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Abstract
Scientific (and other) applications are critically dependent on calcu-
lations done using IEEE floating point arithmetic. A number of con-
cerns have been raised about correctness in such applications given
the numerous gotchas the IEEE standard presents for developers, as
well as the complexity of its implementation at the hardware and
compiler levels. The standard and its implementations do provide
mechanisms for analyzing floating point arithmetic as it executes,
making it possible to find and track problematic operations. How-
ever, this capability is seldom used in practice. In response, we have
developed FPSpy, a tool that provides this capability when operating
underneath existing, unmodified x64 application binaries on Linux,
including those using thread- and process-level parallelism. FPSpy
can observe application behavior without any cooperation from the
application or developer, and can potentially be deployed as part
of a job launch process. We present the design, implementation,
and performance evaluation of FPSpy. FPSpy operates conserva-
tively, getting out of the way if the application itself begins to use
any of the OS or hardware features that FPSpy depends on. Its
overhead can be throttled, allowing a tradeoff between which and
how many unusual events are to be captured, and the slowdown
incurred by the application, with the low point providing virtually
zero slowdown. We evaluated FPSpy by using it to methodically
study seven widely-used applications/frameworks from a range of
domains (five of which are in the NSF XSEDE top-20), as well as the
NAS and PARSEC benchmark suites. All told, these comprise about
7.5 million lines of source code in a wide range of languages, and
parallelism models (including OpenMP and MPI). FPSpy was able
to produce trace information for all of them. The traces show that
problematic floating point events occur in both the applications
and the benchmarks. Analysis of the rounding behavior captured
in our traces also suggests the feasibility of an approach to adding
adaptive precision underneath existing, unmodified binaries.

CCS Concepts
• Software and its engineering → Correctness; Software

reliability; Operational analysis; • Mathematics of comput-
ing → Numerical analysis; Arbitrary-precision arithmetic.
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1 Introduction
Virtually all applications in scientific and engineering domains, as
well as applications built on machine learning techniques, make
extensive use of IEEE 754 floating point arithmetic through its nu-
merous implementations. Floating point has proven to be extremely
effective at enabling high performance while providing behavior
that is sensible to a knowledgeable developer.

However, despite a superficial similarity, floating point arith-
metic is not real number arithmetic, and the intuitive framework
one might carry forward from real number arithmetic rarely ap-
plies. Furthermore, as hardware and compiler optimizations rapidly
evolve, it is challenging even for a knowledgeable developer to keep
up. In short, floating point and its implementations present sharp
edges for its users, and the edges are getting sharper. Recently, a
first-of-its-kind study [15] evaluated ∼250 developers to get at their
understanding of the floating point standard itself, as well as several
aspects of implementations. The results were quite mixed. In a quiz
of floating point’s “gotcha”s, participants performed similarly to
what would be expected by chance. In small quiz of implementation
aspects, most participants chose “don’t know”. Finally, participants
were arguably less suspicious than would be ideal of the various
events that could occur during execution, events that FPSpy specifi-
cally captures. This study suggests developers may be inadvertently
introducing problematic floating point into scientific applications.

Equally concerning, recent research has also determined that the
increasing variability of floating point implementations at the com-
piler (including optimization choices) and hardware levels is leading
to divergent scientific results. For example, NCAR had significant
issues in porting the Community Earth Science Model (CESM) to
a new platform [31], enough so that they developed their own
analysis toolchain for this specific, very important codebase [30].
Their goal is to minimize developer effort in resolving the issues of
future ports. Bentley et al have developed a general purpose tool
that creates numerous variations during the build process, runs
the variants, finds those that produce varying outputs, and then
employs a bisection process to point to the source code that is vul-
nerable to the variation [8, 42]. Through such work, and others, it
is becoming clear that the sharp edges of floating point are indeed
catching on scientific programs.

We add a new capability to this mix, namely the ability to spy
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on the floating point instructions of an existing, unmodified x64
binary running on Linux. The IEEE standard provides for discov-
ery and tracking of several events that can occur at the level of
individual operations, such as an add instruction in the ISA. This
functionality is exposed architecturally in x64 systems as part of
the SSE* and AVX* ISAs, but it can be a challenge to use. As we
note in Section 5.1, the direct use of this capability, even when
abstracted, appears to be quite rare. Our tool, FPSpy, uses this capa-
bility seamlessly “underneath” the application, without application
or developer knowledge. Any application can be traced using FP-
Spy to find which events occur, as well as to pinpoint the specific
instructions and other context that cause events. The overhead of
FPSpy varies considerably depending on what is observed.

FPSpy operates independently of the language, run-time, li-
braries, and even parallelism model of the application. Indeed, it
works with existing, unmodified application binaries, and one of
its motivating use-cases is to surreptitiously spy on the stream of
preexisting jobs on a production machine. The FPSpy capability
can operate without any user or developer cooperation.

We evaluate FPSpy by testing it on a wide range of scientific
applications and benchmarks, comprising over 7.5 million lines of
code, written in diverse languages and using threading, OpenMP,
and MPI. This evaluation also serves to produce input data for a
study of these codebases to provide data for the question of to what
extent to scientific codebases exhibit problematic floating point
behavior. Such behavior does exist.

Our contributions are as follows.

• Wepresent the design, implementation, and evaluation of the
publicly available FPSpy tool. As far as we are aware, FPSpy
is the first tool to enable the in-situ monitoring of floating
point behavior of existing, unmodified application binaries
without requiring any user or developer cooperation.
• We apply FPSpy to a range of benchmarks and applica-
tions, and in particular to large scale applications/application
frameworks of significant scientific note. FPSpy is robust.
• We find a range of possible problematic floating point be-
havior in the applications and benchmarks.
• We characterize rounding behavior in the applications and
benchmarks at the instruction level from the perspective
of building a trap-and-emulate-based system to mitigate
rounding through enhanced precision.

2 Motivation, use-cases, and requirements
The overall motivation behind FPSpy is to collect detailed data
to understand the floating point behavior of production scientific
applications with an eye toward improving those applications. We
want to bridge betweenwhat the user actually does and what the an-
alyst sees. A key requirement, which is significantly different from
related work (Section 7), is that no developer or user cooperation
can be expected (or needed).

Our motivation suggested three use-cases, which are illustrated
in Figure 1. Of these, the most demanding is spying in production
(Figure 1(a)), which drove many of our design decisions. Here, the
goal is to track track floating point behavior within production
codes as they are being used to do real science on production ma-
chines. The user would submit their job as normal. When the job is
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Figure 1: Motivating use-cases for FPSpy.

launched by the scheduler, the launch process would augment all of
the job’s processes with FPSpy. As the augmented job runs, FPSpy
would work in tandem, collecting trace data independently of the
application. From the user’s perspective, nothing would change, but
now each job would provide information for analysts and others
interested in studying and improving floating point behavior. Addi-
tionally, particularly problematic behavior could be red-flagged.

A second use-case, cloning in production (Figure 1(b)) , would
capture the job and the scheduler’s decisions at the point of job
launch, creating a submission clone. The submission clone would not
be run, but rather used for offline analysis. Again, from the user’s
perspective, nothing would have changed, and their results would
be delivered with no overhead at all. However, the submission clone
could be run later using FPSpy.

The final use-case, spying in the lab (Figure 1(c)) involves having
the analyst run the application on their own. Alternatively, the
analyst can use a submission clone (as in the previous use-case)
as a starting point, tuning the job parameters to fit the available
resources if absolutely necessary. As with spying in production, the
application is then run, augmented with FPSpy, to produce trace
data. Because the user is out of the loop, we could use FPSpy much
more aggressively, resulting in both greater slowdowns and much
more detailed trace data.

These use-cases produce the following requirements. To the best
of our knowledge, no existing tool meets them.

• FPSpy must operate on real applications, not just bench-
marks. No one cares about the floating point behavior of
benchmarks other than to what extent it might be represen-
tative of real applications.
• FPSpy must operate on existing, unmodified application bi-
naries. Recompilation/binary rewriting is unacceptable. This
is driven by the all three use-cases, since the goal is to study
the behavior of the applications as it occurs in practice. As
we noted in the introduction, it is now well understood that



Variable Explanation
LD_PRELOAD Add FPSpy to run
FPE_MODE Mode of operation (aggregate, individual)
FPE_AGGRESSIVE Controls for when to “get out of the way”
FPE_DISABLE Controls for when to “get out of the way”
FPE_EXCEPT_LIST Filter events to capture
FPE_MAXCOUNT Disable FPSpy after this many events
FPE_SAMPLE Downsample the event stream
FPE_POISSON Use Poisson temporal sampling
FPE_TIMER Select real-time or instruction time

Figure 2: The interface of FPSpy is environment variables.

compilers and hardware features can produce significant
effects on floating point behavior. As a consequence, it is es-
sential to see the exact instructions that will be executed (and,
ideally, on the exact machine on which they are executed.)
• FPSpy must be able to support applications that use shared
memory (e.g. OpenMP) and distributed memory (e.g. MPI)
parallelism. This support should be based onwidely available
kernel-level functionality, not on specific libraries/run-times.
• FPSpy must not perturb the application in any way other
than timing. This severely constrains the ways in which
FPSpy can use libraries itself. Much of the FPSpy engine will
have to be self-hosting. Additionally, timing perturbation
must be limited for the spying in production use-case.1
• FPSpy must be able to “get out of the way” the instant the
application it is observing begins to use any functionality
that FPSpy depends on. It cannot simply abort, but rather
must be able to gracefully untangle itself while allowing the
application to continue to run. This is an essential require-
ment for use in the spying in production use-case. For the
spying in the lab use case, this requirement can be relaxed
by the analyst based on their judgment.
• FPSpy’s tradeoff between overhead and information must be
adjustable. In the spying in production use case, virtually no
overhead can be permitted. On the other hand, in the cloning
in production and spying in the lab use-cases, substantial
overhead may be acceptable provided fine-grain (instruction-
level) information is extracted.

It is important to note that there is a great diversity of scientific
applications, libraries, frameworks, and even language implementa-
tions, some of which have have form of support for tracking floating
point behavior. A core goal of FPSpy is to be independent of these.
FPSpy should be applicable to any program.

3 System design
FPSpy builds on hardware features that detect exceptional floating
point events as a side-effect of normal processing. It also builds on
the standard Linux interfaces that allow capture of these events
from user level, as well as linker-level mechanisms to allow it to
interpose on programs. FPSpy is implemented entirely at the user
level and requires no special privileges to use.

1Timing perturbation means that some instructions may take longer than normal.
Changing timing can reveal the presence of preexisting race conditions in concurrent
applications. Such a race condition is a bug in the original application. FPSpy does
not have the goal of finding such a bug, but if it exists, it important to note that it has
likely already been affecting results, silently, prior to any use of FPSpy.

Condition Explanation
Inexact Result is a rounded version of true result
Underflow Result was a denorm or zero (actual result did not fit)
Overflow Result was an infinity (actual result did not fit)
Denorm Operand is a denormalized number (x64-specific)
DivideByZero Attempt to divide by zero
Invalid Operand is not a number (NaN)

Figure 3: Events observed by FPSpy are detected by hardware.

3.1 Interface
To support the use-cases of Figure 1, FPSpy has a configuration
interface based entirely on environment variables that allows it to be
wrapped around any command in any system. Given an application
launched via a complex command such as

app -i inputs -o outputs -l > app.txt

the FPSpy equivalent simply adds environment variables:
[FPSPY_VARS] app -i inputs -o outputs -l > app.txt

Note that this also allows FPSpy to be used in models where the
executable is launched in an indirect manner, such as MPI’s mpirun.
FPSpy internally handles new process and thread creations, which
inherit the environment variables, and thus the settings. Figure 2
shows the current set of environment variables used to instantiate
and control FPSpy. The only required variables are LD_PRELOAD,
which adds FPSpy, and FPE_MODE, which selects the operation mode.

There are two modes of operation. Aggregate-mode minimizes
overhead at the expense of information capture, and gives a sin-
gle, human-readable trace record for each thread in the program.
Individual-mode can capture a trace record for each dynamic float-
ing point instruction and allows a tradeoff between overhead and
detail. Individual-mode trace records are in a binary form suitable
for being mmap()ed into analysis programs for speed. Scripts are
provided to turn them into human readable forms, and for analysis.

3.2 Condition codes and exception masking
The IEEE floating point standard defines five condition codes, while
x64 adds an additional one. These correspond to the events FPSpy
observes, which are described in Figure 3. The condition codes are
set as a zero-cost side effect of each floating point operation. In the
case of a vector instruction, the condition value generated is an or
of the condition values generated by the elementwise operations
of the instruction. Unlike the integer condition codes many devel-
opers are familiar with on architectures like x64, the floating point
condition codes are sticky, meaning that once a condition code is
set, it remains set until explicitly cleared. This property is used in
FPSpy’s aggregate-mode.

Each condition code has a corresponding exception mask. When
the mask is disabled, the setting of the condition code (even if it
is already set) causes a precise exception to be generated before
the instruction writes back. Strictly speaking, one operation can
result in multiple condition codes being set. A priority encoding
determines which exception is delivered. This is outside of the
scope of this paper. FPSpy unmasks exceptions when running in
individual-mode. It records not only the specific exception delivered,
but also the state of all the condition codes.

One subtlety involves NaNs, which are representations of non-
numbers. There are two categories of NaNs: QNaNs and SNaNs
(also called signaling NaNs). The Invalid condition code captures
both, but an Invalid exception is generally only raised if at least one



operand is an SNaN. As a consequence, FPSpy in individual-mode
can undercount NaNs.

FPSpy’s implementation is currently specific to x64, and it di-
rectly uses the x64 %mxcsr floating point control/status register,
which provides condition codes, exception masks, rounding mode
control, and several other control mechanisms for SSE* and AVX*
operation, the common floating point model on x64 machines today.

3.3 Interposition
FPSpy is implemented as an LD_PRELOAD shared library that uses
standard techniques to interpose on a range of functions. When
the application is being executed, the dynamic linker of the system
loads FPSpy first, and then resolves references within the appli-
cation against it. FPSpy itself later explicitly resolves references
against subsequently loaded libraries, such as libc, libpthread,
and others. The specific set of functions interposed on are shown in
Figure 8; they boil down to process and thread management, signal
hooking, and floating point environment control.

Process and thread management functions are interposed upon
to allow FPSpy to (recursively) follow thread and process forks.
FPSpy produces an independent trace for every thread within the
process tree rooted at the originally executed application.

Signal hooking and floating point environment control functions
are interposed upon because when these are used, it may indicate
that FPSpy must “get out of the way”. For example, if the application
changes the floating point exception mask or clears the floating
point exception state, this indicates that it uses functionality that
could be perturbed by FPSpy’s use of the same functionality. Simi-
larly, in individual-mode operation, FPSpy relies on being able to
leverage two to three signals for its own purposes. If the application
also attempts to use any of them, FPSpy must disable itself.

Aggression: In individual-mode, FPSpy will, by default, disable
itself when certain signals (SIGTRAP, SIGFPE, and in some configu-
rations, an alarm signal) are used by the application. We have found
some applications which use these signals do so only incidentally.
It is possible to run FPSpy in “aggressive-mode”, in which case
it will not step aside when this specific scenario happens. This is
particularly useful in a lab environment.

3.4 Initialization and teardown
FPSpy uses the linker’s constructor and destructor attributes (typ-
ically used to support initialization and teardown of C++ objects
with global scope) to hook its own initialization and teardown code
into the execution of the application. These occur prior to and af-
ter main(), respectively. During initialization, FPSpy configures
itself in one of its two modes, each of which has a correspond-
ing hardware configuration, and state machine during operation.
This constructor-driven initialization is also used to follow process
forks. The child process simply inherits the LD_PRELOAD and FPSpy
configuration environment variables.

On a thread fork (e.g., clone() or pthread_create()), a thunk
is used instead of the application-supplied function. The thunk
does an initialization for the thread before invoking the application-
supplied function, and a teardown once it finishes. FPSpy’s thread
initialization and teardown are similar to those of a process. On
teardown of either, the corresponding trace file is completed.

Existing,	unmodified	x64	HW

Existing,	Unmodified	Linux	Kernel

Existing,	Unmodified	Application	Binary
and	Application	Libraries

FP,	single-step	exceptions	
FP	condition	codes
FP	signaling	conditions

SIGFPE,	SIGTRAP
SIGLARM
mcontext reads

Existing,	Unmodified	System	Libraries

Library	and	System	
Call	Interposition

Interception	
State	Machine

Hardware	
Single	Step

System	calls
mcontext writes

FPSpy

N
o	
ov
er
he
ad
	o
cc
ur
s

ou
ts
id
e	
of
	a
n	
ev
en
t	o
f	i
nt
er
es
t

Trace 
(for each 
thread
and 
process)

Figure 4: FPSpy’s system design is self-contained.

3.5 Aggregate-mode operation

In aggregate-mode, FPSpy has the minimum possible overhead and
overlap with the application’s own operation, but also produces
the least information in its trace.

On initialization for a thread or process, FPSpy clears all condi-
tion codes in the floating point control/status register. On teardown,
FPSpy records the state of all the condition codes. Recall that the
floating point condition codes are “sticky”, meaning that once set,
they must be explicitly cleared. As a consequence, if a particular
floating point event occurs at least once in the thread being spied
upon, the corresponding condition code will be set when the thread
teardown occurs. In other words, in aggregate-mode, FPSpy records
the set of events that occurred during the execution of the thread.
It does not record the number of such events nor the specific in-
structions causing them.

It is important to understand just how low the overhead of this
mode of operation can be. The condition codes are already being
set by the hardware during each floating point instruction. The cost
of aggregate-mode is ultimately simply a write of %mxcsr at the
beginning of a thread’s life cycle, and a read at the end of it.

3.6 Individual-mode operation

FPSpy’s individual-mode is considerably more complicated because
it can capture the context of every single instruction that causes a
floating point event during the execution of a thread. In order to
trade off between overhead and information gathered, a range of
sampling mechanisms are included. Figure 4 illustrates the run-time
operation and structure of FPSpy when running in individual-mode.
The overall structure also applies for aggregate-mode. Figure 5
illustrates the state machine that is used by FPSpy when monitoring
a thread in individual-mode.

On initialization in individual-mode, FPSpy configures the hard-
ware’s floating point control/status register such that every mon-
itored event will cause an exception. It also installs a signal han-
dler for the SIGFPE (floating point exception) and SIGTRAP (single-
stepping trap) signals. It then creates a state machine for the thread,
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Figure 5: FPSpy’s per-thread individual-mode state machine.

sets the initial state to AWAIT_FPE, clears the floating point condi-
tion codes, and then lets the thread start.

Consider now what happens if the thread executes a floating
point instruction that causes one of the floating point events. The
hardware will raise an exception. The kernel will translate that
exception into a SIGFPE and invoke FPSpy’s installed handler for
this signal. The handler will use the contextual information passed
on invocation to find the monitoring context and state machine
for the thread. The handler can then record the specific event that
has occurred. It records the timestamp, the instruction pointer,
the instruction data, the stack pointer, the kernel-supplied floating
point control and status information, and the value of %mxcsr.

At this point, we need to allow the instruction to execute as it nor-
mally would have in the application, but we need to regain control
immediately afterward. To do this, we switch to the AWAIT_TRAP
state. We also clear the floating point condition codes, and mask
the floating point exceptions. This is done by manipulating %mxcsr.
Masking the floating point exceptions will allow the instruction to
run without faulting again. However, we want only a single instruc-
tion to run. To assure this, we set the trap bit in the x64 %rflags
register. This switches the thread into single-stepping mode—after
every instruction a trap exception will occur. Having configured the
machine, and our state in this way, we next return from the signal
handler, which causes the kernel to restart the faulting instruction.

Immediately after the instruction finishes, the hardware will
trigger the trap exception, because we have placed it in single-step
mode. The kernel handles the exception by sending the application
a SIGTRAP, which FPSpy duly handles. The SIGTRAP handler finds
the corresponding monitoring context and state machine for the
thread. It then clears the floating point condition codes, unmasks the
floating point exceptions, and deactivates single-stepping mode. It
switches back to the AWAIT_FPE state, and is now ready to handle
the next faulting floating point instruction. The signal handler then
returns to the kernel, which restarts the instruction that caused the
SIGTRAP, which is the instruction immediately subsequent to the
original faulting floating point instruction.

In essence, FPSpy in individual-mode implements a classic trap-
and-emulate model for faulting instructions, a common model for
virtual machine monitors/hypervisors, but it does so entirely at
user level. “Emulation” here consists of simply running the faulting
instruction after we have recorded the circumstances of its fault.
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Figure 6: Overhead of FPSpy forMiniaero in various configurations.

Filtering and sampling:Capturing trace data for every floating
point instruction that produces any of the events of Figure 3 is
possible, but this can produce a huge data volume and considerable
slowdown. In particular, the Inexact event (rounding) is common in
floating point programs—rounding is normal and expected behavior
in float point code and not necessarily a sign of a problem. To let
the user make their own tradeoff between capture overhead and
fidelity, we provide a range of sampling and filtering options.

The user can provide a subset of event types (from Figure 3)
that they want to capture. By setting the floating point exception
masks to correspond, FPSpy will then only incur an overhead if
one of the events in the subset occurs. No overhead is incurred for
other events. We use this later to capture all events except Inexact
(rounding), in order to focus on lower incidence events that are
much more likely to indicate a serious problem.

The user can elect to subsample the stream of events, as well as to
place a limit on howmany are recorded. Subsampling simply means
skipping the recording of events. For example, the user can select
that only every 10th event is to be recorded, and only a million
events shall be recorded. Now, after 10 million faulting instructions
are observed, FPSpy will disable itself and have no more overhead.

Often, however, we do want to capture all types of events, in-
cluding Inexact, and we want to do so across the entire execution
of the application. FPSpy includes a Poisson sampler for this pur-
pose. The Poisson sampler repeatedly enables and disables FPSpy
during the execution of the application, with the length of each on
(and off) period being drawn from an exponential distribution with
a user-selected mean. Time can be accounted for as virtual time
(essentially instructions executed), or real time. This mechanism
allows us to implement semantics like “use FPSpy 5% of the time the
program is executing”, with the periods of time during which FPSpy
is active forming a valid random sample via the PASTA principle.

3.7 Overhead and scaling
FPSpy’s overhead varies considerably depending on the mode used,
which events are being tracked, and the occurrence rate of those
events in the program being measured.

Regardless of the program being studied, aggregate-mode always
has virtually no overhead. Here, the only interactions with FPSpy
occur at program startup and shutdown, and these require millisec-
onds. In contrast, individual-mode operation can have tremendous
overhead. In the worst case for individual-mode, if no filtering or
sampling is done, every faulting instruction can result in a several
thousand cycle overhead as FPSpy interacts with the kernel. The



overhead is limited to the context of a faulting instruction.
By far, the biggest practical concern in individual-mode is track-

ing Inexact events (rounding). If tracking rounding is not needed,
the overhead is typically only slightly higher than in aggregate-
mode. Recall that rounding is typically an expected event that is
a normal element of a floating point operation and thus occurs
frequently. The other events are, to varying degrees, more likely to
be a sign of a problem, and thus are typically much more rare. If
tracking rounding is needed, sampling can reduce the overhead.

Figure 6 shows an example of the overhead of operation of FPSpy.
Here, Miniaero was run under FPSpy under each of the modes
and settings used later in this paper, under two more intrusive
settings, and with no FPSpy. The details of the hardware and this
benchmark are given in Section 4. For each setting, Miniaero’s
wall-clock time, as well as system and user time are shown. As can
be seen, aggregate-mode, and individual-mode without capturing
Inexact (rounding), have virtually no overhead. This is true across
our benchmarks and applications.

The last three configurations shown in Figure 6 are for individual-
mode, with Inexact (rounding) captured, using Poisson sampling of
5% (as in Section 4), and higher rates of 10% and 50%. The highest
overhead is 2x, with a major component being system time due
to kernel interaction. Recall that in individual mode, each floating
point event that occurs involves two faults into the kernel (the
floating point exception and the single step trap) as well as matching
signal deliveries from the kernel to the user space FPSpy tool. This
expands the cost of a floating point instruction that causes an event
from a small number of cycles to thousands of cycles.

It is important to understand that the actual overhead in individ-
ual mode is highly dependent on what events are being captured
and how frequently they occur. In particular, if Inexact (rounding)
events are being captured and the program being tested produces
many of them, the overhead can be much higher than 2x seen in
Miniaero, with the ∼1000x instruction-handling overhead described
above being the limit. LAMMPS (described later), for example, had
a 127x slowdown. If the user wants to capture Inexact events, sam-
pling is often critical to keeping the overhead under control.

Each thread in the application is monitored independently, with
its trace data also being written to an independent log file (or other
independent target). FPSpy is “embarrassingly parallel” internally
and thus will scale along with the hardware—there is a fixed over-
head per thread. Consequently, scalability is limited by the file
system or logging infrastructure to which we write trace data. As
we scale the hardware, we have more logs to write and the overall
volume of events grows, all else being the same. The only I/O op-
eration needed is an append, and log records are designed so that
ordering is not needed, even within a single thread’s log.

3.8 Portability
Although we have developed FPSpy for x64, we believe it is likely to
be portable to other platforms that have a compliant IEEE floating
point implementation. The x64 features we use are the %mxcsr reg-
ister and single-stepping mode. %mxcsr is how the x64 exposes the
IEEE standard’s condition codes and exception generation model.
Other compliant architectures implement these aspects of the stan-
dard differently, but they do implement them. For example, the
ARM equivalent of %mxcsr is %fpscr and it is even nearly identical

Name Dependencies Problem Exec Time
Application/Frameworks

Miniaero Kokkos [2] Example 1m 4.420s
LAMMPS MPI Methane Forces 76m 2.785s
LAGHOS hypre [17], METIS [25], Sedov Blast 116m 17.087s

MFEM [1], MPI
MOOSE PETSc [3], libmesh Transient 54.275s
WRF NetCDF [39], MPI Squall2D_y 30m 25.019s
ENZO MPI, HDF5 [47] GalaxySimulation 26m 37.805s
GROMACS MPI, MKL, OpenMP 1AKI in Water 221m59.184s

Benchmarks
PARSEC 3.0 GSL [20], Intel TBB [36] Simlarge 2m30.178s
NAS 3.0 N/A Problem Size 1 4m50.443s

Figure 7: Applications and benchmarks in study comprise ∼7.5M
LOC, multiple languages, and threading, OpenMP, and MPI.

in semantics. We use x64’s single-stepping mode as a convenient,
but nonessential way to place a temporary breakpoint immediately
after the faulting floating point instruction—it lets us avoid deter-
mining the instruction length, which is quite complex on x64. Any
other breakpoint mechanism, including simply stubbing the next
instruction with an invalid opcode, which is possible on all archi-
tectures, would also work. Furthermore, on a RISC architecture,
this is trivial to do because of the fixed instruction length.

Is FPSpy portable to GPUs? This depends on compliance with
the IEEE standard. For example, it is our understanding that current
NVIDIA GPUs support neither the floating point condition codes
nor raising an exception when a condition code is set. This was
also true in the past for AMD and Intel GPUs, but AMD’s Vega
architecture has support for floating point condition codes and
exceptions. In order to work in a noncompliant environment, an
FPSpy-like tool would need to take an entirely different approach,
probably a compile-time transform or binary rewriting scheme to
introduce software guards. FPChecker [26] claims to be the first
tool to do the former for GPUs.

4 Study design

Using FPSpy and other methods, we created a methodology for
studying application. The Ubuntu-default gcc 5.4 toolchain was
used. Unless otherwise noted, all testing was conducted on a Dell
R815, which sports four 16 core 2.1 GHz AMD Opteron 6272 pro-
cessors and 128 GB of RAM split among 8 NUMA zones. These
processors support the SSE4.2 and AVX floating point instruction
sets. The machine runs Ubuntu 16.04 with 4.4.0 kernel.

Applications and benchmarks: Figure 7 summarizes our tar-
get applications and benchmarks, their dependencies, the specific
example problem we ran, and the execution time, unencumbered by
FPSpy. A range of concurrency models were used, each being the
recommended model for a single-node environment. This includes
configurations from a single thread, to multiple threads, to multiple
MPI processes, sometimes with multiple threads per process.

Our applications form a very large dataset, comprising millions
of lines of code with complex dependencies. Five of them are in
the top-20 most commonly used applications run on NSF’s XSEDE
resources [43]. Miniaero is a Mantevo [14] miniapp (one of several
used for evaluation of supercomputing environments by Sandia
National Labs) that solves the compressible Navier-Stokes equation.
Miniaero is written in C++ and C and contains about 4400 lines of
code. Miniaero is dependent on kokkos for OpenMP and Pthreads.



LAMMPS [37] is a molecular dynamics simulator primarily for ma-
terials modeling. It is primarily written in C++, although it contains
some Tcl and Fortran. LAMMPS has about 1.3 million lines of code,
and depends on an MPI library, such as OpenMPI. LAGHOS [16] is
a hydrodynamics application that solves the time-dependent Euler
equations of compressible gas dynamics using finite element anal-
ysis. LAGHOS is written almost exclusively in C++ and contains
25,000 lines of code. LAGHOS depends on hypre for linear solving,
MFEM for meshing, and METIS for graph partitioning, as well as
an MPI library. MOOSE [21] is a parallel finite element framework
with the ability to solve mechanics, phase-field, Navier-Stokes, and
heat conduction problems. Its codebase contains about 1.2 million
lines of C++, Python, and C. MOOSE depends on PETSc for par-
tial differential equation solving, as well as libmesh for meshing.
WRF [38, 44] is a weather forecasting tool used by NOAA for hur-
ricane prediction and storm forecasting. WRF is primarily written
in Fortran and C, and contains about 1.4 million lines of code. WRF
depends on NetCDF for array data structures, as well as on an MPI
library. ENZO [13] is an astrophysics and hydrodynamics simula-
tor. ENZO is written in C, Fortran, and Python and contains about
307,000 lines of code. ENZO depends on HDF5 for data storage,
as well as an MPI library. GROMACS [4] is a molecular dynamics
application primarily concerned with lipids, proteins and nucleic
acids. GROMACS is written in C++ and C and contains about one
million lines of code. GROMACS depends on an MPI library, an
MKL library, like OpenBLAS or Intel MKL, and OpenMP.

We also consider two benchmark suites. PARSEC [11] is a set of
benchmarks often used to test compiler optimizations and architec-
tural concepts. PARSEC is written in C and C++ and contains 3.5
million lines of code spread over its various benchmarks. PARSEC
depends on the GNU Scientific Library as well as Intel’s Threading
Building Blocks for Parallel Programming. NAS 3.0 [5, 6, 24] is a
set of small programs developed by NASA to benchmark parallel
computing. NAS 3.0 is written in Fortran and C and contains about
21,000 lines of code. NAS 3.0 has no external dependencies.

Our study consisted of the following passes run over the appli-
cations and benchmarks.

Source code analysis: Here we used grep, cscope, and similar
tools to examine the source code for invocations of functions FPSpy
needs to intercept. These include fork(), clone(), pthread_create(),
pthread_exit(), signal(), sigaction(), uc_mcontext structures
(used for manipulating register state during signals), SIG* macros
for referring to signals, and the fe* unctions and FE_* macros for
accessing and manipulating the FPU control state and information.

It is important to understand the limitations of this analysis. First,
it does not delve beyond the immediate source code of the applica-
tion. That is, if a shared library or wrapper uses these functions, we
do not see it. Finally, our analysis does not consider inline or other
assembly code within the source code that directly manipulates the
floating point control/status state, for example by explicitly using
the ldmxcsr/stmxcsr, fxsave/fxrstor, etc, instructions.

Aggregate-mode tracing: Here we run the application under
FPSpy, with FPSpy configured to operate in aggregate-mode. This
attempts to capture, for each thread and process of the application,
the set of floating point events encountered throughout its execu-
tion. We ran our tests using both aggressive and non-aggressive
operation with identical results. For all benchmark using floating

point, other than WRF, there is no difference.
Aggregate-mode tracing produces a low volume of data, and has

virtually no overhead. Our purpose with this part of the study is to
discern whether an application exhibits problematic behavior at all.

Individual-mode tracing with filtering: In this step, we run
each application under FPSpy, with FPSpy configured to operate
in individual-mode. The filtering and sampling mechanisms are
configured to capture every instruction in every thread or process
that produces a floating point event other than Inexact. In other
words, we find every instruction that produced a possible problem
other than rounding.

This part of the study produces moderate volumes of data, and
has low overhead across the board. Recall that overhead is only
incurred when an instruction faults. Our purpose here is to find
the specific instructions generating the most problematic events,
particularly Invalids, Overflows, and Underflows.

Individual-mode tracing with sampling: In this final step,
we run each application under FPSpy, with FPSpy configured to
operate in individual-mode. The filter and sampling mechanisms
are set such that every event type, including Inexact (rounding) is
captured. The Poisson sampler is enabled and configured with 5%
coverage. More specifically, we configure the Poisson sampler with
a 5ms mean on time, and a 100ms mean off time, using virtual time.

Even with sampling, this part of the study has considerable over-
head and produces large volumes of data. About 2 TB of trace data
were captured during runs that took about a week. Note that the
vast majority of this data concerns Inexact (rounding) events. Our
purpose is to capture the distribution of the kinds of instructions
that produce rounding with an eye to designing a future system to
manage rounding differently in such applications.

5 Study results
We now describe the results of applying the FPSpy-based method-
ology to the applications and benchmarks. It is important to point
out that the occurrences of problematic floating point events are
just that: problematic. Ground truth is not known to any bug-
finding/hardening tool. It would constitute either having a bug-free
program or foreknowledge of the results of a bug-free program.
As a consequence, the existence of an event does not imply an
incorrect output from the program. Nonetheless, events such as
Invalid, DivideByZero, and Overflow are suggestive of problems.

Validation: To validate FPSpy before using it in our method-
ology, we built a range of test programs that produce all of the
events FPSpy can detect, within different execution models (single
process/thread, single process/multiple thread, multiple processes,
multiple processes each with multiple threads, and confounding
all with signals). FPSpy passed these tests, producing outputs that
correspond to what was constructed.

5.1 Use of floating point control is rare
Figure 8 shows whether each application or benchmark uses mecha-
nisms that FPSpy intercepts or otherwise manipulates. With respect
to the generality of FPSpy, we are primarily concerned about uses
of functions, macros, and syscalls that would require FPSpy to dis-
able itself in order to preserve application semantics. These are the
fe* family of floating point control functions. Essentially, anything
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Figure 8: Source code analysis. A “T” (red square) indicates the source code uses the noted mechanism.
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Figure 9: Analysis of aggregate-mode tracing of applications. A “T”
indicates that the event occurred. Clearly, problematic events do oc-
cur during the execution of these programs.

from feenableexcept() rightwards in the figure would cause FP-
Spy to disable itself. Anything from sigaction() leftwards can be
handled by FPSpy without issue.

It is important to understand that this figure results from a static
analysis of the source code. In fact, what matters is whether the
code is encountered dynamically. Although MOOSE, WRF, some
PARSEC benchmarks, and GROMACS contain uses of floating point
control mechanisms, onlyWRF actually executes any of them in our
testing. As a consequence, the WRF results (which we do include),
show no events occurring—FPSpy stepped aside in that specific
case. For all other applications and benchmarks in our study, FPSpy
observed the behavior from start to finish.

Beyond arguing for FPSpy’s generality, the static and dynamic re-
sults also suggest something important about the applications: the
use of floating point control during execution is rare. Because very
few applications use any floating point control, problematic events,
especially those other than rounding, may remain undetected. The
results seem to support the previous study of developers [15], sug-
gesting that many developers are not prepared to mitigate floating
point error, whether in development or execution.

5.2 Problematic events occur in practice
Many of our applications and benchmarks produce potentially prob-
lematic floating point events. Figure 9 shows the results of using
FPSpy in aggregate mode on our applications and benchmarks.
Only LAMMPS, MOOSE, and the NAS benchmarks operate without
any concerning results.2 At the other extreme, ENZO produces

2Recall that Inexact (rounding) events are expected in normal operation.
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vips f f f f f T
ext/volrend f f f f f T
ext/water_nsquared f f f T f T
ext/water_spatial f f f f f T
x.264 f T f f f T

Figure 10: Analysis of aggregate-mode tracing of PARSEC bench-
marks. A “T” indicates that the event occurred.

NaNs, while LAGHOS divides by zero. Underflow events (Mini-
aero, LAGHOS, PARSEC, GROMACS) are relatively common, but
not necessarily indicative of a problem. Denorm events (Miniaero,
PARSEC, GROMACS) are similar.

5.3 Benchmarks may be unrepresentative

The PARSEC benchmarks produce every single event (on a different
problem size, it did not produce anOverflow). Figure 10 breaks down
the PARSEC results by individual benchmark. PARSEC contains
benchmarks inspired from a range of domains, not just scientific
computing. It is nonetheless disconcerting to see the most severe
event, Invalid, occur in LU decompositions, and the less severe
DivideByZero occur in a Cholesky decomposition. These are a part
of the “external” benchmarks, however, derived from SPLASH.
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Figure 12: Rate of Invalid events over time in ENZO, captured using
individual-mode tracing with filtering.

In contrast, all of the NAS benchmarks behave well. One could
argue that the PARSEC benchmarks, with their various problematic
events, are perhaps more representative of real world applications.

5.4 Instruction-level detail
Figures 11 through 14 follow up with individual-mode tracing. Re-
call that individual-mode tracing captures potentially every faulting
instruction and thus is much slower than aggregate-mode tracing.
In Figure 11 we use filtering to limit this cost. We capture all faulting
instructions, except those that fault due to rounding. The raw data
in the trace, which includes the address of the instruction, allows a
developer to trace faults back to specific source lines of code.

Individual-mode tracing also allows us to see the temporal be-
havior of problematic events. For example, Figure 12 shows the
rate of Invalid Events in ENZO over time—NaNs occur throughout
most of execution. Figure 13 zooms in to a 3 second interval during
which bursts of DivideByZero events occur in Laghos.

In Figure 14 we use sampling to limit the cost, but we include
Inexact events. Note that WRF displays rounding behavior in Fig-
ure 14, but not when run with aggregate-mode, in Figure 9. Because
aggregate-mode relies on the sticky nature of floating point excep-
tions in the %mxcsr register, aggregate-mode is unable to detect
the rounding events, as WRF clears the register during its own
floating point control. However, individual-mode sampling is able
to capture the events, as it captures them as they arise. However,

	0

	10000

	20000

	30000

	40000

	50000

	60000

	70000

	80000

	90000

	0.5 	1 	1.5 	2 	2.5 	3

Ev
en
ts
/S
ec
on
d

Time	(s)

Laghos	Divide	by	Zeros

Figure 13: Bursts of DivideByZero events in LAGHOS, captured us-
ing individual-mode tracing with filtering.
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Figure 14: Analysis of individual-mode tracing with sampling of ap-
plications and benchmarks. 5% sampling, including Inexact. Pois-
son sampling with 5000 us mean on time and 100000 us mean off
time using virtual timer. A “T” indicates that at least one instruc-
tion encountered the event.

sampling has caused us to miss the Underflow and Overflow events
captured with the previous method.

5.5 Caveats
It is important to understand that we have tested benchmarks and
examples from large application frameworks on a single compiler
and a single machine. There are natural questions to ask: How input-
dependent are our results? How dependent are the results for the
application frameworks on their use cases? How dependent are the
results on the compiler and/or architecture? These are not questions
that we can answer with this study. We also do not know ground
truth here, so we cannot make claims about whether our codes
are “correct” or not. The study is telling us two things: (1) FPSpy
seems to work and fulfill the requirements laid out in Section 2. (2)
Potentially problematic behavior occurs in some of the codes.

6 Evaluating prospects for rounding mitigation
We now turn from using FPSpy’s traces to find problematic floating
point behavior (and thus potential bugs that could perturb results),
and instead use them as enabler of system design.

Inexact (rounding) events are a normal part of floating point
arithmetic. Nonetheless, they reflect a loss of precision in the com-
putation that the developer does need to reason about to assure
reasonable results. In effect, losses of precision introduce errors
into the computation. When modeling, for example, a system that



Name Total Inexact Events Inexact Events/sec
Miniaero 6,287,103 1,108,944
LAMMPS 394,272,578 67,851
LAGHOS 359,200,445 650,000
MOOSE 119,050,994 1,445,125
WRF 6,299,892 65,543
ENZO 402,709,981 222,227
GROMACS 16,444,453 26,224

Figure 15: Inexact event count and rate for each application.
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Figure 16: Cumulative Inexact (rounding) events for the first two
minutes of execution of each application.

involves chaotic dynamics, such errors, even if they are tiny, can
result in diverging or incorrect solutions.

In ongoing work, we are exploring how to control or mitigate
such losses of precision using techniques implemented at the run-
time, compiler, kernel, and hardware levels. Understanding the
workload—the properties of instructions that round in real applications—
is important to such work. FPSpy’s individual-mode tracing, specif-
ically with Poisson sampling, allows us to capture workloads and
study them. The traces summarized in Figure 14 provide about 2 TB
of such workload. Figure 15 shows the number of Inexacts captured
via this methodology, and their overall rates, while Figure 16 shows
how Inexacts accumulate over time.

One potential approach to a rounding mitigation system is the
use of trap-and-emulate processing (as in FPSpy or a virtual ma-
chine monitor) or dynamic binary patching [29] to bridge between
floating point instructions that command the x64 hardware floating
point unit, and calls into an arbitrary precision software floating
point unit such as MPFR [19]. This would allow existing, unmodi-
fied application binaries to seamlessly execute with higher precision
as necessary, resulting in less or even no rounding.

A first-line question for the prospects of such a system is the
nature of locality for the instructions that round. Without local-
ity, such a system cannot work because the overheads involved
with instruction decoding or binary patching cannot be amortized.
We can answer the question using FPSpy’s traces. Characterizing
the traces via rank-popularity statistics is particularly useful and
enlightening.

Figure 17 shows rank-popularity distributions with respect to
the faulting instruction’s form (e.g., add, multiply, divide, etc) for
each trace. We only differentiate the applications (bold lines) from
the PARSEC and NAS benchmarks, and our primary concern is
with the applications. The graph shows that even for the most
extreme application, fewer than 45 instruction forms are used. 20
or fewer instruction forms are used by each of the remainder of the
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Figure 17: Rank-popularity of rounding instruction form. A small
number of instruction forms account for all rounding.
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Figure 19: Rank-popularity of rounding instruction address. A
small number of addresses account for all rounding.

applications (as well as the NAS and PARSEC benchmarks). There is
also clearly a heavy skew in the rank-popularity distribution (note
that the vertical axis is on a log scale). For the most part, for each
code, fewer than 5 instruction forms cover >99% of the instructions
that encounter rounding.

Figure 18 digs deeper. 39 instruction forms constitute the total
coverage of observed instructions that round across every sampled
code other than GROMACS. The figure is a histogram showing the
number of applications or benchmarks that use each of these forms.
GROMACS uses 25 forms not used by any other code, in addition
to 16 forms used by other codes.

Figure 19 shows rank-popularity distributions with respect to
the rounding instruction’s address. In the most extreme case, <5000
instructions in the code account for all the rounding that was en-
countered. More commonly, <2000 instructions are sufficient. As
with the instruction form analysis, the rank-popularity distribu-
tions are also heavily skewed. For the most part, <100 instructions
account for >99% of the rounding events.
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Figure 18: Rank-popularity of specific instruction forms among the codes used in the study. 39 instruction forms completely cover all the
codes other than GROMACS, which uses 25 forms not seen elsewhere.

A rounding mitigation system could leverage these low limits
and skewed distributions. By focusing on <5000 instruction sites
and handling <45 instruction forms at those sites, such a system
could radically change the effects of rounding on an application.

7 Related work
Scientific openness and reproducibility first became a hot topic
within the social sciences [35], while the reproducibility of compu-
tational research has recently become a major concern within the
physical sciences via the work of Stodden and others [45, 46]. Com-
putational research has a complete reliance on floating point arith-
metic, as defined in the IEEE 754 [22], and 754-2008 [23] standards.
Many physical systems and their models exhibit chaotic dynamic
behavior [32] and thus are particularly sensitive to perturbation by
floating point issues. A study of developer understanding of float-
ing point [15] suggests that such issues might be more common
than expected. A floating point issue has already proven to explain
divergent results for a port of NCAR’s CESM climate model [31].

Program analysis tools have a long history. FPSpy is intended to
have the same ease of use as the commonly employed strace and
ltrace [12] tools. Coverity [10] and Fortify are perhaps the most
widely used static analysis tools, but do not focus on floating point
and require recompilation of the target application. Valgrind [33]
is a widely used dynamic analysis tool framework, which involves
binary rewriting. Within that framework, the Verrou [18] tool is
closest to FPSpy in that it hunts for floating point rounding issues.

A range of tools have been developed to improve floating point
code within applications. For example, FpDebug [9] searches for sit-
uations in which rounding errors produce divergent results. Other
tools find situations where cancellations cause bogus outputs [27],
detect numeric instability at run-time [7, 28], or find the lowest
precision that does not produce apparent divergent outputs [40].

FPSpy fits into the thread of work that tries to find floating
point issues, and then identify their root cause in the software,
or ameliorate them more directly. The closest work is Milroy et

al [30], Herbie [34], Herbgrind [41], and Flit [8, 42]. Milroy et al and
Flit use variant compilation to induce output variation, and then
localize the source of this variation to a root cause in the source.
Herbgrind also attempts to find the root cause, although here the
starting point can be instructions that have high rounding error.
Herbie optimizes floating point source code expressions with the
goal of increasing accuracy across all inputs. In contrast to these
systems, the goal of FPSpy is to track hardware-visible floating
point events in existing, unmodified binaries without programmer
or user cooperation, possibly even in a deployment.

8 Conclusions
We described FPSpy, a tool for tracking potentially problematic
floating point events occurring during the normal execution of an
existing, unmodified x64 application binary on Linux. FPSpy’s over-
head can be throttled, allowing a tradeoff between which and how
many unusual events are to be captured, and the slowdown incurred
by the application. FPSpy can produce traces of problematic events
at the instruction granularity. Applying an FPSpy-based methodol-
ogy to a range of applications and benchmarks comprising millions
of source lines of code caught a collection of issues. We also used
FPSpy to characterize the instructions that round within our test
suite. This characterization suggests that a trap-and-emulate ap-
proach to integrating higher precision is feasible. We are currently
implementing various approaches, including trap-and-emulate.
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