
This paper is included in the Proceedings of the
11th International Conference on Autonomic Computing (ICAC ’14).

June 18–20, 2014 • Philadelphia, PA

ISBN 978-1-931971-11-9

Open access to the Proceedings of the
11th International Conference on
Autonomic Computing (ICAC ’14)

is sponsored by USENIX.

Guarded Modules: Adaptively Extending
the VMM’s Privilege Into the Guest

Kyle C. Hale and Peter A. Dinda, Northwestern University

https://www.usenix.org/conference/icac14/technical-sessions/presentation/hale

USENIX Association 11th International Conference on Autonomic Computing 85

Guarded Modules: Adaptively Extending the
VMM’s Privileges Into the Guest

Kyle C. Hale and Peter A. Dinda
{k-hale, pdinda}@northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University

Abstract

When a virtual machine monitor (VMM) provides code
that executes in the context of a guest operating system,
allowing that code to have privileged access to specific
hardware and VMM resources can enable new mecha-
nisms to enhance functionality, performance, and adapt-
ability. We present a software technique, guarded ex-
ecution of privileged code in the guest, that allows the
VMM to provide this capability, as well as an implemen-
tation for Linux guests in the Palacios VMM. Our sys-
tem, which combines compile-time, link-time, and run-
time techniques, provides the module developer with the
following guarantees: (1) A kernel module will remain
unmodified and it will acquire privilege only when un-
trusted code invokes it through developer-chosen, valid
entry points with a valid stack. (2) Any execution path
leaving the module will trigger a revocation of privilege.
(3) The module has access to private memory. The sys-
tem also provides the administrator with a secure method
to bind a specific module with particular privileges im-
plemented by the VMM. This lays the basis for guaran-
teeing that only trusted code in the guest can utilize spe-
cial privileges. We give two examples of guarded Linux
kernel modules: a network interface driver with direct
access to the physical NIC and an idle loop that uses in-
structions not usually permitted in a guest, but which can
be adaptively selected when no other virtual core shares
the physical core. In both cases only the guarded module
has these privileges.

This project is made possible by support from the United States Na-
tional Science Foundation (NSF) via grant CNS-0709168 and the De-
partment of Energy (DOE) via grant DE-SC0005343.

1 Introduction

By design, a virtual machine monitor (VMM) does not
trust the guest operating system and thus does not allow
it access to privileged hardware or VMM state. How-
ever, such access can allow new or better services for the
guest, such as the following examples.

• Direct guest access to I/O devices would allow existing
guest drivers to be used, avoid the need for virtual
devices, and accelerate access when the device could be
dedicated to the guest. In existing systems, the VMM
limits the damage that a rogue guest could inflict by only
using self-virtualizing devices [14, 19] or by operating in
contexts such as HPC environments, where the guest is
trusted and often runs alone [10].

• Direct guest access to the Model-Specific Registers
(MSRs) that control dynamic voltage and frequency
scaling (DVFS) would allow the guest’s adaptive control
of these features to be used instead of the VMM’s
whenever possible. Because applications running on the
guest enjoy access to more rich information than the
VMM does, there is reason to believe that guest-based
control would perform better.

• Direct guest access to instructions that can halt the
processor, such as monitor and mwait, would allow
more efficient idle loops and spinlocks when the VMM
determines that such halts can be permitted given the
current configuration.

Since we cannot trust the guest operating system, to
create such services we must be able to place a compo-
nent into the guest operating system that is both tightly
coupled with the guest and yet protected from it. In prior
work [5], we presented GEARS, a framework for allow-
ing the implementation of a service to span the guest and
the VMM, even without guest cooperation. GEARS pro-
vides the ability to inject modules into the guest, but the
injected code runs with the same privilege and the same
hardware access as other, untrusted guest code. In this

1

86 11th International Conference on Autonomic Computing USENIX Association

paper, we extend this functionality to allow for the in-
jected code to be endowed with privileged access to hard-
ware and the VMM that the VMM selects, but only un-
der specific conditions that preclude the rest of the guest
from taking advantage of the privilege. We refer to this
privileged injected code as a guarded module, and it is
effectively a piece of the VMM running in the guest con-
text.

Our technique leverages compile-time and link-time
processing which identifies valid entry and exit points
in the module code, including function pointers. These
points are in turn “wrapped” with automatically gener-
ated stub functions that communicate with the VMM.
Our current implementation of this technique applies to
Linux kernel modules. The unmodified source code of
the module is the input to the implementation, while the
output is a kernel object file that includes the original
functionality of the module and the wrappers. Concep-
tually, a guarded module has a border, and the wrapper
stubs (and their locations) identify the valid border cross-
ings between the guarded module, which is trusted, and
the rest of the kernel, which is not.

A wrapped module can then be injected into the guest
using the existing GEARS framework, or added to the
guest voluntarily. The wrapper stubs and other events de-
tected by the VMM drive the second component of our
technique, a state machine that executes in the VMM.
An initialization phase determines whether the wrapped
module has been corrupted and where it has been loaded,
and then protects it from further change. Attempted
border crossings, either via the wrapper functions or
due to interrupt/exception injection, are caught by the
VMM and validated. Privilege is granted or revoked on
a per-virtual core basis. Components of the VMM that
implement privilege changes are called back through a
standard interface, allowing the mechanism for privilege
granting/revoking to be decoupled from the mechanism
for determining when privilege should change. The priv-
ilege policy is under the ultimate control of the adminis-
trator, who can determine the binding of specific guarded
modules with specific privilege mechanisms.

Our contributions are as follows:

• We describe the design of the joint compile-time
and run-time guarded module mechanism.

• We describe the implementation of the design for
supporting guarded Linux modules in the context of
the Palacios VMM [11, 9]. Our implementation is
publicly available within the Palacios codebase.

• We evaluate the performance of our implementa-
tion, independent of the service and the privilege.

• We extend Palacios with a privilege mechanism, a
PCI device passthrough capability that can dynami-
cally acquire and release privilege, and then demon-
strate passthrough NIC access using a guarded mod-
ule that drives this mechanism. Only the module has
access to the NIC.

• We extend Palacios with a second privilege mecha-
nism, selectively-enabled access to the monitor
and mwait instructions, and then demonstrate
adaptive use of these instructions in a guarded mod-
ule. Only the module has access to the instructions
and can halt the physical core using them.

2 Related work

Process Isolation Protecting trusted applications from
an untrusted OS has recently become an active area of
research. Overshadow [3] first showed that hardware vir-
tualization techniques can be used to ensure control-flow,
data, and address space integrity for a process running in
the guest. TrustVisor [17] extended this idea with a much
smaller trusted computing base (TCB). Flicker [18] uses
nascent hardware support to effectively protect trusted
applications. XOMOS [13] achieves the same goal, al-
beit with a new ABI and an ISA that has not yet been
implemented in real hardware. InkTag [6] and Virtual
Ghost [4] both aim to further defend these trusted appli-
cations from a small subset of potential Iago attacks [2],
a new class of attacks in which a malicious kernel crafts
return values from system services to trick a trusted ap-
plication into following a code path intended by the at-
tacker. However, these systems not only lack support
for trusted kernel components, they also leverage exist-
ing protection domains and do not consider the protec-
tion of a trusted component from attacks originating in
the same address space.

Kernel-space Isolation A large portion of previous
work on kernel-space isolation is intended for isolating
an entire kernel from untrusted, external components.
LeVasseur’s work on using virtual machines as vehicles
for commodity driver reuse and fault isolation [12] shows
promise, but these techniques involve using driver code
residing in a completely separate virtual machine.

Swift showed, with Nooks [22], that code wrappers
can isolate faulty code in Linux kernel extensions, im-
proving the reliability of the core kernel. While Nooks
provides an illustrative example of defining boundaries
between driver and kernel code, it requires modifications
to the kernel in which the drivers reside. Our system re-
quires no such modifications. Further, Nooks does not

2

USENIX Association 11th International Conference on Autonomic Computing 87

consider the situation in which a trusted module/exten-
sion requires protection from an untrusted kernel—our
primary area of concern.

Both LXFI [16] and SecVisor [20] explore isolation in
terms of guaranteeing kernel integrity. LXFI mitigates
the potential for privilege escalation attacks against ker-
nels by requiring that programmers annotate their mod-
ules. SecVisor insulates kernels from untrusted code by
only allowing VMM-authorized code to execute, pre-
venting a broad class of code-injection attacks against
the kernel. Protecting the kernel against both malicious
attacks and faulty software components are important
problems, but they are orthogonal to our concerns. Our
system guarantees the integrity of kernel modules that
enjoy both a higher level of trust and privilege than the
rest of the OS.

VM Introspection There have been several examples
of leveraging the guest-host relationship to improve VM
monitoring and resource management, especially in the
context of autonomic computing [26, 15, 23, 7]. How-
ever, as far as we are aware, the only existing use case for
trusted, isolated components within a guest kernel is for
security monitors in which the only protected state is the
code and data of the monitor itself, not higher-privilege
state such as that required to access the hardware such as
we outlined in Section 1.

IntroVirt [8] allows a VMM to invoke code in the
guest, but does not deal with enforcing separate levels
of trust within the same guest.

SYRINGE [1] provides a mechanism by which secure
monitoring code can leverage functions in an untrusted
guest. This system employs a secure VM along with
an untrusted VM. When the monitoring code in the se-
cure VM needs to call a function in the untrusted VM,
the hypervisor forwards the call, managing control-flow
and data integrity such that the secure VM is not com-
promised. However, this system is more akin to a se-
cure, cross-core RPC facility that does not address bor-
der crossings within the same address space—a major
component of our work.

Secure in-VM monitoring, or SIM [21], addresses per-
formance issues raised by previous VM introspection
techniques by allowing monitoring code to run directly
in the guest while ensuring the monitor’s integrity. While
SIM touches on the border crossings that are our focus,
it largely sidesteps the issue by using a completely sep-
arate address space for the trusted monitor code. We do
not have this option as we seek to guard modules that
reside in the same address space as the untrusted kernel.

As far as we are aware, the guarded module system

we present is the first of its kind that guarantees both
control-flow and data integrity for modules that share the
same address space as an untrusted OS kernel. Guarded
modules require no specialized hardware and no modifi-
cations to the guest OS in which they execute.

3 Trust and threat models; invariants

We assume a completely untrusted guest kernel. A de-
veloper will add to the VMM selective privilege mech-
anisms that are endowed with the same level of trust as
the rest of the core VMM codebase. A module devel-
oper will assume that the relevant mechanism exists. The
determination of whether a particular module is allowed
access to a particular selective privilege mechanism is
made at run-time by an administrator. The central rela-
tionship we are concerned with is between the untrusted
guest kernel and the module. A compilation process
transforms the module into a guarded module. This then
interacts with run-time components to maintain specific
invariants in the face of threats from the guest kernel.

Control-flow integrity The key invariant we provide
is that the privilege on a given virtual core will be en-
abled if and only if that virtual core is executing within
the code of the guarded module and the guarded mod-
ule was entered via one of a set of specific, agreed-upon
entry points. The privilege will be disabled whenever
control flow leaves the module, including for interrupts
and exceptions.

The guarded module boasts the ability to interact
freely with the rest of the guest kernel. In particular, it
can call other functions and access other data within the
guest. A given call stack might intertwine guarded mod-
ule and kernel functions, but the system guards against
attacks on the stack as part of maintaining the invariant.

A valid entry into the guarded module is not checked
further. Our system does not guard against an attack
based on function arguments or return values, namely
Iago attacks. The module author needs to validate these
himself. Note, however, that the potential damage of per-
forming this validation incorrectly is limited to the spe-
cific privilege the module has.

Code integrity Disguising the module’s code is not a
goal of our system. The guest kernel can read and even
write the code of the guarded module. However, any
modifications of the code by any virtual core will be
caught and the privilege will be disabled for the remain-
der of the module’s lifetime in the kernel. The identity
of the module is determined by its content, and module

3

88 11th International Conference on Autonomic Computing USENIX Association

insertion is initiated external to the guest with a second
identifying factor, guarding against the kernel attempting
to spoof or replay a module insertion.

Data integrity Data integrity, beyond the registers and
the stack, is managed explicitly by the module. The mod-
ule can request private memory as a privilege. On a valid
entry, the memory is mapped and is usable , while on
departing the module, the memory is unmapped and ren-
dered invisible and inaccessible to the rest of the kernel.

4 Design and implementation

The specific implementation of guarded modules we de-
scribe in this paper applies to Linux kernel modules. Our
implementation fits within the context of the Palacios
VMM and takes advantage of code generation and link-
ing features of the GCC and GNU binutils toolchains.
The VMM-based elements leverage functionality com-
monplace in modern VMMs, and thus could be readily
ported to other VMMs. The code generation and linking
aspects of our implementation seem to us to be feasible
in any C toolchain that supports ELF or a similar format.
The technique could be applicable to other guest kernels,
although we do assume that the guest kernel provides
runtime extensibility via some form of load-time linking.

In our implementation, a guarded Linux kernel module
can either be voluntarily inserted by the guest or invol-
untarily injected into the guest kernel using the GEARS
framework. The developer of the module needs to target
the specific kernel he wants to deploy on, exactly as in
creating a Linux kernel module in general.

The guarded module is a kernel module within the
guest Linux kernel that is allowed privileged access to
the physical hardware or to the VMM itself. The nature
of this privilege, which we will describe later, depends on
the specifics of the module. We refer to the code bound-
ary between the guarded module and the rest of the guest
kernel as the border.

Border crossings consist of control flow paths that tra-
verse the border. A border-out is a traversal from the
module to the rest of the kernel, of which there are three
kinds. The first, a border-out call occurs when a ker-
nel function is called by the guarded module, while the
second, a border-out ret, occurs when we return back to
the rest of the kernel. The third, a border-out interrupt
occurs when an interrupt or exception is dispatched. A
border-in is a traversal from the rest of the kernel to the
guarded module. There are similarly three forms here.
The first, a border-in call consists of a function call from
the kernel to a function within the guarded module, while

the second, a border-in ret consists of a return from a
border-out call, and the third, a border-in rti consists
of a return from a border-out interrupt. Valid border-
ins should raise privilege, while border-outs should lower
privilege. Additionally, any attempt to modify the mod-
ule should lower privilege.

The VMM contains a new component, the border con-
trol state machine, that determines whether the guest has
privileged access at any point in time. The state machine
also implements a registration process in which the in-
jected guarded module identifies itself to the VMM and
is matched against validation information and desired
privileges. This allows the administrator to decide which
modules, by content, are allowed which privileges. After
registration, the border control state machine is driven by
hypercalls from the guarded module, exceptions that oc-
cur during the execution of the module, and by interrupt
or exception injections that the VMM is about to perform
on the guest.

The VMM detects attempted border crossings jointly
through its interrupt/exception mechanisms and through
hypercalls in special code added to the guarded module
as part of our compilation process. Figure 1 illustrates
how the two interact.

4.1 Compile-time
Our compilation process, Christoization1, automatically
wraps an existing kernel module with new code needed
to work with the rest of the system. Two kinds of wrap-
pers are generated. Exit wrappers are functions that in-
terpose on the calls from the guarded module to the rest
of the kernel. An exit wrapper, added using link-time
processing, signals the VMM by a hypercall to lower
privilege just before the underlying function call is made.
When the function returns, it signals the VMM to val-
idate the stack and raise privilege. Entry wrappers are
functions that interpose on calls from the kernel into
the guarded module. Entry wrappers, which are intro-
duced by source preprocessing, use hypercalls to signal
the VMM to raise privilege when called, and then lower
privilege when the call returns to the kernel. The precise
positions of the hypercall instructions in the wrappers are
used by the VMM to validate the requests.

We designed our compile-time tool chain so that mod-
ule developer effort is minimized when generating a
guarded module. The requisite knowledge and materials
are the same as what would be required of a developer
writing a Linux kernel module. The necessary inputs to
our toolchain are the guest Linux Makefile and kernel

1Named after the famed conceptual artist, Christo, who was known
for wrapping large objects such as buildings and islands in fabric.

4

USENIX Association 11th International Conference on Autonomic Computing 89

Figure 1: Guarded modules, showing operation of wrappers and interaction of state machine on border crossings.

headers, as well as the source and Makefile for the mod-
ule to be Christoized. Additionally, the privilege names
required by the module are passed as command-line pa-
rameters. Access to the guest Linux source tree may also
be required if the developer wishes to use external func-
tions that use non-standard calling conventions.

The first stage of the Christoization process is module
source analysis. We scan the source files of the mod-
ule, looking for functions that are assigned as callbacks.
These functions represent entry points into the module,
as the kernel will invoke them asynchronously. In order
to effectively identify all of these functions, we must run
a preprocessing pass over the module to make sure that
external inlined functions and macros are accounted for.
Once the entry callbacks are identified, we must search
the source for the function that the module developer reg-
isters using Linux’s module_init macro. This func-
tion will serve as the initial gateway into the module and
must be intercepted by the VMM.

In the source annotation stage, each entry callback as-
signment in the source is changed to a macro that will
expand to an entry wrapper function particular to that
callback. These wrappers are added to the source file
automatically and are depicted in Figure 2. The key idea
here is that a hypercall is inserted both before and after
the call to the original entry point. The remaining in-
structions are there to preserve the environment in such
a way that the original function is not aware that it has
been wrapped. The module_init routine is then sim-

ilarly wrapped with a registration hypercall that notifies
the VMM when it has been inserted into the guest kernel.

The linker wrapping stage takes the output of the anno-
tation stage (a compiled object) and identifies undefined
function references. These represent exits to the kernel.
They are wrapped with exit wrappers, which are assem-
bly stubs similar to entry wrappers. Exit wrappers lower
privilege before the original call and raise it on return.
They are added using ld’s function wrapping capability.
The result of this linking step is that the module’s origi-
nal unresolved external references are resolved to the exit
wrappers, while the exit wrappers contain references to
the original unresolved symbols. As a result, any exter-
nal call from the original module goes through an exit
wrapper.

The final stage of the Christoization process is meta-
data generation. Here, information collected in the previ-
ous stages is aggregated into a formatted file with which
the administrator can later register the guarded module.
The essential metadata consists of the module’s name, its
required privileges, and the offsets in the compiled object
of the identified valid entry points. This list can later be
further restricted or expanded by the module developer.
Additionally, to ensure module integrity at load-time, a
cryptographic content hash of the code segment is per-
formed and recorded. This metadata is later passed by
the administrator to the VMM during the guarded mod-
ule registration process, and it is used from then on by
the border control state machine to validate the hyper-

5

90 11th International Conference on Autonomic Computing USENIX Association

entry_wrapped:
popq %r11
pushq %rax
movq $border_in_call, %rax

(a) vmmcall
popq %rax
callq entry
pushq %rax
movq $border_out_ret, %rax

(b) vmmcall
popq %rax
pushq %r11
ret (to rest of kernel)

Figure 2: An entry wrapper for a valid entry point. Exit
wrappers are similar, except they invoke border out on a
call, and border in after returning.

calls and other events it receives.

4.2 Run-time

The run-time element of our system is based around the
border control state machine. As Figure 1 illustrates, the
state machine is driven by hypercalls originating from the
guarded module, and by events that are raised elsewhere
in the VMM. As a side-effect of the state machine’s exe-
cution, it generates callbacks to other components of the
VMM that implement specific privilege changes, notify-
ing them when valid privilege changes occur. The state
machine also handles the initialization of a guarded mod-
ule and its binding with these other parts of the VMM.
We now describe guarded module execution with respect
to the state machine.

Module initialization The guarded module is injected
into the guest, either voluntarily by the user, or involun-
tarily by the administrator using GEARS’s code injec-
tion facility. The module’s initialization code immedi-
ately calls the guarded module registration function that
was generated by Christoization. This function makes an
initialization hypercall, providing a claimed hash as its
argument. In response, the state machine validates the
module using the metadata associated with the claimed
hash. First, the address of the initialization hypercall in-
struction, combined with the known offset of the instruc-
tion in the text segment stored in the metadata, allows us
to determine the load address of the module’s text seg-
ment. The metadata includes the length of the text sec-
tion. With this information, the state machine then marks
the text segment as unwritable in the shadow or nested

page tables, making it impossible for the guest to change
it. The next step is to compute the hash over the text
segment memory and compare it to the hash stored in the
metadata.2 If the hashes match, the state machine notifies
the selective privilege-enabled component that privilege
should be raised, transitions to the privileged state, en-
ables interception of exceptions, and returns to the guest.
At this point, the guarded module can complete the re-
mainder of its initialization. In effect, module initializa-
tion is treated as the first border-in call.

Border-in call to border-out ret A valid entry into
the guarded module results in a hypercall from the en-
try wrapper (Figure 2(a)) that requests a privilege raise.
The address of this hypercall instruction is then validated
against the list of addresses where such instructions were
placed, which is stored in the metadata. If it is in the list,
the state machine invokes a privilege-raising callback,
and transitions to the privileged state. Before returning,
it also enables interception of exceptions. Before exiting
from a valid entry, the entry wrapper similarly invokes
another hypercall (Figure 2(b)), which requests a lower-
ing of privilege. When privilege is lowered, exception
interception is returned to its nominal state.

Border-out call to border-in ret A call from the
guarded module to the rest of the kernel results in a hy-
percall from the exit wrapper that requests a lowering of
privilege. As a side-effect of lowering privilege, excep-
tion interception is returned to its nominal state. When
the call returns, a second hypercall requests a raising of
privilege. After sanity checking the address against the
metadata, privilege is raised, and exception and interrupt
interception are again enabled.

Border-out int to border-in rti The purpose of inter-
cepting exceptions that occur when executing with priv-
ilege is to assure that we can lower privilege when these
events trigger an interrupt handler dispatch and raise it
once execution resumes in the guarded module. More
generally, we must trap any switch from the guarded
module code to kernel context. When the guest is not
executing in the guarded module, nominal exception
handling is sufficient. Our handler for exception inter-
cepts simply causes the VMM to re-inject the exceptions
alongside its normal injection of interrupt events.

Because we need to be aware of every interrupt/ex-
ception dispatch, we have modified the Palacios VM en-
try code so that, just before such an entry, if the guest
is executing with privilege, we determine if an interrupt

2A direct comparison of the text segment content is also possible.

6

USENIX Association 11th International Conference on Autonomic Computing 91

or exception injection will occur on the entry. If so, we
lower privilege, switch back to nominal interception of
exceptions, and enable interception of the rti instruc-
tion, which will be executed when the interrupt or excep-
tion handler completes. We also note the current %rip
and other information related to this interrupt dispatch.

At this point, we allow the VM entry to complete, and
interrupt dispatch ensues. We emulate rti instructions
when they occur, looking for any rti that will return
control to the instruction at which the original interrup-
t/exception was injected. When we discover a match, we
raise privilege, re-enable exception interception, disable
rti interception, and resume execution with privilege in
the guarded module.

We note that one privilege that could be granted to a
module is the ability to disable interrupts while it ex-
ecutes. In this case, this code path could be entirely
avoided.

Internal calls The entry wrapper shown in Figure 2
and the exit wrappers are linked such that they are
only invoked on border crossings. Calls internal to the
guarded module do not have any additional overhead.
The same applies for calls internal to the kernel.

Nesting and stack checking Although it is convenient
to think of (and generate code for) border-crossings in
matched pairs, it is important to realize that an execution
path may involve multiple border-crossings. For exam-
ple, the kernel might invoke a callback function on the
module, which requires privilege, but which in turn calls
a kernel function, which should not have privilege, and
that subsequently makes another callback into the mod-
ule, which should. The sequence of events for that exam-
ple would be: border-in call, border-out call(*), border-
in call, border-out ret, border-in ret(**), border-out ret.
While border-ins and border-outs must eventually all be
matched, they can nest. This nesting of border crossings
introduces an opportunity to subvert the guarded module
through the stack. Our primary concern is the protection
of the ret in the border-out wrapper. If the border-out
call(*) had its return address modified on the stack, the
border-in ret(**) would return to that address with privi-
lege raised!

To address this, the border control state machine tracks
the nesting level and the stack state, and validates the
stack state on any border-in. When a border-in occurs
with a nesting level of zero, the state machine captures
the starting point of this “first border-in” stack frame
(i.e., %rsp and %rbp). When a border-out occurs,
the state machine captures the ending point of this “last

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Border-out Call Border-in Ret Border-in Call Border-out Ret

C
PU

 C
yc

le
s

Border Crossing Type

priv raise/lower
hypercall handling
entry point lookup

exit handling
stack checking

Figure 3: Privilege change cost with stack integrity
checks.

border-out” stack frame, and computes and stores a hash
of the stack content from the first entry to this last exit.
On any border-in whose nesting level is greater than zero,
the actual stack is again hashed and compared with the
last border-out hash. If they do not match, privilege is
not granted.

Deinitialization The Christoization processing inserts
a deinitialization hypercall as the last thing the module
executes. After validating the hypercall’s location, the
state machine lowers privilege, removes any special in-
terception that is active, and remaps the module with
guest-specified writability. Privilege will not change
again unless the initialization hypercall is executed.

Suspicious activity The state machine detects suspi-
cious activity by noting privilege changing hypercalls at
invalid locations, shadow or nested page faults indicating
attempts to write the module code, and stack hash mis-
matches. Our default behavior is simply to lower priv-
ilege when these occur, and continue execution. Other
reactions are, of course, possible.

5 Evaluation

We now consider the costs of the guarded module sys-
tem, independent of any specific guarded module that
might drive it, and any selective privilege-enabled VMM
component it might drive. We focus on the costs of bor-
der crossings and their breakdown. The most important
contributors to the costs are VM exit/entry handling and
the stack validation mechanism.

All measurements were conducted on a Dell Pow-
erEdge R415. This is a dual-socket machine, each socket
comprising a quad-core, 2.2 GHz AMD Opteron 4122,

7

92 11th International Conference on Autonomic Computing USENIX Association

giving a total of 8 physical cores. The machine has
16 GB of memory. It runs Fedora 15 with a stock Fe-
dora 2.6.38 kernel. Our guest environment uses a single
virtual core that runs a BusyBox environment based on
Linux kernel 2.6.38. The guest runs with nested paging,
using 2 MB page mappings, with DVFS control disabled.

Figure 3 illustrates the overheads in cycles incurred
at runtime. All cycle counts were averaged over 1000
samples. There are five major components to the over-
head. The first is the cost of initiating a callback to lower
or raise privilege. This cost is very small at around 100
cycles. The second cost, labeled “hypercall handling”,
denotes the cycles spent inside the hypercall handler it-
self, not including entry validations, privilege changes,
or other processing involved with a VM exit. This cost
is also quite small, and also typically under 100 cycles.
“entry point lookup” represents the cost of a hash table
lookup, which is invoked on border-ins when the instruc-
tion pointer is checked against the valid entry points that
have been registered during guarded module initializa-
tion. The cost for this lookup is roughly 240 cycles. “exit
handling” is the time spent in the VMM handling the exit
outside of guarded module runtime processing. This is
essentially the common overhead incurred by any VM
exit. Finally, “stack checking” denotes the time spent
ensuring control-flow integrity by validating the stack.
This component raises the cost of a border crossing by
5000 cycles, mostly due to stack address translations and
hash computations. Border-in calls are less affected due
to the initial translation and recording of the entry stack
pointer, while border-out rets are unaffected. Reducing
the cost of this validation is the subject of on-going work.

The guarded module codebase consists of the compile-
time tools, which comprise 223 lines of Perl, 260 lines of
Ruby and the run-time elements added to the VMM. The
latter are generally concentrated in an optional extension
of 1007 lines of C that could be ported to other VMMs.
Some changes to the VMM core were made to facili-
tate interrupt and exception interception and dispatch to
the GEARS guarded module system. These include 178
lines of C.

6 Examples

We now consider two examples of using the guarded
module functionality, drawn from the list in the intro-
duction. In the first example, selectively-privileged PCI
passthrough, the guarded module, and only the guarded
module, is given direct access to a specific PCI device.
We illustrate the use of this capability via a guarded ver-
sion of a NIC driver. In our second example, selectively-

privileged mwait, the guarded module, and only the
guarded module, is allowed to use the mwait instruc-
tion. We illustrate the use of this capability via guarded
module that adaptively replaces the kernel idle loop with
a more efficient mwait loop when it is safe to do so.

We conducted all measurements in this section with
the configuration described in Section 5.

6.1 Selectively privileged PCI passthrough
Like most VMMs, Palacios has hardware passthrough
capabilities. Here, we use its ability to make a hard-
ware PCI device directly accessible to the guest. This
consists of a generic PCI front-end virtual device (“host
PCI device”) , an interface it can use to acquire and re-
lease the underlying hardware PCI device on a given host
OS (“host PCI interface”), and an implementation of that
interface for a Linux host.

A Palacios guest’s physical address space is contigu-
ously allocated in the host physical address space. Be-
cause PCI device DMA operations use host physical ad-
dresses, and because the guest programs the DMA en-
gine using guest physical addresses it believes start at
zero, the DMA addresses the device will actually use
must be offset appropriately. In the Linux implemen-
tation of our host PCI interface, this is accomplished us-
ing an IOMMU: acquiring the device creates an IOMMU
page table that introduces the offset. As a consequence,
any DMA transfer initiated on the device by the guest
will be constrained to that guest’s memory. A DMA can
then only be initiated by programming the device, which
is restricted to the guarded module. This restriction also
prevents DMA attacks on the module that might origi-
nate from the guest kernel.

A PCI device is programmed via control/status regis-
ters that are mapped into the physical memory and I/O
port address spaces through standardized registers called
BARs. Each BAR contains a type, a base address, and
a size. Palacios’s host PCI device virtualizes the BARs
(and other parts of the standardized PCI device config-
uration space). This lets the guest map the device as
it pleases. For a group of registers mapped by a BAR
into the physical memory address space, the mapping is
implemented using the shadow or nested page tables to
redirect memory reads and writes. For a group of regis-
ters mapped into the I/O port space, there is no equivalent
to these page tables, and thus the mappings are imple-
mented by I/O port read/write hooks. When the guest
executes an IN or OUT instruction, an exit occurs, the
hook is run, and the handler simply executes an IN or
OUT to the corresponding physical I/O port. If the host
and guest mappings are identical, the ports are not inter-

8

USENIX Association 11th International Conference on Autonomic Computing 93

cepted, allowing the guest to read/write them directly.
Direct guest access to network hardware is not a new

idea. However, the focus of recent work in this area is on
providing protection between guests [25, 24]. We allow
protection of a VMM-provided driver within a guest.

We extended our host PCI device to support selective
privilege; in the terminology of Section 4.2, it is now
a selective privilege-enabled VMM component. In this
mode of operation, virtualization of the generic PCI con-
figuration space of the device proceeds as normal. How-
ever, at startup, BAR virtualization ensures that the ad-
dress space regions of memory and I/O BARs are ini-
tially hooked to stub handlers. The stub handlers sim-
ply ignore writes and supply zeros for reads. This is
the unprivileged mode. In this mode, the guest sees the
device on its PCI bus, and can even remap its BARs
as desired, but any attempt to program it will simply
fail because the registers are inaccessible. In selectively
privileged operation, the host PCI device also responds
to callbacks for raising and lowering privilege. Raising
privilege switches the device to privileged mode, which
is implemented by remapping the registers in the manner
described earlier, resulting in successful accesses to the
registers. Lowering privilege switches back to unprivi-
leged mode, and remaps the registers back to the stubs.
Privilege changes happen on a per-core basis.

While the above description is complex, it is important
to note that only about 60 lines of code were needed to
add selectively privileged operation to our existing PCI
passthrough functionality. Combined with the rest of the
guarded module system, the selectively privileged host
PCI device permits fully privileged access to the underly-
ing device within a guarded module, but disallow it oth-
erwise.

Making a NIC driver into a guarded module As an
example, we used the guarded module system to generate
a guarded version of an existing NIC device driver within
the Linux tree, specifically the Broadcom BCM5716 Gi-
gabit NIC. No source code modifications were done to
the driver or the guest kernel. We Christoize this driver,
creating a kernel module that we can later inject into
the untrusted guest. The border control state machine in
Palacios pairs this driver with the selectively privileged
PCI passthrough capability. Recall that Christoization is
almost entirely automated, so the result is an unmodified
device driver, executing in the guest, having direct access
to the NIC, while nothing else in the guest does.

The NIC uses exactly one BAR to define a 32 MB re-
gion of the memory address space. Raising and lowering
privilege amounts to editing the shadow or nested page

Packet Sends
Border-in 1.06
Border-out 1.06
Border Crossings / Packet Send 2.12

Packet Receives
Border-in 4.64
Border-out 4.64
Border Crossings / Packet Receive 9.28

Figure 4: Border crossings per packet send and receive
for the NIC example.

tables to remap these addresses. Assuming 2 MB super-
pages and suitable alignment, the system will adjust 16
page table entries when changing privilege.

Overheads Compared to simply allowing privilege for
the entire guest, a system that leverages guarded modules
incurs additional overheads. Some of these overheads are
system-independent, and were covered in Section 5. The
most consequential component of these overheads is the
cost of executing a border-in or border-out, each of which
consists of a hypercall or exception interception (requir-
ing a VM exit) or interrupt/exception injection detection
(done in the context of an in-progress VM exit), a lookup
of the hypercall’s address, a stack check or record, con-
ducting a lookup to find the relevant privilege callback
function, and then the cost of invoking that callback.

We now consider the system-dependent overhead for
the NIC. There are two elements to this overhead: the
cost of changing privilege and the number of times we
need to change privilege for each unit of work (packet
sent or received) that the module finishes. The cost of
raising privilege for the NIC is 4800 cycles (2.2 μs),
while lowering it is 4307 cycles (2.0 μs).

Combining the system-independent and system-
dependent costs, we expect that a typical border cross-
ing overhead, assuming no stack checking will consist of
about 3000 cycles for VM exit/entry, 4000 cycles to ex-
ecute the border control state machine, and about 4500
cycles to enable/disable access to the NIC. These 11500
cycles comprise 5.2 μs on this machine. Stack checking
would add an average of about 4500 cycles, leading to
16000 cycles (7.3 μs).

To determine the number of these border crossings per
packet send or receive, we counted them while running
the guarded module with a controlled traffic source (ttcp)
that allows us to also count packet sends and/or receives.
Dividing the counts gives us the average. There is vari-
ance because the NIC does interrupt coalescing.

Figure 4 shows the results of this analysis for the NIC.
Sending requires on the order of 2 border crossings (priv-
ilege changes) per packet, while receiving requires on the

9

94 11th International Conference on Autonomic Computing USENIX Association

order of 9 border crossings per packet. Note that many
of the functions that constitute border crossings are actu-
ally leaf functions defined in the kernel. This indicates
that we could further reduce the overall number of bor-
der crossings per packet by pulling the implementations
of these functions into the module itself.

6.2 Selectively privileged mwait
Recent x86 machines include a pair of instructions,
monitor and mwait, that can be used for efficient
synchronization among processor cores. The monitor
instruction indicates an address range that should be
watched. A subsequent mwait instruction then places
the core into a suspended sleep state, similar to a hlt.
The core resumes executing when an interrupt is deliv-
ered to it (like a hlt), or when another core writes into
the watched address range (unlike a hlt). The latter al-
lows a remote core to wake up the local core without the
cost of an inter-processor interrupt (IPI). One example of
such use is in the Linux kernel’s idle loop.

In Palacios, and other VMMs, we cannot allow an
untrusted guest to execute hlt or mwait because the
guest runs with physical interrupts disabled. A physi-
cal interrupt is intended to cause a VM exit followed by
subsequent dispatch of the interrupt in the VMM. If an
mwait instruction were executed in the guest under un-
controlled conditions, it could halt the core indefinitely.
This precludes the guest using the extremely fast inter-
core wakeup capability that mwait offers.

Under controlled conditions, however, letting the
guest run mwait may be permissible. When no other
virtual core is mapped to the physical core (so we can
tolerate a long wait) and we have a watchdog that will
eventually write the memory, the guest might safely run
an mwait. To achieve these controlled conditions re-
quires that we limit the execution of these instructions to
code that the VMM can trust and that this code only ex-
ecute mwait when the VMM deems it safe to do so.
A malicious guest could use an unrestricted ability to
execute mwait to launch a denial-of-service attack on
other VMs and the VMM. We enforce this protection and
adaptive execution by encapsulating the mwait func-
tionality within the safety of a guarded module.

Adding selectively-privileged access to mwait to
Palacios was straightforward, involving only a few lines
of code. We then implemented a tiny kernel module that
interposes on Linux’s default idle loop, specifically mod-
ifying pm_idle, a pointer to the function that points
to the idle implementation. Our module points this to
a function internal to itself that dispatches either to an
mwait-based idle implementation within the module or

to the original idle implementation, based on a flag in
protected memory that is shared with Palacios. Palacios
sets this flag when it is safe for the module to use mwait.
In these situations, the guest kernel enjoys much faster
wake-ups of the idling core.

To assure that only our module can execute mwaitwe
transform it into a guarded module using the techniques
outlined earlier in the paper. A border-in to our module
occurs when Linux calls its idle loop. If the border-in
succeeds, Palacios stops intercepting the use of mwait.
When control leaves the module, a border-out occurs,
and Palacios resumes intercepting mwait. If code else-
where in the guest attempts to execute these instructions,
they will trap to the VMM and result in an undefined op-
code exception being injected into the guest.

This proof-of-concept illustrates how the VMM can
use guarded modules to safely adapt the execution envi-
ronment of a VM to changing conditions.

7 Conclusions and future work

We presented the design, implementation, and evalua-
tion of a system for guarded modules. The system al-
lows the VMM to add modules to a guest kernel that
have higher privileged access to physical hardware and
the VMM while protecting these guarded modules and
access to their privileges from the rest of the guest ker-
nel. Our system is based on joint compile-time and run-
time techniques that bestow privilege only when control
flow enters the guarded module at verified locations. We
demonstrated two example uses of the guarded module
system. The first is passthrough access to a PCI de-
vice, for example a NIC, that is limited to a designated
guarded module (a device driver). The guest kernel can
use this guarded module just like any other device driver.
We further demonstrated selectively privileged use of the
monitor and mwait instructions in the guest, which
could wreak havoc if their use was not constrained to a
guarded module that cooperates with the VMM.

Our ongoing and future work lies along two lines.
First, we will explore methods that can further enhance
the performance of this system. Building upon the anal-
ysis of Section 6, we plan to further study methods by
which we can reduce the cost and number of border
crossings needed for a specific module. As previously
mentioned, we are investigating an expansive linking
process in which kernel functions invoked by the guarded
module are incrementally incorporated into the module
itself. Our second line of investigation is in designing
other virtualization services that could be simplified or
enabled by employing guarded modules.

10

USENIX Association 11th International Conference on Autonomic Computing 95

References

[1] CARBONE, M., CONOVER, M., MONTAGUE, B.,
AND LEE, W. Secure and robust monitoring of vir-
tual machines through guest-assisted introspection.
In Proceedings of the 15th International Confer-
ence on Research in Attacks, Intrusions, and De-
fenses (RAID 2012) (September 2012).

[2] CHECKOWAY, S., AND SHACHAM, H. Iago at-
tacks: Why the system call api is a bad untrusted
rpc interface. In Proceedings of the 18th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 2013) (March 2013).

[3] CHEN, X., GARFINKEL, T., LEWIS, E. C.,
SUBRAHMANYAM, P., WALDSPURGER, C. A.,
BONEH, D., DWOSKIN, J., AND PORTS, D. R.
Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating sys-
tems. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008)
(March 2008).

[4] CRISWELL, J., DAUTENHAHN, N., AND ADVE,
V. Virtual ghost: Protecting applications from hos-
tile operating systems. In Proceedings of the 19th
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS 2014) (March 2014).

[5] HALE, K., XIA, L., AND DINDA, P. Shifting
GEARS to enable guest-context virtual services.
In Proceedings of the 9th International Conference
on Autonomic Computing (ICAC 2012) (September
2012).

[6] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE,
M. Z., AND WITCHEL, E. Inktag: Secure applica-
tions on an untrusted operating system. In Proceed-
ings of the 18th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS 2013) (March 2013).

[7] HU, L., SCHWAN, K., GULATI, A., ZHANG, J.,
AND WANG, C. Net-cohort: Detecting and manag-
ing vm ensembles in virtualized data centers. In
Proceedings of the 8th International Conference
on Autonomic Computing (ICAC 2012) (September
2012).

[8] JOSHI, A., KING, S. T., DUNLAP, G. W., AND
CHEN, P. M. Detecting past and present intrusions

through vulnerability-specific predicates. In Pro-
ceedings of the 20th ACM Symposium on Operating
System Principles (SOSP 2005) (October 2005).

[9] LANGE, J., DINDA, P., HALE, K., AND XIA,
L. An introduction to the palacios virtual machine
monitor—release 1.3. Tech. Rep. NWU-EECS-11-
10, Department of Electrical Engineering and Com-
puter Science, Northwestern University, October
2011.

[10] LANGE, J., PEDRETTI, K., DINDA, P., BRIDGES,
P., BAE, C., SOLTERO, P., AND MERRITT, A.
Minimal overhead virtualization of a large scale su-
percomputer. In Proceedings of the 2011 ACM SIG-
PLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE 2011) (March
2011).

[11] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA,
P., CUI, Z., XIA, L., BRIDGES, P., GOCKE,
A., JACONETTE, S., LEVENHAGEN, M., AND
BRIGHTWELL, R. Palacios and kitten: New high
performance operating systems for scalable virtu-
alized and native supercomputing. In Proceed-
ings of the 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2010)
(April 2010).

[12] LEVASSEUR, J., UHLIG, V., STOESS, J., AND
GÖTZ, S. Unmodified device driver reuse and im-
proved system dependability via virtual machines.
In Proceedings of the 6th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 2004) (December 2004).

[13] LIE, D., THEKKATH, C. A., AND HOROWITZ,
M. Implementing an untrusted operating system
on trusted hardware. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP 2003) (October 2003).

[14] LIU, J., HUANG, W., ABALI, B., AND PANDA,
D. High performance vmm-bypass i/o in virtual
machines. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC 2006) (May
2006).

[15] LU, L., ZHANG, H., JIANG, G., CHEN, H.,
YOSHIHIRA, K., AND SMIRNI, E. Untangling
mixed information to calibrate resource utilization
in virtual machines. In Proceedings of the 8th In-
ternational Conference on Autonomic Computing
(ICAC 2011) (June 2011).

11

96 11th International Conference on Autonomic Computing USENIX Association

[16] MAO, Y., CHEN, H., ZHOU, D., WANG, X., ZEL-
DOVICH, N., AND KAASHOEK, M. F. Software
fault isolation with api integrity and multi-principal
modules. In Proceedings of the 23rd ACM Sympo-
sium on Operating System Principles (SOSP 2011)
(October 2011).

[17] MCCUNE, J. M., LI, Y., NING, Q., ZHOU,
Z., DATTA, A., GLIGOR, V., AND PERRIG, A.
Trustvisor: Efficient tcb reduction and attestation.
In Proceedings of the 31st IEEE Symposium on Se-
curity and Privacy (SP 2010) (May 2010).

[18] MCCUNE, J. M., PARNO, B., PERRIG, A., RE-
ITER, M. K., AND ISOZAKI, H. Flicker: An exe-
cution infrastructure for tcb minimization. In Pro-
ceedings of the 3rd ACM European Conference in
Computer Systems (EuroSys 2008) (April 2008).

[19] RAJ, H., AND SCHWAN, K. High performance
and scalable i/o virtualization via self-virtualized
devices. In Proceedings of the 16th IEEE In-
ternational Symposium on High Performance Dis-
tributed Computing (HPDC 2007) (July 2007).

[20] SESHADRI, A., LUK, M., QU, N., AND PERRIG,
A. Secvisor: a tiny hypervisor to provide lifetime
kernel code integrity for commodity oses. In Pro-
ceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP 2007) (October 2007).

[21] SHARIF, M. I., LEE, W., CUI, W., AND LANZI,
A. Secure in-vm monitoring using hardware vir-
tualization. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security
(CCS 2009) (November 2009).

[22] SWIFT, M. M., BERSHAD, B. N., AND LEVY,
H. M. Improving the reliability of commodity
operating systems. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP 2003) (October 2003).

[23] WANG, L., XU, J., AND ZHAO, M. Application-
aware cross-layer virtual machine resource man-
agement. In Proceedings of the 9th International
Conference on Autonomic Computing (ICAC 2012)
(September 2012).

[24] WILLMANN, P., RIXNER, S., AND COX, A. L.
Protection strategies for direct access to virtualized
i/o devices. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC 2008) (June
2008).

[25] WILLMANN, P., SHAFER, J., CARR, D.,
RIXNER, S., COX, A., ZWAENEPOEL, W., AND
ZWAENEPOEL, W. Concurrent direct network ac-
cess for virtual machine monitors. In Proceedings
of the 13th IEEE International Symposium on High
Performance Computer Architecture (HPCA 2007)
(February 2007).

[26] XU, J., ZHAO, M., FORTES, J., CARPENTER, R.,
AND YOUSIF, M. On the use of fuzzy modeling
in virtualized data center management. In Proceed-
ings of the 4th International Conference on Auto-
nomic Computing (ICAC 2007) (June 2007).

12

