
FPVM: Towards a Floating Point Virtual Machine
Peter Dinda

Northwestern University

Nick Wanninger

Northwestern University

Jiacheng Ma

Northwestern University

Alex Bernat

Northwestern University

Charles Bernat

Northwestern University

Souradip Ghosh

Northwestern University

Christopher Kraemer

Northwestern University

Yehya Elmasry

Northwestern University

Abstract
Alternatives to IEEE floating point arithmetic have become all the

rage. Some extract more representational power out of the avail-

able bits. Others offer the potential for lower or higher precision

than is available in IEEE-compatible hardware. Even an “interface

to the real numbers” has recently been proposed. Using such al-

ternative arithmetic systems within an existing scientific or other

significant codebase is a major challenge, however. We explore

how to address this challenge through virtualizing the IEEE float-

ing point hardware, specifically on x64. The goal of the floating

point virtual machine (FPVM) is to allow an existing application

binary to be seamlessly extended to support the desired alternative

arithmetic system with overheads determined by that system and

not the virtualization mechanisms. We describe the prospects, is-

sues, and tradeoffs for four different approaches for building FPVM:

trap-and-emulate, trap-and-patch, binary transformation, and IR

transformation. We then describe the design and implementation

of our current design, which combines static binary analysis/trans-

lation and trap-and-emulate execution. We evaluate our FPVM

implementation on several benchmarks, virtualizing them to use

posits and MPFR. Finally, we comment on kernel- and hardware-

level innovations that could further reduce overheads for floating

point virtualization.

CCS Concepts
• Software and its engineering → Operating systems; Vir-

tualmachines;Correctness; Software reliability;Operational
analysis; •Mathematics of computing→Numerical analysis;
Arbitrary-precision arithmetic.
Keywords

floating point arithmetic, virtualization, software development,

IEEE 754

This project was supported by the United States National Science Foundation via

grants CNS-1763743, CCF-2028851, and CCF-2119069.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9199-3/22/06. . . $15.00

https://doi.org/10.1145/3502181.3531469

ACM Reference Format:
Peter Dinda, Nick Wanninger, Jiacheng Ma, Alex Bernat, Charles Bernat,

Souradip Ghosh, Christopher Kraemer, and Yehya Elmasry. 2022. FPVM:

Towards a Floating Point Virtual Machine. In Proceedings of the 31st Interna-
tional Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’22), June 27-July 1, 2022, Minneapolis, MN, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3502181.3531469

1 Introduction
Virtually all applications in scientific and engineering domains, as

well as applications built on machine learning techniques, make

extensive use of IEEE 754 floating point arithmetic [32, 33] through

its numerous implementations. Floating point has proven to be

extremely effective at enabling high performance while providing

behavior that is sensible to a knowledgeable developer.

Motivation: The preeminence of IEEE floating point hardware

implementations is being challenged along three fronts. First, al-

ternatives such as unums/posits [26, 37], BFloats[38], logarithmic

arithmetic [3], and others [29, 43] potentially extract more useful

representational power out of the same number of bits, or have

range/precision tradeoffs that are more suitable for some modern

workloads such as machine learning. The second front involves

using these representations, as well as IEEE floating point arith-

metic (for example in GNU MPFR [23] or libBF [7]), at arbitrary

precisions, including much higher precision than the hardware

directly implements. Finally, there are proposals to rethink float-

ing point and related representations altogether in favor of an API

to the real numbers [11]. Such an API would allow programmers

to reason about their code using the rules of standard arithmetic

and achieve reasonable performance in many cases. This approach

(or higher precision) might also mitigate the effects of misunder-

standings developers have about various aspects of IEEE floating

point [18, 20].

Limitations of state-of-the-art approaches:Despite their ben-
efits, using alternative arithmetic systems within an existing scien-

tific or other significant codebase is a major challenge. A nightmare

scenario is having to rewrite the application using a new API. A

more pleasant scenario is when the programming language sup-

ports pluggable number representations, such as Fortran 90’s kind
parameter for type specification, or the recent VPFloat [35, 36]

extension to C++. In this case, the programmer needs to modify

much less source code, but they still must deal with cross-language

issues (if even possible) and update and rebuild any libraries their

codebase uses. Of course, these become daunting tasks for a large

application. Additionally, any freshly rebuilt application may need

https://doi.org/10.1145/3502181.3531469
https://doi.org/10.1145/3502181.3531469

End User

Application Binary

Job Submission Production Scheduler

Application Binary

Running Job

FPVM

Results
With Alternative
Arithmetic ModelParameters Parameters

Independent Test or
Submission Clone

Analyst

Application Binary

Parameters

Application Binary

Parameters

FPVM

Running Job on Test HW
or Production HW

Results
With Alternative
Arithmetic Model

Overhead Limited by
Alternative

Arithmetic Model

Figure 1: Desired FPVMmodel.

re-certification if there are critical dependencies to it. What if we

want to use alternative arithmetic in an existing, trusted binary?
1

There are also a large range of tools (e.g. [6, 8, 9, 14, 15, 22, 39, 42,

44, 48, 52–54]) whose goal is to improve the quality of the source

code, generally by identifying sections that have high dependence

on precision or on compiler/hardware optimization choices. These

sections may have numerical stability problems that are due to algo-

rithmic design and implementation issues, or where optimizations

are buggy or change the semantics of the source code. Tools such

as the ones listed often incorporate shadow arithmetic that is done

using a different precision than the original code. Some of the tools

operate on existing application binaries, avoiding the issues with

source-level approaches to using alternative arithmetic described

above. However, because the tools’ goal is to point out problematic

code to the programmer, they typically have substantial perfor-

mance overheads. Execution under one of these tools quickly builds

code coverage, making this less of a concern.

Key insights and contributions: We propose an alternative

approach, namely virtualization of IEEE floating point hardware.

Existing, unmodified application binaries could be run in a Floating

Point Virtual Machine (FPVM) with the user choosing the desired

alternative arithmetic system when the program is run. Each in-

struction would run directly on the underlying hardware at full

speed provided the instruction’s arithmetic does not create an im-

precise result. When an imprecise result occurs, the instruction

would instead be executed via the alternative arithmetic system.
2

Data would flow through the dynamically executing instructions

of the original binary in precisely the way it does using standard

execution, with the floating point values in the program either

serving as actual IEEE numbers or as proxies for the numbers in

the alternative arithmetic system.

Our use of the term “virtualization” is no accident. General-

purpose virtual machines have little to no overhead compared to

native execution. Our goal is for FPVM to have similar performance

characteristics. In particular, we want the cost of virtualizing the

hardware floating point unit to be low enough that it is dominated

by the cost of the alternative arithmetic system. Reaching this

cost objective would make it practical to substitute alternative

arithmetic and/or arbitrary precision much as we might choose to

use virtualization to effortlessly gain the use of a more powerful

1
We note that changing the arithmetic system used by a certified application binary

might well require it to be re-certified for the results to be trusted. However, being

able to run below a certified binary would allow for experiments in which only one

variable—the arithmetic system—is changed.

2
Another choice would be to always use the alternative arithmetic system.

remote server. Figure 1 illustrates the desired model. The top path

shows the use in production, while the lower path shows the use

by an analyst. In both cases, we want to be able to operate on

the specific binaries used for production science, and we want the

overhead of using FPVM to be the overhead of using the alternative

arithmetic system.

Experimentalmethodology and artifact availability: In this
paper, we describe our progress toward building an effective and

performant FPVM. We examine four different approaches for build-

ing an FPVM as well as their specific benefits and tradeoffs. These

approaches are trap-and-emulate, trap-and-patch, static binary anal-

ysis and transformation, and intermediate representation (IR) trans-

formation. We then describe the design and implementation of

a FPVM that uses a hybrid approach that combines static binary

analysis and transformation with dynamic trap-and-emulate exe-

cution. The hybrid FPVM was then validated on several common

floating-point benchmarks and then evaluated on select scientific

applications.

Interestingly, much like the general purpose x86 ISA prior to

the availability of hardware virtualization support, the x64 floating

point ISA(s) and hardware are almost virtualizable: Some instruc-

tions unfortunately do not trap under all the necessary conditions.

As a consequence, a completely trap-and-emulate approach, in

which there is no overhead unless an alternative arithmetic value

is produced or consumed, is not possible. Our hybrid approach

uses static analysis and transformation to find any such instruc-

tion where a floating point value could flow. These locations are

then patched with software checks to detect NaNs. In this way,

we can track our NaN-boxed values even in those instances where

hardware currently cannot do so. Similar to general purpose virtu-

alization, we believe that hardware changes to allow the floating

point unit to be “fully virtualizable” are possible.

Our detailed contributions are as follows.

• We outline the concept of a floating point virtual machine

(FPVM) that can add alternative arithmetic to existing pro-

grams, ideally at the level of existing, unmodified binaries,

and can do so with low virtualization overhead.

• We describe how NaN-boxing can be used as the vehicle for

tracking alternative arithmetic values using the program’s

original floating point values, as well as the limits in this

approach.

• We describe the prospects and tradeoffs of four basic ap-

proaches building an FPVM: dynamic trap-and-emulate, dy-

namic trap-and-patch, static binary transformation, and compiler-

based approaches, in particular static IR-level transforma-

tion.

• We describe the design and implementation of a hybrid

FPVM for x64 that is based on trap-and-emulate, but uses

static binary analysis and transformation to handle cases

that x64 hardware cannot currently detect.

• We show that our hybrid FPVM can be combinedwith several

alternative arithmetic systems: emulated x64 floating point,

posits, and arbitrary precision floating point arithmetic as

implemented in GNU MPFR.

+/- Exponent

051526263

Mantissa/Fraction

uint64_t Pointer (MPFR)

063

FPVM Mask Clear

0x0000 48 bit address0x0000 48 bit address (payload)

0x0000 48 bit address0x7ff4 48 bit address

FPVM Set Mask

0
051 47526263

Cast to Double

48 bit address

Encoding

11111111111 0100 Signaling NaN

0x7ff4 48 bit address

Cast to uint64_t

0x0000 48 bit address

FPVM Mask Clear

uint64_t Pointer (MPFR)

063

Decoding

NaN Boxing

64-bit double format

Figure 2: NaN-boxing of pointers using signaling NaNs.

• We validate our FPVM tool by running it with benchmarks

and test codes from FBench, NAS, Mantevo, Enzo, a Lorenz

system simulator, and a three-body problem simulation.

• We analyze the overhead of our tool on the same test codes,

considering the cost of floating point virtualization and the

overall effect on performance.

• We apply our FPVM tool to the test codes where higher pre-

cision is likely to change results due to modeling of chaotic

dynamics, primarily Lorenz and three-body.

• We describe changes to the hardware and operating systems

layers that would further reduce the overhead and avoid the

use of static analysis and transformation.

Our FPVM prototype is not yet available, but we intend to make it

publicly available via presciencelab.org.

Limitations of the proposed approach:As noted above, there
are two current limitations to a trap-and-emulate approach to float-

ing point virtualization, such as our prototype. The first is the high

hardware and kernel costs involved in delivering a trap on x64.

The second is that the fact that x64 floating point hardware only

partially meets the requirements for classical virtualization, ne-

cessitating a hybrid approach. Section 3 compares and constrasts

our approach with others, while Section 6 describes hardware and

kernel changes that would reduce the overhead.

2 NaN-boxing
Conceptually, in an FPVM system, both original floating point

values and values in the alternative arithmetic system co-exist,

with promotion/demotion between them occurring on an as needed

process. Whenever possible, an instruction is executed directly by

the hardware using its original unpromoted input operands and

producing unpromoted output operands. If the output cannot be

computed exactly
3
, the instruction is emulated using the alternative

arithmetic system and the output operands are promoted. When

an instruction uses a promoted input operand, the instruction is

similarly emulated.

All of our approaches to floating point virtualization thus share

the common need of being able to track the flow of a promoted value

from instruction to instruction in precisely the same way that the

unpromoted value would have flowed. Additionally, we would like

to readily and cheaply identify when a promoted value is used as

an input operand of an instruction. To achieve these requirements

we use the technique of NaN-boxing. With NaN-boxing, a given

floating point value in the original program, whether in memory

or in a register, can represent one of two things:

• An unshadowed value, which is an original floating point

value that is not a NaN.

• A shadowed value, which encodes a pointer or key that is used
to find the corresponding value (the shadow value) within
the alternative arithmetic system that is being used. The

shadowed value is encoded as signaling NaN.

As we describe later, the x64 hardware, and others, can be config-

ured to trap when encountering a signaling NaN, and hence can

detect when shadowed values are used in our scheme. Note also

that NaN values (and hence shadowed values) flow through the

program directly in place of the IEEE floating point values.

NaN-boxing [13, 58] is technique that is used in some high-level

language implementations. The observation is that the IEEE stan-

dard floating point values have numerous possible representations

of a NaN. For a 64 bit floating point value, 52 bits are used for the

mantissa, and 11 for the exponent. A NaN is encoded by setting

the exponent bits to all be high, and allowing for at least one bit of

the mantissa to be nonzero. It is common to differentiate signaling

NaNs (those that can raise an exception when generated or used)

and quiet NaNs (those that do not do so) through the use of the

high-order bit of the mantissa (if it is set, we have a signaling NaN).

Suppose we require only signaling NaNs. As can be readily seen,

there are 2
51

possible encodings of a signaling NaN.
4

NaN-boxing makes use of this flexibility to encode up to 51

bits of extra information into a signaling NaN. In some JavaScript

implementations, for example, all scalar values are encoded at their

base as 64 bit floating point values. Integers and pointers (e.g.,

strings) are encoded by creating a NaN and embedding the value as

the 51 extra bits that are available. When handed a scalar value, the

JavaScript interpreter can readily check its encoding to determine

if it is an actual floating point value, a NaN, or some other type by

simply checking the exponent and two bits of the mantissa.

We use NaN-boxing to encode pointers (shadowed values) to

alternative arithmetic values (shadow values) into the existing float-

ing point values that are used by x64 floating point instructions.

This encoding is such that the “NaN” will be interpreted by the

3
For example, if the original instruction causes an overflow, underflow, or rounding

event.

4
It is important to note that while the size of the x64 virtual address space is technically

2
64
, given canonical addressing, only a fraction of this can actually be used. In Linux,

the user portion of the address space (< 48 bits, currently) readily fits into 51 bits

at this time. On a different platform, or if this ever ceases to be the case on x64, the

shadow value allocator could be implemented to use a chunk of address space that

can be addressed with 51 bits, or the 51 bits could simply be used as a key to a hash

lookup scheme instead of directly as a pointer.

hardware as a signaling NaN, resulting in an exception whenever

such a value is used by an instruction. This exception is ultimately

handled by FPVM, which decodes the “NaN” into the embedded

pointer to find the corresponding shadow value. If a new shadow

value is generated, the pointer to it is encoded into a signaling NaN.

Figure 2 illustrates our specific decoding and encoding processes.

Limitation: NaN-space ownership: In our scheme, all signal-

ing NaNs are “owned” by FPVM. If the program itself is using

signaling NaNs, it will still operate, but will never “see” a signaling

NaN.

Limitation: universal NaNs: Regardless of the arithmetic sys-

tem involved, some computations simply do not result in real num-

bers. For example,
0

0
is not a real number and thus will be a NaN in

any alternative arithmetic system. How such a universal NaN can

be made visible to the original program is unclear. One possible

approach is to treat any signaling NaN without a corresponding

shadowed value as a universal (“true”) NaN.

Limitation: float problem: Our scheme is designed for 64 bit

(and larger) IEEE floating point numbers. Of course, NaN-boxing

can also be applied to smaller numbers, such as floats. However,
given that their mantissas are much smaller (23 bits for float) the
number of distinct pointers or keys that can be encoded is likely to

be insufficient.

Limitation: externals: Floating point virtualization should ide-

ally be independent of the structure of code within a virtualized

process. However, this is quite challenging for some of our ap-

proaches. If there is a boundary in the process between code that

is under FPVM control and code that is not, the boundaries need

conversions from shadowed values to regular floating point values.

This is a particular issue for the static patching and compiler-based

approaches.

Limitation: printing problem: Standard output facilities, such
as printf are specifically designed to convert an IEEE floating point
representation to a human-readable string. Of course, for shadowed

values, these tools would simply see signaling NaNs. To handle this,

wemust hijack such output functions to call back to our output code,

for example, to promote “%lf”. Section 4.2 describes our technique

for this.

Limitation: serialization problem: Code that writes floating
point values to storage or to a network connection will instead

be writing shadowed values (i.e., the NaN-box encoded signaling

NaNs. While in principle FPVM could transport the shadow values

alongside the shadowed values and reconstruct the result at the

destination
5
or in the file, this is in effect the deep copy problem

from RPC. Another approach that could be taken is to do conversion

back to IEEE floating point values at the point of serialization, but

this would entail losing all the promoted values.

3 Approaches to floating point virtualization
We considered four approaches to building an FPVM. These points

in the design space have tradeoffs with respect to code coverage,

ease of use, static and dynamic overheads, software engineering

focus, and other aspects that are summarized in Figure 3. The hybrid

FPVM described in Section 4 adopts the trap-and-emulate approach,

5
By interposing on MPI calls, for example.

but uses simple static analysis-and-transformation to work around

the fact that the x64 floating point is not (yet) fully virtualizable.

3.1 Trap-and-emulate
The trap-and-emulate approach takes its inspiration from how a

classic virtual machine or hypervisor operates [25, 56], although

it can (and should ideally) operate entirely at the same privilege

as the application, since protection is not a concern. Whether it

is user-level or kernel-level software, it is also unconcerned with

interrupts. It is driven entirely by exceptions caused by floating

point instructions and related instructions in the ISA. In effect, this

FPVM approach adds the floating point virtualization capability to

an existing process abstraction. This also makes it readily applicable

to any code that a process executes. This is a major plus from a

requirements perspective—if the user has something that runs, we

can virtualize its floating point operations.

The formal requirements for hardware to support virtualization

are well-known [49]. For the trap-and-emulate approach to floating

point virtualization when Section 2’s NaN-boxing approach is used,

the general requirements simplify: the hardware requirement is

that a floating point instruction that consumes a NaN, or produces a

rounding, denormalization, underflow, or overflow event must trap

so that FPVM is invoked. This requirement is partially met already

by the x64 hardware, and in our hybrid approach (Section 4) we

patch instructions where this is not true, similarly to how VMware

handled the partially virtualizable x86 general purpose ISA prior to

2005 [17].

For a dynamic floating point instruction that does not trap (and is

not patched), there is no overhead—it simply executes as normal. If

the instruction does trap, FPVM is invoked to decode the instruction

and emulate it using the alternative arithmetic system.

Shadowing and garbage collection: Unlike instruction emu-

lation in a general-purpose VMM, a trap-and-emulate FPVM must

maintain essentially arbitrary shadow values (numbers represented

in the alternative arithmetic system)—these are not constrained to

privileged register state as in a VMM. Moreover, temporary values

are included. Conceptually, each time an instruction is emulated,

a new shadow value is potentially produced. While the shadowed

value (the NaN-boxed pointer to the shadow value) is implicitly

“garbage collected” by normal function execution,
6
these events are

invisible to a trap-and-emulate FPVM. As a consequence, shadow

values accumulate in FPVM andmust be explicitly garbage collected

by it.

3.2 Trap-and-patch
The trap-and-patch approach extends and builds upon the trap-

and-emulate approach, and can offer the same ideal interface to the

user. Trap-and-patch uses the same hardware trap mechanism as

trap-and-patch, but instead of decoding and emulating the faulting

instruction, it instead replaces the instruction with a new instruc-

tion sequence (the patch), and also dynamically generates a custom
handler for the instruction being replaced. While these two ele-

ments can be combined, the patch is typically size-constrained so

6
For example, on a return instruction, variables on the stack frame values, are garbage

collected. As another example, when an instruction is executed twice with the same

destination operand, the operand is overwritten and the old value is discarded.

Approaches

Aspects Trap-and-emulate Trap-and-patch
Static analysis-and-

transform

Compiler-based-

transform

Code supported all (any process) all (any process) complete binaries that are

statically available

complete IR / source code

that is statically available

User requirements none none must provide all binary
code (libraries) before use

must provide all IR code

or source code before use

HW requirements
Fully virtualizable FP (or

selective patch)

Fully virtualizable FP (or

selective patch)

none none

Static costs (compilation) none none huge large

Run-time overhead when

alternative arithmetic not

involved

none low low low (<binary approaches)

Run-time overhead when

alternative arithmetic in-

volved

high (but OS+HW depen-

dent, see §6)
low low low (<binary approaches)

Hardware-independent no no no yes

Major SE focus RT/OS RT/OS/JIT
Binary analysis/trans-

form tool

Compiler

Figure 3: Comparison of the approaches. Boldface indicates most desirable properties.

that it can be easily inlined, while the custom handler is a separate

function.

The next time the instruction site is encountered, no hardware

exception can occur. Instead, the patch invokes the custom handler.

The handler does a precondition check that determines if any of the

input operands to the replaced original instruction are a NaN. If not,

then the original instruction, embedded in the handler, is executed,

knowing it will not fault. The handler then does a postcondition
check to see if the result was rounded, underflowed, overflowed,

etc. If not, then execution returns to the normal flow subsequent

to the patched instruction. If either check fails, the custom handler

includes instruction-specific code that invokes FPVM internals to

emulate the original instruction. These checks are effectively the

same checks as the hardware performs in trap-and-emulate.

The trap-and-patch approach is substantially more complex than

trap-and-emulate because it is doing architecture-specific binary

code generation for both the patch and the custom handler. Addi-

tionally, it must be able to apply the patch regardless of the size of

the original instruction. However, if the original instruction were

to frequently see or produce shadowed values, trap-and-patch can

operate with much less overhead than trap-and-emulate. The pri-

mary reason why is that the delivery cost of a floating point trap

generated by the hardware is currently substantially higher than

the cost of executing the patch, detecting a precondition/postcondi-

tion check failure, and calling into the handler. On the other hand,

if the original instruction rarely sees or produces shadowed values,

trap-and-emulate will be cheaper because software checks always

have an overhead, unlike the hardware checks, which only have

overhead only when they fire.

On a typical RISC architecture, patch generation is simplified

due to the simple instruction sizing, and the patch can essentially

be a single instruction. On x64, however, it is nontrivial because

instructions may be short. In particularly, if the instruction is five

bytes or longer, it can be replaced with a relative jump or call to the

custom handler. If it is shorter than five bytes, the patch needs to

span multiple instructions and may straddle the end of a basic block.

These are not showstoppers, and there are tools that accomplish

such patches (e.g., DyninstAPI [30]), but engineering complexity

now expands to include those tools.

To consider the prospects of trap-and-patch, we developed a

simple proof-of-concept that would create a patch and handler for

a simple x64 SSE addition operating on a pair of registers. Our goal

here was to measure the runtime overheads of a patch+handler

operating when the conditions are met versus not. These numbers

are included in Section 5.

Note that the software engineering effort of trap-and-patch is

focused on the JIT code generator needed to produce the patch

and handler. Operating at this level—writing the code to generate

the code that will be used at run-time—is substantially more error

prone and difficult to debug. However, given a working trap-and-

emulate system, the trap-and-patch approach could be developed

incrementally.

3.3 Static binary analysis and transformation
In this approach, instead of the trap-and-patch model of dynami-

cally patching the running process with invocations of FPVM, we

instead statically transform the application binary so that all in-

structions that could possibly employ a shadowed value are patched.

This instrumented binary is then linked with FPVM and used in

place of the original. At runtime, no hardware checks are used at all.

Because the transform is static, it is simpler than dynamic patching,

and there is a wider range of tools, such as e9patch [21], which

we employ later, that can be leveraged. A deficiency is that all in-

struction sites now include the overhead of the software condition

checks regardless of whether they ever trigger. Another deficiency

is that the static analysis and transformation process can be very

time consuming, and likely needs to be repeated whenever the

binary changes.

It is important to point out that with this approach, it is the binary,

as opposed to the process, that is patched. As a consequence, it is

necessary for all code that the program could ever use to be available

to the static transform process. This a tall order for the user because

most binaries use dynamic linking aggressively. Furthermore, larger

scientific applications are likely to use more dynamically linked

libraries. There is also no guarantee that all dynamic libraries will

be visible as imports in the application binary—a shared library

can always be explicitly linked into the program at runtime using

a name available only at runtime.
7
Finally, even if the entire binary

is statically linked, some libraries, such as libm.a and the GNU

standard C library still do architecture-specific code selection via

an internal patching scheme.

7
The class loader interface of Java is one example.

Application Code
(C,C++, etc.)

Object Files
(application.o)

Base Binary

Whole Program IR
(WPIR)

Transformed IR

WPIR + FPVM Runtime

Final Object File

Final Binary

Alternative
Arithmetics
(e.g. MPFR)

Output
Wrapper

Custom
Allocator

LD

gclang

llvm-link

Clang

FPVM Pass

Final Binary + DLLs

Unmodified System
Libraries

Math
Wrapper

Unmodified Kernel

Unmodified Hardware

FPVM Compilation Runtime

gclang LD

Figure 4: Compiler-based approach.

3.4 Compiler-based
The compiler-based approach requires that intermediate representa-

tion (IR) code (including for all libraries) is available. If only source

code is available, it is first compiled into IR. Note that this increases

the challenge for the user well beyond that of the static analysis

and transformation approach because they must now collect IR

code or source code. That said, on some systems (e.g. Apple), code

is starting to be distributed in an IR representation to facilitiate

optimizing it for the specific machine at install time. This would

reduce the challenge.

The IR represents the program in an abstract, architecture in-

dependent manner that is suitable for analysis, transformation,

optimization, and the generation of architecture-specific object

code. We specifically use LLVM IR [41], which is a static single

assignment form (SSA) using a relatively small abstraction instruc-

tion set. In contrast to something like the x64’s several(!) floating

point ISAs, their hundreds of instructions, and handful of encod-

ings, there are only a tiny number (13) of LLVM IR instructions

that we are concerned with. There exist widely used third-party

tools that complement LLVM, such asWLLVM [51] and gclang [31],

which allow us to extract whole-program IR of the entire program

with extremely small modifications to the build process. Using

the whole-program IR and building from it greatly simplifies the

transformation step (as there is only one IR module to transform)

and produces more opportunities for successful interprocedural

analysis and optimization.

The compiler-based approach transforms the code at IR level to

introduce the equivalent of the patches and custom handlers intro-

duced by the static analysis and transformation approach. Because

the LLVM IR is so much simpler than any ISA, this transformation

involves far less engineering effort. Additionally, the transformed

code can be subjected to another round of optimization which may

be able merge the patches and handlers with application code, thus

reducing their overheads compared to binary patching. The run-

time system for the approach is essentially the same as for the other

approaches. Figure 4 illustrates the compiler-based approach as we

have implemented it in an initial prototype. The compilation aspects

of the VPfloat system [35, 36] are similar, except they make the

“pluggable float” type explicit in the language (C++). The program-

mer also needs to modify the source to use it. In a compiler-based

FPVM, the compiler and a complementary runtime would manage

shadowing of objects in the alternative arithmetic system and their

allocation/deallocation via static analysis and transformation–also

similar to the VPFloat system’s backend code generators.

While rebuilding the entire codebase is a substantial disadvan-

tage for our usage scenario compared to the other approaches, the

compiler-based approach has two substantial advantages as well.

First, the compiler’s code generator can easily target a different ISA,

which means targeting a different processor (e.g., ARM, RISC-V,

possibly GPU) does not require a new engineering effort. The other

approaches require rebuilding much of the system to support a

different processor. Second, the transformation can take into ac-

count the connection between shadowed values and shadow values

more cleverly. In particular, it knows exactly when a program tem-

porary is garbage collected, and thus can easily add a callback to

the runtime to also free the shadow value. This can substantially

simplify garbage collection within FPVM, lower the overhead of

garbage collection, and reduce memory overheads. Finally, at the

compiler-level there are additional opportunities to merge and/or

reuse shadow values through the use of liveness analysis. Such

optimizations would reduce overheads.

4 Hybrid FPVM for x64
Our prototype hybrid FPVM system is designed to run at user-

level on top of an unmodified x64 platform running an unmodified

Linux kernel. It runs underneath an existing application binary.

The core of the implementation is a trap-and-emulate engine akin

to a classical VMM that allows an alternative arithmetic system to

be used. Before the binary can be used, however, it must be run

through a static analysis and patching process to catch corner-cases

that trap-and-emulate will fail to catch on its own. An abstraction

layer allows alternative arithmetic systems to be ported for use

with FPVM.

4.1 Trap-and-emulate engine
The core trap-and-emulate functionality of our FPVM implementa-

tion leverages the ideas behind our FPSpy analysis tool [19]. As with

FPSpy, FPVM is implemented as an LD_PRELOAD library, loaded by

the dynamic linker at program launch time before all other libraries.

This allows FPVM to insert itself in front of any other part of the

runtime, effectively acting as a shim between the application binary

and its libraries. Like FPSpy, FPVM also installs itself as the handler

of SIGFPE signals, which result when the floating point hardware

detects exceptional conditions. FPVM manages the floating point

hardware control state such that these conditions are configured to

be detected and to result in hardware faults.

FPSpy responds to a hardware fault and the resulting SIGFPE by

recording the execution of the faulting instruction, and then allow-

ing it to be executed as normal. In contrast, FPVM responds to the

same situation by emulating the faulting instruction using the alter-

native arithmetic system, and storing pointers to the shadow results

in the process’s memory and/or registers using the NaN-boxing

technique of Section 2. The runtime component the hybrid FPVM

is broken down into four main components: trapping, decoding,

emulating, and garbage collecting. An overview of the architecture

is shown in Figure 5.

Trapping: The x64 floating point hardware includes a control
and status register, %mxcsr, that maintains a set of condition flags

addsd %xmm0, %xmm1 subsd %xmm2, 16(%rsp)Application Code

Clear %mxcsr

Read %ripFPVM Signal Handler

Decoder

Decode Cache

Capstone

Disassembler

Binder

Miss

Cache Hit Emulator

Operator Dispatch

Alternative Math

NaN-boxing

SIGFPE (rounding, denorm, underflow, NaN produced)

Decode

Figure 5: Hybrid FPVM prototype’s trap-and-emulate architecture

defined by the IEEE floating point specification. Unlike integer con-

dition codes, these flags are sticky, meaning they must be manually

cleared by software. FPVM manages these flags so that they start

at zero for each instruction. The flags record a small set of events

(result was rounded, result overflowed, result underflowed, result

was denormalized, and NaN was produced or consumed). %mxcsr
also contains parallel exception mask flags for each of these condi-

tion flags, that, when clear, cause a precise exception (a fault) to be

raised to the kernel if the corresponding condition code flips to one

(ie., when the event occurs) during the execution of an instruction.

The kernel translates this exception into a SIGFPE signal to the

process. The signal is delivered to the handler FPVM previously

installed. FPVM inspects and records the %mxcsr register to deter-

mine the reason for the signal, and then clears the condition codes

within in preparation for the next instruction. The signal handler

then reads the instruction pointer from the kernel-provided signal

trap frame to determine the location of the faulting instruction.

Decoding and decode cache: Once the address of the faulting
instruction is known, it is then fed into the decoding subsystem.

This code keeps a cache of decoded instructions–amap from address

to struct instruction–that is quickly queried to avoid decoding

the same instruction multiple times. This decode cache is critical

to lowering latencies, as is discussed in Section 5.3.

If there is a cache miss, the decoder invokes the Capstone disas-

sembler [2] to decipher the x64 instruction. It then simplifies the

decoding for use specifically in floating point emulation. The re-

sulting struct instruction contains both a high-level, Capstone-

independent representation, and the low-level Capstone-dependent

representation. The rest of the system uses the Capstone-independent

representation to allow for future plugability of decoders. The hun-

dreds of different x64 floating point instructions flatten down to

about 40 operation types. The Capstone-independent representa-

tion is also designed to minimize architecture-specificity with the

eventual goal of supporting architectures other than x64. That said,

due to the challenges of representing the side-effecting nature of

some x64 instructions, this is a work in progress. Once decoded,

the instruction is then placed in the decode cache.

Binding: The struct instruction, whether it came from the

decode cache or is a new instruction, next has its operands “bound”

to memory locations. A bound instruction is an abstract normal-

ized representation, containing direct pointers to the sources and

destinations of the instruction, the size of the values being operated

on, a simplified op-code which is later used for emulation, and

any special details (like side effects). For example, the instruction

addsd %xmm0, 0(%rsp) and addsd %xmm0, %xmm1 are bound into
the same FPVM_OP_ADD operation, where the former’s source value

points to the stack, and the latter’s to the register file saved by the

signal handler.

By explicitly binding each instruction, the construction of the em-

ulator is vastly simplified. The emulator need not handle accesses

to memory or registers differently, it only needs only read/write

through a void*. The details of registers, immediates, and the com-

plex x64 memory operand address computations, are hidden.

Emulation: Once the instruction has been decoded and bound,

the emulator is invoked. Recall that the instruction’s Capstone-

independent representation marks it as having one of about 40

operation types. The implementation for each operation type is

given simply by a function pointer stored in a map, op_map, which
indexed by the operation type. These functions constitute the core

of the interface to the alternative arithmetic system, which is dis-

cussed in more detail in Section 4.3.

By abstracting these operations, only a single scalar function

needs to be implemented to handle all forms of an instruction like

“add”. For example, to handle a vector instruction, the emulator

simply calls the function multiple times with different source and

destination pointers.

These functions all fundamentally operate in the same way. They

first attempt to unbox the values stored in the source operands. If

the source registers are not NaN-boxed values (shadowed values),

they are promoted from their double representation to the alterna-

tive arithmetic system’s representation. The alternative arithmetic

system’s implementation of the instruction is then carried out on

these promoted values. The resulting shadow value is then stored in

a newly allocated cell which is NaN-boxed into the pointer (creating

a shadowed value) provided by the decoder. Because FPVM must

maintain the illusion that the numbers that the application is oper-

ating on are values, not pointers, the NaN-boxed data must remain

immutable. For example, if a NaN-boxed reference is written to

every location in an array, mutating the value will indirectly modify

every value in said array. This unfortunately leads to significant

memory pressure, as every instruction allocates a new cell.

Garbage collection: In order to tame the memory demands of

FPVM, a garbage collector must be utilized to reclaim references

that are no longer stored in NaN-boxes (i.e., to delete any shadow

value that no longer has any shadowed value in the program to point

to it). This garbage collection problem is not the general garbage

collection problem, however, since there is no general pointer graph.

Instead, the pointer graph is bipartite, between potential shadowed

values in the program, and shadow values in FPVM. Conceptually,

any memory location in the program could contain a pointer (a

shadowed value), but nomemory location (a shadow value) in FPVM

can point back into the program. An additional simplification is

that any reference held by a NaN-box is guaranteed not to point

into the middle of an object.

As a consequence, a relatively naïve conservative mark-and-

sweep collector is used. All allocations are stored in a simple data

structure along side a “marked” bit. Every epoch (typically 1s), the

garbage collector scans all writable program memory for data that

appears to be a NaN-box. It then decodes it, and sets the mark bit if

it is located in the data structure. It then sweeps through the set of

extern double fp;
int foo (double fp) {
return *(int*) &fp;
}

foo:
push rbp
mov rbp, rsp
movsd QWORD PTR [rbp-8], xmm0
lea rax, [rbp-8]
mov eax, DWORD PTR [rax]
pop rbp
ret

Figure 6: Double to Int conversion through pointers.

typedef struct A{
int i;
double d;

} A;
extern double fp;
int foo(){
A* ptr = malloc(sizeof(A));
ptr->d = fp;
ptr->i = 0;
return *(int*) &ptr->d;
}

call malloc
mov QWORD PTR [rbp-8], rax
movsd xmm0, QWORD PTR fp[rip]
mov rax, QWORD PTR [rbp-8]
movsd QWORD PTR [rax+8], xmm0
mov rax, QWORD PTR [rbp-8]
mov DWORD PTR [rax], 0
mov rax, QWORD PTR [rbp-8]
add rax, 8
mov eax, DWORD PTR [rax]
leave
ret

Figure 7: Double to Int conversion through pointers with struct.

all allocated values and frees their backing storage (shadow values)

if they are not marked.

While an off-the-shelf collector such as Boehm [10] could be

used instead, it would require significant patching to support NaN-

boxing. It also would not take advantage of the simplifying proper-

ties of the specific garbage collection problem that arises in FPVM.

4.2 Static binary analysis and transformation
The correctness of FPVM’s trap-and-emulate model requires that

that all instructions involving NaN-boxed values are captured by

our system. Unfortunately, some x64 instructions can operate on

NaN-boxed values without triggering a hardware fault and thus

FPVM. For example, developers have the ability to cast memory

references to floating point values to integers to operate on their

bits directly, as is done in much of the implementation of the GNU

standard math library or in printf. Perhaps less obviously, modern

compilers will often optimize common operations by operating on

the bits of a floating point register directly, for example by flipping

the sign bit using the xorpd instruction (vector xor operation). With

current hardware, none of these instructions will trap when oper-

ating on NaN-boxed values, possibly leading to a sea of undefined

behavior as the application begins to blindly operate on NaN values

introduced by FPVM.

We illustrate an example of this behavior in Figure 6. Here a

double-precision float’s bits are reinterpreted through pointer cast-

ing. The argument, fp, is stored in %xmm0 per the calling convention,
which is then stored into a memory location on the stack. The con-

tent of this location is then loaded into the %eax register. If the

value stored in %xmm0 register were a NaN-boxed (shadowed) value,
%eax now partially contains said NaN-box, possibly resulting in

unexpected results if the application relies on or operates on the

bit-pattern of %eax.
Whether or not the value stored in %xmm0 was a NaN-boxed

(shadowed) value, any bitwise operations on %eax will not fault,

FPVM will thus be unaware of them, and this will likely lead to

invalid results, or memory faults caused by NaN-box corruption.

Figure 7 is another variation of this issue, showing that the bit-

level access can be complicated by indirection and structs/unions.

Correctly identifying instructions that might lead to this behav-

ior is instrumental to maintaining correctness in FPVM. Given an

oracle where all such instructions were known ahead of time, FPVM

could defensively demoteNaN-boxed values to their lower precision
representations (IEEE doubles) in order to maintain correctness and

transparency. Demotion not only means to switch back to the IEEE

double representation, but also to store that actual value in place

of the NaN-boxed shadow value. One solution is to demote NaN-

boxed values every time they are stored to memory. This solution

unfortunately obviates the goal of using the alternative arithmetic

system, but guarantees correctness. What we really want to do is

minimize the number of demotions needed to maintain correctness.

In order to maintain program correctness while avoiding demo-

tions, code analysis must be utilized to identify instructions that

can produce problematic behavior.

Our approach to solve this problem is to statically analyze appli-

cations prior to running. Our static analysis is designed to identify

vulnerabilities in programs when running with FPVM by tracking

how data flows through all instructions and control flow. The analy-

sis leverages Value Set Analysis (VSA) [5]. The analysis categorizes

instructions into two categories: sources and sinks. In FPVM, a source
is any instruction that stores a floating point value to memory, and

a sink is any instruction that later loads from any memory loca-

tion that was previously been written to by a source. Instructions

that operate only on registers are not considered, as double→int

reinterpretation in a register is not generated by either GCC or

Clang/LLVM.

The input to our static analysis algorithm is an unmodified ap-

plication binary, and the output is the set of sinks (instructions) at

which FPVM must demote. Modern VSA often leverages symbolic

execution to determine the possible values of any registers or mem-

ory at every instruction. By building on the information given by

VSA, we can more accurately identify sink instructions, patching

in demotions only as needed.

Unfortunately, as with most static analysis, such as alias analysis,

VSA is not generally solvable [40, 50], and will not always give

precise results. Thus, if VSA returns a conservative result, FPVM

follows suit and assumes there exists a NaN-boxed double that may

need demotion. For example, if an application calls into an external

library external library that is not analyzed, the worst case must be

assumed, and demotion is done at the call site.

Since the scientific applications FPVM targets are often huge,

containing more than a million instructions (excluding external

libraries), we tweak VSA under consideration of both running time

and space consumption. First, our VSA treats each instruction as a

basic block and associates a persistent state with each instruction.

FPVM’s VSA builds a preliminary Control Flow Graph (CFG) and

then starts from the first instruction at the entry point and analyzes

the program sequentially. Through symbolic execution, the set of

possible values for each register/memory location is maintained.

After running VSA on the existing, unmodified application bi-

nary, we obtain states, including register states and memory states,

before and after each instruction that was analyzed. Building on

SIGFPE

Math
Functions

a.out

divsd xmm0,xmm1

addsd xmm0,xmm1

…

sin
cos

pow…

printf
fwrite
fread…

TRAP

Demote NaNBoxed Values

libc.so

External
Libraries

libm.so…
FPVM

mov
eax,

[rax] …
xorpd

…andpd

Bitwise
Operation

TRAP TRAP TRAP

Core

Figure 8: Overall model after static binary analysis and patching.

this, we identify sources and sinks defined above. Once sink instruc-

tions are identified, they are patched to explicitly trap into FPVM to

demote the NaN-boxed value if it is discovered at run-time to truly

be NaN-boxed, and then re-execute the instruction. For calls into

external libraries, NaN-boxed values passed as arguments can be

problematic, for example, when printing out floating-point values.

Hence, we demote NaN-boxed floating point registers at the call

site.

When running the patched binary, the dynamic interaction be-

tween the application, external libraries, and FPVM is as shown in

Figure 8. What is different compared to Figure 5 is that FPVM is

also invoked by the intentional traps introduced by static analysis

for the reasons given above. If our analysis performs well, then

these intentional traps which involve a overhead whether they are

triggered or not, will be rare compared to the hardware-detected

events, which only have an overhead when they occur.

FPVM’s static analysis was built on top of angr [55], a tool that

disassembles instructions, lifts into intermediate-representation,

and carries out symbolic execution. Angr provides various static

analysis techniques on top of its abstract register/memory repre-

sentation. After VSA via angr converges on a result, FPVM’s static

analysis produces a list of sink instructions which must be patched

to include traps to FPVM based on VSA results. We call those traps

correctness traps. We use e9patch [21] to patch those instruction

to explicitly trap to FPVM, where NaN-boxed values are demoted

back to IEEE floats and the instruction is re-executed by using the

x64’s trap mode to do single instruction stepping.

4.3 Alternative arithmetic interface
FPVM includes an interface for alternative arithmetic systems to

be plugged in. This parallels the abstract interface of the decoder,

and consists of a small number (currently 37) scalar functions (the

emulator handles vectors) that must be provided. 23 of these con-

sist of arithmetic operations like add, multiply, multiply-add, sin,

cosine, and square root, etc, 10 are conversion operations, and 4 are

comparisons. Conversions and comparisons are the hairiest part

of the interface as these require matching of the system to implicit

input (e.g. rounding mode) and output (e.g. flags register) operands.

FPVM also provides the alternative arithmetic system with memory

management. We have thus far ported three alternatives to this

interface.

Vanilla: This system implements the functions using regular

IEEE 64 bit floating point operations. The primary purpose of

Vanilla is to allow us to test the other elements of FPVM indepen-

dently. If FPVM is working correctly, then Vanilla should produce

the identical results to running without FPVM.

MPFR: This system interfaces to the GNU Multiple-Precision

Floating-point Representation library [23]. MPFR is a widely used

tool for arbitrary precision arithmetic. It essentially implements the

IEEE floating point standard in software, but with dynamic runtime

selectable precision. The fraction can be an arbitrary number of

bits long, while the exponent is a 64 bit unsigned number. In our

implementation, the precision used by FPVM is determined by a

compile-time configurable parameter or environment variable, and

we are also considering an adaptive precision version.

Posit:This system interfaces to the Universal Numbers Library [47]

implementation of the posit standard [26, 37]. A posit number

has four parts which include sign, regime, exponent and fraction.

Among the four, exponent and fraction have variable length. The

posit sizes/precisions available in the library can be chosen at

compile-time.

5 Evaluation
We now describe the testing and initial performance evaluation of

the hybrid FPVM prototype.

5.1 Testbed, benchmarks, and applications
Unless otherwise noted, all testing was conducted on a Dell R815,

which sports four 16 core 2.1 GHz AMD Opteron 6272 processors

and 128 GB of RAM split among 8 NUMA zones. These processors

support the SSE4.2 and AVX floating point instruction sets. The

machine runs Ubuntu 16.04 with 4.4.0 kernel. The Ubuntu-default

gcc 5.4 toolchain was used to compile all code.

Our test code consists of the FBench floating point benchmark [57],

a version of the Lorenz system simulator that we developed, a three-

body problem simulation, selections from the NAS 3.0 Application

Benchmark Suite [4, 34, 46], miniAero, and an Enzo application.

MiniAero is a Mantevo [16] miniapp (one of several used for evalu-

ation of supercomputing environments by Sandia National Labs)

that solves the compressible Navier-Stokes equation. miniAero is

written in C++ and C and contains about 4400 lines of code. mini-

Aero is dependent on kokkos for OpenMP and Pthreads. Enzo [12]

is an astrophysics and hydrodynamics simulator. Enzo is written

in C, Fortran, and Python and contains about 307,000 lines of code.

Enzo depends on HDF5 for data storage, as well as an MPI library.

5.2 Validation
In order to validate the functionality of FPVM, we ran a selection of

our codes with and without FPVM.When run under FPVM, we used

the Vanilla math implementation outlined in Section 4.3. Recall that

this simply interposes virtualization, but uses IEEE 64 bit floating

point. In all of the cases, the results were identical, as expected,

indicating that the core emulator operates correctly. As alternative

math libraries such as MPFR are used, the results vary as outlined

in Section 5.4.

5.3 Overheads
In the trap-and-emulate model, overhead is only incurred if the

hardware detects an event (such as rounding, overflow, underflow,

denorm, or use of NaN). When such an event is detected, the cost of

executing the instruction expands to include FPVM. Figure 9 illus-

trates the average costs in this situation for our test codes, which

range from 12,000-24,000 cycles. The figure also breaks these down

0 5000 10000 15000 20000 25000
Cycles

Enzo

NAS CG

miniAero

Three-Body

Lorenz

fbench

Be
nc

hm
ar

k

hardware overhead
kernel overhead
decoder cache
decoder
bind
emulate
gc
correctness overhead
correctness handler

Figure 9: Average cost of virtualizing a floating point instruction,
and its breakdown into constituant parts.

into their constituent components.
8
The emulation component in-

cludes MPFR computation with 200 bit precision.
9

The correctness overhead and correctness handler components

reflect the amortized dynamic cost of the trap instructions intro-

duced via static analysis. These costs are virtually zero except for

Enzo, where they are substantial. In Enzo, the traps occur in crit-

ical loops because the static analysis could not prove they were

unneeded. The vast majority of the dynamic checks succeed how-

ever, meaning no special handling is needed. This gives hope that

advances in our static analysis work could eliminate more of them.

In contrast, miniaero’s dynamic checks do not typically succeed,

but they are not encountered in critical loops either. As a result, the

correctness overheads are in the noise. The other codes are similar.

The “hardware overhead”, “kernel overhead”, and “correctness

overhead” are the costs paid to dispatch into FPVM for a floating

point exception or a correctness trap. As we describe in Section 6,

these overheads are likely to become much smaller by kernel and

hardware extensions. There is nothing intrinsic to them. We also

note that the correctness overhead could be eliminated without

kernel or hardware changes by having the static analysis patch in

a direct call instruction to the FPVM entry point instead of a trap

instruction or by inlining the dynamic check and invoking a trap

only if it fails. This is only a matter of implementation effort.

FPVM operation generates considerable amounts of garbage due

to the problem of temporaries noted above. Figure 10 measures the

garbage collector behavior (> 95% of shadow values are collected

on each garbage collection pass) and performance in more detail.

Note, however, that this is not a dominant component of overhead—

as Figure 9 makes clear, it is 2nd or 3rd order behind the kernel

overhead, emulation overhead (similar to this), and the correctness

overhead (on codes where this is significant). That said, there is

plenty of room to enhance our garbage collector.

Recall that our goal with floating point virtualization is to have

the overhead dominated by the alternative arithmetic system, and

not the virtualization mechanisms. Of course, achieving this goal

depends on the performance of the alternative arithmetic system.

8
The decode component is the amortized cost over all faulting floating point instruc-

tions, and is very tiny because there are only a small number (typically 1000s) of these

instructions, but they are executed millions to billions of times, thus the decode cache

hit rate is nearly 100%.

9
200 bit MPFR operations themselves take from 93 (add) to 2175 (divide) cycles.

1
10
100
1000
10000
100000
1000000
10000000

1
10

100
1000

10000
100000

1000000
10000000

m
in

iA
er

o

En
zo

Lo
re

nz
At

tr
ac

to
r

N
AS

 C
G

FB
en

ch

Th
re

e-
Bo

dy

tim
e

in
 u

s

Co
un

t

alive freed latency (us)

Figure 10: Garbage collector statistics and performance.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

5 10 15 20 25 30

Cy
cl

es

Log2(number of precision bits)

Add Sub
Mul Div

L1 Cache
L2 Cache

L3 Cache

Figure 11: Performance of MPFR as a function of precision.

Figure 11 shows the measured performance of different MPFR oper-

ations, as a function of the precision (mantissa bit width). Assuming

a crossover point at 12,000 cycles, for example, as with most of our

codes, means that MPFR begins to dominate at 2
13

bits (division)

to 2
18

bits (addition). This is prior to the optimizations we envi-

sion in Section 6 and above. With them
10
, we would be left with

about 4,000 cycles (dominated by emulation and garbage collection),

where MPFR would begin to dominate at 2
8
bits (division) to 2

16

bits (addition).

The 4,000 cycles we note above include emulation and garbage

collection costs. It is possible that this cost could be further reduced

through concurrent garbage collection techniques. Additionally, our

emulation logic has not yet been optimized, and the measurements

of Figure 11 include both the emulation cost and the cost of the

Vanilla arithmetic system. We speculate that the ultimate overhead

limit is substantially less than 4,000 cycles.

Figure 12 illustrates thewall-clock slowdown of each of our codes

in the current implementation. Tests are done on three machines.

R815 is as described in Section 5.1 and was used for the previous

results. Notice that R815’s slowdowns are substantially smaller than

would be implied by Figure 9. This is because are many dynamic

instructions other than floating point instructions or correctness

traps. Furthermore, the floating point instructions only invoke

10
In particular, user→user trap with fast delivery, extending floating point traps for

all x64 instructions, and trap on NaN-load

Machine

Benchmarks Specifics R815 7220 R730xd

FBench n.a. 1,808x 720x 667x

Lorenz Attractor n.a. 268x 116x 243x

Three-Body n.a. 789x 685x 916x

miniAero Flat Plate 1,811x — —

NAS IS Class S 204x 313x 294x

NAS EP Class S 396x 542x 533x

NAS CG Class S 12,169x 3,537x 3,855x

NAS CG Class A 3,900x — —

NAS MG Class S 5,163x 5,543x 3,129x

NAS LU Class S 10,773x 10,080x 11,443x

Enzo Cosmology Sim. 1,976x — —

Figure 12: Summary of Benchmarks.

StartIEEEMPFR

Figure 13: Lorenz system using IEEE and MPFR via FPVM. Blue tra-
jectory is IEEE. Orange trajectory is MPFR. Trajectories and final
state are different between the two arithmetic systems.

FPVM when a special event occurs. If an instruction uses non-NaN

values and its result was not rounded, and did not overflow or

underflow, FPVM is not invoked. The machine 7220 is a Dell 7720

with an Intel Xeon E3-1505M v6 and 32 GB of RAM running Ubuntu

20.04 with a stock 5.4.0 kernel. The machine R730xd is a Dell R730xd

with two Intel Xeon E5-2695 v3 processors and 220 GB of RAM

running RHEL 8.5 with a 4.18.0 kernel. Slowdowns are similar on

these newer machines, although CG.S is an outlier.

5.4 Effects
Figure 13 shows the output of running a Lorenz system simula-

tion for 2500 time steps under the hybrid FPVM prototype using

three different arithmetic systems (original IEEE doubles, IEEE dou-

bles emulated via FPVM (Vanilla), and MPFR emulated via FPVM)

plugged in. Simply adding the FPVM layer, and thus trapping and

emulating all floating point instructions that round, does not change

the answer. There is no difference between the original IEEE dou-

bles and the emulated IEEE doubles. On the other hand, using

MPFR, with a higher precision, does indeed change the answer, as

expected. Given a common starting point, the trajectories of IEEE

and MPFR soon diverge, and this divergence is reflected in the final

state (position).

What is happening here is that the Lorenz system is the classic

example of a chaotic dynamic system [45]. As such, tiny changes

in the initial condition, or tiny perturbations in intermediate states

result in a divergence, typically an exponential divergence, over

time. Each rounding event in the computation is such a perturbation.

The rounding events encountered by IEEE and MPFR are different,

resulting in the different trajectories and ending points.

5.5 Software engineering complexity
Part of the feasibility of FPVM stems from the software engineering

effort and time spent building it. The hybrid FPVM outlined in

Section 4 was comprised of roughly 6300 lines of C and C++ for the

trap-and-emulate component, and 1484 lines of Python for the static

analyzer. Individually, each alternative math binding was roughly

350 lines of code, leading us to believe that extending FPVM to

support new alternative arithmetic is relatively simple.

5.6 Beyond x64
The design and implementation of our prototype is tightly coupled

to x64. Is it portable to other CPU platforms, such as ARM and

RISC-V? Or to GPU platforms?

A core requirement of our prototype (as well as the trap-and-

emulate, and trap-and-patch approaches in general) is that the

hardware can convert detection of the floating point exceptions

(e.g., overflow, underflow, rounding, invalids, etc) into traps/inter-

rupts that are delivered to the underlying kernel and thus to FPVM.

These traps/interrupts are what drive FPVM. The x64 standards

guarantee this behavior. The ARM standards make this behavior op-

tional. Some platforms we have tested (such as ThunderX2, A64FX,

and Apple M1) do indeed have the needed behavior. Others (such

as ThunderX1) do not have it. RISC-V, at least in its “F” and “D”

extensions, explicitly do not support this behavior for performance

reasons. This is a shame because the “N” extension would be very

beneficial for FPVM, as we describe later.

Is the hybrid FPVM prototype portable to GPUs? It is our under-

standing that current NVIDIA GPUs support neither the floating

point condition codes nor raising a trap/interrupt when a condi-

tion code is set. This was also true in the past for AMD and Intel

GPUs, but AMD’s Vega architecture has support for floating point

condition codes and exceptions.

On platforms in which traps/interrupts on floating point events

are not available, FPVM would likely need to be implemented using

the static analysis and transformation approach or the compiler-

based transform approach.

6 Prospects for reducing overhead
We now describe techniques for further reducing the costs and com-

plexity of floating point virtualization. Although our presentation

is geared to the Linux and x64 context, all the techniques could

be applied to other environments provided they have the basic

functionality of presenting IEEE floating point exceptions as traps.

If they do not, a static binary transformation, or the compiler-based

approach would be needed to introduce checks in software.

6.1 Kernel-level support
Recall that in the trap-and-emulate model there is no overhead

unless a shadowed value is involved. These events are detected by a

hardware floating point exception. The overhead of delivering such

an exception dominates the virtualization overhead of the FPVM

prototype because they must propagate all the way to the user-level

implementation of FPVM.

2x AMD 4122 4x AMD 6272 Intel Phi 7210
Testbed

0

5000

10000

15000

20000

25000

Cy
cle

s

6114 6137

24206

602 913 897

User Signal Delivery
Kernel Trap Delivery

Figure 14: Overhead of user-level versus kernel-level exceptions/in-
terrupts (quoted from [24]).

Figure 14 shows the measured overhead of delivering the excep-

tion to user-level and to kernel-level in three different platforms,

including an AMD 6272-based machine similar to the one used for

performance measurement in this paper. Kernel-level delivery has

7 to 30 times lower overhead. These numbers were measured on a

kernel without Spectre/Meltdown mitigations and thus are likely

to be conservative. One way to make use of these results would be

to make FPVM a kernel-level service, implemented, for example,

as a kernel module for Linux. This would reduce the overhead to

be closer to that of kernel-level delivery, but we would still bear

the cost of crossing the kernel-user boundary. A more aggressive

option would be to incorporate FPVM into a pure-kernel execution

model, such as in the hybrid run-time (HRT) model [27, 28]. By

discarding kernel-user crossings altogether, the baseline overhead

for FPVM would be similar to the “Kernel Trap Delivery” variants

in Figure 14. Currently, only an implementation of FPVM as a Linux

kernel module is planned.

6.2 Hardware support
Several small hardware changes would allow us to reduce or elimi-

nate the need for static analysis, as well as to reduce the runtime

overhead of FPVM-like trap-and-emulate virtualization of the float-

ing point hardware.

Extendingfloating point traps for all x64 instructions:Our
hybrid FPVM prototype uses expensive static binary analysis in or-

der to handle edge cases in virtualizing the floating point hardware.

One of these cases is straightforward: the x64 floating point hard-

ware also includes support for integer and saturating arithmetic.

As a result, it is possible, for example, for a NaN to flow into an

logical operation like an XOR. While situations like this are rare,

they do occur because these non-FP operations may be used by

the compiler to optimize FP math. Currently, these situations do

not result in an FP exception or trap, and thus our analysis and

patching is necessary. The hardware could support a NaN input

check for all operations, letting us avoid some of this analysis.

Trap on NaN-load: Similarly, a floating point value stored in

memory might be treated as as an integer value in some circum-

stances, for example, from idiomatic C like *(uint64_t *)(&x)
where x is a double. The majority of our static analysis is done

to conservatively handle this kind of situation, forcing a trap into

FPVM so it can determine if the value that is escaping as an integer

is a NaN-boxed value.

NaNs, however, have bit patterns that make them unusual to be

encountered in the wild. Furthermore, when running with FPVM,

the majority of 8 byte quantities loaded that match a NaN pattern

are likely to be NaN-boxed values created by FPVM. If the hardware

could optionally trigger an exception when a NaN pattern is loaded

as a value, the static analysis could be avoided.

User→user trap with fast delivery: As Figure 14 shows, the
overhead of the delivery of a floating point exception as a trap is

substantial, even ignoring kernel→user delivery. The hardware cost

of delivery and return is on the order of 1000 cycles. In part, this

high cost is due to the complex, stack-based exception/interrupt

delivery mechanism on x64 and the need for a user→kernel→user

privilege transition sequence. However, traps resulting from float-

ing point operations do not require any of this—of the six traps

available on x64 (Invalid, Inexact, Underflow, Overflow, Denorm,

DivideByZero), only DivideByZero might have a consequence for

the kernel or other processes. And DivideByZero applies only to

integer operations (a floating point divide by zero is an Overflow).

A specialized exception delivery system geared to user→user

privilege transfer similar to RISC-V’s “N” extension [1] could dra-

matically lower the overhead of FPVM-like systems. For floating

point virtualization, all that is needed is a same-privilege control

flow transfer, which we anticipate could be brought down to less

than 10 cycles on x64 through integration with branch prediction, a

technique we refer to as a “pipeline interrupt”. A proof-of-concept

of this exists (in PIN). The interface is similar to the x64 syscall
instruction, which already avoids stack operations for system calls,

and to the TSX RTM transactional memory feature, which has a

user→user transaction abort. Our scheme in effect dispatches the

exception as a jump to a target address stored in an MSR
11

with the

address of the faulting instruction and current flags placed in link

registers implemented as MSRs.
12

We have measured TSX RTM

transaction abort times as low as 100 cycles on current proces-

sors (Intel i7-9850H, specifically), and that includes unwinding the

aborting transaction, which a user→user transfer would not do.

7 Conclusions
As promising alternative arithmetic representations emerge, provid-

ing higher precision than existing IEEE floats, they have not seen

major adoption among the scientific community. This can mostly

be attributed to the significant engineering effort required to such

enormous codebases to support them. In this work, we explored

possible approaches to address this challenge through classical

VMM techniques by virtualizing the IEEE floating point hardware,

specifically on x86. The goal of a floating point virtual machine

(FPVM) is to allow existing application binaries to be transpar-

ently extended to support arbitrary alternative arithmetic systems

without incurring significant virtualization overhead. We discussed

the design and implementation of a prototype hybrid FPVM using

trap-and-emulate and static value set analysis to evaluate the ef-

fects of alternative arithmetic on various scientific applications and

benchmarks. We evaluated the overheads of said implementation,

deficiencies of existing floating point hardware, as well as a few

prospects to reduce virtualization overheads in future hardware.

11
FPVM would load this with its entry point.

12
FPVM would use these to resume execution after handling a delivered fault.

References
[1] The risc-v instruction set manual. volume i: User-level isa.

[2] Capstone: The ultimate disassembler, 2021.

[3] Arnold, M. G., Bailey, T. A., Cowles, J. R., and Cupal, J. J. Redundant logarith-

mic arithmetic. IEEE Transactions on Computers 39, 8 (Aug. 1990), 1077–1086.
[4] Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L.,

Fatoohi, R., Fineberg, S., Frederickson, P., Lasinksi, T., Schreiber, R., Simon,

H., Venkatakrishnan, V., and Weeratunga, S. The nas parallel benchmarks

(nas 1). Tech. Rep. RNR-94-007, NASA, March 1994.

[5] Balakrishnan, G., and Reps, T. Analyzing memory accesses in x86 executables.

In International conference on compiler construction (2004), Springer, pp. 5–23.

[6] Bao, T., and Zhang, X. On-the-fly detection of instability problems in floating-

point program execution. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA) (October 2013).

[7] Bellard, F. Libbf: The tiny big float library. Available at https://bellard.org/libbf/,

2017.

[8] Bentley, M., Briggs, I., Gopalakrishnan, G., Ahn, D. H., Laguna, I., Lee,

G. L., and Jones, H. E. Multi-level analysis of compiler-induced variability and

performance tradeoffs. In Proceedings of the 28th ACM Symposium on High-
performance Parallel and Distributed Computing (HPDC 2019) (June 2019).

[9] Benz, F., Hildebrandt, A., and Hack, S. A dynamic program analysis to find

floating-point accuracy problems. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) (2012).

[10] Boehm, H.-J. Simple garbage-collector-safety. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation (New York,

NY, USA, 1996), PLDI ’96, Association for Computing Machinery, p. 89–98.

[11] Boehm, H.-J. Towards an api for the real numbers. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (June 2020).

[12] Bryan, G. L., Norman, M. L., O’Shea, B. W., Abel, T., Wise, J. H., Turk, M. J.,

Reynolds, D. R., Collins, D. C., Wang, P., Skillman, S. W., Smith, B., Harkness,

R. P., Bordner, J., Kim, J.-h., Kuhlen, M., Xu, H., Goldbaum, N., Hummels, C.,

Kritsuk, A. G., Tasker, E., Skory, S., Simpson, C. M., Hahn, O., Oishi, J. S.,

So, G. C., Zhao, F., Cen, R., Li, Y., and The Enzo Collaboration. ENZO: An

Adaptive Mesh Refinement Code for Astrophysics. The Astrophysical Journal 211,
2 (March 2014), 19.

[13] Cherkaev, A. The secret life of a nan. https://anniecherkaev.com/the-secret-

life-of-nan, March 2018.

[14] Chiang, W.-F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan,

G., and Rakamarić, Z. Rigorous floating-point mixed-precision tuning. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL) (2017), pp. 300–315.

[15] Courbet, C. Nsan: A floating-point numerical sanitizer. In Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction (CC) (March

2021).

[16] Crozier, P., Thornqist, H., Numrich, R., Williams, A., Edwards, H., Keiter,

E., Rajan, M., Willenbring, J., Doerfler, D., and Heroux, M. Improving

performance via mini-applications. Tech. Rep. SAND2009-5574, Sandia National

Laboratories, January 2009.

[17] Devine, S., Bugnion, E., and Rosenblum, M. Virtualization system including a

virtual machine monitor for a computer with a segmented architecture. United

States Patent Number 6397242.

[18] Dinda, P., and Bernat, A. Comparing the understanding of ieee floating point

between scientific and non-scientific users. Tech. Rep. NWU-CS-2021-07, De-

partment of Computer Science, Northwestern University, December 2021.

[19] Dinda, P., Bernat, A., and Hetland, C. Spying on the floating point behavior

of existing, unmodified scientific applications. In Proceedings of the 29th ACM
Symposium on High-performance Parallel and Distributed Computing (HPDC 2020)
(June 2020). Best Paper.

[20] Dinda, P., and Hetland, C. Do developers understand IEEE floating point?

In Proceedings of the 32rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2018) (Apr. 2018).

[21] Duck, G. J., Gao, X., and Roychoudhury, A. Binary rewriting without control

flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (New York, NY, USA, 2020), PLDI

2020, Association for Computing Machinery, p. 151–163.

[22] Févotte, F., and Lathuilière, B. VERROU: assessing floating point accuracy

without recompiling, October 2016. working paper or preprint.

[23] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P. Mpfr:

A multiple-precision binary floating-point library with correct rounding. ACM
Transactions on Mathematical Software (TOMS) 33, 2 (June 2007).

[24] Ghosh, S., Cuevas, M., Campanoni, S., and Dinda, P. Compiler-based timing

for extremely fine-grain preemptive parallelism. In Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing (SC 2020) (November

2020).

[25] Goldberg, R. Survey of virtual machine research. IEEE Computer (June 1974),
34–45.

[26] Gustafson, J. The End of Error: Unum Computing. Chapman and Hall/CRC, 2015.

[27] Hale, K., and Dinda, P. A case for transforming parallel runtimes into operating

system kernels. In Proceedings of the 24th ACM Symposium on High-performance
Parallel and Distributed Computing (HPDC 2015) (June 2015).

[28] Hale, K., and Dinda, P. Enabling hybrid parallel runtimes through kernel

and virtualization support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016) (April
2016).

[29] Hickey, T., Ju, Q., and Van Emden, M. H. Interval arithmetic: From principles to

implementation. Journal of the ACM 48, 5 (Sept. 2001), 1038–1068.
[30] Hollingsworth, J. K., and Buck, B. DynInstAPI Programmer’s Guide Release 1.0,

July 1997. http://www.cs.umd.edu/ hollings/dyninstAPI/dyninstUserGuide.pdf.

[31] Ian A. Mason, S. I. https://github.com/SRI-CSL/gllvm, 2018.

[32] IEEE Floating Point Working Group. IEEE standard for binary floating-point

arithmetic. ANSI/IEEE Std 754-1985 (1985).
[33] IEEE Floating Point Working Group. IEEE standard for floating-point arith-

metic. IEEE Std 754-2008 (Aug 2008), 1–70.
[34] Jin, H., Frumkin, M., and Yan, J. The openmp implementation of nas parallel

benchmarks and its performance (nas 3). Tech. Rep. NAS-99-011, NASA, March

1999. OpenMP 3.0 version available at https://github.com/benchmark-subsetting/

NPB3.0-omp-C.

[35] Jost, T., Durand, Y., Fabre, C., Cohen, A., and Pétrot, F. Vp float: First

class treatment for variable precision floating point arithmetic. In Proceedings
of the ACM International Conference on Parallel Architectures and Compilation
Techniques (PACT) (September 2020).

[36] Jost, T. T., Durand, Y., Fabre, C., Cohen, A., and Pérrot, F. Seamless compiler

integration of variable precision floating-point arithmetic. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO) (February-
March 2021).

[37] Kahan, W. A critique of john l. gustafson’s the end of error—unum computation

and his a radical approach to computation with real numbers. In Proceedings of
the 23rd IEEE Symposium on Computer Arithmetic (ARITH) (July 2016).

[38] Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee, K., Avancha,

S., Vooturi, D. T., Jammalamadaka, N., Huang, J., Yuen, H., Yang, J., Park,

J., Heinecke, A., Georganas, E., Srinivasan, S., Kundu, A., Smelyanskiy, M.,

Kaul, B., and Kundu, P. D. A study of BFLOAT16 for deep learning training.

arXiv preprint arXiv:1905.12322, May 2019.

[39] Lam, M. O., Hollingsworth, J. K., and Stewart, G. Dynamic floating-point

cancellation detection. Parallel Computing 39, 3 (2013), 146–155.
[40] Landi, W. Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1, 4

(dec 1992), 323–337.

[41] Lattner, C., and Adve, V. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, California,

Mar 2004).

[42] Lee,W.-C., Bao, T., Zheng, Y., Zhang, X., Vora, K., andGupta, R. Raive: Runtime

assessment of floating-point instability by vectorization. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) (2015).

[43] Matula, D. W., and Kornerup, P. Finite precision rational arithmetic: Slash

number systems. IEEE Transactions on Computers C-34, 1 (Jan 1985), 3–18.

[44] Milroy, D. J., Baker, A. H., Hammerling, D. M., Dennis, J. M., Mickelson, S. A.,

and Jessup, E. R. Towards characterizing the variability of statistically consistent

community earth system model simulations. Procedia Computer Science 80, C
(June 2016), 1589–1600.

[45] Moon, F. C. Chaotic and Fractal Dynamics: An Introduction for Applied Scientists
and Engineers. John Wiley and Sons, Inc., 1992.

[46] Omni OpenMP Compiler Group, University of Versailles SaintQuentin

en Yvlines. Nas parallel benchmarks 3.0—unofficial openmp c version. https:

//github.com/benchmark-subsetting/NPB3.0-omp-C, 2014.

[47] Omtzigt, E. T. L., Gottschling, P., Seligman, M., and Zorn, W. Universal

Numbers Library: design and implementation of a high-performance reproducible

number systems library. arXiv:2012.11011 (2020).
[48] Panchekha, P., Sanchez-Stern, A., Wilcox, J. R., and Tatlock, Z. Automati-

cally improving accuracy for floating point expressions. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (June 2015).

[49] Popek, G., and Goldberg, R. Formal requirements for virtualizable third gener-

ation architectures. Communications of the ACM (July 1974), 413–421.

[50] Ramalingam, G. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16, 5 (sep 1994), 1467–1471.

[51] Ravitch, T. https://github.com/travitch/whole-program-llvm, 2016.

[52] Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen,

K., Bailey, D. H., Iancu, C., and Hough, D. Precimonious: Tuning assistant

for floating-point precision. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Supercomputing)
(2013).

https://bellard.org/libbf/
https://anniecherkaev.com/the-secret-life-of-nan
https://anniecherkaev.com/the-secret-life-of-nan
https://github.com/SRI-CSL/gllvm
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/travitch/whole-program-llvm

[53] Sanchez-Stern, A., Panchekha, P., Lerner, S., and Tatlock, Z. Finding root

causes of floating point error. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (June 2018).

[54] Sawaya, G., Bentley, M., Briggs, I., Gopalakrishnan, G., and Ahn, D. H. Flit:

Cross-platform floating-point result-consistency tester and workload. In Pro-
ceedings of the 2017 IEEE International Symposium on Workload Characterization
(IISWC) (Oct 2017), pp. 229–238.

[55] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher,

A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna, G. Sok: (state of)

the art of war: Offensive techniques in binary analysis.

[56] Sugerman, J., Venkitachalan, G., and Lim, B.-H. Virtualizing I/O devices on

VMware workstation’s hosted virtual machine monitor. In Proceedings of the
USENIX Annual Technical Conference (June 2001).

[57] Walker, J. Fbench: Floating point benchmarks. https://www.fourmilab.ch/

fbench/, September 2021.

[58] Wingo, A. Value representation in javascript implementations.

http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-

implementations, May 2011.

https://www.fourmilab.ch/fbench/
https://www.fourmilab.ch/fbench/
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations

	Abstract
	1 Introduction
	2 NaN-boxing
	3 Approaches to floating point virtualization
	3.1 Trap-and-emulate
	3.2 Trap-and-patch
	3.3 Static binary analysis and transformation
	3.4 Compiler-based

	4 Hybrid FPVM for x64
	4.1 Trap-and-emulate engine
	4.2 Static binary analysis and transformation
	4.3 Alternative arithmetic interface

	5 Evaluation
	5.1 Testbed, benchmarks, and applications
	5.2 Validation
	5.3 Overheads
	5.4 Effects
	5.5 Software engineering complexity
	5.6 Beyond x64

	6 Prospects for reducing overhead
	6.1 Kernel-level support
	6.2 Hardware support

	7 Conclusions
	References

