,000randomizedtestcasesrun on 39 differenthosts.

1. Intr oduction

To provide consistenthigh performancewhen running
on typical shared,unreserved distributed computingenvi-
ronments,adaptiveapplicationsmustexploit thedegreesof
freedomsuchenvironmentsoffer, carefully choosinghow
andwhereto run their tasks[4, 2]. To makesuchdecisions,
applicationsrequirepredictionsof theperformanceof each
of the alternatives. This paperaddressesoneform of such
application-level performancepredictions.

Consideran adaptive application, such that as a dis-
tributedscientificvisualizationsystem[1, 16, 4], thatneeds
to schedulea real-timetaskwith known resourcerequire-
mentson oneof severalhosts.If theapplicationcouldpre-
dict the running time of the task on eachof the available
hosts,it could trivially choosean appropriatehost to run
the task. Even if no hostexistedon which the taskcould
meetits original deadline,suchpredictionsof runningtime
would permit the applicationto modify the resourcere-
quirementsof the task or its deadlineuntil an appropriate
hostcouldbefound.

This paperdescribesa system,theRunningTime Advi-
sor(or RTA), thatcansupplythesepredictionsfor thecase
of compute-boundtasks.To characterizethevariability in-
herentto distributedsystemsandto the processof predic-
tion, theRTA predictsa task’s runningtime asa confidence
interval computedto theapplication’s requestedconfidence
level. Confidenceintervalsprovide a simpleabstractionto
the application,but still provide sufficient information to
enablevalid statisticalreasoningin theschedulingprocess.

TheRTA’s responseis computedfrom hostloadpredic-
tions, a topic we have thoroughlyreportedon in previous
papers[5, 8, 7, 6]. We have implementedanextremelylow
overheadonline host load predictionsystembasedon our
resultsandour generalpurposeRPSToolkit. In this paper,
wedescribethealgorithmtheRTA usesto computeaconfi-
denceinterval for therunningtimeof acompute-boundtask
from suchhostloadpredictions.We thenevaluatetheRTA
usinga randomizedevaluationapproach.

Theevaluation,in whichwe usea95%confidencelevel,
takes place in a real environment where the background
load on a host is suppliedby host load traceplayback[9],
a new techniquethat lets us reconstructa realistic repeat-
able workload using a host load tracecollectedon a real
machine.We use39 tracesthataredescribedin detail in a
previouspaper[5] andarerepresentativeof productionand
researchclusters,applicationservers,anddesktops.

The main conclusion is that the RTA and its al-
gorithm can indeed predict the running time of tasks
in a useful and effective way. The software and
tracesdescribedin this paper are publicly available via
http://www.cs.nwu.edu/� pdinda/

�
RPS.html,LoadTraces� .

2. RTA API, system,and metrics

Figure1 presentstheinterfaceof theRunningTime Ad-
visor. A querytakestheform of a host , a confidencelevel
conf ( �����	� , eg, 95%), anda nominaltime tnom ( 
���
�� ),
whichis therunningtimeof thetaskonanotherwisevacant
machine. A responseconsistsof a copy of the request’s
fields, the expectedrunningtime of the task texp ( 
������ ),
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int PredictRunningTime(RunningTimePredictionRequest  &req,  
                       RunningTimePredictionResponse &r esp) ;
 
struct RunningTimePredictionRequest {  
  Host   host;  
  double conf;  
  double tnom;  
};  
 
struct RunningTimePredictionResponse {  
  Host   host;  
  double tnom;  
  double conf;  
  double texp;  
  double tlb;  
  double tub;  
};  

Figure 1. Running Time Advisor (RTA) API.
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Figure 2. RTA system and context.

andtheupperandlower boundsof the �����	� confidencein-
terval for the runningtime, [tlb , tub ] ( � 
�������
������ .) 
������ is
a point estimatewhich representsthe most likely running
time. Theactualrunningtime, 
��� "! , will likely bedifferent
from 
 ���#� but benearit. Theconfidenceinterval represents
a rangeof valuesaround 
 ���#� suchthat 
 �# "! will be in the
rangea fraction �����	� of thetime. Becausethelower bound
of the confidenceinterval is artificially limited due to the
fact that loadcannotdrop below zero,theexpectedtime is
not necessarilyin themiddleof theconfidenceinterval.

Figure2 shows thestructureof theRTA andthebroader
context of which it is a part. The systemis basedon the
measurement,characterization,andpredictionof hostload,
which we describein the next section. This paperis pri-
marily concernedwith the RunningTime Advisor part of
thesystem,which predictstherunningtime of tasksbased
onthehostloadpredictions.TheReal-timeSchedulingAd-
visor (RTSA) componentof the systemsuggests,for inter-
active applicationssuchasscientificvisualizations[1, 16],
the hostwherea just-submittedsoft real-timetaskis most
appropriatelyrun. The RTSA is describedin detail else-
where[6, Chapter6].

Evaluating the quality of the confidence interval,� 
��$���%
������ , is a somewhatcomplex endeavor. Supposewe ran
a wide varietyof testcaseswith a specifiedconfidence,say
95%. If we usedthe ideal algorithmfor computingconfi-
denceintervalsandthe bestpossiblepredictor, the lengths
of the tasks’ confidenceintervals would be the minimum
possiblesuch that 95% of the taskswould have running
timesin their predictedintervals. An imperfectalgorithm,
suchasours, will computeconfidenceintervals that were
largeror smallerthanidealwherefewer or morethan95%
of thetaskscompletein their intervals.Theimportantpoint
is that to evaluatea confidenceinterval algorithm,we must
measurethe lengthsof the confidenceintervals it produces
andthe numberof taskswhich completewithin thesecon-
fidenceintervals. To evaluateconfidenceintervals,we will
usefollowing two metrics:& Coverage: thefractionof taskswhich completewith their

predictedconfidenceintervals& Span : theaveragewidth of theconfidenceinterval width in
seconds

Theidealsystemwill havetheminimumpossiblespansuch
that the coverageis 95%. We will also briefly touch on
how well the 
 ���#� point estimatepredicts 
 �# "! . Generally,
anadaptiveapplicationwill usetheconfidenceintervals.

3. Measurementand prediction of host load

TheRunningTimeAdvisor’spredictionsof runningtime
arecomputedfrom thenominaltime of thetask, 
��'
�� , and
predictionsof host load. The host load measurethat we
useis the Digital Unix 5 secondload average. Conceptu-
ally, thekernelsamplesthelengthof therun queueat some
frequency, computesan exponentialaverageover the sam-
pleswith a time constantof five seconds,andthenpresents
this measureto applications.Our load sensorsamplesthis
measureat a rate of 1 Hz, which is twice the empirically
determinedkernelfrequency. It is this discrete-timesignal
thatwe predict.

We began our investigationof host load by creatinga
public archive of a large family of long host load traces
taken on a wide variety of machines.Thereare39 traces,
eachroughly oneweeklong, andsampledat the appropri-
ate1 Hz frequency. The tracesincludeproductioncluster
machinesat the Pittsburgh SupercomputingCenter(PSC),
researchcluster machinesin the Computing,Media, and
CommunicationLab (CMCL) at Carnegie Mellon Univer-
sity (CMU), big memoryapplicationserversin theCMCL,
anddesktopworkstationsatCMU. Westudiedthestatistical
propertiesof thesetracesandpresenteda detaileddescrip-
tion of thetracesandtheresultsin anearlierpaper[5].

We evaluateddifferent predictive modelson the traces
in a largescalerandomizedstudy. Surprisingly, despitethe
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complex statisticalpropertiesthat we identifiedin our ear-
lier study, which includedself-similarity and epochalbe-
havior, simplelinear time seriesmodelsprovedto be most
appropriatefor host load prediction. In fact, the bestall
aroundmodelfor hostloadpredictionsof 1-30secondsinto
the future, in termsof predictive power andlow overhead,
wastheAR(16)model[8]. In thispaper, weshallpresentre-
sultsthatusetheAR(16)model,aswell asthesimpleLAST
model (last measurementis predictionfor all future mea-
surements),andthe MEAN model(predictionis the long-
termarithmeticaverageof theloadsignal.)

It is importantto notethat linear time seriesmodelsdo
notmerelyprovidepointpredictionsfor futurevaluesof the
load signal. Suchmodelsalso provide a characterization
of their predictionerrors,andhow predictionerrorsfor dif-
ferenttime horizonsarerelated.Thischaracterizationtakes
theform of acovariancematrix,andis critical to computing
aconfidenceinterval for therunningtime,asweshallseein
thenext section.To computethe covariancematrix for the
LAST model,we treatit asan AR(1) with a pole at unity.
To computethecovariancematrix for MEAN, we compute
theautocovariancefunctionof thesignal.

We developedthe RPStoolkit to simplify the construc-
tion of online predictionsystems. RPSprovides compo-
nentswhich canbelinkedtogetherat run-timeusingdiffer-
entcommunicationmethods[7]. Suchacompositionforms
a predictionsystem.We implementedthe online hostload
measurementandpredictionsystemsof Figure2 usingRPS.
Thesesystemshavehaveextremelylow overhead,consum-
ing muchlessthanonepercentof theCPUtimeof a typical
desktophostto predicttheloadon thathost.

4. RTA algorithm

We relatethe running time of a task, 
����(�� , to the av-
erageload it experienceswhile it runsusingthe following
continuous-timemodel:
����)�� *,+ -!/."0%."132 !/."0%."14 576 
�8�9'
;: 
 ��
%�
Here 5<6 
�8 is the load signal, shifted suchthat 576>= 8 is the
valueof the signalat the currenttime, 
 ��
%? . We introduce
this shift to simplify thepresentationof our algorithm,and
to conformto theBox-Jenkinsnotationfor timeseriesanal-
ysis. This simplificationdoesnot affect theresults.
 �'
�� is
the nominalrunningtime of the task,which quantifiesthe
CPU demand(or “size”) of the taskasits runningtime on
anunloadedmachine.

This continuous-timeequationis basicallya fluid model
of a priority-lesshost scheduler. We will usethis simple
modelto describeour estimationprocedure.However, real
schedulersincorporateprioritiesthatcanchangeover time.

We assumethat the majority of the workloadrunsat sim-
ilar priorities. In particular, we assumethat thereare no
processeswhosepriorities have beendrasticallyincreased
or decreased,suchas with the Unix “nice” facility. Ulti-
mately, wewill relaxthisassumptionslightly andmodelthe
temporarypriority booststhat mostUnix implementations
give processesimmediatelyafter they becomeunblocked.
Given this extension,the procedurewe outline in this sec-
tion worksquitewell.

Continuous-time: The above equationis somewhat un-
wieldy to discretizeand use,so, beforewe continue,let’s
definetheavailabletimefunction@ 
 6 
�8 : 
*,+ @BA 6 
�8 �C
ED = (1)

which dependson theaverage load function@BA 6 
�8 : * 
 F !4 5<6HG 8�9 G �I
ED = (2)@ 
 6 
�8 representstheavailableCPUtime over thenext 
 sec-
onds,which is inverselyrelatedto the averageload during
thatinterval, @BA 6 
�8 . As theaverageloadincreases,theavail-
abletime decreases.
 ���(�� is thentheminimum 
 for which@ 
 6 
�8 : 
 ��
%�KJ Using this availabletime function function
makesit easierto explain how our algorithmestimatesthe
running time of a task, and, of course,the available time
function is offered directly through the API describedin
Section2.

Discrete-time: In our system,5 is not a continuous-time
signal,but ratherit is a discrete-timeapproximationof the
continuous-timesignalwith a samplinginterval of L sec-
onds, 5 !HMON , P : * �RQS� J�J	J ��T , where 5 !HM - represents5<6 
�8
for =VU 
XWYL , and so on. We approximate576 
�8 as576 
�8 : 57Z !/[R\^] . This lets us write a discrete-timeapprox-
imationof @ 
 6 
�8 and @_A 6 
�8 :@ 
�N :a` = P : =N$\- Mb���dc PeD = (3)@BA N : * P Nfg%h - 5 !HM g �CPeD = (4)@ 
�N is thethetime availableduringthenext P�L secondsand@BA N is theaverageloadthatwill beencounteredoverthenextP�L seconds.We thenestimatethe availabletime @ 
 6 
�8 by
linearinterpolation:@ 
 6 
�8 : @ 
)i !/[%\^j + 
Ikmln
%o�L;pL 6 @ 
 Z !/[R\^] k @ 
)i !/[R\^j 8 (5)
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Usinghost load predictions: Giventhesedefinitions,we
substitutethe predictedload signal q5 !HMON for 5 !HMON resulting
in thepredictedaverageload q@BA N , andcontinuesubstituting
backto give the predictedavailabletime q@ 
 N andits corre-
spondingcontinuous-timeapproximation:q@ 
�N :sr = P : =N$\- M q��� c P,D = (6)

q@BA N : * P Nfg%h - q5 !HM g �%PtD = (7)q@ 
 6 
�8 : q@ 
)i !/[R\^j +m
Ckmln
%o�LupL 6 q@ 
 Z !/[R\^] k q@ 
)i !/[%\^j 8 (8)

Then,theexpectedrunningtime of thetask, 
 ���#� , is simply
thesmallest
 for which q@ 
 6 
�8 : 
���
%� .

Confidenceintervals: Becausehostload predictionsare
notperfect,wealsoreporttherunningtimeor availabletime
asaconfidenceinterval, computedto auser-specifiedconfi-
dencelevel. Thebetterthepredictionsare,thenarrower the
confidenceinterval is.

The predictedloadsignalis q5 !HMON : 5 !HMON + @ !HMON , where5 !HMbN is the real valueof the signal and @ !HMON is the P -step-
aheadprediction error term which we summarizewith a
variancevxw�(y N . Our uncertaintyin estimatingthe available
time @ 
 N is due to our uncertaintyin estimatingthe aver-
ageload @_A N , which is duein turn to theseerror termsand
theirvariance.To representthisuncertaintyin theform of a
confidenceinterval,wemustpushtheunderlyingerrorvari-
ancesthroughtheaboveequationsto arriveatavariancefor
theaverageload @BA N

Notice that theaverageload(Equation7) sumstheesti-
matesq5 !HMON . Rewriting theequation,we canseethatq@BA N : @BA N + * P Nfg%h - @ !HM g (9)

By thecentrallimit theorem,then, q@BA N will becomeincreas-
ingly normallydistributedwith increasingP . Giventhatthe
errors @ !HMON areof zeromean, q@BA N hasan expectedvalueof@_A N andavariancethatdependsonthesumof theprediction
errors@ !HMON :q@BA N �{z}|~ @BA N �7�7������ � * P Nfg%h - @ !HM g�� ����� (10)

It is importantto note that for short jobs or large L , this
normalityassumptionmaybeinvalid. We will evaluatethe
systemlater and determinewhetherthe resultsof the as-
sumptionarereasonable.

Supposethe userrequestsa confidenceinterval at 95%
confidence.We canthencomputea confidenceinterval for@BA N (for P,D = ):

� @_A � 
%?N � @_A"� Nd� �N � : q@BA N<� * J �'�� P������ �7������ � Nfg%h - @ !HM g�� �� (11)

What this meansis that we predict that @BA N will be in the
range � @BA � 
%?N � @BA>� N�� �N � with 95%probability. The

* J �'� is the
numberof standarddeviationsof a standardnormalneeded
to capture�BQ J�� % of values. @BA � 
%?N is setto themaximumof
thecomputedvaluefrom aboveandzero.This is important
becausetheaverageloadcannotdropbelow zero,although
thepredictionerrorscanmake thatappearto bethecase.

We can now back-substitutethese upper and lower
bounds of the confidenceinterval into @ 
 6 
�8 , resulting
in upper and lower confidenceintervals for @ 
 6 
�8 :� @ 
 � 
%? 6 
�8#� @ 
 � Nd� � 6 
�8�� . Then the confidenceinterval on the
running time is � 
����	��
������ , where 
��$� is the minimum 
 for
which @ 
 � N�� � 6 
�8 : 
 �'
�� and
���� is theminimum 
 for which@ 
 � 
�? 6 
�8 : 
 ��
%� .

Corr elated prediction errors: Given the discussionof
the previous section,we muststill determinethe variance
of a sumof consecutive predictionerrorsin Equation11 to
computethe confidenceinterval. This is oneof the subtler
issuesin converting from load predictionsto runningtime
predictions.

To correctly computethe varianceof the sum of load
predictions,we mustcomputethecovarianceof eachof the
predictionerrorswith eachof theotherpredictionerrorsand
thensumall P�w termsof this covariancematrix. Entry �'�R�
of this matrix is �3�O�7��� � @ !HM g � @ !HMb�_� : v7�(y g v<�(y � andis the
covarianceof the � -step-aheadpredictionwith the � -step-
aheadprediction. Notice that variancesof the individual
predictionsaresimply thediagonalelementsof thematrix.

The predictionerrors’correlationover leadtime is akin
to a signal’s autocorrelationover time. Recall that an au-
tocorrelationsequenceis simply a normalizedautocovari-
ancesequence.The covariancesareeasilycomputedfrom
the autocovariancesequence. In particular, v �)y g v �(y � :�t�x�7��� � @ !HM g � @ !HMb� � :¡ £¢S¤ ���t�x�7��� � @ ! � @<¥ g#¦ � ¥ � .The host load predictionsystemusesthe algorithm of
Box, et al to computethe autocovariancesequencefor any
linear model[3, pp. 159–160]. Sincethe LAST predictor
is simply anAR(1) modelwith § 4 : *

, its autocovariances
canalsobecomputedusingBox, etal’smethod.In thecase
of theMEAN predictor, theautocovariancesaresimply the
autocovariancesof thesignalitself.

The varianceof the sumof the first P predictionerrors,
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(a) Without loaddiscounting

(b) With loaddiscounting

Figure 3. Relative error and load discounting.

which we will write as vxw¨ y N is thencomputedasv w¨ y N : �7��� �� � Nfg%h - @ !HM g � �� : Nfg%h - Nf� h - v<�(y g v7�(y � (12)

To avoid communicatingthe whole covariancematrix, the
sumis computedby thehostloadpredictionsystem.

Load discounting: Figure 3(a) shows the result of run-
ningmany taskswhose
 ��
%� timesvaryfrom 100msto 10s
usingthealgorithmdescribedthusfar. Thebackgroundload
wasfrom amachinein thePittsburghSupercomputingCen-
ter’s Alpha cluster, while the modelusedwasan AR(16).
Thefigureplotstherelativeerror( 6 
 ���#� k©
 �# "! 8%o)
 ����� ) of the
predictionsversusthenominaltime of thetask.

Noticethatrelativeerroris alwayspositiveandincreases
markedly asnominaltime decreases.For onesecondtasks,
therunningtime is over-predictedby 80%. Theconfidence

intervalswerealsoskewed,with far toomany pointsfalling
below thelowerboundsof theintervals.Theproblemis that
the Digital Unix schedulergivesan “I/O boost” to the pri-
ority of aprocesswhenablockingI/O operationcompletes.
Over time, the process’s priority will “age” to its baseline
level. Theresultis thattheawakenedprocesswill getmore
thanits fair shareof theCPUuntil its priority hasdegraded.
The shorterthe task,the morethis mechanismwill benefit
it, andthe moreinaccurateour runningtime estimatewill
be,aswe canseein thefigure.

Our solution to this problemis load discounting. We
exponentiallydecayedthe load predictions q5 !HM g , the dis-

countedload, ª 5 9�!HM g , beingª 5 9�!HM g : 6 * k¬« ¦�g \t[R­�® c�¯"1/°"±�²	³ 8�q5 !HM g (13)

How quickly theinitial loaddiscountdecaysdependsonthe
settingof G	´ N ¨  
 � � ! . We determinedthe valueof G	´ N ¨  
 � � !
empirically by againrunning a large numberof random-
izedtestcasesasdescribedaboveandvarying G(´ N ¨  
 � � ! ran-
domly in therange0 to 10 seconds.This givesusa relative
errorasafunctionof G ´ N ¨  
 � � ! , which,turnsout to belinear.
We fitted a line to thepointsanddeterminedthat it crossed
zerorelative error at G ´ N ¨  
 � � ! : � J � seconds.This value
is usedthroughoutthis paperandseemsto bea propertyof
theoperatingsystemthatcanbecomputedoffline.

Figure3(b) shows the resultof using load discounting.
As canbe seen,the appropriateG	´ N ¨  
 � � ! valuehaselimi-
natedthe dependenceof the relative error on the nominal
timeandhasfurtherreducedtheaveragerelativeerrorto al-
mostexactly zero,which we would alsoexpectfrom these
point estimates.

Load discountingis an effective solutionto the priority
booststhatmostUnix schedulersgiveto processesthathave
becomeunblocked. It is importantto note,however, that
otherpriority problemsremain.For example,a background
processwhich hashadits priority significantlyreduced(eg,
a processwhich hashasbeen“reniced”) but which remains
computeboundwill resultin artificially exaggeratedpredic-
tions. Similarly, a processwith high priority will result in
predictionsthataretoo low.

5. Experimental infrastructur e

Ourinfrastructurehardwareconsistsof two Alphastation
255hostsconnectedwith aprivatenetwork. Bothmachines
run Digital Unix 4.0D. Onehostis referredto asthe mea-
surementhostwhile the otheris calledthe recordinghost.
Thehostshave no otherloadon them.

The recordinghost runs software that interrogatesthe
componentsrunningonthemeasurementhostandthensub-
mits tasksto it. The measurementhostrunsthe following
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components:a host load playbacktool to provide a back-
groundworkload,a hostloadsensor, oneor morehostload
predictionsystems,anda spinserver.

The playbacktool usesa new techniquein which the
workloadis generatedaccordingto a load trace[9]. With
no otherwork on the host,this backgroundload resultsin
the host’s load signalrepeatingthat of the load trace. The
hostloadsensorprovidesaninterfacefor therecordinghost
to requestthelatestloadmeasurementon thehost.

The readermay wonderwhy we do not usea synthetic
workloadgenerator. Therearetwo reasons.First, because
the behavior of host load is so complex, creatinga model
thatcapturesits relevantpropertiesis a hardproblem.Fur-
thermore,in the predictioncontext, it is not cleara priori
what the relevant propertiesof the workloadare. The sec-
ondreasonis thatthepredictabilityof a syntheticworkload
is inherentin themodelusedto generateit. Simply put,our
predictormayverywell “discover” ourworkloadmodeland
produceoverstatedresults. The beautyof usinghost load
traceplaybackis that the predictor is operatingon a real
workload,andyet theworkloadis repeatable.

Thehostloadpredictionsystems(describedin Section3)
provideaninterfacefor therecordinghostto requestthelat-
esthostload predictionsusingan experiment-specificpre-
diction model.

Thespinserver runstasks—ittakesrequeststo compute
(usinga busy loop) for somenumberof CPU-secondsand
thenreturnsthe wall-clock time that the tasktook to com-
plete. It looks like a CORBA ORB [19]. The busy loop is
carefullycalibrated,andtheserver monitorstheamountof
CPU it hasconsumedasit computes.The relative error is
muchlessthan1%.

6. Evaluation methodology

To evaluatethe RTA given a particulartracedhost,we
startedup theexperimentalinfrastructuredescribedin Sec-
tion 5 on the measurementandrecordinghosts. The host
load playbacktool wassetto replaythe selectedtrace(all
39 wereused).Thehostloadsensorwasconfiguredto run
at 1 Hz. Threehost load predictionsystemswerestarted:
MEAN, LAST, andAR(16). Thesystemswereconfigured
to fit to 300 measurements(5 minutes)and to refit them-
selveswhentheabsoluteerror for a one-step-aheadpredic-
tion exceeds0.01or the averagemeasuredone-step-ahead
meansquarederror exceedsthe estimatedone-step-ahead
meansquarederror by more than 5%. The minimum in-
terval betweenrefitswas30 secondsandthe maximumin-
terval beforethe measuredmeansquarederror was tested
was300 seconds.Theseparameterswere found basedon
previousexperiments[8].

Thepredictionandmeasurementsoftwarewerethenper-
mittedto quiescefor at least600seconds.Then3000con-

secutive testcaseswererun on the recordinghost,eachac-
cordingto this procedure:

1 Wait for a delayinterval, µ�¶d·(¸$¹»º�¼%½�¾ , randomlyselectedfrom
a uniform distribution from 5 to 15 seconds.

2 Getthecurrenttime µ»·	¿�À .
3 Selectthetask’s nominaltime, µ ·	¿�Á randomlyfrom a

uniform distribution from 100msto 10 seconds.
4 Selecta randomhostloadpredictionsystemfrom among

MEAN, LAST, AR(16).
5 UsethePredictRunningTime API to computethe

expectedrunningtime µ ¹»Â%Ã andthe95%confidenceintervalÄ µ ¾�Å�Æ µ�Ç Å"È usingthelatestpredictionsfrom theselectedhost
loadpredictionsystem.

6 Runthetaskon thespinserver andretrieve its actual
runningtime, µ»½�É"¸ .

7 Recordthetimestampµ»·	¿�À , thepredictionsystemused,the
nominaltime µ�·�¿�Á , theexpectedrunningtime µ»¹»Â%Ã , the
confidenceinterval

Ä µ ¾�Å#Æ µ�Ç Å�È , andtheactualrunningtimeµ ½RÉ»¸ .
After all 3000 testcaseswere run, their recordswere im-
portedinto a databasetablecorrespondingto thetrace.

It takesapproximately13 hoursto complete3000test-
cases.To evaluatethe runningtime predictions,we mined
thedatabaseof 114,000testcases.Theresultsof this analy-
sisaredescribedin thefollowing section.

7. Evaluation results

In examiningour testcases,we wantedto answerseveral
questions.Themostimportantof theseis (1) doesour sys-
temprovide usefulpredictionsof taskrunningtimesin the
form of valid confidenceintervals?In additionwewantedto
understand(2) how thechoiceof underlyinghostloadpre-
dictor affects performance,and (3) how that performance
dependson thenominaltime of thetask?

To addressthesequestions,we lookedat thetestcasesin
several ways. First, we measuredthe quality of the con-
fidenceintervals independentlyof the nominal time of the
task. For eachtrace,we computedthe confidenceinterval
metricsof coverageandspan. Thenwe comparedthe dif-
ferent predictorsbasedon theseper-tracemetrics. Next,
we conditionedthis comparisonon the nominal time of
the task,dividing the rangein to small,medium,andlarge
tasks.Finally, wehand-classifiedeachtracebasedonthere-
lationshipof theperformancemetricsandthenominaltime.
This resultedin five classes.We thendevelopeda recom-
mendationfor eachclass.In thefollowing discussion,when
we referto a “significant” difference,we meanthat thedif-
ferenceis significantat a 95%confidencelevel.

In the following, we will begin by showing exemplars
from eachof thefive classesof behavior we saw. Thegoal
is to give thereadera visualideaof theperformanceof this
systemon hostswith differentbehaviors. After discussing
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(a) Coverage

(b) Span

Figure 4. Coverage and Span, Class I hosts

eachclass,we will generalizeour resultsand explain the
conclusionswe reached.

7.1. Classesof behavior

For eachindividual load trace, we plotted our perfor-
mancemetricsversusthenominaltime 
 �'
�� . Whenwe did
this, we found that an interestingpatternemerged. By vi-
sualinspection,theresultsfor the39 tracescouldbeplaced
into five classes.It is enlighteningto examinerepresenta-
tivesof eachof theseclassesin detail,anddoingsopermits
usto makerecommendationsfor eachof them.

ClassI: ClassI, which we alsocall the“typical low load
host”classrepresentsthemostcommonbehavior by farthat
we have encountered.The classconsistsof 29 of the 39
hosts(76%). A representative of classI is plottedin Fig-
ure 4. Eachpoint in the graphrepresentsthe averageof
about200testcasesandrepresentsa 2 secondspanof nom-
inal time, extendingfrom onesecondbeforethe point’s x-

(a) Coverage

(b) Span

Figure 5. Coverage and Span, Class II hosts

coordinateto onesecondafter. Theremainderof thefigures
in thepaperhavethesamesemantics.

The main characteristicsof the classarethe following.
The coverageis only slightly dependenton the nominal
time, increasingslightly for all predictorsas the nominal
time increases.The MEAN predictortypically hasalmost
100%coverageandis closelyfollowedby theAR(16) and
thentheLAST predictor. TheLAST andAR(16)predictors
havesignificantlynarrowerspansthantheMEAN predictor,
with AR(16) producingslightly wider spansthanLAST.

We believe that theAR(16) is thebestpredictorfor this
mostcommonclassof host.Thecoverageis nearlyasgood
asMEAN andis typically nearthetarget95%point, while
LAST tends to lag behind, especiallyfor smaller tasks.
Furthermore,the spanof AR(16) is typically half that of
MEAN andonly slightly wider thanLAST. In mosthosts,
then, a betterpredictorproducesmuch narrower accurate
confidenceintervals.
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(a) Coverage

(b) Span

Figure 6. Coverage and Span, Class III hosts

ClassII: ClassII hosts,which we referto asbeingin the
“atypical low load host” class,representthe secondmost
commonbehavior amongour traces.The classconsistsof
4 of the39 hosts(10%). An exemplarof ClassII is plotted
in Figure5.

An importantdistinguishingfeatureof this classis that
the coverageof the MEAN predictordrops precipitously
with increasingnominal time becausethe spanof its con-
fidenceinterval is not sufficiently large. In contrast,LAST
and AR(16) computeslightly larger confidenceintervals
which result in excellent coveragethat increaseswith in-
creasingnominaltime. LAST andAR(16)havesimilarcov-
erage(in thisexampleLAST is slightly ahead,in othercases
AR(16) is slightly ahead).

In terms of computing confidence intervals, either
AR(16) or LAST seemsadequatefor producingconfidence
intervals for this classof host. Comparedto MEAN, both
producesignificantlylargerspansthatresultin muchbetter
coverage. Computationally, AR(16) is almostas inexpen-
sive asLAST.

ClassIII: Theremainderof thefive hostclassesall con-
tain high loadhosts.Theredoesnot seemto bea “typical”
behavior on a high loadhost,sowe will simply enumerate
theseclasses.ClassIII, which we alsocall “high load 1”,
consistsof a 3 of the39 hosts(8%). Figure6 plotstheper-
formancemetricsasa function of the nominaltime for an
exemplar.

Comparedto the low load hosts,this high load 1 host
displaysmuchmorecomplex behavior. Thepredictorwith
the bestcoveragedependsstrongly on the nominal time.
For very shorttasks,MEAN is slightly betterthanAR(16),
which is muchbetterthanLAST, althoughthe coverageis
quitepoorwith all threepredictors.For mediumsizetasks,
AR(16) providesthe bestcoverage,followed at a distance
by MEAN andLAST, which becomeinterchangeable.For
largetasks,AR(16) andLAST have similar coverage,with
AR(16) laggingslightly, while MEAN’s coverageis far be-
hind. In termsof thespan,AR(16)andLAST bothcompute
muchwider (andthusmoreappropriate)confidenceinter-
vals thanMEAN, which explainswhy their coverageis so
muchbetter. MEAN is unableto understandthe dynamic-
ity of this kind of host. Predictably, for the nominaltimes
whereAR(16) is preferableto LAST, it hasa largerspan.

In termsof computingaccurateconfidenceintervals,the
bestpredictoris highly dependenton thenominaltime. For
very short tasks,MEAN or AR(16) is preferable,but ei-
ther hasratherpoor coverage.For mediumtasks,AR(16)
producesthe bestperformance.For large tasks,LAST is
best. Clearly, thereis room for improvementon this class
of hosts.

ClassIV: This class,which we alsorefer to asthe “high
load 2” class,containstwo hosts(5%). Figure7 plots the
performanceof thepredictorson a representativetrace.

We canseethat the coverageof LAST andAR(16) are
virtually identicalhereandbothincreaseslowly with nom-
inal time. MEAN has similar coveragefor small tasks,
but then behaves increasinglypoorly, with coveragede-
creasingrapidly with nominal time. In termsof the span,
LAST growsmuchmorequickly thanMEAN with increas-
ing nominal time, while AR(16) is almostexactly in be-
tweenthem.For very shortnominaltimesthespansareall
identical.

In terms of computing confidenceintervals, AR(16)
clearlyproducesthebestresultsfor this classof hosts,get-
ting coverageidenticalto that of LAST with a spanthat is
oftenhalf aswide.

ClassV: ClassV, which wealsoreferto asthe“high load
3” class,consistsof a singlehost(2.5%).Figure8 plotsthe
performanceof thepredictorson thathost.

In termsof coverage,AR(16) is clearlythewinnerhere,
especiallyfor mediumsizedtasks. It achieves its reason-
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(a) Coverage

(b) Span

Figure 7. Coverage and Span, Class IV hosts

ablecoverage(thegoalis 95%)by computingslightly larger
confidenceintervals than MEAN. LAST computesconfi-
denceintervals that arefar too small, resultingin abysmal
coverage.

AR(16) is clearly the preferablepredictorfor this class
of hostsin termsof computingconfidenceintervals.

7.2. Generalizedresults

The class-by-classanalysis of the precedingsection
makesit clearwhat the LAST andAR(16) predictorsgen-
erally provide quite differentperformanceresultsthanthe
simple MEAN predictor, and that performancecan vary
with nominal time. In this section,we will generalizethe
resultswe saw overall of thetestcasesandtraces.

The RTA works: Looking at the exemplarsof the five
classes,one can seethat the RTA systemworks, for the
mostpart, asadvertised. This inferenceis supportedby a
broaderexaminationof the testcases.With almostevery

(a) Coverage

(b) Span

Figure 8. Coverage and Span, Class V hosts

load tracein our study, the coverageof either the AR(16)
or LAST predictoris very closeto the target 95% cover-
age. Furthermore,thesepredictors,especiallyAR(16), do
sowith reasonablespans.

Of course,therearesomerarecases(considertheClass
IV exemplar)wherecoverageis significantlylowerthande-
sired.Also, it maybepossibleto reducespansevenfurther
while maintainingthesamecoverage.Theseissuespoint to
questionsof the inherentpredictability of distributed sys-
tems: what is the optimal predictability and the optimal
characterizationof predictionerror that can be achieved?
Without answersto thesequestions,it is difficult to know if
performancecanbebetterin theserarecasesor if thespan
can be reduced. However, even without answeringthese
questions,thisstudyprovidesevidencefor theeffectiveness
of theRTA.

LAST and AR(16) producebetter coverageon heavily
loaded hosts: On nine of our traces,LAST andAR(16)
simultaneouslyproducebetter coverageand worse spans
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thanMEAN. Theseninetracescorrespondto thehoststhat
aremoreheavily loaded,andthus,correspondingly, exhibit
greatervariability in load [5]. TheLAST andAR(16) pre-
dictorsarebetterableto “understand”suchhostsandcom-
puteappropriatelywider confidenceintervals comparedto
MEAN. Thesewider confidenceintervals result in a far
greaterchanceof a task’s actualrunningtimefalling within
its computedconfidenceinterval. This is preciselythe be-
havior that we want. Our goal is that 95% of tasksfall
within their confidenceintervals. With the AR(16) predic-
tor, of the 39 cases,only 5 caseshave coveragelessthan
90%,andonly onelessthat85%,whereaswith theMEAN
predictor, only one of the high load tracesis better than
85%. The percentagepoint gain from MEAN to AR(16)
canbeasmuchas30%,andit is typically around15%.

Two effects are at work here. First, the predictionsof
the LAST andAR(16) predictorsdependmoststronglyon
recentmeasurements.The MEAN predictor, on the other
hand, always presentsthe long term meanof the signal.
As a result,the LAST andAR(16) predictorswill respond
muchmorequickly during the periodafter an epochtran-
sition (Section3) and beforea model refit happens.This
meansthattheirpredictions,andthusthecenterpointof the
confidenceinterval will much more likely be in the right
placein thesesituations

Thesecondeffect resultsfrom how theconfidenceinter-
val lengthis computed.Recallthatwith theMEAN predic-
tor the autocovarianceof the signalis usedto computethe
confidenceinterval, while for the LAST and AR(16) pre-
dictorsit is theautocovarianceof theirpredictionerrorsthat
is used. On a high load, high variability host, an epoch
transitionis morelikely thanon a low load, low variability
hostto make the “old” autocovarianceof the signalfail to
characterizethe new epochwell. The structureof the au-
tocovarianceof thepredictionerrorswill not changeat all,
althoughtheindividual predictionsmaybelessaccurate.

LAST and AR(16) produce better spans on lightly
loadedhosts: For thosehostswhich have lower loadand
variability, the LAST and AR(16) predictorsproducesig-
nificantly narrower confidenceintervalsthanMEAN while
still capturingan appropriatenumberof taskswithin their
computedconfidenceintervals. On average,theconfidence
intervals are shrunkby 2-3 secondswhile the fraction of
taskswithin their confidenceintervalsshrinksby about5%.
Sincefor theselightly loadedhosts,the MEAN predictor
resultsin coveragesthataresignificantlylargerthanthetar-
get 95%, this is not an unreasonabletradeoff. Essentially,
on average,for theselow load hosts,moving from MEAN
to AR(16) reducescoverageby about5% while decreasing
thespanby 2-3 seconds(about33%).

AR(16) performs better than LAST: At this point, we
have shown that the RTA doesindeedcomputereasonable
confidenceintervals for taskrunningtimesandthat it does
so more accuratelywhen using a more sophisticatedpre-
dictor than MEAN. Now we would like to know whether
we shouldprefertheLAST predictoror theAR(16) predic-
tor. We have alreadypointedout someof the differences
betweenthesetwo.

If we considerthe aggregateperformanceof the differ-
entpredictorson eachof thetracesandcompareLAST and
AR(16) we seethat the confidenceintervals computedus-
ing AR(16)generallyincludemoreof their tasksthanthose
computedusing LAST. Using the AR(16) predictor, only
fiveof thetracesareat lessthan90%andonly onelessthan
85%. UsingLAST, 9 arelessthan90%,while four areless
than85%. This gainis dueto AR(16) predictorsproducing
widerconfidenceintervalsonheavily loadedhosts.Thereis
a correspondingperformancegain on lightly loadedhosts,
whereAR(16) producesnarrowerconfidenceintervalsthan
LAST becauseit is ableto appropriatelyrelax its coverage
evenmorethanLAST.

In essence,the useof AR(16) insteadof LAST brings
coveragecloserto thetargetcoverage,from aboveor below,
throughadjustingspansize accordingly. In moving from
LAST to AR(16),weeitherseealargeincreasein coverage,
ontheorderof 10percentagepointsor more,combinedwith
aspanincreaseof 2-3seconds,or thereis aslightdeclineof
5 percentagepointsor lesscombinedwith a spandecrease
of 1-2 seconds.

Performanceis slightly dependenton the nominal time:
For very small tasks,especiallythoseon the order of the
measurementperiod (1 second)or smaller, coverageis
worsethanfor largertasks.This is not too surprisinggiven
the normality assumptionwe make aboutthe sumof load
predictions. With thesetiny tasks,the sum is over a sin-
gle predictionandthe point predictionerror is not usually
normallydistributed.As tasksincreasebeyond1-2 seconds
in duration,coverageimprovesto nearoptimal. For very
long tasks,we seea declinein performanceon somehosts.
Generally, then,asthenominaltimeincreases,coverageim-
provesslightly.

Obviously, thequalityof ourpredictionsshouldbeasin-
dependentof thenominaltimeaspossible.In fact,thelevel
of dependencewe notedis quite low. ConsiderFigures4–
8, our exemplarsof thefive behavior classes.Notethat the
coverageof AR(16), for example,is only slightly depen-
denton nominaltime for the vastmajority of the tracesin
our study. It is only in classIII (8% of the traces)that we
seeunhappy behavior out of AR(16).

Not surprisingly, spansgrow with nominal times. A
longertaskrequireslooking over a longerpredictionhori-
zon, which introducesmore error. Generally, the span

10



grows linearly with the nominal time of the task, with
AR(16) having theflattestslope.

Predictionsof expectedrunning time behave similarly:
For spacereasons,we have not talked aboutthe quality of
the 
 ���#� pointpredictions,concentratinginsteadonthequal-
ity of the confidenceintervals � 
 ��� ��
 ��� � . The quality of the
the 
����#� predictions,asmeasuredusingthe ÊËw metric [14,
pp. 226–228]behavesin similar waysto thespanandcov-
eragemetricsfor the confidenceintervals. Generally, the
systemis ableto achieve Ê�w in excessof 0.9. For low load
hosts,ÊËw is typically evenhigher.

8. Relatedwork

Work on the explicit predictionof the dynamicbehav-
ior of distributedsystems,particularly to supportadaptive
applications,hasa surprisinglyshort history. The paral-
lel computingcommunityhasstudiedapplication-level load
balancingfor sometime [20, 22, 10], but this work has
treatedpredictiononly implicitly. The operatingsystems
communityhasstudiedexisting workloads[18, 11, 15, 13]
to supportdistributed load sharing, and developedinno-
vative system-level schedulingpoliciesbasedon queueing
theoreticmodels[13]. In contrastto thesetwo threads,our
work is doneentirely at the userlevel and considerspre-
diction explicitly. Our goal is to provide high level predic-
tive servicesin shared,unreserved distributing computing
environmentsthatareusefulto applicationsmake different
kindsof schedulingandadaptationdecisions.

Thenotionof suchapplication-level schedulingis dueto
BermanandWolski [2]. It hasbeenshown thatapplication-
level schedulingis feasiblenot only in tradition parallel
load balancing,but also in distributed object systemslike
CORBA [25] and distributed interactive applicationssuch
as scientific visualization[1, 16]. It is also becomingin-
creasinglyclearthatGrid [12] applicationswill haveto rely
on adaptation.Our work supportsadaptationframeworks
by providing performancepredictionsonwhichstatistically
valid schedulingdecisionscan be made. The systemde-
scribed in this paperhas beenincorporatedin one such
framework, BBN’s QuOiN [25].

Startingin the late 90s,researchbeganon how to build
scalablesystemsfor measuringthe dynamicpropertiesof
distributedenvironments,leadingto suchwell known sys-
temsastheNetwork WeatherService[23] (NWS) andRe-
mos[17]. Over time,NWSincorporatedtime seriespredic-
tion for hostand network load [23, 24], while Remosdid
thesame,usingourwork (theRPStoolkit [7]). With regard
to this paper, we and the NWS grouphave independently
demonstratedthathostloadpredictionis feasibleandhave
independentlyreachedsimilarconclusionsaboutwhatform
of predictivemodelis preferable[24, 8].

This paperdemonstratesthat hostload predictionis not
only feasible,but alsouseful,in that suchpredictionsper-
mit us to cheaplyandscalablypredictthe runningtime of
tasksasconfidenceintervals.This form of higherlevel pre-
diction is extremelyusefulin adaptation.In otherwork, we
have shown, for example, that thesepredictionsallow us
to make schedulingdecisionsto meetreal-timegoalswith
high probability [6, Chapter6]. In general,our confidence
intervalscanprovide supportfor many forms of stochastic
scheduling[21].

9. Conclusionand futur e work

We have describedan algorithmthat canestimate,on a
typical shared,unreserved host running a commodityop-
eratingsystem,the runningtime of a compute-boundtask
given the task’s CPU demandand time seriespredictions
of the load on the host. A predictionof running time is
presentedto theapplicationasa confidenceinterval, which
enablestheapplicationto make statisticallyvalid decisions
basedon theprediction.We summarizedhow our hostload
predictionsystemworks(thefull detailsarepresentedelse-
where),and then showed how we implementedthe algo-
rithm on top of it. We thenevaluatedthecompositesystem
using a large numberof randomizedtestcases.The main
conclusionis thatthealgorithm,whenpairedwith anappro-
priatepredictive modelfor hostload,doesindeedcompute
valid confidenceintervals.

We arecurrentlyworking on a similar systemto predict
communicationtimes. The goal is to be able to predict,
againasaconfidenceinterval,how longit will taketo trans-
fer a givennumberof bytesbetweentwo hosts.In addition
to predictingresourcesupply, we arealsovery interestedin
predictingtheresourcedemandof applications.Finally, we
arestudyinghow to automaticallylearnmodelsof resource
schedulerswith hopesto improveon,for example,thesim-
ple Unix schedulermodelwe usedhere.
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