
Dynamic Adaptive Virtual Core Mapping to Improve Power,
Energy, and Performance in Multi-socket Multicores

Chang Bae Lei Xia Peter Dinda
Department of EECS

Northwestern University
Evanston, IL

{cbae@u.,lxia@,pdinda@}northwestern.edu

John Lange
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA

jacklange@cs.pitt.edu

ABSTRACT
Consider a multithreaded parallel application running inside a mul-
ticore virtual machine context that is itself hosted on a multi-socket
multicore physical machine. How should the VMM map virtual
cores to physical cores? We compare a local mapping, which com-
pacts virtual cores to processor sockets, and an interleaved map-
ping, which spreads them over the sockets. Simply choosing be-
tween these two mappings exposes clear tradeoffs between perfor-
mance, energy, and power. We then describe the design, implemen-
tation, and evaluation of a system that automatically and dynami-
cally chooses between the two mappings. The system consists of
a set of efficient online VMM-based mechanisms and policies that
(a) capture the relevant characteristics of memory reference behav-
ior, (b) provide a policy and mechanism for configuring the map-
ping of virtual machine cores to physical cores that optimizes for
power, energy, or performance, and (c) drive dynamic migrations
of virtual cores among local physical cores based on the workload
and the currently specified objective. Using these techniques we
demonstrate that the performance of SPEC and PARSEC bench-
marks can be increased by as much as 66%, energy reduced by as
much as 31%, and power reduced by as much as 17%, depending
on the optimization objective.

Categories and Subject Descriptors
D.4.1 [Software]: Process Management

General Terms
Design, Measurement, Performance, Experimentation

Keywords
NUMA, Virtualization, Adaptation

This project is made possible by support from the National Science
Foundation (NSF) via grant CNS-0709168 and the Department of
Energy (DOE) via grant DE-SC0005343.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’12, June 18–22, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

1. INTRODUCTION
A prevalent feature of most modern computing systems is the

existence of multiple layers of hardware parallelism. Most high-
end computing platforms, such as servers and cluster nodes, have
multiple processor sockets housing a processor die with multiple
cores. Similarly, the memory system may have multiple banks of
memory that are preferentially associated with sockets. Unfortu-
nately, while this deeper hierarchy has significant ramifications for
many operational aspects of the machine, such as power and per-
formance, typical operating systems present resources as a uniform
and flat hierarchy. As we will show, this simplification can have a
detrimental impact on the operational goals (performance, power,
and energy) of a system. In this paper we focus on adapting a mul-
tithreaded computation to the hierarchical organization of CPUs in
a system such that the placement of computation is optimized ac-
cording to a high level goal specified by the user or system admin-
istrator.

As a substrate for our work we use virtual machines to provide a
flexible environment for controlling the placement of computation.
A virtual machine monitor (VMM) generally implements a given
CPU using a thread abstraction. Each “virtual core” (vcore) that
the guest operating system sees is actually a thread within the host
OS that the VMM maps to an underlying physical core (pcore). A
VMM can thus easily provide a guest OS with as many vcores as
desired by creating new kernel threads for each additional CPU.
However, for performance reasons the number of virtual cores is
generally bounded to the number of physical cores.

Consider a workload that consists of four active threads, and a
machine with two sockets, each with a four core CPU. A typical
guest OS, such as Linux, will bind the threads to four virtual cores,
or at least set their affinity to the virtual cores, with the goal of
maximizing cache and TLB performance. However, because the
virtual cores are virtualized using separate threads, the VMM is
free to map them to physical cores in any way it chooses. Thus,
while the OS might flatten the physical CPU hierarchy, the VMM
is still capable of optimizing the mapping of virtual resources to the
physical hierarchy.

An important consequence of this design is that it is possible to
dynamically update the mapping of virtual cores to physical cores
based on high level decisions. We will show that by updating the
vcore mapping a VMM is able to control the power, energy, and
performance characteristics of the virtual machine when running a
multithreaded workload. For example, by migrating all active vir-
tual cores off of a particular socket, the whole processor in that
socket can be idled, and we pay only static power costs. In the
future, increasingly sophisticated hardware may even make it pos-
sible to power gate the socket altogether, avoiding even the static
power draw. While idling a particular socket will obviously result

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

canneal(PAR
SEC

)

stream
cluster(PAR

SEC
)

equake(SPEC
)

sw
im

(SPEC
)

raytrace(SPEC
)

m
grid(SPEC

)

fluidanim
ate(PAR

SEC
)

art(SPEC
)

apsi(SPEC
)

R
a

ti
o

 o
f

in
te

rl
e

a
v
e

d
 o

v
e

r
lo

c
a

l

lo
c
a

l
in

te
rl
e

a
v
e

d
b

e
tt

e
r

b
e

tt
e

r

Execution time
Energy consumption
Power consumption

Figure 1: Comparing the interleaved and local mappings for a range of benchmarks and objectives. There is considerable opportu-
nity to trade off between performance, power, and energy. The tradeoffs are also clearly dependent on the workload.

in degrading the performance capabilities of a system, we claim
that the performance consequences depends heavily on character-
istics of the workload running on the system. If computational
threads in the guest have significant shared-memory communica-
tion among themselves, then mapping their virtual cores to phys-
ical cores on the same socket (and idling the other socket) may
enhance, or at least not significantly reduce, their performance. If,
on the other hand, they have negligible shared-memory commu-
nication and/or have significant memory bandwidth requirements,
then this optimization will reduce their performance as less socket
bandwidth is available.

In this paper, we present and examine an adaptive system that
automatically maps virtual cores to physical cores based on on of
three possible optimization goals specified by the user (“maximize
performance”, “minimize power”, or “minimize energy”). In order
to meet these goals, the system selects between two mapping strate-
gies: local and interleaved. A local mapping is a non-overlapping
mapping of virtual cores onto physical cores such that the mini-
mum number of sockets is used. An interleaved mapping is a non-
overlapping mapping in which the maximum number of sockets is
used.

The use of the terms local and interleaved to describe these strate-
gies also relates to memory system behavior in two ways. Note
that the VMM has full control over the partitioning of the host’s
physical address space between the active VMs. If this partition-
ing and assignment is done in coordination with the mapping, the
VMM can exert some control over memory traffic. The first impli-
cation of this is that when a local mapping is used, socket-to-socket
cache coherence traffic is minimized. The second implication is
that on machines with multiple memory channels a given channel
may be preferentially accessible (e.g. have lower latency) from a
given socket.

While the selection between local and interleaved mappings is
a very straightforward one, the two options do provide consider-
able opportunity for making interesting tradeoffs, as can be seen
by examining Figure 1. The figure1 illustrates the comparative re-
sults as ratios for local and interleaved performance, power, and
energy, making it easier to see the tradeoffs. For performance, the

1Details on the benchmarks and test environment are given in Sec-
tion 2.

execution time in clock cycles varies as much as 66% between the
two mappings, while it varies by as much as 17% and 31% for
power and energy. The results were collected on a two socket, eight
core, sixteen hardware thread machine virtualized using our Pala-
cios VMM.

With our adaptive system, the user or machine operator sets the
goal of maximum performance, minimum energy, or minimum power.
The system continuously measures the memory reference behavior
of the virtual machine’s virtual cores, and uses this information to
choose which of the two mappings is preferable at that point in
time, and then changes the mapping. The measurement system,
adaptation mechanism of virtual core migration, and adaptation
policy are all implemented in the context of the Palacios VMM.

Our contributions are as follows:

• We identify and characterize the optimization opportunity
available from the simple choice of local and interleaved map-
pings of virtual cores to the physical cores of a multisocket
machine.

• We identify a set of metrics that usefully characterize the
memory reference behavior with respect to this choice, met-
rics that are available regardless of the current mapping.

• We show how to measure these metrics with negligible over-
head using a combination of hardware mechanisms available
on x86 processors and software mechanisms available in any
VMM.

• We describe the design of an algorithm that uses the mea-
surements to determine the best of the two mappings for the
optimization goal set by the user.

• We describe the design, implementation, and evaluation of
the complete adaptive system. The system is able to perform
as well as the best static choice of mappings.

The paper is structured as follows. In Section 2 we describe
our experimental testbed and the benchmarks we have used. Next,
in Section 3, we describe the consequences of memory reference
behavior in terms of shared memory communication, cache coher-
ence, and other aspects that are affected by the virtual core to phys-
ical socket mapping. In Section 4, we summarize the set of metrics

Processors (2)

Intel Xeon E5620 2.4 GHz
Num. of Cores: 4
Num. of Hardware Threads: 8
(2-way SMT per core)
Max TDP: 80 W

Processor Sockets 2

Cache

L1: 64KB x 4
(32KB L1 Data, 32KB L1 Inst.)
L2: 256KB x 4
L3: 12MB

Memory 4GB x 2 1066 MHz (DDR3)
Power Supply 480W

Figure 2: Features of test machine (Dell PowerEdge R410).

that are needed for capturing these consequences, and show how
they can be measured in a VMM. Section 5, we describe the adap-
tation mechanism and policy, showing how the measurements and a
user-specified goal can be combined into dynamic choices between
the two mappings. We then describe the evaluation of the elements
of the system, and the system as a whole in Section 6. This is fol-
lowed by a discussion of related work and conclusions in Sections 7
and 8.

2. TESTBED
We now describe the hardware and software environment we

have used in the context of this work.

2.1 Hardware
Figure 2 describes our test system, a Dell PowerEdge R410 ma-

chine that has two processor sockets. Each socket contains a Xeon
E5620 processor with 4 physical cores, each of which has two
hardware threads. The machine has a small scale Non-Uniform
Memory Access (NUMA) architecture, in that each socket is pref-
erentially associated with half of system memory. Our machine is
configured for performance according to Dell’s recommendations
in [23]. Specifically, we have turned off node interleaving for mem-
ory allocation to make the effect of distance in accessing memory
clear. Also, we minimize variations on the performance, energy
and/or power consumption due to DVFS, by setting a static power
frequency and voltage and turning off turbo mode. For the idle state
in each core, the C-state option, including enhanced mode, is en-
abled with the idea being to maximize the dynamic power reduction
when the socket is idled.

We measure energy using an externally connected power meter, a
Watts Up PRO. While the meter reads the energy consumption on a
test machine, its serial output is fed into a monitoring machine that
orchestrates a run. The monitoring machine records time-stamped
cumulative energy measurements at the beginning and end of a
workload’s execution and differences them to determine the energy
of the run. The average power (Watts) is calculated by dividing the
energy (Wh) by the run time.

2.2 Palacios VMM
Our investigation, and the development and evaluation of our

adaptive system is in the context of our Palacios VMM. Palacios is
an OS-independent, open source, BSD-licensed, publicly available
embeddable VMM designed as part of the V3VEE project (http:
//v3vee.org). The V3VEE project is a collaborative commu-
nity resource development project involving Northwestern Univer-
sity, the University of New Mexico, Sandia National Labs, and Oak
Ridge National Lab. Detailed information about Palacios can be
found elsewhere [20]. The current release of Palacios is described

in a detailed technical report [18]. Palacios is capable of virtualiz-
ing large scale (4096+ nodes) supercomputers with only minimal
performance overheads [19]. Palacios’s OS-agnostic design allows
it to be embedded into a wide range of different OS architectures. In
our work, we use Palacios 1.3 compiled into a Linux kernel module,
specifically commit b8759fe01196884bea04eb9a1dd09781d0605d47.
Our host Linux distribution is off-the-shelf Fedora 15 with kernel
version 2.6.38. On our testbed hardware, Palacios uses the Intel VT
virtualization extensions [29], with both shadow paging and nested
paging (Intel EPT).

2.3 Benchmarks
We make use of two suites of multithreaded parallel benchmarks,

specifically SPEC OMP [3] and the PARSEC [4] suite. The indi-
vidual benchmarks are built using OpenMP or pthreads, and we
have considered compilation both with the gcc framework and the
Intel compiler. The benchmarks execute in a guest Linux VM that
runs a 2.6.30.4 kernel. Note that our presentation focuses on a sub-
set of the benchmarks, but our evaluations used all of them. Where
important, we will describe the additional benchmarks.

3. MEMORY REFERENCE BEHAVIOR
To better understand the tradeoffs illustrated in Figures 1, we

studied our benchmarks using the architectural monitoring facili-
ties available in the Intel PMU [15]. The PMU allows us to uncover
cache coherence traffic by looking the number of cache hits in mod-
ified cache blocks, and whether invalidations come from the local
socket or a remote socket. This information, combined with such
common metrics as cache miss rates, and VMM-derived metrics
such as accessed or written pages, helped us determine the bench-
marks’ interaction with the memory hierarchy using different map-
pings of virtual cores to physical cores and sockets.

We ran our benchmarks with eight virtual cores. Where there
were different compilation options for a benchmark, we ran each
version. Some of the metrics we considered can be measured per
memory access or per store. We considered both cases. Figure 3
shows the salient results. In the graphs, each point represents a
combination of benchmark, compilation option, and metric option.

The upshot of Figure 3 is that the workload dependence of the
performance benefits of an interleaved mapping compared to a lo-
cal mapping can be partially explained by the benchmarks falling
into three classes. The figure shows how two metrics, the overall
page access rate and the fraction of a vcore’s writes to cache blocks
that overlap with the writes of other vcores, can be used to partition
the three classes.

The classes identify whether there is memory contention, and, if
so, where it occurs. The classification process is as follows. The
page access rate we consider is the rate at which distinct pages are
either read or written. If this rate is high, we refer to the workload
as being in Class 0 (HighCacheMissRate). This is a workload in
which the contention is almost certainly located at the main mem-
ory system—the working set size is large. Main memory access
is essential and there is a cost to accessing it from a non-preferred
memory channel, thus a local mapping is likely to be best. Canneal
is an example of a Class 0 workload.

If a workload is not in Class 0, we consider, over all vcores,
the fraction of writes to pages by the vcore that are also written to
by another vcore. If this fraction is very small, then we refer to
the workload as being in Class 1 (LowCacheCoherencyTraffic). If
not, we put it in Class 2 (Other). Intuitively, a Class 1 workload
will perform better with an interleaved mapping. For a Class 2
workload, the choice is unclear. Apsi is an example of a Class 1
workload, while mgrid is an example of a Class 2 workload.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10000 20000 30000 40000 50000 60000

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o
 (

in
te

rl
e
a
v
e
d
 o

v
e
r

lo
c
a
l)

Average page access rate

threshold for classification (8000)

local better

interleaved better

class 0
class 1
class 2

(a) Separating Class 0 from Classes 1 and 2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o
 (

in
te

rl
e
a
v
e
d
 o

v
e
r

lo
c
a

l)

Shared page write ratio (%)

threshold for classification (1%)

local better

interleaved better

class 1
class 2

(b) Separating Class 1 from Class 2

Figure 3: Classifying workloads by their memory traffic char-
acteristics. Vertical axes indicate the performance ratio be-
tween interleaved and local execution, while the horizontal axis
is the metric used for classification. Each point in a graph rep-
resents the measurement of the combination of a benchmark,
a set of compilation options, and whether the measurement is
per-memory-operation or per-store. Class 0 (HighCacheMiss-
Rate) is distinguished by a high distinct page access rate over
all the vcores. Class 1 (LowCacheCoherencyTraffic) is distin-
guished by having only a small fraction of each vcore’s writes
going to pages written by other vcores. Class 2 (Other) is the
remaining class.

We can now also consider the implications of these classes for
energy and power. Power is on its face quite simple. Idling a pro-
cessor socket always reduces power. However, it is not always the
case that it dramatically reduces performance. For example, a Class
1 workload may perform better with a interleaved mapping, while
Class 2 workload might be agnostic about the mapping. For energy,
the question is whether the power reduction from a local mapping
outweighs any expansion of the run time. This should always be
the case for Class 0 and sometimes the case for Class 1 and 2.

The classification depicted in Figure 4 is not entirely sufficient
to choose between a local and interleaved mapping, and the degree
of speedup in a mapping also varies within a class. In Section 5 we
will use classification as part of a predictor that will estimate the
performance ratio of the two mappings from a range of additional
metrics.

Benchmark Class
0 1 2

ammp (SPEC) X
apsi (SPEC) X
art (SPEC) X

blackscholes (PARSEC) X
bodytrack (gcc-pthread/icc-pthread) (PARSEC) X

bodytrack (gcc-omp/Intel-TBB) (PARSEC) X
canneal (PARSEC) X

equake (SPEC) X
facesim (PARSEC) X
ferret (PARSEC) X

fluidanimate (gcc-pthread/Intel-TBB) (PARSEC) X
fluidanimate (icc-pthread) (PARSEC) X

fma-3d (SPEC) X
freqmine (PARSEC) X

galgel (SPEC) X
raytrace (PARSEC) X

streamcluster (PARSEC) X
swaptions (PARSEC) X
swim (gcc) (SPEC) X
swim (icc) (SPEC) X

mgrid (SPEC) X
wupwise (SPEC) X

Figure 4: Classifications of all of our benchmarks

4. VMM-BASED MEASUREMENT OF MEM-
ORY REFERENCE BEHAVIOR

In a NUMA architecture with SMPs, memory performance de-
termines the performance difference on the mapping of threads.
Data cache locality and cache coherence traffic are the main factors
to affect memory access time. In order to capture the cache behav-
ior of a set of virtual cores it is necessary to monitor the memory
operations of each core to determine whether or not memory shar-
ing is occurring. While newer x86 processors include hardware
mechanisms for collecting this information, many existing CPUs
lack this feature. Therefore we have developed a novel mechanism
for estimating the degree of memory sharing based on page level
access behavior. Our mechanism is able to collect a set of indica-
tive measurements at runtime with negligible overhead.

4.1 Metrics
We took several measures to arrive at our set of metrics. First, we

used architecture-level analysis. Memory accesses capture the vol-
ume of interaction with the memory system, while writes are what
produce invalidation traffic. Hence, we include both per-access and
per-write metrics. Secondly, we considered only metrics that could
be quickly captured in a VMM, which generally means operating
at the page granularity. A weakness here, compared to cache-line
granularity, is potential false sharing. However, most application-
level inter-thread sharing is at the page granularity and this makes
up the vast majority of shared page accesses, especially in parallel
codes. Finally, we considered the correlation of the metrics with
the goal of selecting a minimally correlated set. For every pair of
prospective metrics, we computed their correlation, and, if it was
large, dropped one of the metrics from the set.

We found the following metrics are sufficient for characterizing
the memory reference and sharing behavior to drive the adaptation
mechanism in this work. We do not claim that they are a necessary
set, nor that they are applicable to other adaptation problems.

1. The average page access rate per memory operation, ram. In-
tuitively, this captures the offered memory system load from
all of the virtual cores.

2. The average page write rate per memory operation, rwm. In-
tuitively, this captures how much of that load is due to writes.

3. The shared page access ratio per memory operation, sam.
Intuitively, this captures the fraction of page accesses from
any virtual core that are also accessed form another virtual
core—the degree of read or write sharing.

4. The shared page write ratio per memory operation, swm. In-
tuitively, this captures the fraction of page writes from any
virtual core that are also matched with writes to the same
page from another virtual core—the degree of write sharing.

5. The average page access rate per write operation, raw

6. The average page write rate per write operation, rww.

7. The shared page access ratio per write operation, saw.

8. The shared page write ratio per write operation, sww.

As noted above, these metrics are rates or ratios of rates that are
computed over some interval. Metrics (5)–(8) differ from (1)-(4)
only in the interval (the number of write operations versus the num-
ber of accesses).

4.2 Detection approach
We use three basic mechanisms and features to measure the met-

rics given above. These are

• the x86 PMU to demarcate intervals of memory accesses and
memory writes.

• the x86 shadow or nested page table entries’ accessed and
dirty bits to partition the guest physical address space’s pages
into sets of pages that have been accessed or written in an
interval, and

• periodic synchronization across the cores to get a global view
of the accessed and written sets, and compute jointly ac-
cessed pages across two or more virtual cores.

The x86 PMU (Performance Measurement Unit) is a hardware
mechanism that allows us to trigger exceptions (and hence VM
exits) after a certain number of events have occurred, such as in-
struction retirements or memory references. We use this facility to
produce VM exits after a specified number of memory accesses or
writes have occurred. Thus we use the PMU to create the measure-
ment windows over which the metrics are collected.

The x86 architecture incorporates a detailed model of paging
that includes “accessed” and “dirty” bits on the page table entries
(PTEs). The hardware will ensure that the accessed bit is set on the
first read or write of a given page, and that the dirty bit is set on the
first write. We use these bits to instrument accesses to the memory
pointed to by the shadow page tables, which contain the combined
intent of the guest virtual to guest physical mapping and the guest
physical to host physical mapping. Because the VMM controls
these page tables and the latter mapping, it can easily determine
the guest physical pages that are being accessed. In addition, it
can manipulate the accessed and dirty bits as much as it wants so
long as it projects the expected hardware behavior to the guest, us-
ing ancillary information it keeps. We can alternatively instrument
the nested page tables, in which case no such tracking of ancillary
information is necessary as the guest does not have access to the
nested page tables.

Using these two mechanisms, at the beginning of a measurement
interval for an individual vcore, the VMM clears the accessed and

Aggregator

vcore0

VM exit (PMU interrupt)
vcore1

VM entry PTE scan

vcoren-1

...

timeline

Aggreate
Bitmaps

Enable PTE scan

idle

Disable PTE scan

idle

T T

per store operations

per memory
operations

Change scanning interval

Figure 5: Illustration of probing on a timeline. In a probe,
each virtual core scans its page table independently. The scan-
ning interval is in units of memory operations (both stores and
loads) or or store operation. At the end of the probing interval,
information on accessed or written pages is collected from all
virtual cores and the metrics are computed from it.

dirty bits on all valid shadow or nested page table entries, keeping
ancillary information about the real values of these bits for shadow
page tables.2 It then sets the PMU to produce an exception after
the desired interval of memory accesses or writes. Execution then
proceeds as normal, with the saved bits used in paging-related ex-
its. Eventually, the PMU raises the exception, inducing an exit to
the VMM. The VMM then walks the page tables and records in-
formation about pages with the accessed bit set, write bit set, or no
bit set. These sets are stored as bit vector indices over the guest
physical address space.

In addition to the computation done during exits on the virtual
cores, a separate thread, named the aggregator, runs on a distinct
hardware thread. After sufficient time has passed, the aggregator
forces a collective operation by walking through the sets of ac-
cessed or written pages that were collected by the individual cores,
computing the metrics.

Figure 5 illustrates the timeline of this processing. There are two
steps of aggregation in the timeline. Notice that it is a rare case that
memory access patterns change rapidly between two aggregation
periods. The two step process shown in the figure is the core of the
Probing operation in the adaptation algorithm shown in Section 5.3.

4.3 Algorithm
Let accessed_per_memi, written_per_memi (for ram, rwm, sam

and swm), accessed_per_storei, written_per_storei (for raw, rww, saw
and sww), accessed i and writteni be the bit vectors representing
the sets of pages accessed and written on virtual core i. The bit vec-
tors contain as many bits as there are pages in the physical address
space of the guest that is backed with physical memory. Let n be
the number of vcores, m be the number of pages, and T be the real
time interval between aggregations.

Our algorithm implements the core of the Probing routine used
in Section 5.3. In the following, the elements of a single probe op-
eration are condensed into five events. The Probing routine initiates
the process by invoking Init(aggregator):

Init(aggregator): [Invoked at startup on aggregator]
SetTimer(T , SetAggregate)

2Note that each vcore has a distinct shadow or nested page table,
even if it is running a thread that shares a guest page table with
some other thread.

Phase = 0
for all vcores i do

EnableScani = 1
Force vcore i to run InitVcore(i)

end for

InitVcore(i): [Invoked at on vcore i]
accessed i = {k : 0 . . .m− 1}
writteni = {k : 0 . . .m− 1}
Set PMU exception for number of memory operations to trigger
Scan(i).

ReinitVcore(i): [Invoked at on vcore i]
accessed_per_memi = accessed i

written_per_memi = writteni

accessed i = {k : 0 . . .m− 1}
writteni = {k : 0 . . .m− 1}
Set PMU exception for number of store operations to trigger
Scan(i).

Scan(i): [invoked when PMU exception occurs]
if EnableScani = 1 then

for all present shadow (or nested) PTEs on vcore i do
k = DeriveGuestPhysicalPageNumberFrom(PTE)
curacci = ∅
curwrit i = ∅
if PTE.accessed then

curacci = curacci ∪ {k}
end if
if PTE.dirty then

curwrit i = curwrit i ∪ {k}
end if
PTE.accessed=0
PTE.dirty=0

end for
accessed i = accessed i ∩ curacci

writteni = writteni ∩ curwrit i
end if
The PMU is set to raise an exception for number of memory op-

erations (or write operations) to trigger Scan(i). Scan(i) runs multi-
ple times (at least twice) during a probe, depending on the memory
access rate. The purpose of the somewhat confusing intersection
operations over these runs is to filter out pages that are infrequently
written or read. At the end of a probe, we have collected the set
of pages that are consistently written or accessed during the whole
probe interval.

SetAggregate(aggregator): [invoked when T expires on aggrega-
tor]

if Phase = 0 then
for all vcores i do

EnableScani = 0
Force vcore i to run ReInitVcore(i)
EnableScani = 1

end for
Phase = 1
SetTimer(T , SetAggregate);

else
Aggregate(aggregator)

end if

Aggregate(aggregator)
for all vcores i do

EnableScani = 0
accessed_per_storei = accessed i

written_per_storei = writteni

end for
ram = 1

n

∑n−1
i=0 |accessed_per_memi|

ras = 1
n

∑n−1
i=0 |accessed_per_storei|

rwm = 1
n

∑n−1
i=0 |written_per_memi|

rws = 1
n

∑n−1
i=0 |written_per_storei|

sam = 1
ram

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |accessed_per_memj ∩

accessed_per_memk|
sas = 1

ras

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |accessed_per_storej

∩ accessed_per_storek|
swm = 1

rwm

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |written_per_memj ∩

written_per_memk|
sws = 1

rws

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |written_per_storej

∩ written_per_storek|

5. ADAPTIVE VIRTUAL CORE MAPPING
We now describe our adaptive system.

5.1 Migration mechanism
Palacios supports a multicore VM that appears to the guest to

be a physical machine which is compatible with the Intel Multi-
processor Specification. The guest sees an MP table describing the
processors, APICs, IOAPICs, buses, and interrupt routing in the
machine, and virtual versions of standard APIC/IOAPIC interrupt
controller hardware.

Palacios backs each virtual core with a host OS kernel thread that
is bound to a specific physical core at VM startup time, and that
can be remapped at any point. The mapping of virtual core threads
to physical cores does not change except in response to explicit
requests, which can be invoked from a user-space tool on the host.
The call specifies a new mapping of all or some of the virtual cores.
To handle the request, Palacios first uses physical IPIs to force all
the virtual cores to exit to the VMM and synchronize. It follows this
by rebinding their host kernel threads, and handing the relevant VT
or SVM state to the new physical core. The threads synchronize
again, and then reenter the guest.

The physical core-specific costs of migration consist of the very
low fixed costs of changing a tiny number of VT or SVM-specific
control registers, and the costs of refilling cached state (cache, TLB,
control structure caches, page hierarchy caches, etc) on the destina-
tion physical core. Additionally, there is the cost of synchronization
among the physical cores. As we will see in Section 6, these costs
are not critical for our adaptive system.

5.2 Approach
We now describe our approach to adaptively choosing between

the interleaved and local mapping with the goal of increasing per-
formance, saving energy or minimizing power. These goals are set
by the user as a system objective, which the system uses to make a
mapping decision.

Our approach is based on modeling, in which we run diverse
workloads on the machine, while collecting a range of metrics.
Classification and linear regression is then used to create the mod-
els. As the machine runs, we continue to collect the metrics, and
use their values, plus the models, to make predictions of the rela-
tive utility of the two mappings, deciding between them in pursuit
of the currently chosen goal.

Performance model. Fitting the performance model is a two
step process that first creates a classifier for the workload’s mem-
ory access behavior and then uses linear regressions to fit a predic-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.5 0.6 0.7 0.8 0.9 1 1.1

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o
 (

in
te

rl
e
a
v
e
d
 o

v
e
r

lo
c
a
l)

Cycle per instruction

class 0
class 1
class 2

Figure 6: Linear regression over CPI is weakly predictive of
the performance gain likely from moving to an interleaved
model. Classification followed by linear regression provides
much more predictability.

Num. of core Num. of core Power (watts)w. 1+ threads (p) w. 2 threads (l)
1 0 112.04
2 0 123.23
3 0 131.32
4 0 138.37
2 0 120.87
4 0 142.52
6 0 156.49
8 0 173.42
1 1 114.07
2 2 126.24
3 3 135.68
4 4 145.35
4 1 141.35
4 2 142.49
4 3 143.83

Figure 7: System power consumption with varying numbers of
threads and affinity. Each thread exhibits full core utilization,
so the core remains in the P-state. A linear regression models
this data as 104.63 + 8.69· p+ 1.62· l.

tive model to each class. The predictive model returns the ratio of
the expected runtime with the interleaved mapping to the expected
runtime with the local mapping.

We classify workloads along the lines of Section 3. We create a
machine-specific classifier in which the three classes are partitioned
by a set of thresholds: thresholdclass0 partitions the set of work-
loads based on the average between ram and raw. thresholdclass1

partitions part of the remaining workloads based on the average of
swm and sww.

The goal of thresholdclass0 is to divide the workloads based on
the current working set size. Because a large working set size has
negative implications for the last level CPU cache, we derive the
threshold value based on the cache size, namely

thresholdclass0 =
LastLevelCacheSize

((PG·PGUtil)· (NTh − SR· (NTh − 1)))

where, PG is the page size, PGUtil is the average number of the
memory operations per page, NTh is the number of threads, and
SR is the sharing ratio of accessed pages (that is Saw or Sam).
In our test system thresholdclass0 is calculated to be 8000. Based

on a high level analysis of the remaining workloads the value for
thresholdclass1 is chosen to be 1%.

After the classification thresholds have been computed, the now
classified training data is used in per-class linear regressions, cap-
turing the relationship between the metrics and the ratio between
interleaved and local performance. This results in a coefficient vec-
tor for each class. In this paper we use the SPEC and PARSEC
benchmarks as the training set of workloads.

In some cases the resulting model from the linear regression is
unable to accurately predict relative performance. These cases are
typically indicated by having a predicted ratio near 1.0. That is,
some of the situations in which the predictor indicates no differ-
ence need to be further considered. Here, we explicitly evaluate the
execution of the workload under both mappings, and choose the
best one. We heuristically use a CPI (Cycles Per Instruction) mea-
surement. It should be noted that CPI is used sparingly due to its
well known shortcomings in actually measuring performance [11,
2].

Power model. Linear regression is also used to create a power
model. We base this model on a study of the measured power dur-
ing the execution of benchmarks on our test hardware. As can be
seen in Figure 7, the power for different core utilization scenarios
behaves fairly linearly. This approach is well established and used
in previous work [9, 26, 31, 16], where it has been shown to be
accurate for CPU-dominated workloads.

Based on the measurements of the machine such as in the figure,
we perform a linear regression to form a power model whose inputs
include the number of active cores and the number of threads per
core. For our specific testbed machine, the coefficients of the model
are included in the figure.

To illustrate how the these coefficients are used we include two
basic examples:

• one active core with one thread consumes 8.69 Watts (P1)

• one active core with two threads consumes 10.31 Watts (P2)

Note that the instantaneous power can vary widely over time.
This is due to the varying behavior of a CPU core’s power state as
driven by scheduling behaviors. In order to determine the average
power usage it is necessary to measure the amount of time a core
spends in both active and idle states, as well as the portion of time
spent in these states.

Fortunately there is one easily accessible metric provided by the
host OS that we can leverage: the CPU utilization. In our system,
a core’s utilization is matched with the utilization of each thread
slot in a core, which we denote vcoreUtil . Using these utilization
measurements it becomes possible to determine the average amount
of time a core spends in each of the idle or active power states.

Consider two active vcores, i, and j, with utilization vcoreUtil i
and vcoreUtil j . When running overlapped, we would expect the
power to be P2, while when this is not the case, we would expect
the power to be P1. We model the power by using the utilizations
to estimate the amount of time that the vcores spend in overlapped
execution using the following equations:

power local =P1· (max(vcoreUtil i, vcoreUtil j)

−min(vcoreUtil i, vcoreUtil j))

+ P2·min(vcoreUtil i, vcoreUtil j)

(1)

power inter =P1· vcoreUtil i (2)

The ratio power interleaved/power local is the final result of the model.

Probing

Performance

model

Objective

Energy
model

Power
model

If(first vote),
check confidence

else, compare votes

finalVoting

Long sleep

start

Overhead
less than

Threshold

Voting

Need for
probing

Change
mapping

Need for
re-mapping

Short sleep

High confidence
or 2 votes are same No

No

Yes

Yes

No

Yes

Change
mapping

Otherwise

Figure 8: A mapping is chosen based on votes by model-based
predictions for the objective. If the level of confidence in the
predictions is low, the system switches mappings to produce
more votes, much like a Diebold voting machine. Such prob-
ing is also limited in order to control overhead.

Energy model. Our energy model is derived from both the power
and performance models. Intuitively, the model estimates the total
energy consumption of a workload requires by multiplying the pre-
dicted execution time of the workload with the predicted average
power usage during that time window. Because the model only
predicts the ratio of the interleaved execution time to the local exe-
cution time, the individual execution times need not be computed.

5.3 Algorithm
We now describe the algorithm in pseudocode. The implemen-

tation of the online prediction and adaptation algorithm contains 5
major functions in the main loop. Updates on the measurements
(Probing) and decisions (Voting) are made periodically. If the cur-
rent vcore/pcore mapping (Mappingcur) needs to be changed, ReMap-
ping is called. If a remapping happens, the system pauses until
the system overhead falls below the threshold thresholdovrhd (this
is the Interim state). Note that metrics is a vector containing 8
metrics as defined in Section 4. Additionally, the per-vcore cpi
value is tracked, as well as its utilization, vcoreUtil i. The over-
head for a virtual core is computed from the summation of page

table scanning time (ovrhdprobe) and vcore/pcore remapping time
(ovrhd remap).

Main Loop periodically finds the correct mapping. The procedure
is depicted in Figure 8. Intuitively, it periodically probes the met-
rics described in Section 4.1, and then executes a voting procedure
based on them. The voting procedure indicates the preferable map-
ping and the performance that is likely to result, based on the cur-
rent objective. Additionally, it reports the confidence in its predic-
tion. If the confidence is high, we immediately commit to the new
mapping, otherwise, we switch to it temporarily to probe its behav-
ior and allow the voting procedure to make a new prediction. If the
two predictions agree, we commit to the mapping, while if they dis-
agree, we invoke a tie-breaker. The code also tracks the overheads
of its various components, and these overhead measurements are
used to control the rate of execution of the loop. The user deter-
mines the maximum overhead that is tolerated. The Main Loop has
the following pseudocode:

ovrhdprobe ← 0
ovrhdremap ← 0
while 1 do

ovrhdprobe ← Probing(metrics)
(confidence, vote1 , cpi1)← Voting(metrics)
if confidence is high then

if vote1 6= Mappingcur then
ovrhdremap ← ReMapping()

end if
else

ovrhdremap ← ReMapping()
sleep as long as a half of probing time
ovrhdprobe ← Probing(metrics) + ovrhdprobe
(confidence, vote2 , cpi2)← Voting(metrics)
if vote1 = vote2 then

if vote1 6= Mappingcur then
ovrhdremap ← ReMapping() + ovrhdremap

end if
else

vote3 ← finalVoting(cpi1 , cpi2)
if vote3 6= Mappingcur then

ovrhdremap ← ReMapping() + ovrhdremap

end if
end if

end if
Interim(ovrhdprobe , ovrhdremap)

end while

Voting(metrics) is called to make an initial prediction of the best
mapping, and again if the initial vote had low confidence and we
have temporarily switched to the predicted mapping to evaluate it.
This voting procedure heavily depends on the predictions made by
the models. Since our strategy has two mappings, each model re-
ports the ratio of the two estimated values in two mappings. The
power model, for example, estimates the ratio of the power of the
interleaved mapping over that of the local mapping. Thus, the more
the ratio diverges from 1, the more confident it is.

if objective is performance then
ratio ← PerformanceModel(metrics)

else if objective is energy then
ratio ← EnergyModel(metrics)

else if objective is power then
ratio ← PowerModel(metrics)

end if
if ratio > 1 then

vote ← local mapping

else
vote ← interleaved mapping

end if
if ratio is within unconfident intervals then

confidence ← low
else

confidence ← high
end if
get cpi from metrics
return (confidence , vote , cpi)

PerformanceModel(metrics) classifies the workload and then se-
lects the correct performance model to compute the performance
ratio of the interleaved to the local mapping.

if (ram + raw) > thresholdclass0 or (swm + sww) < thresholdclass1

then
if current mapping is local then

ratio ← C01l0 + [C01l1 , ..., C01l8] · [ram , rwm , ... sas ,
sws]

else
ratio ← C01i0 + [C01i1 , ..., C01i8] · [ram , rwm , ... sas ,
sws]

end if
else

if current mapping is local then
ratio ← C2l0 + [C2l1 , ..., C2l8] · [ram , rwm , ... sas , sws]

else
ratio ← C2i0 + [C2i1 , ..., C2i8] · [ram , rwm , ... sas , sws]

end if
end if
return ratio

In the above, the constant vectors [C01l0 , ..., C01l8], [C01i0 ,
..., C01i8] , [C2l0 , ..., C2l8] , and [C2i0 , ..., C2i8] comprise
the linear models (the coefficient vectors) described in Section 5.2.
The predictions are formed by their dot product with the currently
probed metrics. Notice that a different linear model is used depend-
ing on the class of the workload.

PowerModel(metrics) estimates CPU power in the two mappings,
and returns their ratio.

Plocal ←
∑max(core)

i=0

∑max(vcore)−1
j=0

∑max(vcore)
k=j+1 Lj→i · Lk→i

· (P1 · (max ((vcoreUtil)j , (vcoreUtil)k) - min((vcoreUtil)j ,
(vcoreUtil)k)) + P2 ·min((vcoreUtil)j , (vcoreUtil)k))
where, Li→j = 1 if vcorei is mapped to corej , otherwise 0 as
configured in local mapping
Pinterleaved←

∑max(core)
i=0

∑max(vcore)
j=0 Ij→i ·P1 · (vcoreUtil)j

where, Ii→j = 1 if vcorei is mapped to corej , otherwise 0 in
interleaved mapping
return Pinterleaved

Plocal

This pseudocode incorporates Equations 1 and 2. The description
of these equations is in Section 4.2.

EnergyModel(metrics) is straightforward:
ratiopower ← PowerModel(metrics)
ratioperf ← PerformanceModel(metrics)
return ratiopower · ratioperf

finalVoting(cpi1 , cpi2) comprises the tie-breaker in case the two
initial votes contradict each other.

if cpi1 < cpi2 then
vote ← previous mapping which brings cpi1

else
vote ← current mapping which brings cpi2

end if
return vote

Probing(metrics) collects the performance metrics described in
Section 4.1:

tscstart ← readtsc
Call Init(aggregator) from Section 4.3 to initiate a two-step round
of probing to collect the 8 metrics described in 4.1
then, update metrics with values in 8 metrics, cpi , vcoreUtil
tscend ← readtsc
return (tscend - tscstart)

Although we do not show it in here, it is important to note that
a moving average or exponential average of the metrics could be
taken to reduce burstiness of the measurements.

ReMapping() implements a mapping change and tracks the over-
head of doing so:

tscstart ← readtsc
change vcore/core mapping
update Mappingcur
tscend ← readtsc
return weight · (tscend - tscstart)

Interim(ovrhdprobe ,ovrhdremap) controls the overhead of the sys-
tem by comparing its measured overhead with a threshold. If the
threshold is exceeded, the system sleeps for a time:

if ovrhdprobe = 0 and ovrhdremap = 0 then
tscprev ← readtsc
return

else
tsccur ← readtsc
tsc ← tsccur - tscprev
ovrhd ← ovrhdprobe + ovrhdremap

while ovrhd / tsc > thresholdovrhd do
sleep for windowinterim

tsccur ← readtsc
tsc ← tsccur - tscprev

end while
tscprev ← tsccur
ovrhdprobe ← 0
ovrhdremap ← 0
return

end if
In the above, tsc refers to the cycle counter.

5.4 System
Figure 9 shows the three key components of the system: Mapper,

Aggregator, and vcore/pcore mapping. Vcore/pcore mapping pro-
vides the core mechanism, and is a normal function of the Palacios
VMM. The Aggregator and mapping components are controlled
and called by the Mapper component, which runs at user level on
the Linux host OS, and communicates with Palacios through an
ioctl interface. Aggregator is embedded in the Palacios VMM it-
self and is bound to a dedicated hardware thread. Aggregator in-
tegrates the views from each of the cores which execute probes as
side-effects of normal VM exit handling, or triggered by the PMU.

6. PERFORMANCE EVALUATION
We now consider the performance of the adaptive system and its

overhead. We focus on the nine benchmarks of Figure 1. Each
of them runs 8 threads in a guest with 8 virtual cores. The guest
maps the threads one-to-one to hardware threads. Note that the

core0 core1 Corek-1

vcore1 Vcoren-1vcore0

...

...

thread0 thread1 threadn-1

PMU overflow
interrupts

Guest-level
...

vcore/core mapping

Mapper
(User-level)

tsc

Palacios

Guest OS / workloads

Kernel-level

Machine

thread/vcore mapping

corek

readtsc

pmu pmu pmu

Socket0 Socketj...

Aggregator

Figure 9: High-level view of system layer. Mapper, a user-level
process that implements policy, interacts with the VMM-based
Aggregator, which implements monitoring, and the vcore/core
mapping facility, which provides the mechanism of adaptation.

aggregator is mapped and runs on one of 8 hardware threads that
are not assigned to any virtual core.

6.1 Model predictions
As described in Section 5, the performance of the models that

predict performance gains and power gains is of critical importance
both directly for the performance and power objectives, and indi-
rectly for the energy objective, because energy is performance×time.
The predictive power of the models is based on their performance
with test sets. For the performance models, the R2 ranges from
0.76 to 0.93 when measurements are made with the local config-
uration, and 0.70 to 0.91 when the measurements are made in the
interleaved configuration. The power model achieves an R2 of al-
most 1 in both cases.

6.2 System performance
Figure 10 shows the performance of the adaptive system, and

can be compared directly with the opportunities shown in Figure 1.
The system is able to choose the best of the interleaved and local
mappings for each workload and each optimization goal.

Figure 11 shows the number of times that the virtual cores were
remapped during the execution of each of the benchmarks and each
of the optimization goals. In some cases, no remappings are done
because the original mapping was the correct one. The original
mapping is selected to local mapping. When remapping occurs,
notice that in most cases it is infrequent and rare. The raytrace,
swim, and mgrid benchmarks run for >10 minutes, while the others
run for 3-5 minutes. In these intervals, the common case is 0–
2 remappings. Raytrace with an energy goal exhibits the largest
number of remappings, 8.

6.3 System overhead
The overhead of the system is primarily concentrated in two ele-

ments, the cost of measurement and the cost of remapping the vir-
tual cores. The measurement costs are dominated by the page table
cans done by each individual core. Figure 12 shows the number of
clock cycles used for the scanning process and and the remapping
process for each benchmark. The highest scan cost we observed
was 4.6 ms, while the highest remapping cost was 5.3 ms. To put
these numbers in context, recall that these benchmarks ran for 3
to 10 minutes, with a maximum of 8 remappings. Recall that scan-
ning is activated only then certain conditions are met, and then runs
every 10 seconds. Thus, in the worst case for our benchmarks, 4.6

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

canneal(PAR
SEC

)

stream
cluster(PAR

SEC
)

equake(SPEC
)

sw
im

(SPEC
)

raytrace(SPEC
)

m
grid(SPEC

)

fluidanim
ate(PAR

SEC
)

art(SPEC
)

apsi(SPEC
)

T
im

e
 s

ta
m

p
 c

o
u

n
t

(r
e
fe

re
n
c
e
 c

lo
c
k
)

local
interleaved

Adaptive

(a) Maximizing Performance

 0

 5

 10

 15

 20

 25

 30

 35

canneal(PAR
SEC

)

stream
cluster(PAR

SEC
)

equake(SPEC
)

sw
im

(SPEC
)

raytrace(SPEC
)

m
grid(SPEC

)

fluidanim
ate(PAR

SEC
)

art(SPEC
)

apsi(SPEC
)

E
n
e
rg

y
 (

W
h
)

local
interleaved

Adaptive

(b) Minimizing Energy

 130

 140

 150

 160

 170

 180

 190

 200

 210

canneal(PAR
SEC

)

stream
cluster(PAR

SEC
)

equake(SPEC
)

sw
im

(SPEC
)

raytrace(SPEC
)

m
grid(SPEC

)

fluidanim
ate(PAR

SEC
)

art(SPEC
)

apsi(SPEC
)

P
o
w

e
r

(w
a
tt
)

local
interleaved

Adaptive

(c) Minimizing Power

Figure 10: Performance of the adaptive system for each of the
three goals. The adaptive system can dynamically and auto-
matically select a mapping that optimizes for the goal.

ms is consumed every 10 s in scanning (< 0.05% overhead). This
overhead is clearly negligible.

7. RELATED WORK
The notion of mapping threads to cores has been studied exten-

sively in the literature [7, 8, 6, 21], with a range of techniques
proposed for online adaptation to enhance performance and save
power. However, such work does not address the problem in the
context of virtual machines and a NUMA architecture. The mon-
itoring and detection schemes differ in the VMM context and a

 0

 2

 4

 6

 8

 10

canneal(PAR
SEC

)

stream
cluster(PAR

SEC
)

equake(SPEC
)

sw
im

(SPEC
)

raytrace(SPEC
)

m
grid(SPEC

)

fluidanim
ate(PAR

SEC
)

art(SPEC
)

apsi(SPEC
)

N
u
m

.
o
f
re

m
a
p
p
in

g
 i
n
 o

n
e
 e

x
e
.

Performance objective
Energy objective
Power objective

Figure 11: Number of vcore remappings during the executions
of Figure 10. 3

Benchmark scanning (ms) remapping (ms)
canneal(PARSEC) 1.51 5.24

streamcluster(PARSEC) 0.78 5.27
equake(SPEC) 0.82 5.25
swim(SPEC) 2.34 5.08

raytrace(PARSEC) 0.39 5.24
mgrid(SPEC) 0.61 5.27

fluidanimate(PARSEC) 0.58 5.25
art(SPEC) 1.30 5.30

apsi(SPEC) 4.61 5.27

Figure 12: Page table scanning time (average per each scan)
and virtual core remapping time (moving 4 vcore threads) in
milliseconds.

NUMA architecture requires that the adaptation mechanism incor-
porate memory locality.

Siddha et al [27] propose power-aware scheduling for Linux threads.
Their scheduling policy is similar to ours in that it either statically
packs threads onto a socket or core or distributes them over as many
sockets or cores as possible. In contrast, our policy is dynamically
adaptive and it operates on virtual cores, not threads.

Several studies investigated ways of reducing resource contention,
with one of the promising approaches to have emerged recently be-
ing contention-aware scheduling [17, 24, 32]. A contention-aware
scheduler identifies threads that compete for shared resources of
a memory domain and places them into different domains. Most
closely related to our work is that of Blagodurov et al [5], who
present a contention-aware scheduler for NUMA systems that is
designed to mitigate contention between applications. It provides
sharing support by attempting to group threads of the same appli-
cation and their memory on the same NUMA node as long as co-
scheduling multiple threads of the same application does obviate
a contention-aware schedule. If it needs to migrate threads to dif-
ferent NUMA domains, the scheduler identifies hot pages using
instruction-based sampling and moves them to the new domains.
Tam et al [28] discuss grouping threads of the same application
that are likely to share data onto neighboring cores to minimize the
costs of data sharing between them. They use the hardware PMU
to track the sharing pattern between threads.

AMPS [22] is an OS scheduler for asymmetric multicore systems
that supports NUMA architectures. It introduces a NUMA-aware

3Note that number of remappings for power objective is always
zero.

migration policy that can allow or deny thread migration requested
by the scheduler. The resident set size of a thread is defined and
used in deciding whether or not the proposed OS schedule should
be allowed to migrate thread to a different domain.

The VMware ESX hypervisor [1] supports NUMA load balanc-
ing and automatic page migration for its virtual machine (VMs).
ESX Server assigns each virtual machine a home node at launch
time and changes its home node periodically for load balancing.
To eliminate possible remote access penalties to the old node, it mi-
grates the hot memory pages from the original node to its new home
node. Goglin et al [12] develop a memory system-aware implemen-
tation of the move_pages system call in Linux, which allows the
dynamic migration of large memory areas to be significantly faster.
Ibrahim et al [14] study different configurations to optimize perfor-
mance in virtualized environments running on multi-socket multi-
core systems. It shows that optimal performance can be achieved
by partitioning physical cores across multiple virtual machines and
span each virtual machine across different NUMA domains.

Power and/or thermal management on multicore processor is widely
discussed as limiting scalability [10, 13]. Dynamic thread schedul-
ing on homogeneous [25] and heterogeneous [30] multicores looks
promising for addressing this issue. Our work is in this vein.

8. CONCLUSIONS AND FUTURE WORK
We have demonstrated the opportunity for optimizing for per-

formance, power, and energy presented by being able to simply
choose between local and interleaved mappings of virtual cores to
physical cores. The core of the paper showed how this opportunity
can be leveraged in an automatic adaptive system that chooses be-
tween these two mappings based on predictions of the interactions
between the workload’s memory reference behavior and the map-
pings. We implemented and evaluated a system to do this. These
two mappings represent only a tiny portion of the space of possible
virtual core to physical core mappings, and we have not yet consid-
ered the mappings of guest memory to physical memory. We are
currently working on formalizing a general adaptation problem that
captures this space, and developing techniques for solving it.

9. REFERENCES
[1] VMware ESX Server 2 NUMA Support, White Paper. web

page. http://www.vmware.com/.
[2] ALAMELDEEN, A., AND WOOD, D. Ipc considered harmful

for multiprocessor workloads. IEEE Micro 26, 4
(July–August 2006), 8–17.

[3] ASLOT, V., DOMEIKA, M., EIGENMANN, R., GAERTNER,
G., JONES, W. B., AND PARADY, B. Specomp: A new
benchmark suite for measuring parallel computer
performance. In Proceedings of the Workshop on OpenMP
Applications and Tools (2001).

[4] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The
parsec benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques (October 2008).

[5] BLAGODUROV, S., ZHURAVLEV, S., DASHTI, M., AND
FEDOROVA, A. A case for numa-aware contention
management on multicore systems. In Proceedings of the
2011 USENIX Annual Technical Conference (USENIX)
(2011).

[6] CURTIS-MAURY, M., BLAGOJEVIC, F., ANTONOPOULOS,
C. D., AND NIKOLOPOULOS, D. S. Prediction-based
power-performance adaptation of multithreaded scientific

codes. IEEE Transactions on Parallel and Distributed
Systems 19, 10 (October 2008), 1396–1410.

[7] CURTIS-MAURY, M., DZIERWA, J., ANTONOPOULOS,
C. D., AND NIKOLOPOULOS, D. S. Online
power-performance adaptation of multithreaded programs
using hardware event-based prediction. In Proceedings of the
20th Annual International Conference on Supercomputing
(ICS) (2006).

[8] CURTIS-MAURY, M., SINGH, K., MCKEE, S. A.,
BLAGOJEVIC, F., NIKOLOPOULOS, D. S., DE SUPINSKI,
B. R., AND SCHULZ, M. Identifying energy-efficient
concurrency levels using machine learning. In Proceedings
of the 2007 IEEE International Conference on Cluster
Computing (CLUSTER) (2007).

[9] DONG, M., AND ZHONG, L. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services (MobiSys)
(2011).

[10] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R.,
SANKARALINGAM, K., AND BURGER, D. Dark silicon and
the end of multicore scaling. In Proceedings of the 38th
Annual International Symposium on Computer Architecture
(ISCA) (2011).

[11] EYERMAN, S., AND EECKHOUT, L. System-level
performance metrics for multiprogram workloads. IEEE
Micro 28 (May 2008), 42–53.

[12] GOGLIN, B., AND FURMENTO, N. Enabling
high-performance memory migration for multithreaded
applications on linux. In Proceedings of the 2009 IEEE
Internationalon Parallel and Distributed Processing
Symposium (IPDPS) (2009).

[13] HARDAVELLAS, N., FERDMAN, M., FALSAFI, B., AND
AILAMAKI, A. Toward dark silicon in servers. IEEE Micro
31, 4 (July–August 2011), 6–15.

[14] IBRAHIM, K. Z., HOFMEYR, S., AND IANCU, C.
Characterizing the performance of parallel applications on
multi-socket virtual machines. In Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID) (2011).

[15] INTEL CORPORATION. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3B: System
Programming Guide Part 2, December 2011.

[16] KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND
BHATTACHARYA, A. A. Virtual machine power metering
and provisioning. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SOCC) (2010).

[17] KNAUERHASE, R., BRETT, P., HOHLT, B., LI, T., AND
HAHN, S. Using os observations to improve performance in
multicore systems. IEEE Micro 28 (May 2008), 54–66.

[18] LANGE, J., DINDA, P., HALE, K., AND XIA, L. An
introduction to the palacios virtual machine
monitor—release 1.3. Tech. Rep. NWU-EECS-11-10,
Department of Electrical Engineering and Computer
Science, Northwestern University, October 2011.

[19] LANGE, J., PEDRETTI, K., DINDA, P., BAE, C., BRIDGES,
P., SOLTERO, P., AND MERRITT, A. Minimal-overhead
virtualization of a large scale supercomputer. In Proceedings
of the 2011 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE)
(March 2011).

[20] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI,
Z., XIA, L., BRIDGES, P., GOCKE, A., JACONETTE, S.,
LEVENHAGEN, M., AND BRIGHTWELL, R. Palacios and
kitten: New high performance operating systems for scalable
virtualized and native supercomputing. In Proceedings of the
24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2010) (April 2010).

[21] LI, D., NIKOLOPOULOS, D., CAMERON, K.,
DE SUPINSKI, B., AND SCHULZ, M. Power-aware mpi task
aggregation prediction for high-end computing systems. In
Proceedings of the 2010 IEEE Parallel and Distributed
Processing Symposium (IPDPS) (April 2010).

[22] LI, T., BAUMBERGER, D., KOUFATY, D. A., AND HAHN,
S. Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In
Proceedings of the 2007 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage, and Analysis (Supercomputing / SC) (2007).

[23] LIBERMAN, J., AND KOCHHAR, G. Optimal BIOS Settings
for High Performance Compting with PowerEdge 11G
Servers, updated 23 august 2010 ed. Dell Product Group,
July 2009.

[24] MERKEL, A., STOESS, J., AND BELLOSA, F.
Resource-conscious scheduling for energy efficiency on
multicore processors. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys) (2010).

[25] RANGAN, K. K., WEI, G.-Y., AND BROOKS, D. Thread
motion: fine-grained power management for multi-core
systems. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA) (2009).

[26] RIVOIRE, S., RANGANATHAN, P., AND KOZYRAKIS, C. A
comparison of high-level full-system power models. In
Proceedings of the 2008 Workshop on Hot Topics in
Power-aware Computing and Systems (HotPower) (2008).

[27] SIDDHA, S., PALLIPADI, V., AND MALLICK, A. Process
scheduling challenges in the era of multi-core processors.
Intel Technology Journal 11, 4 (November 2007).

[28] TAM, D., AZIMI, R., AND STUMM, M. Thread clustering:
sharing-aware scheduling on smp-cmp-smt multiprocessors.
In Proceedings of the 2nd ACM European Conference on
Computer Systems (EuroSys) (2007).

[29] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A.,
MARTIN, F., ANDERSON, A., BENNETTT, S., KAGI, A.,
LEUNG, F., AND SMITH, L. Intel virtualization technology.
IEEE Computer (May 2005), 48–56.

[30] WINTER, J. A., ALBONESI, D. H., AND SHOEMAKER,
C. A. Scalable thread scheduling and global power
management for heterogeneous many-core architectures. In
Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2010).

[31] ZHANG, L., TIWANA, B., QIAN, Z., WANG, Z., DICK,
R. P., MAO, Z. M., AND YANG, L. Accurate online power
estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the 8th
IEEE/ACM/IFIP International Conference on
Hardware/Software Co-design and System Synthesis
(CODES/ISSS) (2010).

[32] ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A.
Addressing shared resource contention in multicore
processors via scheduling. In Proceedings of the 15th
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2010).

