
A Case for Transforming Parallel Runtimes
Into Operating System Kernels

Kyle C. Hale and Peter A. Dinda
{k-hale, pdinda}@northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University

ABSTRACT
The needs of parallel runtime systems and the increasingly
sophisticated languages and compilers they support do not
line up with the services provided by general-purpose OSes.
Furthermore, the semantics available to the runtime are lost
at the system-call boundary in such OSes. Finally, because
a runtime executes at user-level in such an environment, it
cannot leverage hardware features that require kernel-mode
privileges—a large portion of the functionality of the ma-
chine is lost to it. These limitations warp the design, imple-
mentation, functionality, and performance of parallel run-
times. We summarize the case for eliminating these com-
promises by transforming parallel runtimes into OS kernels.
We also demonstrate that it is feasible to do so. Our evi-
dence comes from Nautilus, a prototype kernel framework
that we built to support such transformations. After de-
scribing Nautilus, we report on our experiences using it to
transform three very different runtimes into kernels.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.1.3
[Programming Techniques]: Concurrent Programming—
parallel programming

Keywords
hybrid runtimes, HRTs, parallel runtimes, Nautilus

1. INTRODUCTION
Modern parallel runtimes are systems that oper-

ate in user mode and run above the system call interface of
a general-purpose kernel. While this facilitates portability

This project is made possible by support from Sandia Na-
tional Laboratories through the Hobbes Project, which is
funded by the 2013 Exascale Operating and Runtime Sys-
tems Program under the Office of Advanced Scientific Com-
puting Research in the United States Department Of En-
ergy’s Office of Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749264..

and simplifies the creation of some functionality, it also has
consequences that warp the design and implementation of
the runtime and affect its performance, efficiency, and scal-
ability. First, the runtime is deprived of the use of hardware
features that are available only in kernel mode. This is a
large portion of the machine. The second consequence is
that the runtime must use the abstractions provided by the
kernel, even if the abstractions are a bad fit. Finally, the
kernel has minimal access to the information available to
the parallel runtime or to the language implementation it
supports.

The complexity of modern hardware is rapidly grow-
ing. In high-end computing, it is widely anticipated that
exascale machines will have at least 1000-way parallelism at
the node level. Even today’s high-end homogeneous nodes,
such as the one we use for evaluation in this paper, have
64 or more cores or hardware threads arranged on top of
a complex intertwined cache hierarchy that terminates in 8
or more memory zones with non-uniform access. Today’s
heterogeneous nodes include accelerators, such as the Intel
Xeon Phi, that introduce additional coherence domains and
memory systems. Server platforms for cloud and datacenter
computing, and even desktop and mobile platforms are see-
ing this simultaneous explosion of hardware complexity and
the need for parallelism to take advantage of the hardware.
How to make such complex hardware programmable, in par-
allel, by mere humans is an acknowledged open challenge.

Some modern runtimes, such as the Legion run-
time [1, 22] we consider in this paper, already address this
challenge by creating abstractions that programmers or the
compilers of high-level languages can target, abstractions
that mirror the machine in portable ways. Very high-level
parallel languages can let us further decouple the expression
of parallelism from its implementation. Parallel runtimes
such as Legion, and the runtimes for specific parallel lan-
guages share many properties with operating system (OS)
kernels, but suffer by not being kernels. With current devel-
opments, particularly in virtualization and hardware parti-
tioning, we are in a position to remove this limitation. In
this paper, we give an overview of the case for transform-
ing parallel runtime systems into kernels, and report on our
initial results with a framework to facilitate just that.

We argue that for the specific case of a parallel run-
time, the user/kernel abstraction itself, which dates back to
Multics, is not a good one. It is important to understand the
kernel/user abstraction and its implications. This abstrac-
tion is an incredibly useful technique to enforce isolation
and protection for processes, both from attackers and from

each other. This not only enables increased security, but also
reduces the impact of bugs and errors on the part of the pro-
grammer. Instead, programmers place a higher level of trust
in the kernel, which, by virtue of its smaller codebase and
careful design, ensures that the machine remains uncompro-
mised. However, because the kernel must be all things to
all processes, the kernel has grown dramatically bigger over
time, as has its responsibilities within the system. This has
forced kernel developers to provide a broad range of services
to an even broader range of applications. At the same time,
the basic model and core services have necessarily ossified
in order to maintain compatibility with the widest range
of hardware and software. In a general-purpose kernel, the
needs of parallelism and a parallel runtime have not been
first-order concerns.

Runtime implementors often complain about the
limitations imposed by a general-purpose kernel. While there
are many examples of significant performance enhancements
within general-purpose kernels, and others are certainly pos-
sible to support parallel runtimes better, a parallel runtime
as a user level component is fundamentally constrained by
the kernel/user abstraction. In contrast, as a kernel, a par-
allel runtime would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We show in this paper
that, in fact, breaking free from the user/kernel abstraction
can produce measurable benefits for parallel runtimes.

At first glance, transforming a parallel runtime into
a kernel seems to be a particularly daunting task because
language runtimes often have many dependencies on libraries
and system calls. It is important to be clear that we are fo-
cused on the performance or energy-critical core of the run-
time where the bulk of execution time is spent, not on the
whole functional base of the runtime. The core of the run-
time has considerably fewer dependencies and thus is much
more feasible to transform into a kernel. As we describe in
Section 2, virtualization and hardware partitioning in var-
ious forms have the potential to allow us to partition the
runtime so the non-core elements run at user-level on top
of the full software stack they expect, while the core of the
runtime runs as a kernel. We refer to such a kernel as a hy-
brid runtime (HRT) as it is a hybrid between a kernel and
a runtime. Our focus in this paper is on the HRT.

We make the following contributions:

• We describe the limitations of building parallel run-
time systems on top of general-purpose operating sys-
tems and how these limitations are avoided if the run-
time is a kernel. That is, we motivate HRTs.

• We introduce Nautilus, a prototype kernel framework
designed to facilitate the porting of existing parallel
runtimes to run as kernels, as well as the implementa-
tion of new parallel runtimes directly as kernels. That
is, we create an essential tool for easily making HRTs.

• We summarize our experiences in using Nautilus to
transform three runtimes into kernels, specifically Le-
gion, NESL, and a new language implementation named
NDPC that is being co-developed with Nautilus. That
is, we make HRTs, demonstrating their feasibility.

Readers should refer to our technical report [16].
for a more detailed discussion than is possible in this sum-
mary.

Parallel&App&

Parallel&Run,-me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,-me&
(HRT)&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&Run,-me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,-me&
(HRT)&

User%Mode%

Kernel%Mode%

Hybrid&Virtual&Machine&(HVM)&

Specialized&
Virtualiza-on&
Model&

General&
Virtualiza-on&
Model&

Pe
rf
or
m
an

ce
*P
at
h*

Parallel&App&

Legacy*Path*

(a) Current Model (b) Hybrid Run-time Model

(c) Hybrid Run-time Model Within a Hybrid Virtual Machine

Pe
rf
or
m
an

ce
*P
at
h*

Figure 1: Overview of Hybrid Runtime (HRT) approach:
(a) current model used by parallel runtimes, (b) proposed
HRT model, and (c) proposed HRT model combined with a
hybrid virtual machine (HVM).

2. ARGUMENT
A language’s runtime is a system (typically) charged

with two major responsibilities. The first is allowing a pro-
gram written in the language to interact with its environ-
ment (at runtime). This includes access to underlying soft-
ware layers (e.g., the OS) and the machine itself. The run-
time abstracts the properties of both and impedance-matches
them with the language’s model. The challenges of doing
so, particularly for the hardware, depend considerably on
just how high-level the language is—the larger the gap be-
tween the language model and the hardware and OS mod-
els, the greater the challenge. At the same time, however,
a higher-level language has more freedom in implementing
the impedance-matching.

The second major responsibility of the runtime is
carrying out tasks that are hidden from the programmer
but necessary to program operation. Common examples in-
clude garbage collection in managed languages, JIT compi-
lation or interpretation for compilers that target an abstract
machine, exception management, profiling, instrumentation,
task and memory mapping and scheduling, and even man-
agement of multiple execution contexts or virtual processors.
While some runtimes may offer more or less in the way of fea-
tures, they all provide the programmer with a much simpler
view of the machine than if he were to program it directly.

As a runtime gains more responsibilities and fea-
tures, the lines between the runtime and the OS often be-
come blurred. For example, Legion manages execution con-
texts (an abstraction of cores or hardware threads), regions
(an abstraction of NUMA and other complex memory mod-
els), task to execution context mapping, task scheduling
with preemption, and events. In the worst case this means
that the runtime and the OS are actually trying to provide
the same functionality. In fact, what we have found is that
in some cases this duplication of functionality is brought

about by inadequacies of or grievances with the OS and the
services it provides. A common refrain of runtime develop-
ers is that they want the kernel to simply give them a subset
of the machine’s resources and then leave them alone. They
attempt to approximate this as best they can within the
confines of user space and the available system calls.

That this problem would arise is not entirely too
surprising. After all, the operating system is, prima fa-
cie, designed to provide adequate performance for a broad
range of general-purpose applications. However, when ap-
plications demand more control of the machine, the OS can
often get in the way, whether due to rigid interfaces or to
mismatched priorities in the design of those interfaces. Not
only may the kernel’s abstractions be at odds with the run-
time, it may also completely prevent the runtime from using
hardware features that might otherwise significantly improve
performance or functionality. If it provides access to these
features, it does so through a system call, which—even if
it has an appropriate interface for the runtime—nonetheless
exacts a toll for use, as the system call mechanism itself has
a cost. Similarly, even outside system calls, while the kernel
might build an abstraction on top of a fast hardware mech-
anism, an additional toll is taken. For example, signals are
simply more expensive than interrupts, even if they are used
to abstract an interrupt.

A runtime that is a kernel will have none of these
issues. It would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We want to support the
construction of such runtimes, which we call Hybrid Run-
times (HRTs), as they are hybrids of parallel runtimes and
kernels. To do so, we will provide basic kernel functional-
ity on a take-it-or-leave-it basis to make the process easier.
We also want such runtime kernels to have available the full
functionality of the general-purpose OS for components not
central to runtime operation.

Figure 1 illustrates three different models for sup-
porting a parallel runtime system. The current model (a)
layers the parallel runtime over a general-purpose kernel.
The parallel runtime runs in user mode without access to
privileged hardware features and uses a kernel API designed
for general-purpose computations. In the Hybrid Runtime
model (b) that we describe in this paper the parallel run-
time is integrated with a specialized kernel framework such
as Nautilus. The resulting HRT runs exclusively in kernel
mode with full access to all hardware features and with ker-
nel abstractions designed specifically for it. Notice that both
the runtime and the parallel application itself are now be-
low the kernel/user line. Figure 1(b) is how we run Legion,
NESL, and NDPC programs in this paper. We refer to this
as the performance path.

A natural concern with the structure of Figure 1(b)
is how to support general-purpose OS features. For exam-
ple, how do we open a file? We do not want to reinvent
the wheel within an HRT or a kernel framework such as
Nautilus in order to support kernel functionality that is not
performance critical. Figure 1(c) is our response, the Hybrid
Virtual Machine (HVM). In an HVM, the virtual machine
monitor (VMM) or other software will partition the physical
resources provided to a guest, such as cores and memory into
two parts. One part will support a general purpose virtual-
ization model suitable for executing full OS stacks and their
applications, while the second part will support a virtual-

ization model specialized to the HRT and allowing it direct
hardware access. The specialized virtualization model will
enable the performance path of the HRT, while the general
virtualization model and communication between the two
parts of the HVM will enable a legacy path for the runtime
and application that will let it leverage the capabilities of the
general-purpose kernel for non-performance critical work.

An effort to build this HVM capability into the
Palacios VMM [18] is currently underway in our group as
part of the Hobbes exascale software project [9]. However,
it is important to note that other paths exist. For example,
Guarded Modules [17] could be used to give portions of a
general-purpose virtualization model selective privileged ac-
cess to hardware, including I/O devices. As another exam-
ple, Dune [2] uses hardware virtualization features to provide
privileged CPU access to Linux processes. The HVM could
be built on top of Dune. The Pisces system [21] would en-
able an approach that could eschew virtualization altogether
by partitioning the hardware and booting multiple kernels
simultaneously without virtualization. Our focus in this pa-
per is not on the HVM capability, but rather on the HRT.

3. NAUTILUS
Nautilus1 is a small prototype kernel framework

that we built to support the HRT model, and is thus the
first of its kind. We designed Nautilus to meet the needs
of parallel runtimes that may use it as a starting point for
taking full advantage of the machine. We chose to mini-
mize imposition of abstractions to support general-purpose
applications in lieu of flexibility and small codebase size. As
we will show in Sections 4–5, this allowed us to port three
very different runtimes to Nautilus and the HRT model in
a very reasonable amount of time. Note that while these
initial ports were carried out manually, we are currently in-
vestigating how to automate this process.

As Nautilus is a prototype for HRT research, we
targeted the most popular architecture for high-performance
and parallel computing, x86 64. However, given the very
tractable size of the codebase, introducing platform porta-
bility would not be too challenging. Nautilus currently has
been tested on a range of Intel and AMD machines, as well
as on the Palacios VMM. A port to the Intel Phi is under-
way. The machine used for performance evaluation in this
paper is a 4 socket, 8 NUMA domain, 64 core server based
on 2.1GHz AMD Opteron 6272 (Interlagos) processors and
128 GB of memory.

The design of Nautilus was heavily influenced by
early research on microkernels [19, 6, 5] and even more by
Engler and others’ work on exokernels [12, 13]. Like Nau-
tilus, the exokernel concept involves an extremely thin kernel
layer that only serves to provide isolation and basic primi-
tives. Higher-level abstractions are delegated to user-mode
library OSes. Nautilus can be thought of as a kind of library
OS for a parallel runtime, but we shed the notion of privilege
levels for the sake of functionality and performance.

We stress that the design of Nautilus is, first and
foremost, driven by the needs of the parallel runtimes that
use it. Nevertheless, it is complete enough to leverage the
full capabilities of a modern 64-bit x86 machine to support

1Named after the submarine-like, mysterious vessel from
Jules Verne’s Twenty Thousand Leagues Under the Sea.

Runtime

Paging Threads Bootstrap Timers

Hardware

IRQs Console Nautilus Topology Sync.

Parallel Application
Kernel Mode

User Mode

HRT

Kernel

Events

Figure 2: Structure of Nautilus.

Language SLOC
C 22697
C++ 133
x86 Assembly 428
Scripting 706

Figure 3: Source lines of code for the Nautilus kernel.

three runtimes, one of which (Legion) is quite complex and
is used in practice today.

Currently, Nautilus is designed to boot the ma-
chine, discover its capabilities, devices, and topology, and
immediately hand control over to the runtime. Figure 2
shows the core functionality provided by Nautilus. Current
features include multi-core support, Multiboot2-compliant
modules, synchronization primitives, threads, IRQs, timers,
paging, NUMA awareness, IPIs, and a console. A port to
the Intel Xeon Phi is currently underway.

We spent a good deal of time measuring the capa-
bilities that affect the performance of the HRTs we built,
and were pleased to find that the Nautilus can, in many
cases, significantly outperform the only other viable OS for
these runtimes, i.e. Linux. For example, Nautilus enjoys
a speedup of 30x over Linux for light-weight thread cre-
ation. Some of the runtimes we investigated made heavy
use of event notification mechanisms. We found that we
could provide significantly lighter-weight event notification
using hardware features, such as inter-processor interrupts
(IPIs), that are not available in user-space. To give an idea
of the magnitude of the difference, an event wakeup using an
IPI to “kick” the processor waiting for the event produced
an 8x speedup over the traditional condition variable imple-
mentation.

3.1 Complexity
We now make a case for the potential for Nautilus

as a vehicle for HRTs, setting aside the attractive raw per-
formance of its primitives and focusing on implementation
complexity.

The process of building Nautilus as a minimal ker-
nel layer with support for a complex, modern, many-core
x86 machine took six person-months of effort on the part of
seasoned OS/VMM kernel developers. Figure 3 shows that
Nautilus is fairly compact at ∼24,000 lines of code.

Building a kernel, however, was not our main goal.
Our main focus was supporting the porting and construc-
tion of runtimes for the HRT model. The Legion runtime,
discussed at length in the next section, was the most chal-
lenging and complex of the three runtimes to bring up in
Nautilus. Legion is about double the size of Nautilus in

terms of codebase size, consisting of about 43000 lines of
C++. Porting Legion and the other runtimes took a total
of about four person-months of effort. Most of this work
went into understanding Legion and its needs. Only about
800 lines of code needed to be added to Nautilus to support
Legion and the other two runtimes. This is tiny considering
the size of the Legion runtime and the others.

This suggests that exploring the HRT model for
existing or new parallel runtimes, especially with a small
kernel like Nautilus designed with this in mind, is a perfectly
manageable task for an experienced systems researcher or
developer. We hope that these results will encourage others
to similarly explore the benefits of HRTs.

4. EXAMPLE: LEGION
The Legion runtime system is designed to provide

applications with a parallel programming model that maps
well to heterogeneous architectures [1, 22]. Whether the ap-
plication runs on a single node or across nodes—even with
GPUs—the Legion runtime can manage the underlying re-
sources so that the application does not have to. There are
several reasons why we chose to port Legion to the HRT
model. The first is that the primary focus of the Legion
developers is on the design of the runtime system. This
not only allows us to leverage their experience in design-
ing runtimes, but also gives us access to a system designed
with experimentation in mind. Further, the codebase has
reached the point where the developers’ ability to rapidly
prototype new ideas is hindered by abstractions imposed by
the OS layer. Another reason we chose Legion is that it is
quickly gaining adoption among the HPC community, in-
cluding within the DOE’s exascale effort. The third reason
is that we have corresponded directly with the Legion de-
velopers and discussed with them issues with the OS layer
that they found when developing their runtime.

Under the covers, Legion bears many similarities
to an operating system and concerns itself with many is-
sues that an OS must deal with, including task scheduling,
isolation, multiplexing of hardware resources, and synchro-
nization. As we discussed in Section 2, the way that a com-
plex runtime like Legion attempts to manage the machine
to suit its own needs can often conflict with the services and
abstractions provided by the OS.

As Legion is designed for heterogeneous hardware,
including multi-node clusters and machines with GPUs, it is
designed with a multi-layer architecture. It is split up into
the high-level runtime and the low-level runtime. The high-
level runtime is portable across machines, and the low-level
runtime contains all of the machine specific code. There is
a separate low-level implementation called the shared low-

level runtime. This is the low-level layer implemented for
shared memory machines. As we are interested in single-
node performance, we naturally focused our efforts on the
shared low-level Legion runtime. All of our modifications to
Legion when porting it to Nautilus were made to the shared
low-level component. Outside of optimizations using hard-
ware access, and understanding the needs of the runtime,
the port was fairly straight-forward.

Legion, in its default user-level implementation, uses
pthreads as representations of logical processors, so the low-
level runtime makes fairly heavy use of the pthreads inter-
face. In order to transform Legion into a kernel-level HRT,
we simply had to provide a similar interface in Nautilus.
After porting Legion into Nautilus, we then began to ex-
plore how Legion could benefit from unrestricted access to
the machine.

We now present a brief evaluation of our transfor-
mation of the user-level Legion runtime into a kernel using
Nautilus, highlighting the realized and potential benefits of
having Legion operate as an HRT. Our port is based on
Legion as of October 4, 2014, specifically, commit e22962d,
which can be found via the Legion project web site.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

2 4 8 16 32 62

R
u

n
ti
m

e
 (

s
)

Legion Processors (threads)

Nautilus
Linux

Figure 4: Run time of Legion circuit simulator versus core
count.

The Legion distribution includes numerous test codes,
as well as an example parallel application that is a circuit
simulator. We used the test codes to check the correctness of
our work and the circuit simulator as our initial performance
benchmark. Legion creates an abstract machine that con-
sists of a set of cooperating threads that execute work when
it is ready. These are essentially logical processors. The
number of such threads can vary, representing an abstract
machine of a different size.

We ran the circuit simulator with a medium prob-
lem size (100000 steps) and varied the number of cores Le-
gion used to execute Legion tasks. Figure 4 shows the re-
sults. The x-axis shows the number of threads/logical pro-
cessors. The thread count only goes up to 62 because the
Linux version would hang at higher core counts, we believe
due to a livelock situation in Legion’s interaction with Linux.
Notice how closely, even with no hardware optimizations,
Nautilus tracks the performance of Linux. The difference
between the two actually increases when scaling the number
of threads. They are essentially at parity, even though Nau-
tilus and the Legion port to it are still in their early stages.
Nautilus is slightly faster at 62 cores.

2http://legion.stanford.edu

0.5 %

1 %

1.5 %

2 %

2.5 %

3 %

3.5 %

4 %

4.5 %

5 %

2 4 8 16 32 62

S
p

e
e

d
u

p

Figure 5: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that
executes Legion tasks with interrupts disabled.

To experiment with hardware functionality in the
HRT model, we wanted to take advantage of a capability
that normally is not available in Linux at user-level. We
decided to use the capability to disable interrupts. In the
Legion HRT, there are no other threads running besides the
threads that Legion creates, and so there is really no need
for timer interrupts (or device interrupts). Observing that
interrupts can cause interference effects at the level of the
instruction cache and potentially in task execution latency,
we inserted a call to disable interrupts when Legion invokes
a task (in this case the task to execute a function in the
circuit simulator). Figure 5 shows the results, where the
speedup is over the baseline case where Legion is running
in Nautilus but without any change in the default interrupt
policy. While this extremely simple change involved only
adding two short lines of code, we can see a measurable
benefit that scales with the thread count, up to 5% at 62
cores.

We believe that this is a testament to the promise
of the HRT model. While the Legion port to Nautilus is still
in its early stages, there is a large opportunity for exploring
other potential hardware optimizations to improve runtime
performance.

5. EXAMPLE: NESL AND NDPC
NESL [7] is a highly influential implementation of

nested data parallelism developed at CMU in the ’90s. Very
recently, it has influenced the design of parallelism in Man-
ticore [14, 15], Data Parallel Haskell [10, 11], and arguably
the nested call extensions to CUDA [20]. NESL is a func-
tional programming language, using an ML-style syntax that
allows the implementation of complex parallel algorithms
in a very compact and high level way, often 100s or 1000s
of times more compactly than using a low-level language
such as C+OpenMP. NESL programs are compiled into ab-
stract vector operations known as VCODE through a pro-
cess known as flattening. An abstract machine called a
VCODE interpreter then executes these programs on phys-
ical hardware. Flattening transformations and their ability
to transform nested (recursive) data parallelism into “flat”
vector operations while preserving the asymptotic complex-
ity of programs is a key contribution of NESL [8] and very
recent work on using NESL-like nested data parallelism for

GPUs [4] and multicore [3] has focused on extending flat-
tening approaches to better match such hardware.

As a proof of concept, we have ported NESL’s exist-
ing VCODE interpreter to Nautilus, allowing us to run any
program compiled by the out-of-the-box NESL compiler in
kernel mode on x86 64 hardware. We also ported NESL’s
sequential implementation of the vector operation library
CVL, which we have started parallelizing. Currently, point-
wise vector operations execute in parallel.

We have created a different implementation of a
subset of the NESL language which we refer to as “Nested
Data Parallelism in C/C++” (NDPC). This is implemented
as a source-to-source translator whose input is the NESL
subset and whose output is C++ code (with C bindings)
that uses recursive fork/join parallelism instead of NESL’s
flattened vector parallelism. It ties specifically to a fast
thread fork mechanism implemented in Nautilus.

We believe that our transformations of NESL and
NDPC into the HRT model show that adapting a parallel
language to this model does not require a monumental effort.
This provides an opportunity for parallel runtime develop-
ers to quickly prototype their runtime implementation with
unrestricted access to hardware using Nautilus.

6. CONCLUSIONS
We have summarized the case for transforming par-

allel runtimes into operating system kernels, forming hybrid
runtimes (HRTs). The motivations for HRTs include the in-
creasing complexity of hardware, the convergence of parallel
runtime concerns and abstractions in managing such hard-
ware, and the limitations of executing the runtime at user-
level, both in terms of limited hardware access and limited
control over kernel abstractions. We introduced Nautilus, a
prototype kernel framework to facilitate the construction of
HRTs. Using Nautilus, we were able to successfully trans-
form three very different runtimes into HRTs. For the Le-
gion runtime, we were able to exceed Linux performance
with simple techniques that can only be done in the ker-
nel. Building Nautilus was a six person-month effort, while
porting the runtimes was a four person-month effort. It is
somewhat remarkable that even with a fairly nascent ker-
nel framework, just by dropping the runtime down to kernel
level and taking advantage of a kernel-only feature in two
lines of code, we can exceed performance on Linux, which
has undergone far more substantial development and tuning.

7. REFERENCES
[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:

Expressing locality and independence with logical regions. In
Proceedings of Supercomputing (SC 2012), Nov. 2012.

[2] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI
2012), pages 335–348, Oct. 2012.

[3] L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, S. Rosen, and
A. Shaw. Data-only flattening for nested data parallelism. In
Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP
2013), pages 81–92, Feb. 2013.

[4] L. Bergstrom and J. Reppy. Nested data-parallelism on the

GPU. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming (ICFP
2012), pages 247–258, Sept. 2012.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, safety and performance in the SPIN operating

system. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP 1995), pages 267–283,
Dec. 1995.

[6] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, R. P.
Draves, R. W. Dean, A. Forin, J. Barrera, H. Tokuda,
G. Malan, et al. Microkernel operating system architecture and
Mach. In Proceedings of the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures, pages 11–30,
Apr. 1992.

[7] G. E. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and
M. Zagha. Implementation of a portable nested data-parallel
language. Journal of Parallel and Distributed Computing,
21(1):4–14, Apr. 1994.

[8] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In Proceedings of the
International Conference on Functional Programming
(ICFP), May 1996.

[9] R. Brightwell, R. Oldfield, D. Bernholdt, A. Maccabe,
E. Brewer, P. Bridges, P. Dinda, J. Dongarra, C. Iancu,
M. Lang, J. Lange, D. Lowenthal, F. Mueller, K. Schwan,
T. Sterling, and P. Teller. Hobbes: Composition and
virtualization as the foundations of an extreme-scale OS/R. In

Proceedings of the 3rd International Workshop on Runtime
and Operating Systems for Supercomputers (ROSS 2013),
June 2013.

[10] M. Chakravarty, G. Keller, R. Leshchinskiy, and
W. Pfannenstiel. Nepal—nested data-parallelism in haskell. In
Proceedings of the 7th International Euro-Par Conference
(EUROPAR), Aug. 2001.

[11] M. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and
S. Marlow. Data parallel haskell: A status report. In
Proceedings of the Workshop on Declarative Aspects of
Multicore Programming, Jan. 2007.

[12] D. R. Engler and M. F. Kaashoek. Exterminate all operating

system abstractions. In Proceedings of the 5th Workshop on
Hot Topics in Operating Systems (HotOS 1995), pages 78–83,
May 1995.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP 1995), pages 251–266,
Dec. 1995.

[14] M. Fluet, N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Status report: The manticore project. In Proceedings of the
2007 ACM SIGPLAN Workshop on ML, October 2007.

[15] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly

threaded parallelism in manticore. In Proceedings of the 13th

ACM SIGPLAN International Conference on Functional
Programming (ICFP), Sept. 2008.

[16] K. C. Hale and P. Dinda. Details of the case for transforming
parallel runtimes into operating system kernels. Technical
Report NU-EECS-15-01, Department of Computer Science,
Northwestern University, Apr. 2015.

[17] K. C. Hale and P. A. Dinda. Guarded modules: Adaptively
extending the VMM’s privilege into the guest. In Proceedings
of the 11th International Conference on Autonomic
Computing (ICAC 2014), pages 85–96, June 2014.

[18] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia,
P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, and
R. Brightwell. Palacios and kitten: New high performance
operating systems for scalable virtualized and native
supercomputing. In Proceedings of the 24th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2010), Apr. 2010.

[19] J. Liedtke. On micro-kernel construction. In Proceedings of the

15th ACM Symposium on Operating Systems Principles
(SOSP 1995), pages 237–250, Dec. 1995.

[20] NVIDIA Corporation. Dynamic parallelism in CUDA, Dec.
2012.

[21] J. Ouyang, B. Kocoloski, J. Lange, and K. Pedretti. Achieving
performance isolation with lightweight co-kernels. In
Proceedings of the 24th International ACM Symposium on
High-Performance Parallel and Distributed Computing
(HPDC 2015), June 2015.

[22] S. Treichler, M. Bauer, and A. Aiken. Language support for
dynamic, hierarchical data partitioning. In Proceedings of the
2013 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2013), pages 495–514, Oct. 2013.

	Introduction
	Argument
	Nautilus
	Complexity

	Example: Legion
	Example: NESL and NDPC
	Conclusions
	References

