
ConCORD: Easily Exploiting Memory Content Redundancy
Through the Content-aware Service Command

Lei Xia
VMware

leix@vmware.com

Kyle Hale
Department of Electrical

Engineering and Computer
Science

Northwestern University
kh@northwestern.edu

Peter Dinda
Department of Electrical

Engineering and Computer
Science

Northwestern University
pdinda@northwestern.edu

ABSTRACT

We argue that memory content-tracking across the nodes of
a parallel machine should be factored into a distinct platform
service on top of which application services can be built.
ConCORD is a proof-of-concept system that we have devel-
oped and evaluated to test this claim. Our core insight is
that many application services can be described as a query
over memory content. This insight leads to a core concept
in ConCORD, the content-aware service command architec-
ture, in which an application service is implemented as a
parametrization of a single general query that ConCORD
knows how to execute well. ConCORD dynamically adapts
the execution of the query to the amount of redundancy
available and other factors. We show that a complex appli-
cation service (collective checkpointing) can be implemented
in only hundreds of lines of code within ConCORD, while
performing well.

1. INTRODUCTION
Memory content redundancy, particularly across a large-

scale parallel system, represents an opportunity for new ser-
vices. For example, copy-on-write mechanisms can reduce
memory pressure by keeping only a single copy of each dis-
tinct page in memory. Fault tolerance mechanisms that seek
to maintain a given level of content redundancy can lever-
age existing redundancy to reduce their memory pressure.
Migration of processes or virtual machines (VMs) can lever-

This project is made possible by support from the United
States National Science Foundation (NSF) via grant CNS-
0709168, the Department of Energy (DOE) via grant DE-
SC0005343, and Sandia National Laboratories through the
Hobbes Project, which is funded by the 2013 Exascale Op-
erating and Runtime Systems Program under the Office of
Advanced Scientific Computing Research in the DOE Office
of Science. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Se-
curity Administration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600214.

age identical content at source and destination machines—a
single process or VM could be reconstructed using multiple
sources. Deduplication of host, VM, process, or application-
level snapshots or checkpoints can reduce their storage costs.
As far as we are aware, all existing such services integrate
the tracking of memory content directly into the service.

We argue that memory content-tracking should be fac-
tored out into a separate platform service that higher-level
application services, such as the above, can then be built
upon. There are several reasons for this refactoring:

• It will result in having a single implementation of memory
content-tracking to maintain and enhance.

• There will be no redundant memory content tracking over-
head when multiple application services exist.

• The platform service can simplify the creation of appli-
cation services because their developers will not need to
reinvent the wheel.

• The application services benefit as the platform memory
content-tracking service is enhanced, for example as new
hardware features are leveraged.

To evaluate this concept, we have developed a memory
content-tracking platform service called ConCORD. Con-
CORD is a distributed system that runs across the nodes of a
parallel computer, tracks memory content across collections
of entities (objects that have memory such as hosts, VMs,
processes, and applications), and answers queries about this
content. In this work we focus our discussion of entities
on processes and VMs. The overall ConCORD design and
implementation is described in Section 3.

ConCORD has an extensive node-level and collective content-
sharing query interface for both memory content and met-
rics about it, and it is possible to write an application service
that uses this interface to make queries. However, we found
that many application services could be best understood as
queries instead of as users of queries. For example, a check-
point of a collection of entities can be thought of as a query
for the distinct content they collectively contain. Further-
more, the distributed execution of a collective query in Con-
CORD already addresses many of the challenges of building
an application service, for example, parallelism, scheduling,
and synchronization.

The response to these observations is a key concept and
contribution of ConCORD and our work, namely the content-
aware service command architecture. The content-aware ser-
vice command architecture consists of a carefully designed
query template, the content-aware service command, that is
parametrized by a set of node-local callback functions that
define a specific application service. An analogy can be made

25

with relational databases: the application service is imple-
mented as a set of stored procedures that are used in a single
query, the service command. Although multiple service com-
mands are possible, we have carefully designed the initial
service command to be general enough to support a range
of application services, including those described above.

Given the very nature of the consensus problem in dis-
tributed systems, ConCORD is a best-effort platform ser-
vice. It is possible that the distributed database’s view of
the memory content is outdated when a query executes: par-
ticular entities may no longer hold certain content hashes,
and may hold others that ConCORD is unaware of. This is
not an issue for collective query execution, as the service is
defined to return best-effort results, but application services
are usually not best-effort. To address this, the content-
aware service command architecture has a two phase execu-
tion model in which the best-effort distributed information is
combined with reliable local information. In the first phase,
the best effort information is used and inaccuracies are dis-
covered. In the second phase, these inaccuracies are then
fed back to be handled using node-local information only. If
there is considerable memory content redundancy and few
inaccuracies, ConCORD’s execution of the content-aware
service command implicitly leverages the redundancy with-
out any explicit action on the part of the application service
developer. If memory content redundancy is low or there are
many inaccuracies due to rapidly changing memory content,
ConCORD’s execution of the content-aware service com-
mand nonetheless remains correct. A single distributed com-
ponent handles both collective queries and content-aware
service commands. Details of the content-aware service com-
mand architecture are given in Section 4.

We evaluate ConCORD and the content-aware service com-
mand architecture in several ways. First, the small scale and
complexity of the ConCORD implementation has bearing on
our claim. The bulk of ConCORD consists of ∼12,000 lines
of user-level C, with the interface code for a given kind of
entity being about 3,000-4,000 lines of C. This suggests it
is quite feasible to factor out memory content-tracking as
a platform service—the resulting service is not inordinately
large. The second aspect of our evaluation is the perfor-
mance of ConCORD, which we do at scales of up to 128
nodes, considering its overhead, update rates, latencies, and
the response time of queries and the service command. Sec-
tion 5 presents these results.

To test the service command architecture, we describe
the design, implementation, and evaluation of an applica-
tion service. Collective checkpointing, described in detail in
Section 6, saves the memory content of a collection of enti-
ties (we specifically study processes) with the goal of saving
each distinct memory block exactly once. This service is im-
plemented on top of ConCORD as a service command that
comprises a mere 230 lines of C code and performs well.

The contributions of our paper are as follows.

• We show it is feasible and sensible to factor memory
content-tracking into a separate platform service.

• We define the content-aware service command architec-
ture, which can greatly facilitate the creation of applica-
tion services through the insight that services are often
well expressed as queries, and, indeed that perhaps a sin-
gle, parametrized query, the content-aware service com-
mand, is sufficient for many of them.

• We design, implement, and evaluate ConCORD, a proof-
of-concept memory content-tracking platform service.

• We build and evaluate a complex application service, col-
lective checkpointing, within ConCORD, providing evi-
dence of the effectiveness of the above.

2. RELATED WORK
Content-based memory sharing has been studied for many

years with the goal of deduplicating memory pages to reduce
memory footprints or communication costs. For example,
VMware ESX [19] and Xen [10] use background hashing and
page comparison to transparently identify identical pages in
VMs on the same node. Potemkin [18] uses flash cloning and
delta virtualization to support a large number of mostly-
identical VMs on the same node. Satori [14] implements
memory sharing in Xen by detecting deduplication oppor-
tunities when reading from a block device. Difference En-
gine [8] demonstrates even higher degrees of content sharing
can be obtained by sharing portions of similar pages. Ker-
nel SamePage Merging (KSM) [3] allows the Linux kernel to
share identical memory pages amongst different processes.
In the context of HPC systems, SBLLmalloc [5] can iden-
tify identical memory blocks on the same node and merge
them to reduce the memory usage. In the context of cloud
computing, Memory Buddies [20] uses memory fingerprint
to discover VMs with high sharing potential and then co-
locates them on the same node. Live gang migration [7]
optimizes the live migration of a group of co-located VMs
on the same node by deduplicating the identical memory
pages across them before sending them. VMFlock [2] and
Shrinker [16] present similar migration services optimized
for cross-datacenter transfer.

Our work differs in two ways. First, we factor memory
content tracking into a separate service on top of which ap-
plication services such as these could be built. We believe we
are the first to propose and evaluate this idea, producing a
proof of concept, ConCORD. Second, we focus on the whole
parallel machine, considering inter-node as well as intra-node
sharing of content. Our earlier paper [23] and the work of
others [5, 12] have clearly shown that such content shar-
ing exists in the HPC context. The work we present here
illustrates how to leverage it.

A core mechanism in ConCORD is a custom, high-performance,
lightweight, zero-hop distributed hash table (DHT) that as-
sociates content hashes with sets of entities and their nodes.
Many DHT implementations have been developed [17, 6],
with most targeted at wide-area distributed systems. More
recent work has considered DHTs for more tightly coupled
HPC environments, examples including C-MPI [21] and ZHT [13].
ConCORD’s DHT is similarly designed for zero-hop routing
and low churn. However, it is not a general key-value store,
but rather is specialized specifically for the best-effort con-
tent hash to entity set mapping problem in ConCORD. A
detailed description is available elsewhere [22].

We use checkpointing as an example application service to
test ConCORD and our claims of the utility of the content-
aware service command architecture. Checkpointing has a
large literature. Nicolae and Cappello describe this litera-
ture in detail in their paper on their memory access pattern-
adaptive incremental checkpointing system, AI-Ckpt [15].
Our collective checkpointing service saves the content of
a group of entities (processes, VMs), deduplicating pages
that are have shared content. Other than building upon

26

!" #$%&'(("')%$*�
+ , -

.%,' .%,'

"')%$*

/0012&3-2%.�

4'$52&'

+0,3-'�
"%.2-%$

!"#$%&'()!&%"

! ! !

6*0'$52(%$�
7!""8

"')%$*�
+0,3-'�
"%.2-%$

94

"')%$*�:%.-'.-�:%.-'.-r(;3$2.<� :%.-'.-r/=3$'�:%11'&-25'�

+0,3-'�>.-'$?3&'

7@+0,3-'8

AB'$*�>.-'$?3&'

7@AB'$*8

:%))3.,�:%.-$%11'$

7@:%))3.,8

:%.:9CD:%.:9CD
D2(-$2EB-',�"')%$*�

:%.-'.-�F$3&2.<�G.<2.'

7@F$3&'$8

D2(-$2EB-',�:%11'&-25'�

:%))3.,�G@'&B-2%.�

G.<2.'�7&),GHG8 7 8< 7 8

.%,'(

Figure 1: ConCORD’s high-level architecture. Dashed
boxes represent distributed components.

a general-purpose memory content tracking system and the
content-aware service command architecture, we do not claim
innovations in checkpointing.

3. DESIGN AND IMPLEMENTATION
The goal of ConCORD’s design was to factor scalable

memory content tracking across the nodes of a parallel com-
puter into a distinct platform service that would be useful
for implementing application services and ease such imple-
mentation. It was clear from the outset that this required
that ConCORD itself be a distributed system.

Initially, we focused on tracking the content of distributed
VMs running in instances of our Palacios VMM [11], but al-
most all of the concepts involved in building VMM-based
application services readily generalize beyond VMs. Con-
sequently, it made the most sense to partition ConCORD
into a component that operates over general entities (as de-
scribed in the introduction). The design evolved into one
that is partitioned into an entity-agnostic user-level compo-
nent (the majority of the system), and node-specific compo-
nents that handle specific kinds of entities on specific kinds
of nodes. The latter comprises little code, and may or may
not be user-level.

Our original model was that ConCORD would be a dis-
tributed database system that captured a best-effort view of
memory content across all the nodes and entities. It would
then facilitate the creation of application services by provid-
ing a query interface that supported both queries that could
be answered using information on a single node, and queries
that required information to be integrated across multiple
nodes, perhaps all of them. These latter collective queries
are the key challenge, both for ConCORD to implement and
for an application service to use. The content-aware service
command architecture is essentially a carefully designed col-
lective query into which the application service is integrated.
Instead of the application service making queries, there is a
single query that makes callbacks to the application service.

3.1 High-level architecture
Figure 1 illustrates the high-level architecture of Con-

CORD, highlighting core components and interfaces.
The core functionality of ConCORD is to track memory

content across entities in the site. To do so, ConCORD needs

to know when the content of a block of memory1 changes.
Furthermore, the nature of the content of a memory block
on any node must be accessible (within a query) from all
other nodes. To make this possible, ConCORD has two
components: (1) a memory update monitor running on each
node, and (2) a site-wide distributed memory content tracing
engine that maintains a scalable, distributed database that,
given a content hash, can find nodes and entities that are
likely to have copies of the corresponding content.

Several kinds of memory update monitors are possible.
The figure illustrates two, a kernel-level/VMM-based moni-
tor that inspects a VM’s guest physical memory, and a user-
level monitor that inspects a process’s address space using
ptrace. Memory update monitors produce the heartbeat
of ConCORD: discovery of memory content changes. One
mode of operation for a memory update monitor is to peri-
odically step through the full memory of the entities being
traced, identifying memory blocks that have been updated
recently, and then sending memory content hashes for the
newly updated blocks to the ConCORD memory tracing en-
gine. We use this mode of operation in this paper. In addi-
tion, a memory update monitor maintains a local mapping
table that allows ConCORD to efficiently locate a memory
block’s content from its hash.

Memory update monitors can also operate in a mode where
they detect writes by leveraging the paging infrastructure.
For example, for Palacios VMs, we can apply a copy-on-
write model, temporarily marking shadow or nested page
table entries as unwritable. Page faults then indicate writes.
We can also exploit the x86’s nested page table entry’s dirty
bit, periodically marking page table entries as clean and then
rescanning the entries to see which ones the processor has
marked dirty. More details about both of these techniques
are given elsewhere [4].

Regardless of its kind or mode, a memory update monitor
can also be throttled, limiting the rate at which it produces
updates. This makes it possible to limit the load placed on
the individual node and on the network, trading off load and
precision/accuracy, as we described in earlier work [23].

The distributed memory content tracing engine is a site-
wide distributed system that enables ConCORD to locate
entities having a copy of a given memory block using its
content hash. It also allows ConCORD to find the amount
of memory content sharing among nodes . ConCORD em-
ploys a custom, high-performance, lightweight, zero-hop dis-
tributed hash table (DHT) to store unique memory content
hashes and map each content hash to a list of entities and
their nodes that have a copy of the corresponding memory
block. A detailed description of the design of the engine is
given elsewhere [22].

The memory content update interface is the interface be-
tween memory update monitors and the distributed content
tracing engine. It is carefully defined so that new monitors
can be created, and so that the engine is not entity-specific.

Application services or other tools can ask questions or
issue content-aware service commands that operate over the
information stored in the tracing engine. The content-sharing
query interface makes possible two forms of questions. “Node-
wise” queries involve data stored within a single node. Note
that because memory block content information is stored in

1Block size is a configurable parameter, but, as we showed
earlier [23], the base page size (4 KB on x64) works very
well. We use 4 KB pages throughout the paper.

27

!"#!$%&�'()*+,(�&-(."#�/0&-(."#1

!"#$%#$ &'()%'*+%',�-#$%'.()%�!"#$%#$�&'%()%*

/01($%�-#$%'.()%�

2!"33(#1

!"#$%#$�&'()%'

456&7

1 88

+,*-�'./,$%*

0!"11,#/

!"#$'"8�-#$%'.()%�

2!"33(#1

92%)+$:"#�9#;:#%�
2!"33(#1 !"#$'"88%'

*2#3-("#)4,$)"#

52*$%1�!"#$("6

!"#!<=5>?@A�-#$%'.()%

2"3(r'4(,+5+,�6"378(�/2'61

2!"33(#1

9 $: B $

!"#!<=5 !"#$'"8

92%)+$:"#�B;%#$�

A%3"',�/01($%

A"#:$"'�
5%#/�-,*-�'./,$%*

2!"33(#1 !"#$'"88%'

0!"11,#/ 52#3-("#)4,$)"#

Figure 2: ConCORD’s node-level architecture.

a DHT in a node determined by its content hash, the infor-
mation available in a single node represents a “slice of life” of
all the nodes in the system. The query interface also exposes
collective queries, which aggregate memory content informa-
tion across multiple nodes (or all nodes). We describe the
query interface (and update interface) in Section 3.3.

The content-aware collective command controller provides
the interface for both collective queries and content-aware
service commands and controls the overall execution of them.
The distributed collective command execution engine is the
most complex distributed component of the system, and is
responsible for both these queries and commands. At a high-
level, it can be viewed as a purpose-specific map-reduce en-
gine that operates over the data in the tracing engine. We
describe these in detail in Section 4.

3.2 Node-level architecture
Figure 2 shows ConCORD’s node-level design, which com-

prises two components and an interface between them.
The ConCORD service daemon is a multithreaded user-

level component that most importantly includes the local
instances of the content-tracing and command execution en-
gines. The daemon exposes multiple interfaces on the net-
work for issuing and responding to queries and updates,
synchronizing the execution of collective queries and service
commands, and overall system control.

The node-specific module (NSM) is responsible for han-
dling particular kinds (e.g., VMs, processes, etc) of entities
on the node. We have already seen the most important ele-
ment of the NSM, namely the memory update monitor, but
it also needs to contain some components of the content-
aware service command architecture. One aspect of this is
how memory is to be accessed for the given kind of entity.
Another is the environment in which the callbacks made by
the service command need to execute. For example, if we
build a checkpointing service for processes, the callback code
may run at user-level and use system calls, but if we build
the service for VMs, the callback code may run at kernel-
level and use VMM-specific mechanisms.

The NSM is also responsible for maintaining a mapping
from content hash to the addresses and sizes of memory
blocks in the entities it tracks locally. This information is
available as a side effect of the memory update monitor.

Node-wise Queries
number num copies(content hash)
entity set entities(content hash)
Collective Queries
number sharing(entity set)
number intra sharing(entity set)
number inter sharing(entity set)
number num shared content(entity set, k)
hash set shared content(entity set, k)
Updates
void insert(content hash, entity)
void remove(content hash, entity)

Figure 3: Query and update interfaces.

3.3 Queries and updates
Queries to ConCORD take two forms. Node-wise queries

depend only on information stored in a single ConCORD
instance on a single node, while collective queries depend
on information spread over instances on multiple nodes, or
even all nodes. Application services can issue queries, and
NSMs can issue updates through a set of simple C interfaces
provided by libraries. Figure 3 shows the query and update
interface of ConCORD.

The node-wise queries allow the application service to ask
how many copies of the content corresponding to a content
hash exist and which set of entities currently have copies
of the content. Note that an entity may have more than
one copy of given content. An application service can use
these queries to find the existing redundancy of particular
memory content, and where the replicas are.

The first three collective queries compute the degree of
content sharing (redundancy) that exists across a set of en-
tities. Here we are concerned about all the content in these
entities, not particular content. We consider two forms of
sharing. Intranode sharing is sharing of content across the
entities located within a node, while internode sharing is
sharing of content across entities in distinct nodes. Either
form, or both together can be queried. An application ser-
vice can use these queries to discover if there is sufficient
overall redundancy to make it worthwhile to leverage.

The final two collective queries allow an application ser-
vice to discover, for a set of entities, the amount of con-
tent that is replicated k or more times, and the set of con-
tent hashes for which this is true. These “at least k copies”
queries allow the application service to find content whose
redundancy is particularly useful to leverage due to its many
replicas.

Updates simply insert or delete (key, value) pairs, where
the key is a content hash and the value is the entity. A hash
over the key determines the node and service daemon to
which the update is routed. The target daemon maintains
a hash table that maps from each content hash it holds to
a bitmap representation of the set of entities that currently
have the corresponding content. Given this simple mapping,
the originator of an update can not only readily determine
which node and daemon is the target of the update, but,
in principle, also the specific address and bit that will be
changed in that node.

28

3.4 Communication
ConCORD uses two forms of communication. First, reli-

able 1-to-n broadcast and synchronizing communication is
used between client libraries and the shell, and xDaemon and
VMM instances. This communication is infrequent, gen-
erally only occurring when a query or service command is
running. The data size for messages here is small. Unre-
liable peer-to-peer data communication is used among ser-
vice daemons and NSMs. Examples include an update be-
ing sent from an NSM to a target service daemon, and a
content hash exchange among service daemons during the
execution of a content-aware service command. The second
form of communication, unreliable peer-to-peer communica-
tion, forms the bulk of communication in the system, both
due to the frequency of such communication and its volume.
The motivation for separating these communication paths
and their requirements is to eventually facilitate the use of
fast, low-level communication primitives for most communi-
cation. For example, because the originator of an update in
principle knows the target node and address, and because
the update is best effort, the originator could send the up-
date via a non-blocking, asynchronous, unreliable RDMA.

In its current implementation, ConCORD uses UDP for
network communications in both cases. Unreliable peer-
to-peer communication is done using standard UDP socket
calls, i.e., “send and forget”. Reliable 1-to-n communication
is implemented on top of standard UDP, combined with an
acknowledgment protocol that allows out-of-order delivery
of ConCORD messages. We require the underlying hard-
ware to provide error detection for both reliable and unre-
liable communication. As we are operating within a single
network of a parallel machine, underlying hardware mecha-
nisms like the Ethernet CRC readily do this. Reliable mes-
sages may arrive out of order, but they will arrive without
errors. Unreliable messages may not arrive, but if they do
arrive, they have no errors.

4. CONTENT-AWARESERVICECOMMAND
The goal of the content-aware service command architec-

ture is to ease the construction of application services that
build on ConCORD’s distributed memory content tracing
facility. As we have described so far (Section 3), ConCORD
helps the application service developer avoid reinventing one
wheel, namely that of memory content tracking and queries.
In the design of the content-aware service command architec-
ture, we seek to help the developer avoid reinventing another
wheel, the distributed execution of the application service
over the relevant memory content.

The developer creates the service by implementing a set of
callbacks. The interface of these callbacks and the protocol
by which they are invoked form the core of the service com-
mand architecture from the developer’s perspective. The
callbacks parametrize a service command. The parametrized
service command is the application service implementation.
The execution system in ConCORD in turn is able to au-
tomatically parallelize and execute a service command over
the nodes of the parallel machine. The execution is driven
by the memory content tracked in ConCORD, as well as
the “ground truth” memory content information available
locally. As a consequence, the service can leverage redun-
dancy while being correct.

4.1 Running example
Consider that we seek to build a“collective checkpointing”

service that operates over a set of distributed processes (or
VMs), where each process’s address space consists of pages.
When we execute the service, we require correctness: each
page in each process must be recorded so that it can be
restored later. We also desire efficiency: The checkpoint
should contain few duplicate pages; ideally, each distinct
page of content would be recorded exactly once.

A correct implementation would simply record each page
in each process. A highly efficient implementation would
find each distinct page captured in ConCORD’s database,
select a replica, and have that replica recorded. However,
ConCORD’s database is best effort, as described previously,
so this implementation would not be correct—it would in-
clude pages that no longer exist, and fail to include pages
that aren’t yet in the database. What the service command
architecture allows us to do is combine efficiency (using
ConCORD’s database) and correctness (using local infor-
mation). We will describe the design, implementation, and
evaluation of this service in detail in Section 6.

4.2 Scope and mode
A service command has a scope, a set of entities over which

it will operate. For example, this might be the set of pro-
cesses or VMs we wish to checkpoint. We refer to these as
the set of service entities (SEs), or we say that these entities
have the service role. Because ConCORD’s memory track-
ing is not specific to any one application service, however,
it is likely that there are many other entities being tracked
that could contribute to our service. For example, an inde-
pendent process on a separate node might share a page of
content with one of the processes we are checkpointing. If
the separate node wrote this page, it would speed up our
checkpoint. We refer to entities that will be involved in this
way as participating entities (PEs), or we say that these en-
tities have the participant role. The scope of the execution
of an application service consists of the set of SEs and PEs.
The service command uses the memory content in the SEs
and PEs to apply the service to the SEs.

A service command can be executed in one of two modes.
In interactive mode, the application service’s callbacks are
invoked for each content hash and are expected to imme-
diately apply the relevant transformations. In batch mode,
the callbacks instead drive the creation of an execution plan
by the application service. The application service then exe-
cutes its plan as a whole. This allows the application service
developer to refine and enhance the plan. In this paper we
focus on interactive mode.

4.3 Interface and execution
Figure 4 describes the high-level interface of an application

service. The detailed C interface is available elsewhere [22,
Chapter 7]. The service developer implements the applica-
tion service by implementing these callbacks. The service
command invokes the callbacks in four phases, as shown
in the figure. At the heart of execution are the collective
phase (which uses the content information in ConCORD’s
database) and the local phase (which uses node-local content
information).

Service initialization passes a service-specific configuration
file to be parsed. Within the service init() function, which
is executed on each node holding a service or participating

29

Service Initialization
error service init(service, config)
Collective Phase
error collective start(entity role, entity, content hash set, private service state)
entity optional collective select(content hash, entity set, private service state)
error collective command(entity, content hash, pointer, size, private service state)
error collective finalize(entity role, entity, content hash set, private service state)
Local Phase
error local start(entity role, entity, content hash set, private service state)
error local command(entity, content hash, pointer, size, private service state)
error local finalize(entity role, entity, content hash set, private service state)
Service Teardown
error service deinit(private service state)

Figure 4: Content-aware service command callbacks. An application service is created by implementing these callbacks.

entity, the developer can also associate private service state
with the service. This is then passed to subsequent callbacks
on that node as the private service state parameter. This
state can grow during the execution of the command.

The collective phase of execution is supported by four call-
backs, one of which is optional. The collective start() func-
tion is executed exactly once for each service and partici-
pating entity. It indicates what role (service or participat-
ing) the entity has and provides a partial set of the content
hashes ConCORD believes the entity contains. This partial
set is derived using the data available on the local instance
of the DHT, and is mostly advisory. collective start() is
usually where the service typically allocates and initializes
resources that are outside of the scope of ConCORD. For ex-
ample, the collective checkpointing service opens its check-
point files here.

ConCORD synchronizes on collective start(). After all
instances have returned, it will then compute distinct con-
tent hashes across all of the service entities, and, for each
of them, find the set of service entities and participating
entities that appear to have this content. This information
will drive callbacks to the PEs and SEs to execute over their
content. Because a particular content hash might exist on
multiple entities, ConCORD needs to pick one. If the service
developer has implemented the optional collective select()
callback, ConCORD invokes this on some node to allow the
service to choose. Alternatively, it chooses one of the entities
at random.

Given a content hash and a selected entity, ConCORD in-
vokes the collective command() callback on the node where
the entity resides. In addition to the hash and entity, Con-
CORD also passes an opaque pointer and data size to the
callback. This information is computed by the NSM (Sec-
tion 3.2). In effect, in the collective phase of execution,
ConCORD maps the collective command() function across
unique content hashes that it believes exist in the SEs, se-
lecting for each hash a single entity (and thus node) from
the SEs and PEs that it believes contains that hash. A col-
lective command() invocation may fail because the content
is no longer available in the node. When this is detected,
or if the collective command() invocation is taking too long,
ConCORD will select a different potential replica and try
again. If it is unsuccessful for all replicas, it knows that its
information about the content hash is stale.

After exhausting all relevant content hashes in its dis-
tributed database, ConCORD invokes the collective finalize()
function for each entity. Here, the service has a chance to
reduce and gather results from work that has been done dur-
ing the collective phase, and clean up and free resources that

are not needed in the local phase. collective finalize() also
acts as a barrier.

ConCORD now invokes local start() for each SE to al-
low the service to prepare for the local phase. PEs are not
involved in the local phase. ConCORD then invokes the lo-
cal command() callback for each memory block (e.g., page)
in each service entity. The callback includes the block’s hash,
as well as the set of all hashes that have been successfully
handled by a previous collective command(). The service
can thus easily detect and handle content that ConCORD
was unaware of. For example, the collective checkpoint ser-
vice can save a page that was not previously saved. Fur-
ther, for content that ConCORD did previously handle, the
service can now make use of that fact. For example, the
collective checkpoint service can save a file offset for a page
that was previously saved. With successive invocations for
the process, the collective checkpoint service builds a file of
pointers to where the process’s page content exists.

The local finalize() callback is invoked for each service en-
tity to complete the local phase and to synchronize. Here,
the service typically does cleanup, for example, closing the
checkpoint files.

At the end of service command execution, the service deinit()
function is called on each node with a service or participat-
ing entity. This function is responsible for interpreting the
final private service state to indicate to ConCORD whether
the service was successful or not. For batch mode execution,
the service typically builds up a plan in the private service
state, driven by collective command() and local command()
callbacks, and then executes it as part of local finalize() or
service deinit().

5. GENERAL EVALUATION
We now describe the general evaluation of ConCORD, in-

dependent of any application service. The evaluation focuses
on ConCORD’s overheads and scalability. ConCORD con-
sists of ∼19,300 lines of code (∼12,000 in the core system,
∼3,300 in NSM for processes, ∼4,000 in NSM for VMs).

5.1 Testbeds
Our evaluations are done on the following hardware.
Old-cluster is used for most of the general evaluation of

this section. It consists of 24 IBM x335 nodes, each having
two dual-core Intel Xeon 2.00GHz processors, 1.5 GB RAM,
32 GB disk, and a gigabit NIC connected to a 100 Mbit Cisco
3550 48 port switch, which has the full backplane bandwidth
needed to support all of its ports. The nodes run Red Hat

30

7000

Insertrhash

Insertrblock

5000

6000
Deleterhash

Deleterblock

4000

5000

n
s)

3000

4000

T
im

e
�(
n

2000

C
P
U
�

1000

0

0 8 16 24 32 40 48 560 8 16 24 32 40 48 56

Number�of�Unique�Hashes�in�Local�DHT�(Millions)

Figure 5: CPU time of DHT updates as a function of number
of unique hashes in the local node.

Enterprise 6.2 with a 2.6.30.4 kernel. Note that good perfor-
mance on such old hardware bodes well for newer hardware.

New-cluster is used for benchmarking the DHT. It consists
of 8 Dell R415 machines, where each has two quad-core 2.2
GHz AMD Opteron 4122 processors, 16 GB RAM, 500 GB
disk, and a gigabit NIC attached to an HP Procurve 2848 48
port gigabit switch, which has the full backplane bandwidth
needed to support all of its ports. The nodes run Fedora 15
with a 2.6.38 kernel.

Big-cluster is used to study high node scaling of the service
command and the collective checkpoint service (Section 6).
Big-cluster is Northwestern’s HPC resource, consisting of
824 nodes in three categories. 504 nodes contain two quad-
core 2.4 GHz Intel Nehalem processors and 48 GB of RAM,
and are connected via an InfiniBand DDR network. Two
other machine pools contain nodes with faster processors
and similar RAM that are interconnected with QDR Infini-
Band (252 nodes) and FDR10 InfiniBand (68 nodes). They
run Red Hat 6.4 with a 2.6.32 kernel.

5.2 Distributed memory content tracing
We expect the memory tracing component of ConCORD,

which discovers memory content changes and maintains the
distributed database of content to have low overhead. Here,
we focus in particular on the overheads of the distributed
database (the DHT). We do not consider the amount of re-
dundancy that is available within particular environments
and how well this can be captured because our previous
publication [23] and Xia’s dissertation [22] include this. The
latter presents a detailed study of redundancy in a range of
parallel applications.

Our previous publication also considered the costs and
overheads of the memory update monitor, which scans an
entity’s memory to discover updates. We summarize these
results. On our slowest hardware (Old-cluster), we found
that a memory update monitor that periodically scans a
typical process from a range of HPC benchmarks and com-
putes content hashes from its pages exhibits a 6.4% CPU
overhead when scanning every 2 seconds, and a 2.6% CPU
overhead when scanning every 5 seconds. This is with the
MD5 hash function. With the non-cryptographic SuperHash
function, these overheads drop to 2.2% and less than 1% for
these rates. The updates sent into the network from the
memory update monitor typically require about 1% of the
outgoing link bandwidth.

16

18100000
Memory�Usage�(Malloc)

Memory Usage (Customized)

14

16

10000B
)

Memory�Usage�(Customized)

Overhead�(Malloc)

Overhead (Customized)

12

)m
o
n
�(
M
B Overhead�(Customized)

8

10

1000

h
e
a
d
�(
%
)

D
H
T
�d
a
e
m

6

8

O
v
e
r

a
g
e
�p
e
r�
D

4
100

m
o
ry
�U
sa

0

2

10

M
e
m

010

0 1 2 4 8 16 32 64 128 256

Memory�Size�(GB)�per�process�(1�process/host)

Figure 6: Per-node memory use to store the DHT as a func-
tion of the size of entities

�����

�����

�����

�����

�����

�����

	����

����

�����

�����

������

����

�����

������

�������

��������

���������

����������

�����������

������������

� � � � �	 �� 	�

��
��
��
�
��
�	

�

�

�
�
�
��
�
��
�
�
�
�
��
��

�
��
�
�
�

��������������

������������������

������������������

���������

Figure 7: Update message volume and loss rate as a function
of the number of nodes on Big-cluster.

We now consider the costs of updates to the distributed
database, which are measured on New-cluster.

One question is the latency of updates, which depends
on both the network and local computation. At the net-
work level, the latency of an update is the latency of a UDP
packet. In Figure 5, we illustrate the costs of the local com-
putation as a function of the number of hashes stored within
the local instance of the DHT. Both inserts and deletes are
measured. The block insertion or delete is the cost of updat-
ing the local mapping from content hash to block within the
entity, while the hash insertions and deletions are the cost of
updating the (typically remote) mapping from content hash
to entity. The important thing to note is that these costs are
independent of how many unique content hashes are stored.

A second question is the memory costs of storing the con-
tent of the DHT. Figure 6 shows the memory needed on each
node as the entity size grows. Because the allocation units
of the DHT are statically known, a custom allocator can im-
prove memory efficiency over the use of GNU malloc. With
the custom allocator, at an entity memory size the same as
the node’s physical memory (16 GB), the additional mem-
ory needed is about 8%. Even at 256 GB/entity (achieved
using swapping), only about 12.5% more memory is needed
to store the DHT content.

Finally, we consider the network load imposed by updates,
and how often updates are lost. Here, we use Big-cluster
to consider a larger number of nodes. Figure 7 shows the
results. Here each node contains one entities (4 GB total

31

32768

65536

16384 entitiesrquery

num copiesrquery

4096

8192

n
s)

num_copiesrquery

entitiesrcompute_time

num copiesrcompute time

1024

2048

im
e
�(
n

_ p p _

512

1024T
i

128

256

64

128

5 5 1 2 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0

0
.2 0
. 1 1 2 2 2 3 3 4 4 4 5 5 6

Number�of�Unique�Hashes�in�Local�DHT�(Millions)

Figure 8: Latency of node-wise queries as a function of
unique hashes in the local node.

6,000�
sharingrsingle

num shared contentrsingle
5,000�

num_shared_contentrsingle

sharingrdistributed

h d t t di t ib t d
4,000�

m
s)

num_shared_contentrdistributed

3,000�

e
n
cy
�(
m

2,000�La
te

1,000�

0�

2 4 8 12 16 20 24 28 32 36 40

Total�Number�of�Hash�Entries�in�DHT�(Millions)

Figure 9: Total latency for collective queries as a function
of the number of content hashes.

RAM per entity), and we are considering the initial scan of
their memory, that is, each node is sending an update for
each page of each entity, which is the worst case. As we
scale up the number of nodes the total number of update
messages in this scenario of course scales linearly with it.
However, so do the number of sources and destinations of
these messages, as the DHT itself grows. We are currently
trying to understand why the loss rate grows with scale.

Our results suggest that the memory update monitor and
updates to the distributed database scale well with the num-
ber of nodes and the total size of entities across those nodes,
in terms of the update work and network traffic per node.

5.3 Queries
We now consider the performance of queries in ConCORD.

Here, Old-cluster is used. Our primary focus is on latency as
the system expands in terms of amount of memory tracked
and number of nodes participating.

We first consider the node-wise queries, those that re-
quire only a single node to respond. Figure 8 illustrates
the latency for the two node-wise queries. The “query” time
includes the communication and computation, while “com-
pute time” captures the time for the computation at the
answering node. The latency is dominated by the communi-
cation, which is essentially a ping time. This should come as
no surprise as these queries are computed with a local hash
table lookup to a bitmap that is then scanned.

4000

4500�

Interactivermode

3500�

4000�

Batchrmode

3000�

e
�(
m
s)

2000

2500�

o
n
�T
im

e

1500�

2000�

E
xe
cu
ti
o

1000�

E

0�

500�

256 512 1024 2048 4096 8192

Memory�Size�per�Process�(8�Processes)

Figure 10: Null service command execution time on a fixed
number of SEs and nodes with increasing memory size per
process.

When observed from the perspective of a single node, the
collective queries perform similarly to the node-wise queries.
More important is the latency seen across the machine as
communication is used to compose the query results. Fig-
ure 9 shows the total latency for the collective queries. For
the “distributed” case, the DHT (and thus the query com-
putation and communication) is distributed over the nodes
of Old-cluster. Here, we scale up the number of nodes used
so that the number of content hashes per node is kept con-
stant (at about 2 million hashes per node). For the “single”
case, the DHT (and thus the computation) is limited to a
single node, which handles more and more hashes. As can
be seen from the figure, at around 2-4 million hashes there
is a crossover point, and the distributed storage and execu-
tion model perform better, giving a constant response time
as the system scales.

Under the expected operating model of a system like Con-
CORD, the maximum possible number of content hashes is
limited by the total memory of the parallel machine. As we
add more nodes, we add more memory that may need to be
tracked and operated over, but we also add more compute
and network capability to support tracking and operating
over it. The figure makes it clear that the system scales
in terms of memory and nodes, providing a stable response
time as this happens. On Old-cluster, our slowest computa-
tional and network hardware, this stable response time for
collective queries is about 300 ms.

5.4 Null service command
We now consider the performance of the content-aware

service command. Here, we focus on the baseline costs in-
volved for any service command by constructing a “null”
service that operates over the data in a set of entities, but
does not transform the data in any way. That is, all of
the callbacks described in Figure 4 are made, but they do
nothing other than touch the memory. We consider this
command both in interactive mode and in batch mode. In
batch mode, the callbacks record the plan and in the final
step the memory is touched. Evaluations of both modes
are done on New-cluster, while on Big-cluster, we study the
scaling of interactive mode.

Figure 10 shows the execution times for the null service
command for a fixed number of SEs (processes) and nodes
as we vary the memory size per SE. As we would hope,

32

700

800�

600�

700�

500�

m
e
�(
m
s)

400�

io
n
�T
im

200

300�

E
xe
cu
t

100�

200�

Interactivermode

Batchrmode

0�

1 2 4 8 12

Batch mode

1 2 4 8 12

Number�of�Processes�(1GB/Process)

Figure 11: Null service command execution time for an in-
creasing number of SEs and nodes, holding per-SE memory
constant.

!""#

$""#

%""#

&""#

'""#

(""#

)""#

*# !# %#)# *'# $!# '%# *!)#

!
"
#$
%&
"
'(
%)

"
'*
)
+,
'

-.)/"#'01'-02"+'

Figure 12: Null service command response time on Big-
cluster.

the execution time is linear with the total memory size of
the SEs. Figure 11 shows the execution time for the null
service command as we simultaneously increase the number
of SEs (processes) and nodes, while holding the per-process
memory constant. This is how we would expect to use the
service command architecture in practice—as we scale the
number of SEs over which the service command operates, we
expect the number of nodes to also scale, as there is a limited
amount of memory in each node. In this regime, we see that
the execution time stays relatively constant, suggesting the
service command architecture scales nicely.

Beyond this scalable execution time, we would also hope
to see that the network traffic to execute the null service
command scales. As we scale the number of SEs and nodes
simultaneously, as we did for Figure 11, the average traffic
volume sourced and sinked per node stays constant at about
15 MB. This further lends support to the scalability of the
service command architecture under the expected regime.

Figure 12 shows the scaling of the null service command
running in interactive mode on Big-cluster. As previously,
we scale up nodes and total memory simultaneously. The
response time is constant, up to 128 nodes, providing fur-
ther evidence of the scalability of the content-aware service
command architecture.

6. COLLECTIVE CHECKPOINTING
We claim that the content-aware service command is suf-

ficient for implementing a range of application services. To
evaluate this claim, we considered three services. The first,

collective checkpointing, is described in detail here. The
second, collective VM reconstruction, recreates the memory
image of a stored VM (the service entity) using the memory
content of other VMs currently active (the participating en-
tities). This is described in the first author’s dissertation [22,
Section 7.2]. The third, collective VM migration, migrates a
group of VMs from one set of nodes to another set of nodes,
leveraging memory redundancy.

Our focus in collective checkpointing (and for the other
two) is in exposing and leveraging memory redundancy. Our
work does not extend to, for example, selecting which replica
to use for a specific operation. ConCORD, through the op-
tional collective select() callback, provides the ability for the
service developer to introduce such smarts, however.

The goal of collective checkpointing is to checkpoint the
memory of a set of SEs (processes, VMs) such that each
replicated memory block (e.g., page) is stored exactly once.
For parallel workloads that exhibit considerable redundancy
(for example, the Moldy and HPCCG benchmarks we stud-
ied in previous work [23]), collective checkpointing will re-
duce the overall size of the checkpoint and the benefits will
grow as the application scales. Such benefits should be clear
whether we checkpoint processes or VMs containing them.

The collective checkpointing service is easily built within
the content-aware service command architecture. The im-
plementation we use here comprises a total of only 230 lines
of user-level C and can be seen in its entirety elsewhere [22,
Appendix A]. The developer does not have to consider par-
allel execution, memory content location, or other factors.
The performance of the checkpointing service is also promis-
ing. When no redundancy exists, the execution time has
only a small overhead over the obvious design of purely local
checkpoints for each SE. Furthermore, checkpoint size can be
reduced significantly when redundancy exists—considerably
more than compression. Finally, the time to checkpoint a
set of SEs scales well as the number of entities and nodes
increases. These results support our claim.

6.1 Design and implementation
Figure 13 schematically shows the format of the collective

checkpoint. Only two SEs are shown for simplicity, although
a real checkpoint will have as many as there are processes
or VMs. A single shared content file stores the content of
most memory blocks that have been found. That is, for each
distinct memory block with one or more copies among the
SEs, there is ideally exactly one copy stored in the shared
content file.

Each SE has a separate checkpoint file that contains an
entry for each memory block within the SE. The entry either
represents the content of that block or it represents a pointer
to the content’s location within the shared content file. The
reason why content may exist within the SE’s checkpoint
file is due to the best-effort nature of ConCORD. If an SE
contains a memory block whose content is unknown to Con-
CORD, it appears in the SE’s checkpoint file, otherwise it
appears in the shared content file.

The syntax 1 : E : 3 means that memory block 1 (e.g.,
page 1) of the SE holds content whose hash is E and which is
stored as block 3 of the shared content file. Figure 13 shows
four replicated blocks. Each SE has four blocks, three of
which are stored as pointers, and one of which is stored as
data. In this diagram, a total of 8 blocks (each SE has 4
blocks) is stored using 6 blocks. Ignoring the pointers, this

33

Content unknown

to ConCORD

2:X:Content0:A:0 1:E:3 3:B:1

SE�1

Checkpoint

File

to ConCORD

E�Content

Shared�

Content

File

C�ContentB�ContentA�Content
File

Content unknown

3:X:Content0:B:1 1:C:2 2:E:3

to ConCORD

SE�2

Checkpoint�

FilFile

Figure 13: Checkpoint format, showing two SEs.

would yield a compression ratio of 75% (6/8) compared to
simply saving each SE’s blocks independently.

To restore an SE’s memory from the checkpoint, we need
only walk the SE’s checkpoint file, referencing pointers to the
shared content file as needed. Our implementation focuses
on taking the actual checkpoint. In describing this process,
we use Section 4’s terminology, in particular the collective
and local phases of service command execution.

In the collective phase, ConCORD determines what it be-
lieves to be the distinct memory content hashes that exist
across the system. It then issues collective command() call-
backs for them. Our handler receives the content hash, as
well as an NSM-supplied pointer to the data of the local
copy of the content. It then issues an append call to the
file system to write the block to shared content file. The
file system returns the offset which is stored in a node-local
hash table that maps from content hash to offset. It in-
dicates to ConCORD that it has handled the content hash
and includes the offset in the private field of its return value.
At the end of the collective phase, the shared content file is
complete, and each node has its local hash table from which
pointers into the shared content file can be derived.

Since these collective commands are happening in parallel
across the nodes, we do require that the file system provide
atomic append functionality with multiple writers. In effect,
we have a log file with multiple writers. This is a well-known
problem for other forms of logging on parallel systems and is
either a component of the parallel file system or of support
software that builds on top of it (e.g., [9]).

In the local phase of execution, ConCORD issues call-
backs that cause each SE’s memory to be scanned, with a
local command() callback issued for each block. These call-
backs write the records of the SE’s own checkpoint file. If
the callback indicates that the content hash was successfully
handled in the collective phase, then the private data field
is interpreted as being the offset within the shared content
file. The callback can then append a pointer record to the
SE’s checkpoint file. If the callback indicates that the con-
tent hash was not handled during the callback phase, then
the block does not exist in the shared content file because
ConCORD’s DHT was unaware of it. In this case, the call-
back writes a record that contains the content to the SE’s
checkpoint file.

After the collective and local phases are done, the full
set of files is complete. The assorted callback functions for
initialization of the service and the phases are where the files
are opened and closed.

6.2 Evaluation
Our evaluation focuses on the overall performance and

scalability of the collective checkpointing service. We con-
sider performance on Old-cluster and Big-cluster, which are
described in Section 5.1.

Reducing checkpoint size is an important goal of collec-
tive checkpointing, but the degree to which this is possi-
ble depends on the workload. In the following, we consider
two workloads consisting of SEs that are MPI processes.
Moldy [1] is a general purpose molecular dynamics simu-
lation package we identified in our previous paper [23] as
exhibiting considerable redundancy at the page granularity,
both within SEs and across SEs. In contrast, Nasty is a
synthetic workload with no page-level redundancy, although
its memory content is not completely random.

We consider four methods for generating the checkpoint.
Raw simply has each SE save its content independently.
ConCORD is not used. Raw-gzip further concatenates all
the per-SE files and compresses them with gzip. ConCORD
uses the scheme of Section 6.1. Finally, ConCORD-gzip fur-
ther compresses the shared content file. The purpose of in-
troducing gzip is to understand how redundancy elimination
through compression compares to ConCORD’s approach,
and how much it can improve the ConCORD approach.

Figure 14 shows the compression ratio for the four strate-
gies, for both Moldy and Nasty, as a function of the number
of processes. For Moldy, the measured degree of sharing
(the results of the sharing() query of Figure 3 is also shown.
These results are measured on Old-cluster.

The Moldy results show that when redundancy exists, the
collective checkpoint service (ConCORD) is able to exploit
it well. Indeed, all the redundancy that ConCORD has
detected via its query interface is captured in the service
command. The results also show that the redundancy goes
well beyond that which can be captured via compression,
although compression does slightly increase compression ra-
tio. The Nasty results, in contrast, show that when no page-
level redundancy exists, the additional storage overhead of
the collective checkpoint service is minuscule.

We measured the response time of the collective check-
point service and the simple raw service in several ways. In
doing so, we factor out the overhead of the file system by
writing to a RAM disk. We compare the performance of the
raw service with and without gzip with the performance of
the interactive ConCORD-based collective checkpoint ser-
vice as described in Section 6.1. We also consider a batch
ConCORD-based collective checkpoint. These results are
measured on Old-cluster.

In Figure 15 we fix the number of nodes and SEs while
we increase the memory size of each SE. This creates more
work per node. The response times of all of the checkpoint-
ing implementations increase linearly with the amount of
memory we are checkpointing, as we would expect.2 The
collective checkpointing service is faster than raw with gzip,
but slower than the simple raw service.

Figure 16 shows results for scaling within the expected
regime. Here, the amount of memory per SE is kept con-
stant, and the number of nodes grows with the number of
SEs. Essentially, the application uses more nodes to tackle
a larger problem. In this regime, the response time is inde-

2The plot is on a log-log scale to make it easier to see the
differences, but the curves are, in fact, linear.

34

100%

80%

60%R
a
ti
o

re
ss
io
n
�

Raw

Rawrgzip

ConCORD

40%

C
o
m
p
r

ConCORDrgzip

DoS

20%

0%

1 2 4 6 8 12 16

Number�of�Nodes�(Moldy,�1�Process/node)

(a) Moldy (considerable redundancy)
110%

100%

90%

n
�R
a
ti
o

80%

re
ss
io
n

Raw

Rawrgzip

70%C
o
m
p ConCORD

ConCORDrgzip

60%

50%

1 2 4 8 12 16

Number�of�Nodes�(1�Process/Node)

(b) Nasty (no redundancy)

Figure 14: Compression ratios for Moldy and Nasty.
4194304

RawrGzip

ConCORDrCheckpoint

262144

1048576
ConCORD Checkpoint

RawrChkpt

65536

262144

(m
s)

16384

65536

t�
T
im

e
�(

4096

16384

ck
p
o
in
t

1024

C
h
e
c

256

256 512 1024 2048 4096 8192 16384 32768256 512 1024 2048 4096 8192 16384 32768

Memory�Size�per�process�(8�hosts,�1�process/node)

Figure 15: Checkpoint response time for a fixed number of
SEs and nodes as the memory size per SE increases.

pendent of the number of nodes. All of the checkpointing
approaches scale. Similar to the earlier figure, the response
time of the collective checkpointing service is within a con-
stant of the embarrassingly parallel raw checkpointing ser-
vice. This is evidence that the asymptotic cost to adding
awareness and exploitation of memory content redundancy
across the whole parallel machine to checkpointing using the
content-aware service command is a constant.

Figure 17 shows the scaling of the collective checkpointing
service on Big-cluster. As previously,we scale up the memory
and the number of nodes simultaneously. The response time
is virtually constant (within a factor of two) from 1 to 128

65536

32768

16384

m
s)

RawrGzip

ConCORDrCheckpoint

8192

T
im

e
�(
m RawrChkpt

4096

k
p
o
in
t�
T

2048C
h
e
ck

1024

1 2 4 8 12 16 20

Number�of�Nodes�(1�process/node,�1�Gbytes/process)

Figure 16: Checkpoint response time as a function of the
number of SEs as the number of nodes increases with the
memory being checkpointed.

!""#

$""#

%""#

&""#

'""#

(""#

)""#

*""#

+# !# %#)# +'# $!# '%# +!)#

!
"
#
$%
&
'
()
*+
,
(-

#
+.
-
/0
+

12-3#4+'5+1'6#/+

7)89+:;+()$4#</#+54'-+=+

*'+=:>+)'6#/+

Figure 17: Checkpoint response time on Big-cluster.

nodes, supporting the case that a scalable application service
can be effectively built on top of the content-aware service
command architecture.

7. CONCLUSIONS
We have made the case for factoring out system-wide

memory content-tracking into a separate platform service on
top of which application services can be built. ConCORD
is a proof-of-concept for such a platform service. In build-
ing ConCORD, we also developed the content-aware service
command architecture, which allows an application service
to be readily built as what is effectively a parameterized
query in the system. This greatly simplifies the construc-
tion and execution of the application service because it al-
lows us to leverage the platform service’s existing automatic
and adaptive parallel execution model.

8. REFERENCES
[1] MOLDY. http://www.ccp5.ac.uk/moldy/moldy.html.

[2] Al-Kiswany, S., Subhraveti, D., Sarkar, P., and

Ripeanu, M. VMFlock: virtual machine co-migration
for the cloud. In Proceedings of the 20th international
symposium on High performance distributed computing
(HPDC’11) (June 2011).

[3] Arcangeli, A., Eidus, I., and Wright, C.

Increasing memory density by using KSM. In
Proceedings of the Linux Symposium (OLS’09) (July
2009).

[4] Bae, C., Xia, L., Dinda, P., and Lange, J.

Dynamic adaptive virtual core mapping to improve

35

power,energy, and performance in multi-socket
multicores. In Proceedings of the 21st ACM
Symposium on High-performance Parallel and
Distributed Computing (HPDC 2012) (June 2012).

[5] Biswas, S., de Supinski, B. R., Schulz, M.,

Franklin, D., Sherwood, T., and Chong, F. T.

Exploiting data similarity to reduce memory
footprints. In Proceedings of the 25th IEEE
International Symposium on Parallel and Distributed
Systems (IPDPS’11) (May 2011).

[6] Dabek, F. A Distributed Hash Table. PhD thesis,
Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2005.

[7] Deshpande, U., Wang, X., and Gopalan, K. Live
gang migration of virtual machines. In Proceedings of
the 20th international symposium on High performance
distributed computing (HPDC’11) (June 2011).

[8] Gupta, D., Lee, S., Vrable, M., Savage, S.,

Snoeren, A. C., Varghese, G., Voelker, G. M.,

and Vahdat, A. Difference engine: Harnessing
memory redundancy in virtual machines. In
Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’08) (December 2008).

[9] Ilsche, T., Schuchart, J., Cope, J., Kimpe, D.,

Jones, T., Knoepfer, A., Iskra, K., Ross, R.,

Nagel, W., and Poole, S. Enabling event tracing at
leadership-class scale through i/o forwarding
middleware. In Proceedings of the 21st ACM
International Symposium on High-performance
Parallel and Distributed Computing (HPDC’12) (June
2012).

[10] Kloster, J., Kristensen, J., and Mejlholm, A.

On the feasibility of memory sharing: Content-based
page sharing in the xen virtual machine monitor.
Tech. rep., Master Thesis, Department of Computer
Science, Aalborg University, 2006.

[11] Lange, J., Pedretti, K., Hudson, T., Dinda, P.,

Cui, Z., Xia, L., Bridges, P., Gocke, A.,

Jaconette, S., Levenhagen, M., and

Brightwell, R. Palacios and kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In Proceedings of the 24th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS’10) (April 2010).

[12] Levy, S., Ferreira, K. B., Bridges, P. G.,

Thompson, A. P., and Trott, C. An examination
of content similarity within the memory of hpc
applications. Tech. Rep. SAND2013-0055, Sandia
National Laboratory, 2013.

[13] Li, T., Zhou, X., Brandstatter, K., Zhao, D.,

Wang, K., Rajendran, A., Zhang, Z., and Raicu,

I. ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table. In
Proceedings of the 27th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’13)
(May 2013).

[14] Mi lós, G., Murray, D. G., Hand, S., and

Fetterman, M. A. Satori: Enlightened page sharing.
In Proceedings of the 2009 conference on USENIX
Annual technical conference (USENIX’09) (June
2009).

[15] Nicolae, B., and Cappello, F. Ai-ckpt: Leveraging
memory access patterns for adaptive asynchronous
incremental checkpointing. In Proceedings of the 22nd
ACM International Symposium on High-performance
Parallel and Distributed Computing (HPDC’13) (June
2013).

[16] Riteau, P., Morin, C., and Priol, T. Shrinker:
Improving Live Migration of Virtual Clusters over
WANs with Distributed Data Deduplication and
Content-Based Addressing. In Proceedings of the 17th
International European Conference on Parallel and
Distributed Computing (EuroPar’11) (August 2011).

[17] Stoica, I., Morris, R., Karger, D. R., Kaashoek,

M. F., and Balakrishnan, H. Chord: A scalable
peer-to-peer lookup service for internet applications.
In Proceedings of ACM SIGCOMM’01 (August 2001).

[18] Vrable, M., Ma, J., Chen, J., Moore, D.,

Vandekieft, E., Snoeren, A. C., Voelker, G. M.,

and Savage, S. Scalability, fidelity, and containment
in the potemkin virtual honeyfarm. In Proceedings of
the 20th ACM Symposium on Operating Systems
Principles (SOSP’05) (October 2005).

[19] Waldspurger, C. A. Memory resource management
in vmware esx server. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI’02) (December 2002).

[20] Wood, T., Tarasuk-Levin, G., Shenoy, P. J.,

Desnoyers, P., Cecchet, E., and Corner, M. D.

Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers. In Proceedings
of the 5th International Conference on Virtual
Execution Environments (VEE’09) (March 2009).

[21] Wozniak, J. M., Jacobs, B., Latham, R., Lang,

S., Son, S. W., and Ross., R. C-mpi: A dht
implementation for grid and hpc environments. Tech.
Rep. ANL/MCS-P1746-0410, Argonne National
Laboratory, 2010.

[22] Xia, L. ConCORD: Tracking and Exploiting
Cross-Node Memory Content Redundancy in
Large-Scale Parallel Systems. PhD thesis, Department
of Electrical Engineering and Computer Science,
Northwestern University, July 2013. Available as
Technical Report NWU-EECS-13-05.

[23] Xia, L., and Dinda, P. A case for tracking and
exploiting memory content sharing in virtualized
large-scale parallel systems. In Proceedings of the 6th
International Workshop on Virtualization Technologies
in Distributed Computing (VTDC’12) (June 2012).

36

